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Conditions for Delay-Robust Consensus-Based Frequency Control in Power

Systems with Second-Order Turbine-Governor Dynamics

Sultan Alghamdi, Johannes Schiffer, Emilia Fridman

Abstract— Consensus-based distributed secondary frequency
control schemes have the potential to simultaneously ensure
real-time frequency restoration and economic dispatch in future
power systems with large shares of renewable energy sources.
Yet, due to their distributed nature these control schemes
critically depend on communication between units and, thus,
robustness with respect to communication uncertainties is
crucial for their reliable operation. Furthermore, when applied
in bulk power systems the control design and analysis should
take higher-order turbine-governor dynamics of the generation
units explicitly into account. Both aspects have not been
addressed jointly in the existing literature. Motivated by this,
we derive conditions for robust stability of a consensus-based
distributed frequency control scheme applied to a power system
model with second-order turbine-governor dynamics in the
presence of heterogeneous time-varying communication delays
and dynamic communication topology. The result is established
by a novel coordinate transformation and reduction to eliminate
the invariant subspace in the closed-loop dynamics and by
constructing a strict common Lyapunov-Krasovskii functional.

I. INTRODUCTION

A. Motivation and Related Work

Maintaining a reliable and efficient operation of large

scale power systems is becoming increasingly challenging

due to the high penetration of renewable energy resources

(RES) [1]. The latter lead to higher and faster varying power

imbalances. As a result of any imbalance between generation

and demand, the frequency deviates from its nominal value

[2]. Therefore, one of the most critical control challenges

in power systems is frequency regulation. Conventionally,

frequency regulation is carried out via three hierarchical

control layers: primary, secondary and tertiary control [2].

The primary layer is a proportional control that acts fast on

the instantaneous frequency deviation in a fully decentralized

manner. The secondary control action is usually deployed

via a centralized automatic generation control (AGC). Fur-

thermore, tertiary control is mainly concerned with energy

management.

However, the rising volatility in RES infeed and

the accompanying uncertainty makes centralized operation

schemes increasingly inappropriate to provide the flexibility
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required to secure a stable network operation [1]. As a con-

sequence, distributed secondary frequency control schemes

seeking to combine frequency regulation with optimal gener-

ation dispatch in real-time have recently attracted significant

attention. Essentially, the available concepts can be classified

into two groups: primal-dual gradient-based algorithms [3]–

[5] and consensus-based approaches [6]–[10]. The main

advantages of primal-dual approaches are that generic convex

cost functions and capacity constraints can be considered in

the design. Yet, a key drawback is that exact information

on the actual load demand needs to be available, which is

a stringent requirement in practice (see also the discussion

in [3]). Compared to this, consensus-based algorithms only

admit quadratic cost functions. Yet, they have the fundamen-

tal advantage that merely local frequency measurements and

information exchange of the control variable are required and

are, hence, significantly simpler to implement.

Most existing results for stability of consensus-based fre-

quency controllers are limited to generator dynamics mod-

eled by the swing equation and assume ideal communica-

tion [6]–[8]. Exceptions are [9], [10] in which higher-order

turbine-governor dynamics are considered and [11], [12] in

which the impact of communication uncertainties on the

control performance is analysed. The latter is of paramount

importance, since any distributed control scheme relies on

information exchange between generators. Thus, guarantee-

ing robustness with respect to communication uncertainties,

such as delays, message losses and link failures [13], [14],

is essential to further promote a practical implementation

of consensus-based control schemes in power systems. For

the same reason, more realistic generator models need to

be considered. We remark that the inclusion of second-order

turbine governor dynamics is used in many related stability

studies on classical AGC [15]–[20].

B. Contributions

In light of the above facts, the main contribution of the

present paper is the derivation of sufficient delay-dependent

conditions which guarantee robust stability of higher-order

power system dynamics equipped with a consensus-based

secondary frequency control scheme. Compared to existing

work [9]–[11], we simultaneously account for second-order

turbine-governor dynamics as well as time-varying commu-

nication uncertainties. Following [21]–[25], the latter are rep-

resented by heterogeneous fast-varying delays together with

a dynamic communication network. The presence of higher-

order (non-passive) and time-varying dynamics significantly

complicates the stability analysis. However, if not accounted



for in the analysis their presence may lead to instability,

see, e.g., the example showing instability for power systems

with non-passive second-order turbine governor dynamics in

[9]. To cope with these challenges, we derive a suitable

coordinate transformation and reduction to eliminate the

invariant subspace introduced in the closed-loop dynamics

by the consensus-based control. Furthermore, unlike the

Lyapunov functions employed in [9], [10], our result is

established by constructing a strict common Lyapunov-

Krasovskii functional (LKF) for the nonlinear higher-order

power system dynamics. The effectiveness of the derived

conditions is illustrated via a numerical example.

The remainder of this paper is structured as follows.

In Section II, we recall some preliminaries on graph the-

ory, power network modeling, optimal consensus-based fre-

quency control and communication uncertainties. The robust

stability analysis based on a strict LKF is presented in III.

A numerical example to demonstrate the effectiveness of the

approach is given in Section IV. A brief summary and topics

of future work are provided in Section V.

Notation. We define the sets R≥0 := {x ∈ R|x ≥ 0},

R>0 := {x ∈ R|x > 0} and R<0 := {x ∈ R|x < 0}.
For a set V, |V| denotes its cardinality and [V]k denotes

the set of all subsets of V that contain k elements. Let

x := col(xi) ∈ R
n denote a vector with entries xi for

i = 1, . . . , n, 1n the vector with all entries equal to one,

In the n × n identity matrix, diag(ai), i = 1, . . . , n an

n × n diagonal matrix with diagonal entries ai ∈ R and

A = blkdiag(Ai) denotes a block-diagonal matrix with

block-diagonal matrix entries Ai. Moreover, 0 denotes a

quadratic zero matrix of appropriate dimensions. For non-

quadratic zero matrices the dimensions are specified, i.e.,

0n×m with m 6= n. For A ∈ R
n×n, A > 0 (A < 0)

means that A is symmetric positive (negative) definite. The

lower-diagonal elements of a symmetric matrix are denoted

by ∗. We denote by W [−h, 0], h ∈ R>0, the Banach space

of absolutely continuous functions φ : [−h, 0] → R
n,

h ∈ R>0, with φ̇ ∈ L2(−h, 0)n and with the norm ‖φ‖W =

maxθ∈[a,b] |φ(θ)| +
(

∫ 0

−h
φ̇2dθ

)0.5

. Also, ∇f denotes the

gradient of a function f : Rn → R.

II. PRELIMINARIES

A. Algebraic Graph Theory

An undirected graph of order n is a tuple G = (V, E) with

set of nodes V = {1, . . . , n} and set of undirected edges

E ⊆ [V]2, E = {e1, . . . , em}, m = |E|. The entries of the

adjacency matrix A ∈ R
|N |×|N| are defined as aik = 1

if there is an edge between nodes i and k and aik = 0

otherwise. The degree of a node is given by di =
∑|N |

k=1 aik.

With D = diag(di) ∈ R
|N |×|N|, the Laplacian matrix

of an undirected graph is defined as L = D − A. An

ordered sequence of nodes such that any pair of consecutive

nodes in the sequence is connected by an edge is called

a path. A graph G is said to be connected if for all pairs

{i, k} ∈ [V]2 there exists a path from i to k. The Laplacian

matrix L of an undirected graph is positive semidefinite

with a simple zero eigenvalue if and only if the graph

is connected. The corresponding right eigenvector to this

simple zero eigenvalue is 1n, i.e., L1n = 0n [26]. We refer

the reader to [26], [27] for further information on graph

theory.

B. Power Network Model with Second-Order Turbine-

Governor Dynamics

We consider a Kron-reduced power system model with

n ≥ 1 nodes and denote the set of nodes by N = {1, · · · , n}.

We assume that at each node a generator is connected and

assign a phase angle θi : R≥0 → R and relative frequency

ωi = θ̇i − ωd, where ωd ∈ R≥0 is the desired (nominal)

network frequency, to each unit i ∈ N . It is convenient to

define the vectors θ = col(θi) and ω = col(ωi). Moreover,

we make the following standard assumptions: the voltage

amplitudes V ∈ R
n
≥0 are positive constants and the line

impedances are purely inductive [2]. Under the previous

assumptions, two nodes i and k are connected via a nonzero

susceptance Bik ∈ R<0. Thus, Bik = 0 if there is no

connection between i and k. Furthermore, we assume that

for all {i, k} ∈ [N ]2 there exists an ordered sequence of

nodes from i to k such that any pair of consecutive nodes

in the sequence is connected by a power line represented by

an admittance, i.e., the electrical network is connected. The

active power flow can be written as follows P : Rn → R
n,

P (θ) = ∇U(θ),

where the potential function U : Rn → R is given by

U(θ) = −
∑

{i,k}∈[N ]2

|Bik|ViVk cos(θik).

Moreover, different from the analysis in [11], [12], we

consider a more realistic higher-order generator model with

second-order turbine-governor dynamics given by [28, Chap-

ter 4]

θ̇ = ω,

Mω̇ = −Dω −∇U(θ)−GV 2 + P d
m + Pm,

TmṖm = −Pm + Ps,

TsṖs = −Ps −K−1ω + p,

(II.1)

where Pm : R≥0 → R
n is the mechanical power, Ps :

R≥0 → R
n is the steam power and p : R≥0 → R

n

is the secondary control signal. Furthermore, the diagonal

and positive definite matrices D ∈ R
n×n, M ∈ R

n×n,

K ∈ R
n×n, Tm ∈ R

n×n and Ts ∈ R
n×n denote the damp-

ing coefficients, inertia coefficients, droop gains, governor

time constants and turbine time constants, respectively. In

addition, GV 2 represents the active power demand, where

G = col(Gii) ∈ R
n
≥0 and Gii ∈ R≥0 is the shunt

conductance at the i-th node, and P d
m ∈ R

n
≥0 denotes the

vector of nominal power injection setpoints.



C. Optimal Consensus-Based Frequency Control for Gener-

ator Models with Higher-Order Dynamics

Suppose the solution of the system (II.1) converges to a

synchronous motion with ωs = 1nω
s and constants ωs, P s

m

and P s
s . Then, ωs is obtained from

1
⊤
nMω̇s = 1

⊤
n TmṖ s

m = 1
⊤
n TsṖ

s
s = 0

as

ωs =
−1

⊤
nGV 2 + 1

⊤
nP

d
m + 1

⊤
n p

s

1⊤
nD1n + 1⊤

nK
−11n

,

where we have used the fact that 1
⊤
n∇U(θ) = 0. In practice,

the load demand GV 2 is unknown and, hence, typically

−1
⊤GV 2 + 1

⊤
nP

d
m 6= 0. As a result, the synchronized

frequency deviates from its nominal value. Thus, the main

secondary control task is to restore the frequency to the

nominal value via the inputs p.

Inspired by [9], [10], we consider the following consensus-

based secondary frequency control scheme

Tpṗ = −p+ Pm − (In −K−1)ω −ALAp, (II.2)

where L ∈ R
n×n is the Laplacian matrix of an undirected

connected communication graph enabling distributed infor-

mation exchange between the generators. Furthermore, the

diagonal positive definite matrices Tp ∈ R
n×n and A =

diag(Aii) ∈ R
n×n denote the controller time constants and

a weighting matrix, respectively. It follows from the analysis

in [9], [10], that - if appropriately tuned - the control (II.2)

is able to restore the frequency to its nominal value, while

ensuring economic optimality in a synchronized state, i.e.,

Aiip
s
i = Akkp

s
k ∀i ∈ N , ∀k ∈ N .

Thus, usually the matrix A is fixed by economic considera-

tions.

D. Communication Uncertainties: Time-Varying Delays and

Dynamic Communication Network

The distributed nature of the protocol (II.2) requires

nearest-neighbor information exchange, represented by the

Laplacian matrix L in (II.2). Hence, as discussed in Section I,

see also [13], [14], [22], communication uncertainties pose

a serious threat to the power system performance. Therefore

in the present paper we derive conditions under which the

closed-loop power system dynamics are robust with respect

to the practically most relevant communication uncertainties,

namely message delays and information loss [13], [14].

With regard to communication delays, following [11],

[21]–[23] we assume that a time-varying bounded commu-

nication delay τik : R≥0 → [0, hik], hik ∈ R≥0, affects the

information flow from node i to node k and that the control

error eik is then computed as

eik(t) = Aiipi(t− τik(t))−Akkpk(t− τik(t)). (II.3)

Our analysis accounts for asymmetric delays, i.e., τik 6= τki.

Furthermore, following standard practice in sampled-data

systems [24], [25], the delay τik can be piecewise-continuous

in t and fast-varying, i.e, no restrictions on the existence,

continuity, or boundedness of τ̇ik(t) are imposed.

The loss of information, e.g., due to package losses or

link failures, is modeled via a dynamic communication

network with switched communication topology Gσ(t) [21]–

[23], [29]. Here, σ : R≥0 → M is a switching signal, M =
{1, 2, . . . , ν}, ν ∈ R>0, is an index set and {G1,G2, . . . ,Gν}
denotes the set of finite network topologies. We denote by

Lℓ = L(Gℓ) the Laplacian matrix corresponding to the

index ℓ = σ(t) ∈ M and by Eℓ the corresponding set of

edges. As done in [11], [21], [23], [29], we assume that the

communication topology Gσ(t) is undirected and connected

for all t ∈ R≥0. We also assume that the delays between two

connected nodes are not affected by the switches in topology.

To derive the closed-loop system representation of (II.1)

and (II.2) with communication uncertainties, we follow

[11] and introduce the matrices Lℓ,m, m = 1, . . . , 2Ē ,
Ē = maxℓ=σ(t)∈M |Eℓ|, with nonzero entries lℓ,m,ii = 1,
lℓ,m,ik = −1, if in the ℓ-th communication topology node i

is connected to node k and all other entries are zero. Hence,

Lℓ =

2Ē
∑

m=1

Lℓ,m. (II.4)

Furthermore, we define the vector x = col(Pm, Ps, p) ∈ R
3n

as well as the matrices

T = blkdiag(Tm, Ts, Tp), Ā = blkdiag(A,A,A), (II.5)

Φ =





In −In 0

0 In −In
−In 0 In



 (II.6)

and

Ψℓ,m = Ā blkdiag (0, 0, Lℓ,m) Ā. (II.7)

Then, by combining (II.1) with (II.2), the closed-loop dynam-

ics with delays and dynamic communication network can be

compactly written as

θ̇ = ω,

Mω̇ = −Dω −∇U(θ)−GV 2 + P d
m +

[

In 0n×2n

]

x,

T ẋ=−Φx−





2Ē
∑

m=1

Ψℓ,mx(t− τm)



−





0

K−1

In−K−1



ω.

(II.8)

Remark 2.1: The power system model employed in the

related work [11] is derived under the assumptions that

‖Tm‖p ≪ ‖M‖p and ‖Ts‖p ≪ ‖M‖p, see also (II.5), where

‖ · ‖p denotes a matrix p-norm. Then, by invoking singular

perturbation arguments the slow dynamics corresponding to

the turbine-governor system in (II.8) can be represented by

their corresponding steady-state equations [30], [31]. How-

ever, even though these parameter assumptions are prevalent

in the control community, for many practical power plants

they are not satisfied, see, e.g., the examples in [9], [15]

and in Section IV. As a consequence, the turbine-governor

dynamics are usually modeled explicitly in the related power

systems literature on load frequency control [15]–[20]. These



facts are the main motivation to extend the analysis in [11]

to the model (II.8) in the present work. Due to the resulting

higher-order dynamics different coordinate transformation

and reduction steps than those employed in [11] are required

to construct a strict LKF for the system (II.8). This problem

is addressed in the next section.

III. ROBUST STABILITY IN THE PRESENCE OF

TIME-VARYING DELAYS AND DYNAMIC

COMMUNICATION NETWORK

A. Coordinate Transformation and Reduction

We introduce both a coordinate transformation and reduc-

tion that are essential to construct the proposed strict LKF in

Section III-C, which is used to establish our main stability

result. This step is motivated by the following property of

the matrix family

Φ+

2Ē
∑

m=1

Ψℓ,m, ℓ = σ(t) ∈ M,

which reveals an invariant subspace in the x-dynamics of the

closed-loop power system model (II.8).

Lemma 3.1: Consider the matrices Ā in (II.5), Φ in (II.6)

and Ψℓ,m in (II.7). For any v ∈ R
3n \ {αĀ−1

13n}, α ∈ R,

v⊤





1

2

(

Φ+ Φ⊤)+
2Ē
∑

m=1

Ψℓ,m



 v > 0. (III.1)

Proof: To establish the claim, it is convenient to write

the symmetric part of Φ as
[

Φ̃11 Φ̃12

∗ In

]

=
1

2

(

Φ+ Φ⊤) ,

with

Φ̃11 =

[

In − 1
2In

− 1
2In In

]

, Φ̃12 = −1

2

[

In
In

]

. (III.2)

Clearly, Φ̃11 > 0 and

In− Φ̃⊤
12Φ̃

−1
11 Φ̃12 = 0.

Hence, the Schur complement implies that 1
2

(

Φ+ Φ⊤) ≥
0 and since Φ̃11 > 0, in addition, we have that

v⊤ 1
2

(

Φ+ Φ⊤) v > 0 for all v = col(v1, v2, 0n), v1 ∈ R
n,

v2 ∈ R
n, v 6= 03n. Moreover, for any ℓ = σ(t) ∈ M, Lℓ

is a Laplacian matrix of an undirected and connected graph.

Hence,

v⊤3 ALℓAv3 > 0 ∀ v3 ∈ R
n \ {αA−1

1n}, α ∈ R.

The established facts imply that for any ℓ = σ(t) ∈ M, the

matrix sum

1

2

(

Φ+ Φ⊤)+
2Ē
∑

m=1

Ψℓ,m

is positive semidefinite and that (III.1) is satisfied with

equality if and only if v3 = αA−1
1n. In order for





1

2

(

Φ+ Φ⊤)+
2Ē
∑

m=1

Ψℓ,m



 v = 03n

to be satisfied for some v = col(v1, v2, v3) with v3 =
αA−1

1n, we see that v1 and v2 have to satisfy

v1 −
1

2
v2 − α

1

2
A−1

1n = 0n,

−1

2
v1 + v2 − α

1

2
A−1

1n = 0n,

−1

2
v1 −

1

2
v2 + αA−1

1n = 0n.

By using the second equation, we can express v2 as

v2 =
1

2
v1 + α

1

2
A−1

1n.

Moreover, by substituting the value of v2 in the third equa-

tion, we obtain v1 = αA−1
1n, which gives v2 = αA−1

1n,

completing the proof.

In light of Lemma 3.1 and inspired by [11], [21], [29],

consider the change of coordinates
[

x̄

ζ

]

= W⊤T
1

2x, W =
[

W 1√
µ
T

1

2 Ā−1
13n

]

, (III.3)

where W ∈ R
3n×3n−1, Ā is given in (II.5), µ =

‖T 1

2 Ā−1
13n‖22, W is chosen such that W⊤T

1

2 Ā−1
13n =

03n−1 and the transformation matrix W ∈ R
3n×3n is

orthogonal, i.e., WW⊤ = I3n. Thus, x̄ is a projection of

x on the subspace orthogonal to T
1

2 Ā−1
13n scaled by T

1

2 .

From (III.3) we have that

ζ(x) =
1√
µ

1
⊤
3nĀ

−1T
1

2T
1

2x =
1√
µ

1
⊤
3nĀ

−1Tx. (III.4)

Using (II.8) together with the fact 1
⊤
3nĀ

−1Φℓ,m = 03n leads

to

ζ̇(x) =
1√
µ

1
⊤
3nĀ

−1T ẋ = − 1√
µ

1
⊤
nA

−1ω, (III.5)

which by integrating with respect to time and recalling (II.8)

and (III.4) yields

ζ(x) = − 1√
µ

1
⊤
nA

−1θ + ζ0, (III.6)

where we have defined

ζ0 =
1√
µ

1
⊤
nA

−1θ0 +
1√
µ

1
⊤
3nĀ

−1Tx0. (III.7)

Furthermore,

x = T− 1

2W
[

x̄

ζ

]

= T− 1

2Wx̄− 1

µ
Ā−1

13n

(

1
⊤
nA

−1θ − µζ0
)

.

Hence,

˙̄x = W⊤T
1

2 ẋ = −W⊤T− 1

2ΦT− 1

2Wx̄

−W⊤T− 1

2





2Ē
∑

m=1

Ψℓ,mT− 1

2Wx(t− τm)





−W⊤T− 1

2





0

K−1

In−K−1



ω,

(III.8)

where we have used the facts that ΦĀ−1
13n = 03n and

Ψℓ,mĀ−1
13n = 03n.



By substituting ζ by (III.6), the overall closed loop system

(II.8) can be expressed in the reduced order coordinates as

θ̇ =ω,

Mω̇=−Dω−∇U(θ)−GV 2 + P d
m +

[

In 0n×2n

]

T− 1

2Wx̄

− 1

µ
A−1

1n(1n
⊤A−1θ− µζ0),

˙̄x =−W⊤T− 1

2ΦT− 1

2Wx̄−W⊤T− 1

2





0

K−1

In−K−1



ω

−W⊤T− 1

2





2Ē
∑

m=1

Ψℓ,mT− 1

2Wx̄(t− τm)



 .

(III.9)

B. Error system

We make the following standard assumption on existence

of an equilibrium point satisfying the usual security con-

straint on the stationary phase angle differences [9]–[11].

Assumption 3.2: The system (III.9) possesses an equilib-

rium point col(θs, 0n, x̄
s) ∈ R

5n−1, such that

|θsi − θsk| <
π

2
∀i ∈ N , ∀k ∈ Ni.

With Assumption 3.2, we define the error states

θ̃ = θ − θs, x̃ = x̄− x̄s, z = col(θ̃, ω, x̃) ∈ R
5n−1.

The dynamics (III.9) expressed in the error coordinates are

given by

˙̃
θ = ω,

Mω̇=−Dω−∇U(θ̃+θs)+∇U(θs)+
[

In 0n×2n

]

T− 1

2Wx̃

− 1

µ
A−1

1
⊤
n 1nA

−1θ̃,

˙̃x = −W⊤T− 1

2ΦT− 1

2Wx̃−W⊤T− 1

2





0

K−1

In−K−1



ω

−W⊤T− 1

2





2Ē
∑

m=1

Ψℓ,mT− 1

2Wx̃(t− τm)



 .

(III.10)

Clearly, with Assumption 3.2, the system (III.10) has an

equilibrium point zs at the origin. Furthermore, asymptotic

stability of zs implies that any solution col(θ, ω, x) of the

original system (II.8) with an initial condition that satisfies

ζ0 =
1√
µ

1
⊤
nA

−1θ0 +
1√
µ

1
⊤
3nĀ

−1Tx0

converges to an equilibrium col(θs, 0n, x
s). This applies for

any value of ζ0. Moreover, the dynamics in (III.10) are

independent of ζ. Consequently, zs being asymptotically

stable implies that all solutions of the original system (II.8)

converge to an equilibrium point.

C. Main Result

To present our main result, it is convenient to define the

following two matrices

Φ̄ = W⊤T− 1

2ΦT− 1

2W, (III.11)

Ψ̄ℓ,m = W⊤T− 1

2Ψℓ,mT− 1

2W. (III.12)

Note that Lemma 3.1 implies that Φ̄ +
∑2Ē

m=1 Ψ̄ℓ,m > 0,
which is essential to derive a strict LKF for the dynamics

(III.10) and, thus, establish the result below.

Proposition 3.3: Consider the system (III.10) with As-

sumption 3.2. Fix A, K, L, T and D as well as hm ∈
R>0, m = 1, . . . , 2Ē . Suppose that for all Ψℓ,m defined

in (III.12), ℓ = 1, . . . , |M|, there exist matrices Rm >

0 ∈ R
(3n−1)×(3n−1), Sm > 0 ∈ R

(3n−1)×(3n−1), P >

0 ∈ R
(3n−1)×(3n−1), P2 ∈ R

(3n−1)×(3n−1), P3 > 0 ∈
R

(3n−1)×(3n−1), and S12,m ∈ R
(3n−1)×(3n−1) satisfying

Q =













−D Q12 Q13 0n×(3n−1) 0n×(3n−1)

∗ Q22 Q23 S12 Q25

∗ ∗ Q33 0 Q35

∗ ∗ ∗ −S −R R− S⊤
12

∗ ∗ ∗ ∗ Q55













< 0,

(III.13)

where

R = blockdiag(Rm), S=blockdiag(Sm),

S12=blockdiag(S12,m),

Q12=
1

2

[

In 0n×2n

]

T− 1

2W

− 1

2

[

0 K−1 In−K−1
]

T− 1

2WP2,

Q13 = −1
2

[

0 K−1 In−K−1
]

T− 1

2WP3,

Q22=−P⊤
2 Φ̄− Φ̄⊤P2 +

2Ē
∑

k=1

Sk −
2Ē
∑

k=1

Rk,

Q23= −Φ̄⊤P3 + P − P⊤
2 , Q25 =

[

Q̄25,1 . . . Q̄25,2Ē
]

,

Q̄25,m = Rm − S12,m − P⊤
2 Ψ̄ℓ,m,

Q33 = −P3 − P⊤
3 +

2Ē
∑

k=1

h2
kRk, Q35 =

[

Q̄35,1 . . . Q̄35,2Ē
]

,

Q̄35,m = −P⊤
3 Ψ̄ℓ,m,

Q55 = −2R+ S12 + S⊤
12

as well as
[

R S12

∗ R

]

≥ 0. (III.14)

Then, for all τm(t) ∈ [0, hm] the origin is a locally uniformly

asymptotically stable equilibrium point of the system (III.10).



Proof: By noting that the delay only appears in x̃ and

inspired by [9], [11], [25] consider the LKF with ǫ ∈ R>0,

V = V1 +

2Ē
∑

m=1

V2m,

V1 =
1

2
ω⊤Mω + U(θ̃ + θs)−∇U(θs)⊤θ̃

+ x̃⊤Px̃+ ǫω⊤M1n1
⊤
nA

−1θ̃ +
1

2µ
(1⊤

nA
−1θ̃)2

+ ǫω⊤AM
(

∇U(θ̃ + θs)−∇U(θs)
)

,

V2m=

∫ t

t−hm

x̃⊤(s)Smx̃(s)ds

+hm

∫ 0

−hm

∫ t

t+φ

˙̃x⊤(s)Rm
˙̃x(s)dsdφ.

(III.15)

To establish the claim, we first show that the above LKF is

locally positive definite. We have that

∇V1 =





∇v1
∇v2
2Px̃



 , (III.16)

where

∇v1 = ∇U(θ̃ + θs)−∇U(θs) + ǫ∇2U(θ̃ + θs)⊤MAω

+
1

µ
(A−1

1n1
⊤
nA

−1)θ̃ + ǫA−1
1n1

⊤
nMω,

∇v2 = Mω + ǫAM(∇U(θ̃ + θs)−∇U(θs))

+ ǫM1n1
⊤
nA

−1θ̃.

Clearly, at the origin ∇V1|zs = 05n−1. Moreover the Hessian

of V1 evaluated at zs is given by

∇2V1|zs =





∇2v11 ∇2v12 0n×(3n−1)

∗ M 0n×(3n−1)

∗ ∗ 2P



 , (III.17)

where

∇2v11 = ∇2U(θs) +
1

µ
A−1

1n1
⊤
nA

−1,

∇2v12 = ǫAM∇2U(θs) + ǫM1n1
⊤
nA

−1.

It is well-known that ∇2U(θs) is a Laplacian matrix

with ker(∇2U(θs)) = span(1n) [32], [33]. Further-

more, A−1
1n1

⊤
nA

−1 is a positive semidefinite matrix and

ker(A−1
1n1

⊤
nA

−1) ∩ ker(∇2U(θs)) = 0n. In addition, M

is a diagonal matrix with positive diagonal entries and P is

a positive definite matrix. Thus, all block-diagonal entries

of ∇2V1|zs are positive definite. This implies that there is a

sufficiently small ǫs > 0 such that for all ǫ ∈]0, ǫs] we have

that ∇2V1|zs > 0. Furthermore, Sm and Rm in V2m are

positive definite matrices. Therefore, zs is a strict minimum

of V.

Following [12], [25], at first we set ǫ = 0 in (III.15). Then

the time derivatives of V1 and V2m are given by

V̇1 = −ω⊤Dω + ω⊤ [

In 0n×2n

]

T− 1

2Wx̃+ 2 ˙̃x⊤Px̃

V̇2m = x̃⊤Smx̃− x̃⊤(t− hm)Smx̃(t− hm)

+ h2
m
˙̃x⊤Rm

˙̃x− hm

∫ t

t−hm

˙̃x⊤(s)Rm
˙̃x(s)ds.

(III.18)

Furthermore, since (III.14) is satisfied by assumption,

applying Jensen’s inequality together with [25, Lemma 3.3]

yields

− hm

∫ t

t−hm

˙̃x(s)⊤Rm
˙̃x(s)ds ≤ −η⊤m

[

Rm S12,m

∗ Rm

]

ηm,

(III.19)

where ηm = col(x̃− x̃(t− τm), x̃(t− τm)− x̃(t− hm))
Next, we apply the descriptor method, see [25, Chapter 3],

i.e., we introduce

0 = 2
[

x̃⊤P⊤
2 + ˙̃x⊤P⊤

3

]



−W⊤T− 1

2





0

K−1

In−K−1



ω −W⊤T− 1

2ΦT− 1

2Wx̃

−W⊤T− 1

2





2Ē
∑

m=1

Ψℓ,mT− 1

2Wx̃(t− τm)



− ˙̃x



 .

(III.20)

By summing over (III.19), adding (III.20) together with

(III.18), and recalling Φ̄ in (III.11) and Ψ̄ℓ,m in (III.12), we

obtain

V̇ ≤ ξ⊤Qξ,

where

ξ=col
(

ω, x̃, ˙̃x, ξ1, ξ2
)

,

ξ1 = col (x̃(t− h1), . . . , x̃(t− h2Ē)) ,

ξ2 = col (x̃(t− τ1), . . . , x̃(t− τ2Ē)) ,

and Q is defined in (III.13).

Note that for ǫ = 0 the time derivative of the LKF is not

strict. Yet, under the standing assumptions, Q < 0. Hence,

for ǫ 6= 0, V̇ can be strictified in a straightforward manner

following [11, Proposition 7]. Thus,

V̇ ≤ −ν
(

‖x‖22
)

for some ǫ ∈ R>0 and ν ∈ R>0. By invoking [25, Lemma

4.3] we conclude that the origin of the system (III.10) is

locally uniformly asymptotically stable.

IV. NUMERICAL EXAMPLE

The efficacy of the stability condition in Proposition 3.3 is

evaluated via a benchmark example based on Kundur’s four-

machine-two-area test system [2], see Fig. 1. This example

has also been used in [11], where a related analysis is

conducted for a power system model in which the generator

dynamics are solely represented by the swing equation. The
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Fig. 1. Kundur’s two-area-four-machine test system taken from [2, Example
12.6] and the four employed topologies of the switched communication
network.

model used in [11] can be obtained from (II.8) by setting

TmṖm = TsṖs = 0n for all t ≥ 0, which yields

Pm = −K−1ω + p,

Tpṗ = −Inω −
2Ē
∑

m=1

ALℓ,mAp(t− τm),
(IV.1)

with angle and frequency dynamics as in (II.8).

The values of the main system parameters are given in [2]

with M = diag(13.00, 13.00, 12.35, 12.35). The following

modifications are made: we assume damping coefficients

Di = 2.3 pu and droop gains Ki = 0.05 pu (with respect to

the rated machine powers SG,i = [700, 700, 719, 700], i =
1, . . . , 4). Also, we introduce the steam turbine as well as the

governor time constants Tm = diag(0.125, 0.1, 0.125, 0.11)
and Ts = diag(3.6, 1.8, 2.25, 4.5). Clearly, the assumption

‖Ts‖p ≪ ‖M‖p is not satisfied, see Remark 2.1. We remark

that in the literature values for Ts,i and Tm,i up to 5− 10 s

are reported [15], [19].

With regard to the communication uncertainties, we con-

sider four different communication topologies, see Fig. 1.

Furthermore, we consider uniform fast-varying delays

τm(t) = τ(t) with τ(t) ≤ h = 0.5 s in (II.8). This delay is

implemented as a piecewise continuous function with 2 ms

sampling time.

We compare the performance of the stability conditions

given in Proposition 3.3 for the higher-order power system

model (II.8) with those derived in [11] for the reduced-order

model (IV.1). To this end, as in [11], we set Tp=
1
κ
0.05A−1,

where κ>0 is a free tuning parameter. For the given h, the

maximum κ obtained via the stability conditions provided

in [11] is κ̄=16.0678. Compared to this, the conditions of

Proposition 3.3 are satisfied for κ̂ = 0.902κ̄ = 14.4932. This

shows that the conditions of Proposition 3.3 do not introduce

significant restrictions with regard to the admissible feedback

gain, while they have the additional benefit of also guaran-

teeing stability in the presence of (non-passive) higher-order

turbine-governor dynamics. Note that, even without delays

or a switched communication network, disregarding these
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Fig. 2. Simulation results with κ = 14.4932 , h = 0.5s.

higher-order dynamics can lead to instability, see, e.g., the

example in [9].

The analysis is further confirmed in simulation. The results

in Fig. 2 show that the system trajectories converge to an

equilibrium point for κ = 14.4932 with τ ≤ 0.5 s and the

communication topologies are randomly switched every 5 s.

Thus, despite the presence of communication uncertainties,

the secondary frequency control objectives are achieved.

V. CONCLUSIONS

We have performed a robust stability analysis for

a power system model with distributed consensus-based

frequency control considering (non-passive) second-order

turbine-governor dynamics as well as heterogeneous fast-

varying delays and time-varying communication topologies.

The analysis was conducted by introducing a novel coordi-

nate transformation, which is instrumental to subsequently

construct a strict LKF for the closed-loop power system

dynamics. The efficacy of the derived conditions has been

illustrated via a numerical example.

In future work, we will extend the analysis to more generic

higher-order generator models and also consider other types

of distributed secondary frequency controllers, e.g., primal-

dual variants [3]–[5]. Furthermore, we plan to evaluate the

performance of our stability criterion on large-scale power

system models.
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