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Abstract

The ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and

plasticity are central themes in structural health monitoring (SHM). The importance of detecting such processes

early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and

degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension,

the detection of distributed damage processes also generally requires input data from more than one dimension.

Often, however, interpretation of distributed data – alone – offers insufficient information. For this reason,

engineers and researchers have become interested in stationary inverse methods, e.g. utilizing distributed data

from stationary or quasi-stationary measurements, for tomographic imaging structures. Presently, however, there

are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers,

a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-

squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage.

These regimes are then applied to two emerging SHM imaging modalities: Electrical Resistance Tomography

and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and

experimental data.
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Introduction

In recent years, the use of distributed data and full-field measurements have been the source of significant research

interest in the field of structural health monitoring (SHM) (Farrar and Worden 2012; Ou and Li 2010; Balageas

et al. 2010). Much of this interest is derived from the fact that full-field or distributed data offers increased spatial

information relative to point data (Smyl et al. 2018c). While the use of distributed data does improve realizations

related to structural state, inverse methods afford us additional quantitative information on structural state by

incorporating a priori information in obtaining estimations of structural state from distributed data. Many forms of

data are available to researchers, which are often used to generate images of structural damage, such as cracking,

plasticity, impact, fatigue, and more. In particular, the use of photographic, piezoelectric, and electrical data have been

used in inverse method-based applications within SHM.

The use of photographic data sets has shown promise in Digital Image Correlation (DIC) and Computer Vision

based SHM. For in-plane imaging of plastic processes, DIC has proven to be a highly promising method – for which
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there are many available computational regimes (Pan et al. 2009). Some representative examples of DIC for SHM

purposes include evaluation of crack propagation in concrete elements subject blast loading (Küntz et al. 2006),

evaluation of interfacial debonding (Corr et al. 2007), and evaluation of microscopic strain and damage evolution

in metals (Malitckii et al. 2018; Kang et al. 2007). Data sets generated from DIC have also been successfully used as

input data for inverse regimes; in particular, Quasi-Static Elasticity Imaging (QSEI) which aims to reconstruct elastic

properties from displacement fields (Smyl et al. 2018c). Computer Vision Techniques have also enjoyed much success

in damage localization (Cha et al. 2017), identification of bolt loosening in steel structures (Kong and Li 2018a), and

fatigue-crack detection (Kong and Li 2018b).

Implementation of piezoelectric sensors and actuators for lamb-wave based SHM has also been recognized as

a promising method for detecting damage/defects in structural members. Researchers have demonstrated this in

applications including defect detection in composite structures (Sohn et al. 2003; Paget et al. 2003), thin plates

(Gangadharan et al. 2009), plates considering various deformation physics (Rose and Wang 2004), and a large suite of

different problems. For this, a multitude of analytical, semi-analytical, and numerical approaches have been proposed

(Park et al. 2007; Rose 2014).

Within only the past 8 years, the electrical data has proven successful in tomographic regimes for imaging spatially-

distributed damage in structural members. Most often, researchers have been interested in imaging damage in concrete

(Smyl et al. 2018d; Seppänen et al. 2014a; Hallaji et al. 2014) or composite structures (Tallman et al. 2017, 2015)

by employing Electrical Resistance Tomography (ERT) – aiming to reconstruct the electrical conductivity from

distributed voltage measurements. In concrete applications, aiming to detect discrete cracking, authors have utilized

data obtained directly from the concrete surface (Karhunen et al. 2010) or from an electrically-conductive sensing

skin (Seppänen et al. 2014b). In composite materials, often the material is self sensing (glass fiber/epoxy laminate)

using electrically-conductive nanofillers. In both cases, ERT has been useful in applications from stain quantification

to reconstructing complex cracking distributions in large area sensors.

With the possible exception of lamb-wave based SHM, the aforementioned examples may be used in stationary

tomographic regimes aiming to reconstruct images of (potential) structural damage. This is in contrast to nonstationary

problems, where we quote the description from Kaipio and Somersalo (Kaipio and Somersalo 2005).

“In several applications, one encounters a situation in which measurements that constitute the data of an

inverse problem are done in a nonstationary environment. More precisely, it may happen that the physical

quantities that are the focus of our primary interest are time dependent and the measured data depends on

these quantities at different times.”

Moreover, the general use of stationary inverse problems for generating tomographic images of structural damage

is a rather recent development, largely due to the computational demands in cases with many (roughly, greater than

103 (Oberai et al. 2003)) degrees of freedom. Examples of early applications include elasticity imaging (Bonnet and

Constantinescu 2005), geometrical inverse problems using sensitivity analysis (Bonnet et al. 2002; Aithal and Saigal

1995), and general inverse problems employing boundary integral equations (Nishimura 1995; Mellings and Aliabadi

1995). More recently, researchers have taken advantage of rapidly improving computational resources by solving

stationary SHM inverse problems ranging from approximately 104 (Yang et al. 2017; Gallo and Thostenson 2016; Dai

et al. 2016) to more than 105 degrees of freedom (Zalameda et al. 2017; Smyl et al. 2017).

While considerable, computational challenges associated with implementing tomographic imaging within a SHM

context is only one of many hurdles. In localizing and quantifying structural damage (such as a discrete crack),

numerous considerations such as crack location, external loads, support conditions, and possibly most notably,

structural size have significant impacts on acquired data and therefore the quantitative information obtained (Yao

et al. 2014). To this end, the sheer ability to localize a crack using a tomographic modality is dependent on the input

data being above some distinguishability criteria. If we choose, for example, the distinguishability criteria proposed

by Isaacson (Isaacson 1986), we find that a crack is only detectable when two data sets D1 (before damage) and D2

(after damage) are above some measurement precision εm via a mean-squares criterion: ||D2 −D1|| > εm. Practically

speaking, measurement precision is only the theoretical distinguishability floor for damage detection; errors resulting

from numerical modeling εn, discretization εd and sensor quality εs also contribute, resulting in a more realistic

distinguishability criterion: ||D2 −D1|| > εm + εn + εd + εs. These realizations imply a fundamental hurdle for

implementing tomography for damage detection: that sufficiently small damage(s) may be undetectable (or, in the

inverse problems sense, invisible (Greenleaf et al. 2009)).

In the context of damage tomography, the ability to even solve the intended computational inverse problem requires

a numerical model for the underlying physics. Pragmatically speaking, no numerical method is completely accurate
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(Surana and Reddy 2016; Oberkampf et al. 2002), resulting in ever-present uncertainty and modeling error εn. Broadly,

there are four ways in dealing with εn: (i) ignore it, (ii) improve the numerical method, (iii) develop an approximation

for εn (e.g., using subtraction (Seppänen et al. 2014a), the Bayesian approximation error approach (Nissinen et al.

2007), deep learning (Adler and Öktem 2017), etc.), and (iv) a combination of (ii) and (iii). In some cases, such as

when structural damage processes are not significantly severe and/or complex, the use of (i) and (ii) may be sufficient

(Smyl et al. 2018d); but, oftentimes, this is not true. The veiled need for (iii) in damage tomography may lie in the

fact that damage in structures, either local or distributed, is notoriously nonlinear and difficult to model – although

significant progress has been made in multi-scale numerical and constitutive modeling (LLorca et al. 2011; Nguyen

et al. 2011; Liu and Zheng 2010).

Despite these ever-present practical challenges, we are inspired by the recent developments in stationary tomography

of structural damage and increases in availability of computational resources which have helped to promote usage in

SHM. At present, however, one barrier to the practical implementation of stationary tomography for SHM of built

structures is the lack of availability of straightforward inverse frameworks and a transparent detailing of functionalities.

In contrast, there is substantial literature detailing nonstationary inverse damage detection frameworks using vibration

measurements (Wang and Chan 2009). These regimes have utilized, for example, natural frequency analysis (Moradi

et al. 2011; Hejll 2004), modal displacement response (Zhang et al. 2013), modal strain energy (Cha and Buyukozturk

2015), changes in frequency (Salawu 1997), power spectrum (Gillich and Praisach 2014), and more. In solving

these problems, algorithm complexity has ranged from advanced solution regimes including neural networks, genetic

algorithms, particle swarm optimization, multi-objective function approaches, hybrid multi-objective approaches, and

stochastic optimization approaches for non-convex problems (Jafarkhani and Masri 2011; Perera et al. 2010) to more

basic regimes such as Finite Element updating, various gradient-based approaches, Newton methods, and quasi-

Newton methods (Fan and Qiao 2011).

Possible explanations for the comparatively higher number of available vibration-based damage detection

frameworks, with respect to stationary frameworks, results in part from factors discussed in the following. (a) The

relative versatility in acquiring time-dependent data from accelerometers, laser systems, etc., whereas stationary

tomography may require large-area sensors and/or advanced data acquisition systems posing practical challenges – a

emerging topic that is currently the source of much research interest (Rashetnia et al. 2018). (b) The ability of vibration-

based frameworks to meaningfully implement simple (e.g. one-dimensional) models in localizing damage (Reynders

and De Roeck 2010). (c) The overall effectiveness of vibration-based methods for localizing damage. One potential

advantage of stationary tomography in SHM is that it typically includes only a few data sets, therefore focus is often in

promoting spatial resolution and accurately reconstructing damage geometry – these aims do not necessarily require

large transfers of data or elegant optimization regimes. Rather, accomplishing these aims requires implementation

of prior knowledge in regularization schemes, construction of noise models, appropriate use of error approximation

methods, constrained optimization, and appropriate parameterizations that accurately represent the problem physics.

The development of stationary inverse methods incorporating the aforementioned functionalities is a central theme of

this article.

In this work, we focus on deriving and providing generic, adaptable, and straightforward regimes promoting

improvements in spatial resolution and damage localization, which may be applied to a large suite of stationary inverse

SHM problems. While this article is intended to serve as a primer for new users of stationary tomography in SHM.

The article may also be a useful refresher to those who are already well-versed in inverse problems. For this, we derive

a total of 38 least-squares frameworks for one state, two state, and joint tomographic imaging. Precisely, we aim to

accomplish the following goals in this article:

• Derive one-state, two-state, and joint frameworks for stationary tomography of structural damage.

• Apply the frameworks to two promising SHM modalities: ERT and QSEI

• Demonstrate the frameworks’ feasibility to image damage in structures using experimentally- and numerically-

obtained data.

We note that, in this article, and in stationary tomographic applications in SHM in general, we are usually interested

in fitting a computational model having n unknown parameters with m measurements (where m > n, making the

system overdetermined). Broadly speaking, such a problem in SHM is referred to as a non-linear regression problem,

meaning that the numerically-modeled data is non-linear in the unknown parameters and imposed conditions (such

as boundary conditions, source terms, etc.) (Mueller and Siltanen 2012; Hartley 1961). In solving the non-linear

regression problems, we utilize non-linear least squares approaches. This is done for three primary reasons, (i)
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simplicity in implementation, (ii) ease of adaptability to include different regularization regimes and constraints, and

(iii) rapid minimization.

At this point, it is apparent that the primary contribution of this article is the development and presentation of

computational frameworks for structural damage tomography. With this in mind, it is important to place these aims

in the context of inspection and monitoring processes. Overall, the frameworks provided in this article are intended

to promote improved resolution and quantitative information on spatial structural damage processes. This task is

iterative and computationally demanding, where the demand increases proportionally with the desired resolution and,

roughly speaking, the size of the geometry investigated. As such, these frameworks are not presently intended for

online monitoring processes. While this is a possible limitation in implementing the frameworks, there are also

several promising avenues for utilization, such as, detection of damage processes not apparent or accessible via

visual inspection, damage localization, remote detection of spatial damage processes, quantifying damage severity,

quantifying spatial changes in damage over an inspection period, and incorporation of quantitative tomographic

information into statistical models. To sum up, we strive to provide stationary tomography frameworks taking

advantage of a priori knowledge to increase quantitative information on structural damage processes that may not

be available through interpretation of data alone.

The paper is organized as follows. First, we provide a brief background on stationary inverse problems in the context

of one-state problems. Following, we derive and provide frameworks (including cost functions and least squares

solutions) for one state, two state, and joint tomography. Next, we integrate three different regularization schemes,

constrained optimization, and (in the case of joint imaging) structural operators into the frameworks. We then, for

clarity, provide as summary table including critical aspects for all the frameworks provided. Following, we apply

selected frameworks to ERT and QSEI and provide examples testing the frameworks’ feasibility. Next, a primer for

first-time users of the damage tomography framework and recommendations/potential pitfalls in using the proposed

frameworks are discussed. Lastly, conclusions are presented.

Stationary inverse problem frameworks

Single-state problems

The solution to a single-state stationary inverse problem involves estimating distributed parameters θ from data d. To

do this, we generally aim to match some model U to the data by writing the observation model

d = U(θ) (1)

where U is called a forward model, usually solved computationally, for example by employing the finite difference

or finite element method (Hansen 2005). The use of computational models in SHM applications is centered on the

reality that structures may have arbitrary geometry, boundary conditions, and constitution – in such cases analytical or

semi-analytical models are often not available. In an attempt to solve the basic problem posed in Eq. 1, we may aim to

minimize a data discrepancy functional, such as

Ψ1 = ||d− U(θ)||2 (2)

where || · || is the Euclidean norm and the subscript “1” denotes the number of states considered. In general, however,

solutions resulting from minimization of Eq. 2 may fail due to the ill-posed nature of the inverse problem, meaning

that one of the following criteria is not satisfied: (i) a solution is unique, (ii) a solution exists, and (iii) the behavior of a

solutions changes continually with the problem conditions (Kaipio and Somersalo 2005) (in other words, small changes

in problem conditions/parameter values result in small changes in the solution – this is also known as the “stability”

criterion). To handle the ill-posedness, we require regularization, which will be further detailed later. Moreover, the

formulation of the problem in Eq. 2 is unrealistic, as any measured data contained some error e, which is commonly

assumed to be Gaussian. Therefore, we re-derive the observation model by writing

d = U(θ) + e. (3)

In reality, additional sources of error also exist which add uncertainty to solutions of the inverse problem. A primary

culprit is modeling error, i.e. errors in U that do not precisely match the problem physics (Surana and Reddy 2016).

Such errors may be accounted for by adding a second error term in equation 3 using, for example Bayesian approximate

error modeling (BAE) (Nissinen et al. 2007). In this work, however, we assume the modeling error as additive in the
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term e to maintain simplicity in our regimes. We then aim to minimize the following functional in obtaining our inverse

solutions

Ψ1 = ||Le(d− U(θ))||2 +R(θ) (4)

where R(θ) is a regularization functional and Le is the Cholesky factor of the inverted noise covariance matrix W−1

(i.e. LT
e Le = W−1). To obtain W , we have many options. Possibly the most convenient and robust methods include

obtaining statistics by repeated measuring of a non-evolving structure or simply estimating W by trial and error (e.g.

assume the measurement noise/errors are some small percentage of the measurement magnitudes). As for R(θ), there

are numerous options for regularization that may be chosen based on the problem physics which will be discussed in

much detail in the following section.

To solve the inverse problem, many approaches are available including iterative (Tallman et al. 2017; Hallaji et al.

2014) or non-iterative methods, for example by applying factorization (Schmitt 2009; Gebauer and Hyvönen 2007),

D-bar (Knudsen et al. 2009; Isaacson et al. 2006), or monotonicity (Garde and Staboulis 2017; Tamburrino et al. 2003;

Tamburrino and Rubinacci 2002). In this article, we focus on iterative methods due to their effectiveness in facilitating

increased resolution and application of problem constraints. In solving the problem of minimizing the functional in

Eq. 4, we employ a Gauss-Newton regime equipped with a line-search to compute the step size sk in the solution

θk = θk−1 + skθ̄ (5)

where θk is the present estimate and θ̄ is the update at iteration k given by

θ̄ = (JT
θ W−1Jθ + Γ−1

R )−1(JT
θ W−1(d− U(θk−1)) (6)

where Γ−1
R = LT

RLR is the inverted prior covariance matrix related to the Cholesky factor/appropriate regularization

matrix LR. Moreover, Jθ = ∂U(θ)
∂θ is the Jacobian matrix. Regularization and computation of the Jacobian matrix will

be further detailed in later sections.

Two-state problems

In a two-state problem, we aim to utilize two data sets, d1 and d2, to simultaneously image two structural states using

a stacking method. These states could be, and are commonly, undamaged and damaged states with corresponding

measurements d1 and d2, respectively. Correspondingly, we aim to estimate the distributions θ1 and θ2. To do this, we

begin by designating the change in parameters between measurements d1 and d2 as ∆θ resulting in

θ2 = θ1 +∆θ (7)

which may then be used in generating the two-state observation model∗

d1 = U(θ1) + e1

d2 = U(θ1 +∆θ) + e2
(8)

where e1 and e2 are the measurement noises for measurements d1 and d2, respectively. We may then concatenate to

obtain the following matrix representation

[
d1
d2

]

︸︷︷︸

D

=

[
U(θ1)

U(θ1 +∆θ)

]

︸ ︷︷ ︸

U(Θ)

+

[
e1
e2

]

︸︷︷︸

E

(9)

where

Θ =

[
θ1
∆θ

]

(10)

which can be conveniently used to write the stacked observation model

∗This model has previously been referred to as nonlinear difference imaging (Smyl et al. 2018d; Liu et al. 2016, 2015a)
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D = U(Θ) + E . (11)

Following Eq. 11, we may write the two-state functional to be minimized as

Ψ2 = ||LE(D − U(Θ))||2 +R(Θ) (12)

where R(Θ) is now a compound regularization functional which may incorporate prior information related to the

physics of each structural state and LE is the Cholesky factor defined as LT
ELE = W−1

E , where WE is a block form of

the stationary noise matrices for each state (We1 and We2 ):

WE =

[
We1 0

0 We2

]

. (13)

In solving the minimization problem posed in Eq. 12, we again employ a Gauss-Newton approach by recasting Eq.

5 for the stacked parameterization as

Θk = Θk−1 + skΘ̄ (14)

where Θ̄ is explicitly given by

Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
R )−1(JT

ΘW−1
E (D − U(Θk−1)) (15)

where the Jacobian JΘ = ∂U
∂Θ 6= Jθ and is given by

JΘ =

[
∂U(θ1)
∂θ1

0

∂U(θ1+∆θ)
∂(θ1+∆θ)

∂U(θ1+∆θ)
∂(θ1+∆θ)

]

. (16)

Joint problems

Joint inverse problems aim to estimate different physical properties by simultaneously solving different tomographic

problems. Often, the aim is to improve an individual modality’s resolution and/or quantitative information by taking

advantage of a complimentary modality’s strength; for example, ERT is excellent at detecting sharp features whereas

QSEI often offers smoother reconstructions. Therefore, when sharper features are desired in QSEI, joint imaging with

ERT is advantageous. There are numerous approaches for solving such problems (Ward et al. 2014; Ehrhardt et al.

2014), most often used in medical or geophysical applications. In SHM, however, the use of joint inversion is scarce

due to a general lack of available algorithms – an issue we aim to address herein.

In this work, we consider two kinds of joint problems (i) stacked joint models and (ii) stacked joint models with

a common structural operator. The aim in (i) is simply to solve two stationary tomographic problems simultaneously

and the aim in (ii) is to simultaneously reconstruct two stationary tomographic problems assuming the models have

an underlying similarity in their structure (Haber and Oldenburg 1997). In essence, (ii) is an extension of (i); we will

therefore first derive a joint imaging regime for (i).

Stacked joint models: We begin with the realization that there are two data sets, d1 and d2, corresponding to

parameters ϑ1 for imaging modality 1 and ϑ2 corresponding to imaging modality 2, respectively. We reinforce that

modalities 1 and 2 may relate to stationary problems with entirely different physics. The observation model is then

d1 = U1(ϑ1) + e1

d2 = U2(ϑ2) + e2
(17)

which is similar to the observation model in non-linear difference imaging (Smyl et al. 2018d; Liu et al. 2016, 2015a).

We note, however, that ϑ1 and ϑ2 are not fundamentally linked by any parameter related to a change of state and there

are differences in the forward models for each problem, therefore we denote U1 and U2 separately. Moreover, since

we are dealing with separate imaging modalities, e1 and e2 are not considered to be stationary and modeled separately

(i.e., We1 6= We2 ). As in the previous subsection, we may conveniently concatenate as follows

[
d1
d2

]

︸︷︷︸

DJ

=

[
U1(ϑ1)
U2(ϑ2)

]

︸ ︷︷ ︸

UJ (ΘJ )

+

[
e1
e2

]

︸︷︷︸

EJ

(18)
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where the subscript J denotes ”joint” and

ΘJ =

[
ϑ1

ϑ2

]

. (19)

We then formally write the stacked observation model

DJ = UJ (ΘJ ) + EJ . (20)

Resulting from Eq. 20, we obtain the joint functional to minimize

ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RJ (ΘJ ) (21)

where LJ is obtained using non-stationary noise statistics with Eq. 13 and RJ (ΘJ ) is a compound regularization

functional incorporating prior information related to the problem physics. Since the estimation parameters ϑ1 and ϑ2

are not fundamentally linked by a change of state and are treated independently, we require a different approach to

solve the minimization problem than was used in previous subsection. Using the Gauss-Newton approach with

ΘJ k = ΘJ k−1 + skΘ̄J (22)

we stack the independent parameters from each modality using

Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
R )−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
R )−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))

]

. (23)

where Jϑ1
= ∂U1(ϑ1)

∂ϑ1
and Jϑ2

= ∂U2(ϑ2)
∂ϑ2

.

Stacked joint models with a common structural operator: We again aim to jointly reconstruct parameters [ϑ1, ϑ2]
T

from data [d1, d2]
T . In this section, we assume that parameters ϑ1 and ϑ2 have a similar structure; for example, in the

case of localized cracking in a structural member we may surmise that the localized changes in ϑ1 and ϑ2 are common

in structure/geometry. To accomplish this, we require a common structural operator C, herein referred to as simply

“structural operator.” In this work, C is defined as a term added to a cost functional which relates similarities in the

spatial distributions of ϑ1 and ϑ2. There are many choices (Haber and Oldenburg 1997); here, we consider a simple

thresholding operator accepting a normalized parameter 0 ≤ ϑn ≤ 1:

C(ϑn) =

{

1, if ϑn < t.

0, otherwise.
(24)

where 0 < t < 1 is a threshold parameter and ϑn is obtained simply by normalizing with respect to the maximum

value, i.e. ϑn = ϑ
ϑmax

. In the case that damage significantly decreases the parameters, i.e. ϑ1 → 0 and ϑ2 → 0 (and

ϑn → 0 by default), Eq. 24 may be interpreted as an operator linking the spatial similarities in damage locations for

low values of t.

To incorporate the structural operator C into the inverse regime, we penalize the misfit by adding a structural cost

functional

ΨC =

N∑

i=1

C

( ϑ1,i

ϑ1,max

)

− C

( ϑ2,i

ϑ2,max

)

(25)

to the joint imaging functional (Eq. 21), thereby penalizing discrepancies between the solutions of ϑ1 and ϑ2 with N
degrees of freedom as follows

ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RJ (ΘJ ) + κΨC (26)

where the scalar κ controls the weighting of the structural operator. In solving this problem, we may adopt the same

regime provided in Eq. 23 with the updated objective functional in Eq 26.
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Regularization and constrained optimization

In this section, we provide practical information that is useful in providing accurate prior information and constraints

for stationary inverse problems, as they apply to imaging damage in structures. We begin with regularization

techniques, which are essential for handling the ill-posedness of the inverse problems and incorporating spatial

information related to the problem physics. Following, we discuss the numerical implementation of constraints to

ensure solutions are physically realistic and to help improve the minimization behavior of the regimes. Lastly, a

summary table and brief discussion of the derived frameworks will be provided.

Regularization

Standard least-squares methods generally fail at solving ill-posed problems – for this reason, we require regularization.

We may also use regularization as a way of incorporating prior information in our minimization regimes, which is

immensely helpful when the form of regularization closely matches the problem physics. As an example, it is well

known that many forms of cracking have sharp features. Therefore, edge-preserving regularization (such as total

variation (TV)) is well-suited for such a case. On the other hand, when a damage process is smoothly distributed,

Tikhonov or weighted-smoothness regularization may be better choices (Smyl et al. 2018d). Since we are often

interested in reconstructing damage which may smooth or sharp, we will detail all aforementioned regularization

schemes which may be incorporated in the single-state, two-state, or joint imaging frameworks (recall that R denoted

a regularization functional and ΓR was a prior covariance matrix).

Tikhonov regularization Possibly the most simplistic regularization technique is Tikhonov regularization. In

Tikhonov regularization, we consider the following functional with the subscript ”T ” denoting ”Tikhonov”

RT = ||ΓT θ||
2 (27)

where θ again represents the estimation parameter and ΓT is given by

ΓT = αT I (28)

where I is the identity matrix and αT is a weighting parameter. Of practical importance, αT largely controls the

smoothness of solutions and may be easily optimized using L-curve analysis (see (Mueller and Siltanen 2012) for

details). While simple, Tikhonov regularization is robust, easy to implement, and an efficient means to preliminary test

a developed inverse algorithm.

Weighted-smoothness regularization Another regularization approach that is useful in cases where distributed

parameters are expected to be smooth is weighted-smoothness regularization. In this technique, we use the

regularization functional, with the subscript WS, given by

RWS = ||LWS(θ − θexp)||
2 (29)

where θexp is obtained by determining the best homogeneous (one-parameter) estimate for θ and LWS is the the

Cholesky factorization of the matrix ΓWS , (i.e. Γ−1
WS = LWS

TLWS). Further, there are a multitude of ways to obtain

θexp, however one simple method is to simply sweep an expected space of a homogeneous θ and find the minimum:

θexp = min||d− U(θexp)||. ΓWS , on the other hand, is determined element wise, where the matrix element (i, j) for

a distributed parameter θ at locations xi and xj is given by

ΓWS(i, j) = a exp
(

−
||xi − xj ||

2b

)

+ cδij (30)

where the scalars a, b, and c are positive and δij is the Kronecker delta function. In a basic sense, parameter a controls

the weighting, b is incorporates spatial correlation, and c is small positive parameter which is used to guarantee

that inverse of ΓWS exists (Kaipio and Somersalo 2005). Therefore, this method offers more ability to be tuned to

application-specific parameters than Tikhonov regularization; for example, one can directly control the smoothness

of expected fluctuations in θ by adjusting b and also the regularization weighting via a and c. Where as Tikhonov

regularization only allows for adjusting αT . However, users should be aware that poor selection of a, b, and c may

result in substandard reconstructions.

In addition, the use of weighted smoothness requires the addition of a gradient term in the Gauss-Newton schemes

since the model is differential, unlike Tikhonov regularization. The gradient, updated at each iteration k, is given by
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gWS = θk−1 − θexpΓ
T
WS (31)

and is incorporated into, for example, the one-state solution regime as follows

θ̄ = (JT
θ W−1Jθ + Γ−1

WS)
−1(JT

θ W−1(d− U(θk−1))− gWS). (32)

Extension to the two-state and joint imaging regimes are also done in the same straight-forward manner.

Total Variation regularization Often, we are interested in reconstructing images where the parameter distribution has

sharp edges or is blocky. In structural applications, such distributions may result from cracking, fracture propagation,

localized plasticity, etc. (Seppänen et al. 2014a). While smoothness-promoting regularization methods can certainly

be used in such cases (Tallman and Hernandez 2017), improved accuracy of damage location and distribution can be

gained by using sharpness-promoting regularization. For this purpose, Total Variation regularization is most commonly

used. For a parameter distribution θ, the isotropic TV functional is given by

RTV (θ) = αTV

N∑

h=1

√

||(∇θ)|eh ||
2 + β (33)

where αTV is the TV weighting parameter, ∇θ|eh is the gradient of θ evaluated at degree of freedom eh, and β is

the stabilization parameter (i.e. when β = 0, the functional may not be differentiable). For a detailed discussion of

TV regularization, including anisotropic TV and statistical incorporation of TV, we refer the reader to (González et al.

2017; Lassas and Siltanen 2004). We remark that TV can be quite challenging to use, particularly when the parameters

αTV and β are poorly selected. Some choices for selecting these parameters are detailed in, e.g. (Niinimaki et al.

2016). From experience with structural applications, the use of a confidence-based selection of αTV and β following

(González et al. 2017), has proven robust. In this work we select αTV using

αTV = −
ln(1− pα

100 )

θexp/d
(34)

where pα is the % confidence that θ lies between (0, θexp) and d is the width of the finite element. For β we use

β = ζ
(θexp

d

)2

(35)

where ζ is a small number. For general purposes, the values of pα = 90.0% and ζ = 10−3 have proven robust and are

recommended as a starting point.

To implement TV in the imaging regime, we again require ΓTV (also denoted as the TV Hessian) and gradient

vectors, ΓTV and gTV , respectively. For ΓTV , we use

ΓTV = αTV
∂2RTV (θi)

∂θ2
(36)

where θi refers to the ith degree of freedom in θ. Moreover, we may compute the gradient using

gTV = αTV
∂RTV (θi)

∂θ
. (37)

It is important to note that there are numerous regimes to compute the derivatives. Some choices include using finite

differencing following (Lefkimmiatis et al. 2012) or Gateaux derivatives following (Vogel and Oman 1996). As in the

previous subsection, ΓTV and gTV may be incorporated into any regime provided herein. For example, the one-state

solution:

θ̄ = (JT
θ W−1Jθ + Γ−1

TV )
−1(JT

θ W−1(d− U(θk−1))− gTV ). (38)
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Constraints

The use of constrained optimization is useful (if not, essential) in structural imaging problems for the following

reasons (i) solutions can be constrained to real numbers (i.e. θ > 0) avoiding numerical problems with forward

operators and ensuring solutions are realistic, (ii) solutions may be bounded between known physical limitations

(say 0 < θ < θimpossible), and (iii) often, constraints result in faster minimization since the solution space is limited

to a more feasible set. In the case of imaging structural damage, using for example ERT or QSEI, we can often

place realistic constraints based on simple assumptions, such as the realization that damage can only decrease θ,

resulting in (0 < θ ≤ θexp) (Smyl et al. 2018d). Unfortunately, however, the practical implementation of constraints in

structural imaging problems is rarely reported. In this subsection, we will address this by providing a simple method

for constraining the imaging frameworks provided herein.

There are two components to constraining the regimes provided. First, we must penalize degrees of freedom that are

near or outside our specific constraint(s) in the objective function. Secondly, we must incorporate the first- (gradient)

and second-order (Hessian) terms in our least squares update. For simplicity, we will illustrate this by considering the

single-state problem and only consider upper and lower constraints for simplicity.

We may begin by defining a simple type of constraints using barrier functions, which is essentially an interior-

point method. Let’s first assume we have the following constraints: q1 = 0 < θ < q2, where q2 has a positive value.

In this approach, we have barrier functions Bk(θi) where the i = 1, . . . , N are the degrees of freedom and k = 1, 2.

In generating the barrier functions, we employ second order convex polynomials in the representation Bk(θi) =
̟k(θi)bk(θi) where ̟k(θi) is a function defining an interval where the polynomial bk(θi) = a1θ

2
i + b1θi + c1 with

coefficients a1, b1 and c1 is turned on.

A nice feature of applying constraints in this way is its flexibility. One may select different locations for q1 and

q2 in a manner which accurately represents the problem physics. Numerically speaking, however there are a few

considerations (i) suppose we want to add the polynomial constraint at q3, we must define the interval ̟ using a small

barrier length ι, resulting in the interval [q3 − ι, q3] and (ii) non-negativity constraints must be slightly above zero to

avoid issues with forward models, for example using the interval [10−7, 10−4]. In practice, these numerical realities

rarely affect results.

To implement barrier functions into the cost function, we simply add barrier functionals (depending on whether the

user wants to add 1 or 2 barrier functions) using

ΨC = κC

N∑

i=1

Bk(θi) (39)

where κC is a positive constant that controls the weight of the constraint(s) and “C” denotes constraint. Lastly, we

require the gradient and Hessian related to the constraints, which is done in a straight-forward manner by computing

the vector of length N

gC =
dBk(θi)

dθi
(40)

the square diagonal Hessian matrix (off diagonals are zeros) is computed by filling the diagonal with the following

entries

ΓC =
d2Bk(θi)

dθ2i
. (41)

As an example, we may incorporate the gradient and Hessian into the single-state regime as done previously:

θ̄ = (JT
θ W−1Jθ + Γ−1

R + ΓC)
−1(JT

θ W−1(d− U(θk−1))− gC). (42)

Mixed regularization with constraints

In previous problems, we considered functionals utilizing the same regularization functional for each state. In many

cases, however, we would like to apply different prior models and constraints to accurately represent the physics of

each state. For example, in (Smyl et al. 2018d) the authors utilized the two-state approach considering (i) an initial

undamaged state where the parameters θ1 were assumed to be smoothly distributed and (ii) the second state where the
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cracking was assumed to result in sharp distributions of ∆θ. To accomplish this, the researchers utilized compound

regularization in the form

R(θ) = RWS(θ1) +RTV (∆θ). (43)

Clearly, there are numerous combinations of mixed regularization that may be employed to accurately incorporate

prior models relevant to states’ physics – when using multiple data sets with stacking or joint inversion. Moreover,

models such as Eq. 43 offer advantages over non-stacked models, since much of the noise and modeling errors may

be absorbed in the (often) uninteresting distribution of θ1 (Liu et al. 2016, 2015a).

Incorporation of mixed regularization in two-state least squares regimes may be done in many ways. In the case of

the compound functional in Eq. 43, we may, for example write a mixed regularization block-diagonal matrix ΓMR as

follows

ΓMR =

[
ΓWS 0

0 ΓTV

]

. (44)

or simply use mapping matrices for each state, as detailed in (Liu et al. 2015b). The choice is mostly dependent on the

users’ data structure. In the case of the prior model gradients, we may simply concatenate gradient vectors yielding

gMR, although mapping matrices may also be used. Compiling these realizations, again considering the compound

functional in Eq. 43, we may write the compound regularization of the constrained two-state problem

Ψ2,MR = ||LE(D − U(Θ))||2 +RWS(θ1) +RTV (∆θ) + ΨC (45)

in general, however, we may write

Ψ2,MR = ||LE(D − U(Θ))||2 +R1(θ1) +R2(∆θ) + ΨC (46)

where the subscript “MR” denotes the use of mixed regularization functionals and R1 and R2 are the appropriate

regularization functionals chosen by the user.

In the case of the joint regimes, we obtain a similar result for the functionals. For example, we may consider the

functional for joint imaging with a structural operator and mixed regularization terms given by

ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RJ ,1(ϑ1) +RJ ,2(ϑ2) + κΨC (47)

where RJ ,1 and RJ ,2 are simply the selected regularization functional for the appropriate physics representing

parameters ϑ1 and ϑ2, respectively. To obtain the least-squares update for the joint approaches, we may simply modify

Eq. 23 with the appropriate regularization matrix and gradient vector.

Framework summary

At this point, the reader may notice that constraint Hessians, constraint gradients, prior covariance matrices, and

regularization gradients are simply added or subtracted to the least squares updates. Moreover, the reader may also

note that the integration of constraints and different regularization techniques to the cost function may be done by just

selecting, adding, and/or removing the desired functionals. This flexibility is one primary advantage of the proposed

frameworks, although it may add some ambiguity to new users. For this purpose, Table 1 is provided to summarize all

cost functionals and least-squares updates for the 38 frameworks provided in this work (representing all combinations

of regularization methods, constraints, and models).

Remark: As a health warning, the use of unregularized approaches is, in general, not recommended due to the ill-posed

nature of many inverse problems in SHM. In some special cases of tomography, however, the use of regularization

is not necessarily required, potentially owing to a low condition number (a metric for how ill-conditioned a problem

is) (Aster et al. 2018). Some cases may include DIC applications employing optical flow (Smyl et al. 2018a) or

some applications of radiation-based tomography with low noise and numerous measurements (Chen et al. 2016).

For completeness, we have included the unregularized frameworks in Table 1. Moreover, constraints should be used

wisely; for example in single-state problems where complex numbers are not expected, the constraint θ ≥ 0 is both

simple to employ and very useful.
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Tomographic frameworks

Single-state Two-state Joint - stacked Joint - structural operator

UC/UR CF Ψ1 = ||Le(d− U(θ))||2 Ψ2 = ||LE(D − U(Θ))||2 ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 + κΨC

LS θ̄ = (JT
θ W−1Jθ)

−1(JT
θ W−1(d− U(θk−1)) Θ̄ = (JT

ΘW−1
E JΘ)

−1(JT
ΘW−1

E (D − U(Θk−1)) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

)−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))

(Jϑ2

TWe2
−1Jϑ2

)−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))

]

Θ̄J ,C = Θ̄J

UC/Tik CF Ψ1 = ||Le(d− U(θ))||2 +RT (θ) Ψ2 = ||LE(D − U(Θ))||2 +RT (Θ) ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RT (ΘJ ) ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RT (ΘJ ) + κΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

T )−1(JT
θ W−1(d− U(θk−1)) Θ̄ = (JT

ΘW−1
E JΘ + Γ−1

T )−1(JT
ΘW−1

E (D − U(Θk−1)) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
T )−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
T )−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))

]

Θ̄J ,C = Θ̄J

UC/WS CF Ψ1 = ||Le(d− U(θ))||2 +RWS(θ) Ψ2 = ||LE(D − U(Θ))||2 +RWS(Θ) ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RWS(ΘJ ) ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RWS(ΘJ ) + κΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

WS)
−1(JT

θ W−1(d− U(θk−1))− gWS) Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
WS)

−1(JT
ΘW−1

E (D − U(Θk−1))− gWS) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
WS)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gWS)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
WS)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gWS)

]

Θ̄J ,C = Θ̄J

UC/TV CF Ψ1 = ||Le(d− U(θ))||2 +RTV (θ) Ψ2 = ||LE(D − U(Θ))||2 +RTV (Θ) ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RTV (ΘJ ) ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RTV (ΘJ ) + κΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

TV )
−1(JT

θ W−1(d− U(θk−1))− gTV ) Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
WS)

−1(JT
ΘW−1

E (D − U(Θk−1))− gTV ) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
TV )

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gTV )

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
TV )

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gTV )

]

Θ̄J ,C = Θ̄J

UC/MR CF Not applicable Ψ2 = ||LE(D − U(Θ))||2 +R1(θ1) +R2(∆θ) ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +R1(ϑ1) +R2(ϑ2) ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +R1(ϑ1) +R2(ϑ2) + κΨC

LS Not applicable Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
MR)

−1(JT
ΘW−1

E (D − U(Θk−1))− gMR) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
MR)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gMR)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
MR)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gMR)

]

Θ̄J ,C = Θ̄J

C/UR CF Ψ1 = ||Le(d− U(θ))||2 + κCΨC Ψ2 = ||LE(D − U(Θ))||2 + κCΨC ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 + κCΨC ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 + κΨC + κCΨC

LS θ̄ = (JT
θ W−1Jθ + ΓC)

−1(JT
θ W−1(d− U(θk−1))− gC) Θ̄ = (JT

ΘW−1
E JΘ + ΓC)

−1(JT
ΘW−1

E (D − U(Θk−1))− gC) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ ΓC)
−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gC)

(Jϑ2

TWe2
−1Jϑ2

+ ΓC)
−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gC)

]

Θ̄J ,C = Θ̄J

C/Tik CF Ψ1 = ||Le(d− U(θ))||2 +RT (θ) + κCΨC Ψ2 = ||LE(D − U(Θ))||2 +RT (Θ) + κCΨC ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RT (ΘJ ) + κCΨC ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RT (ΘJ ) + κΨC + κCΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

T + ΓC)
−1(JT

θ W−1(d− U(θk−1))− gC) Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
T + ΓC)

−1(JT
ΘW−1

E (D − U(Θk−1))− gC) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
T + ΓC)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gC)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
T + ΓC)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gC)

]

Θ̄J ,C = Θ̄J

C/WS CF Ψ1 = ||Le(d− U(θ))||2 +RWS(θ) + κCΨC Ψ2 = ||LE(D − U(Θ))||2 +RWS(Θ) + κCΨC ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RWS(ΘJ ) + κCΨC ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RWS(ΘJ ) + κΨC + κCΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

WS + ΓC)
−1(JT

θ W−1(d− U(θk−1))− gWS − gC) Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
WS + ΓC)

−1(JT
ΘW−1

E (D − U(Θk−1))− gWS − gC) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
WS + ΓC)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gWS − gC)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
WS + ΓC)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gWS − gC)

]

Θ̄J ,C = Θ̄J

C/TV CF Ψ1 = ||Le(d− U(θ))||2 +RTV (θ) + κCΨC Ψ2 = ||LE(D − U(Θ))||2 +RTV (Θ) + κCΨC ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +RTV (ΘJ ) + κCΨC ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +RTV (ΘJ ) + κΨC + κCΨC

LS θ̄ = (JT
θ W−1Jθ + Γ−1

TV + ΓC)
−1(JT

θ W−1(d− U(θk−1))− gTV − gC) Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
TV + ΓC)

−1(JT
ΘW−1

E (D − U(Θk−1))− gTV − gC) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
TV + ΓC)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gTV − gC)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
TV + ΓC)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gTV − gC)

]

Θ̄J ,C = Θ̄J

C/MR CF Not applicable Ψ2 = ||LE(D − U(Θ))||2 +R1(θ1) +R2(∆θ) + κCΨC ΨJ = ||LJ (DJ − UJ (ΘJ ))||2 +R1(ϑ1) +R2(ϑ2) + κCΨC ΨJ ,C = ||LJ (DJ − UJ (ΘJ ))||2 +R1(ϑ1) +R2(ϑ2) + κΨC + κCΨC

LS Not applicable Θ̄ = (JT
ΘW−1

E JΘ + Γ−1
MR + ΓC)

−1(JT
ΘW−1

E (D − U(Θk−1))− gMR − gC) Θ̄J =

[
(Jϑ1

TWe1
−1Jϑ1

+ Γ−1
MR + ΓC)

−1(Jϑ1

TWe1
−1(d1 − U1(ϑ1k−1))− gMR − gC)

(Jϑ2

TWe2
−1Jϑ2

+ Γ−1
MR + ΓC)

−1(Jϑ2

TWe2
−1(d2 − U2(ϑ2k−1))− gMR − gC)

]

Θ̄J ,C = Θ̄J

Table 1. Summary of tomographic frameworks provided in this work, including single-state, two-state, joint - stacked, and joint - structural operator approaches. For this, the

cost function (CF) and least-squares updates (LS) are provided as indicated in the far left columns. For brevity, the shorthand abbreviations were used: unconstrained (UC),

constrained (C), unregularized (UR), Tikhonov regularization (Tik), weighted-smoothness regularization (WS), Total Variation Regularization (TV), and mixed regularization

(MR).
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Applying the inverse frameworks to ERT, QSEI, and joint ERT/QSEI

This section aims to integrate some of the one-state, two-state, and joint approaches in practical applications using

two promising SHM imaging modalities: ERT and QSEI. Since 38 modalities were provided (cf. Table 1), we select

only a few of the frameworks for demonstration purposes. To accomplish this, we start by detailing the integration of

ERT and QSEI in some of the frameworks provided. Following, we provide some examples using data generated from

experiments and simulation. Lastly, we discuss the results.

ERT

In ERT, we aim to reconstruct the electrical conductivity σ from potential measurements V . For this, the dependence

of σ on electrode potentials U is modeled by the Complete Electrode Model (CEM) which consists of the differential

equation

∇ · (σ∇u) = 0, x ∈ Ω (48)

and the boundary conditions

u+ ξlσ
du

dn̄
= Ul, x ∈ eℓ, ℓ = 1, . . . , L (49)

σ
du

dn̄
= 0, x ∈ ∂Ω\

L⋃

ℓ=1

eℓ (50)

∫

el

σ
du

dn̄
dS = Il, ℓ = 1, . . . , L (51)

where Ω is the domain, ∂Ω is its boundary, u is the electric potential, n̄ is the unit normal, and el represents the lth

electrode (Cheng et al. 1989; Somersalo et al. 1992). Additionally, ξl, Ul and Il are the contact impedance, electric

potential, and electrical current corresponding to electrode el. In the CEM, the current is conserved, by writing

L∑

l=1

Il = 0 (52)

and the potential reference level must be fixed as follows

L∑

l=1

Ul = 0. (53)

To solve the CEM (Eqs. 48 - 53) using finite element modeling (FEM), we discretize the σ by approximating it

using a piecewise linear basis following (Vauhkonen et al. 1999, 2001). Utilizing the single state observation model

in Eq. 3, we note that, in ERT, we have d = V , θ = σ, and the forward model is given by the CEM, resulting in the

single-state ERT observation model

V = U(σ) + e. (54)

resulting in the following regularized and constrained ERT functional to be minimized

ΨERT,1 = ||Le(V − U(σ))||2 +R(σ) + ΨC (55)

where the subscript ERT, 1 denotes the type of imaging (ERT ) and the number of states (1) with the regularization

and constraint types to be defined later.

For the two-state model, we have the initial state θ1 = σ1, the change in state ∆θ = ∆σ, and the second state

θ2 = σ2 = σ1 +∆σ. Based on this, we may write the observation model for measurements V1 and V2

V1 = U(σ1) + e1

V2 = U(σ1 +∆σ) + e2
(56)

where we may concatenate the solution vector following Eq. 10 using
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ΘERT =

[
θ1
∆θ

]

=

[
σ1

∆σ

]

(57)

and the data vector using D = [V1, V2]
T . By substitution, we may reformulate the generic functional in Eq. 12 as

ΨERT,2 = ||LE(D − U(ΘERT ))||
2 +R(ΘERT ) + ΨC . (58)

To solve the single- and two-state ERT problems in Eqs. 55 and 58, respectively, we employ the Gauss-Newton

method with the ERT Jacobian Jσ computed following (Vilhunen et al. 2002). This is done by substituting the

appropriate data (V and D), parameters (σ and ΘERT , regularization terms, and constraints into the least-squares

regimes. In other words, by substituting into the LS updates in provided Table 1 and carrying through the Gauss-

Newton regimes detailed in Section .

QSEI

In QSEI, we aim to find the inhomogeneous elastic modulus E using displacement fields um, knowledge of the

structural geometry, and the external forces. In structural applications, um may be obtained, for example, from Digital

Image Correlation (DIC) (Kang et al. 2007). In solving the QSEI problem, we require the forward model, which is

solved using a well-known elasticity FEM regime, given by

Uj =

Nn∑

i=1

K−1
ji Fi (59)

where Nn is the number of unknown displacements, K−1
ji is the compliance matrix, and Fi a force vector (Surana and

Reddy 2016).

By corroborating this information with the generic frameworks, we note that, for the single-state problem, we have

θ = E and d = um. Using Eq. 3, we may then write the single-state observation model

um = U(E) + e. (60)

which results in in the following regularized and constrained QSEI functional to be minimized

ΨQSEI,1 = ||Le(um − U(E))||2 +R(E) + ΨC (61)

where the subscripts follow the description provided in the previous subsection and the regularization and constraints

are yet to be defined.

For the two-state model, we again have the initial state θ1 = E1, the change in state ∆θ = ∆E, and the second state

θ2 = E2 = E1 +∆E. Based on this, we then write the observation model for measurements u1 and u2

u1 = U(E1) + e1

u2 = U(E1 +∆E) + e2
(62)

where we concatenate the solution vector using

ΘQSEI =

[
θ1
∆θ

]

=

[
E1

∆E

]

(63)

and the data vector D = [u1, u2]
T . By substitution, we may reformulate the generic functional in Eq. 12 using the

same methodology from the previous subsection as

ΨQSEI,2 = ||LE(D − U(ΘQSEI))||
2 +R(ΘQSEI) + ΨC . (64)

Lastly, the solution to Eq. 64 is preformed in the same manner specified in the final paragraph of the previous

subsection with the jth column of JE computed using central differencing as follows

JE,j =
U(Ek−1 +∆J)− U(Ek−1 −∆J)

2∆J
(65)
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where ∆J is a pertubation computed as a function of the machine precision ǫ using ∆J = 3

√
ǫ
2 following (An et al.

2011). We note that the central-difference perturbation method requires 2Nel solves of the of the forward model,

where Nel refers to the number of elements (degrees of freedom, when the inverse problem is solved element wise).

To reduce the computational demand by half, at the cost of the precision of JE , we may use forward differencing,

where the jth column of JE is given by

JE,j =
U(Ek−1 +∆J)− U(Ek−1)

∆J
. (66)

In cases where additional accuracy is required and the shape functions of K are accessible, one may also use the

Adjoint Method, as described in (Oberai et al. 2003) or the semi-analytical method described in (Vilhunen et al. 2002).

Joint ERT/QSEI imaging

With ERT and QSEI modalities fully described, we now aim to combine both modalities into a joint imaging regime.

We begin by defining the observation by substituting the appropriate ERT and QSEI parameters into Eq. 17. To do this,

we first denote the separate forward models for ERT and QSEI using UERT = U1 (Eqs. 48 - 53) and UQSEI = U2

(Eq. 59). Following, we prescribe (ϑ1 = σ) and (ϑ2 = E) and write the joint ERT/QSEI observation model as

V = UERT (σ) + e1

um = UQSEI(E) + e2
. (67)

Using Eq. 67, we may then write the joint/stacked parameterization

ΘJ ,E/Q =

[
σ
E

]

. (68)

where the subscript ”J , E/Q” denotes the parameter represents joint a ERT/QSEI parameter. Further, we write stacked

observation model

DJ = UJ (ΘJ ,E/Q) + EJ . (69)

and the constrained and regularized solution to the joint problem with a structural operator as

ΨJ ,E/Q = ||LJ (DJ − UJ (ΘJ ,E/Q))||
2 +RJ (ΘJ ,E/Q) + κΨC. (70)

where the regularization and constraint functions will be defined in the application section. Lastly, for clarity, we

provide the entire least-squares estimate for this imaging regime explicitly as follows

Θ̄J =

[
(Jσ

TWe1
−1Jσ + Γ−1

R + ΓC)
−1(Jσ

TWe1
−1(V − UERT (σk−1))− gC)

(JE
TWe2

−1JE + Γ−1
R + ΓC)

−1(JE
TWe2

−1(um − UQSEI(Ek−1))− gC)

]

(71)

where the appropriate regularization gradient should be applied to the right-hand sides when employing weighted

smoothness or TV functionals.

Tomographic applications

This section provides examples of one-state, two-state, and joint tomographic imaging of structural members of various

geometries. We begin by using experimental and simulated data to image cracking processes in reinforced concrete

beams using ERT, both single-state and two-state imaging is applied. Following, simulated QSEI data is used to image

damage in plates with single- and two-state approaches. Lastly, we use joint ERT/QSEI imaging for detecting damage

in a simulated plate.
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ERT imaging of cracked concrete beams

To demonstrate the efficacy of one- and two-state ERT, we utilize experimental data from (Smyl et al. 2018d). In

the experiment, a 152 × 508 × 152 mm lightly-reinforced concrete beam was loaded in three-point bending. On the

surface of the beam, a silver sensing skin with 28 copper boundary electrodes was applied for use in ERT measurements

(cf. the left column of Fig.1). A total of 54 1.0 mA direct current injections were applied between electrodes i and

j, i = 6, 21 and j = 1, ..., 28, i 6= j. Corresponding to each current injection, 1,458 adjacent electrode potentials were

measured.

For the reconstructions, we utilized a rectangular FEM mesh with Nel = 9,680 triangular elements and Nn = 5, 047
nodes. Since the problem was solve node-wise, this resulted in 5,047 degrees of freedom for each reconstructed state.

In solving the problems, we selected three different regularization methods, including Tikhonov, WS, and TV denoted

as Rσ =RT , RWS , and RTV , respectively. For this, we chose the respective regularization parameters as λ = 10−3,

the weighted smoothness parameters a = 10−2, b = 0.5, and c = 10−3, and TV regularization with pα = 90% and

ζ = 10−5. For the initial guess, we set σ = σexp, where σexp is the one-parameter homogeneous estimate. In addition,

we apply a positivity constraint Ψ1
C = Ψ1

C(σ > 0) and an upper constraint Ψ2
C = Ψ2

C(σ < σref), where the superscript

is simply an index for keeping track of the constraints and κC = 10−3. We recall that Ψ1
C results from the fact that

conductivity is always a positive value and Ψ2
C results from the assumption that cracking can only reduce σ with

respect to the reference state. We then obtain the following minimization problem

ΨERT,1 = arg min
σ>0

σ<σref

[
||Le(V − U(σ))||2 +Rσ +Ψ1

C(σ) + Ψ2
C(σ)

]
. (72)

For the two-state problem, we select different combinations of regularization functionals (denoted Rσ1
and R∆σ ,

respectively) for reconstructing σ1 and ∆σ. Since σ1 is undamaged and assumed to be distributed smoothly, we

choose Tikhonov and WS regularization in estimating σ1. On the other hand, ∆σ is expected to have sharp changes

due to cracking; therefore, both Tikhonov and TV regularization are chosen. For the initial guess in the two-state

problem, we set ΘERT = [σexp, 0], where the initial guess for ∆σ = 0 is a zero vector. For the constraints, we set

Ψ3
C = Ψ3

C(σ1 > 0), Ψ4
C = Ψ4

C(σ2 ≥ 0), and Ψ5
C = Ψ5

C(∆σ ≤ 0) (since cracking can only reduce the conductivity

of the sensing skin). Based on these realizations, we have the following two-state minimization problem

ΨERT,2 = arg min
σ1>0
σ2≥0
∆σ≤0

[
||LE(D − U(ΘERT ))||

2 +Rσ1
(σ1) +R∆σ(∆σ) + Ψ3

C(σ1) + Ψ4
C(σ2) + Ψ5

C(∆σ)
]
. (73)

Moreover, since we are interested in comparing both one- and two-state reconstructions of cracking, we normalize

reconstructions of σ and σ2 as detailed in (Smyl et al. 2018d). The normalized one- and two-state solutions are

written as σn,1 = σ
σref

and σn,2 = σ2

σ1
, where each estimate ranges from 0 (cracked area) to 1 (background value).

Reconstructions, showing unitless σn,1 and σn,2, for these cases are shown in Fig. 1.

Reconstructions in Fig. 1 clearly show that, with the exception of the one-state reconstruction using RT , the one-

and two-state frameworks localized both cracks. Images in Fig. 1, therefore support the feasibility of the proposed

frameworks for use in ERT imaging of discrete structural damage. It is important to remark that, while the two-state

estimates generally capture both crack geometries better than the the one-state estimates, more background artifacts are

present when Tikhonov regularization is used. This observation is most evident when Tikhonov regularization is used

for both states, i.e. Rσ1
= RT and R∆σ = RT . On the other hand, when WS is used to estimate σ1, reconstructions

improve. Further yet, the most visually accurate reconstructions are realized when Rσ1
= RWS and R∆σ = RTV .

This realization demonstrates the importance in using prior information to accurately estimate crack geometries. In this

example, the use of prior information was encoded by spatial information in σ1 via RWS(σ1) and sparsity of ∆σ via

RTV (∆σ). Intuitively, the reconstruction improvement in the former case – relative to the one-state reconstructions

– is an expected result, since the two-state framework allows for appropriate prior models representing the physics of

each state, the use of two data sets, and the proper use of constraints on each state. We note, however, that the improved

resolution of the two-state framework results in doubling of the computational demand since both σ1 and ∆σ, having

the same degrees of freedom, are simultaneously reconstructed. Such demand may be reduced by incorporating region

of interest information, as discussed in (Liu et al. 2015a).

To investigate the computational behavior of the ERT reconstruction frameworks, we analyze the minimization

behavior of the cost functionals for the one- and two-state problems, ΨERT,1 and ΨERT,2. Since the values of the
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Figure 1. ERT imaging of a cracked reinforced concrete beam with an applied silver sensing skin: left column, photograph of

the cracking pattern and electrode numbers shown in white. Middle column, one-state ERT reconstructions of the cracking

pattern using Tikhonov, WS, and TV regularization denoted by Rσ = RT , RWS , and RTV , respectively. Right column,

two-state ERT reconstructions of the cracking pattern using Tikhonov and WS regularization in estimating σ1 and

Tikhonov/TV regularization in estimating ∆σ (functionals for σ1 and ∆σ denoted as Rσ1
and R∆σ). Images are normalized

and the colorbar is unitless .

Figure 2. Minimization curves for one- and two-state ERT problems reporting normalized cost functionals,

ΨERT,1/max(ΨERT,1) and ΨERT,2/max(ΨERT,2), respectively.

functionals vary by orders of magnitude (e.g. the data-discrepancy term in ΨERT,2 is double that of ΨERT,1 and

different regularization functionals differ in magnitude), we plot the cost functionals normalized with respect to their

maximum values. The normalized functionals are provided in Fig. 2. While all normalized functionals converge to

similar values, we immediately observe two primary differences in one- and two-state functionals shown in Fig 2: (i)

the drops in ΨERT,1 are initially more gradual than those of ΨERT,2 and (ii) as a whole, the one-state problems require

more iterations to reach the stopping criteria. Observation (i) is explained by the poor initial guess for ∆σ = 0, which

is quite far from the final estimate, yet is quickly compensated for in the first iteration(s). The low iterations required

to reach stopping criteria for the two-state problems, relative to the one-state problems, lies in the fact the the problems

physics are more accurately captured using (a) physically-realistic constraints on each state and (b) prior knowledge

of spatial properties inherent in σ1 and ∆σ (when RWS and RTV are used), which cannot be fully captured using

one-state frameworks.
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QSEI imaging of damage in plates

In this subsection, we test the one- and two-state frameworks with application to QSEI of plate geometries. For both

frameworks, we use simulated displacement data generated using the FEM forward model using a fine mesh with

Nel = 1, 800 three-node triangular elements. Following, we add Gaussian noise to the displacement data with 1%

and 2% standard deviation and then interpolate the data onto a coarser mesh with Nel = 450 elements using linear

interpolation to avoid an inverse crime. We note that this inverse problem was solved element-wise, resulting in a total

of 450 degrees of freedom in E. Moreover, for computing the Jacobian, we utilized central differencing following Eq.

65. For the plate geometries, we use dimensionless units where the 10 × 10 plate has a uniform thickness of 0.1, a

fixed left side, and a uniformly distributed load at on the right-hand side of 1 unit per unit length. Moreover, although

the dimensions of the QSEI examples are unitless for demonstration purposes, the mean elastic modulus (near 300)

and Poisson’s ratio ν = 0.30 were selected to reflect those of steel (E = 200 GPa and ν ≈ 0.30).

For the purposes of illustration, we begin by conducting one-state reconstructions of a narrow crack using the three

forms of QSEI regularization RE discussed in this article: Tikhonov, WS, and TV denoted as RE = RT , RWS ,

and RTV , respectively. The same regularization parameters in the previous section are also adopted here and the

initial guess for the one-state QSEI problem is the homogeneous estimate E = Eexp. The ground truth and one-state

reconstructions for noise levels of 1% and 2% are provided in Fig. 3. Note that, since the inverse problems in this

subsection are solved in a piece-wise constant manner, the reconstructions are also shown as piece-wise constant.

1% noise 2% noise

T
r
u

e
ℛ 𝑬=ℛ

𝑻
ℛ 𝑬=ℛ

𝑾𝑺
ℛ 𝑬=ℛ

𝑻𝑽

Figure 3. QSEI reconstructions of a narrow crack using Tikhonov, weighted smoothness (WS), and TV regularization using

displacement data corrupted with 1% and 2% noise. The colorbars represent the unitless elastic modulus E.

Reconstructions in Fig. 3 support the feasibility of the one-state framework, using all three forms of regularization,

for use in QSEI imaging in the presence of significant random noise, interpolation errors, and modeling errors. Indeed,

in all the reconstructions the crack was localized, while reconstructions using TV and Tikhonov regularization provided

the best images – which is expected, since both methods are known to be rather robust (Oberai et al. 2003). On the other

hand, weighted smoothness did not perform as well at both noise levels and was a rather poor prior model selection.

This is due to the unsuitability of weighted smoothness for detecting non-smoothly distributed inclusions.

To test the feasibility of the two-state frameworks in the context of QSEI, we consider a problem where the

undamaged state E1 is smoothly distributed and the damaged state has a simulated crack with the same geometry

as in the one-state QSEI problems. We note here, however, that one-state solutions for QSEI problems with highly

inhomogeneous backgrounds result in poor reconstruction quality (Smyl et al. 2018c) and is therefore not considered
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herein. In solving the two-state QSEI problems, we use the same regularization functionals for RE1
and R∆E as those

in the two-state ERT problems. Moreover, we use similar constraints as in the two-state ERT problem; namely, we set

Ψ1
C = Ψ1

C(E1 > 0), Ψ2
C = Ψ2

C(E2 ≥ 0), and Ψ3
C = Ψ3

C(∆E ≤ 0), Reconstructions for this example are shown in

Fig. 4.

ℛ Δ𝑬 = ℛ 𝑻ℛ 𝑬𝟏 = ℛ 𝑻1% Noise
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ℛ Δ𝑬 = ℛ 𝑻𝑽ℛ 𝑬𝟏 = ℛ 𝑾𝑺2% Noise

Truth

𝑬𝟏 ΔE E

Figure 4. QSEI reconstructions of an inhomogeneous background and crack-like inclusion using the two-state framework

considering noise levels of 1% and 2%: left column, true image and reconstructions of the background elastic modulus E1;

middle column, true image and reconstructions of the change in the elastic modulus due to localized damage ∆E; right

column, true image and final estimates of E = E1 +∆E. Reconstructions utilize Tikhonov regularization RE1
= RT and

weighted smoothness regularization RE1
= RWS in estimating E1 and Tikhonov regularization R∆E = RT and TV

regularization R∆E = RTV in estimating ∆E.

Results shown in Fig. 4 clearly display that the two-state framework also works for QSEI. In all cases, the inclusion

was accurately localized and the ellipsoidal shape was well captured. Moreover, the smooth distribution of E1 was

recognizably reconstructed, with the exception of the case where RE1
= RT . Indeed, we observe visible cross-talk

in this case, mostly apparent in E1 reconstructions, which results from using the uninformative prior model RT in

estimating E1. This illustrates that the use of physically-realistic constraints is not always sufficient in preventing

cross-talk between states E1 and ∆E (or in parameterizations θ1 and ∆θ, in general). Lastly, as in the two-state ERT
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Figure 5. Minimization curves for one- and two-state QSEI problems reporting normalized cost functionals,

ΨQSEI,1/max(ΨQSEI,1) and ΨQSEI,2/max(ΨQSEI,2), respectively.

example, we again visually observe that images of undamaged and damaged states are most accurately reconstructed

what structural prior information is incorporated in regularization schemes for both states.

In addition to the visual quality of the QSEI reconstructions, we are also interested in the iterative minimization

behavior of the QSEI reconstructions. Similar to the previous subsection, the normalized cost functionals for the one-

state and two-state QSEI reconstructions are provided in Fig. 5. Immediately, we observe the large differences in the

minimization behavior between the one- and two-state frameworks: namely that, despite the notably more difficult

problem in simultaneously reconstructing two parameter fields (E1 and ∆E), the two-state functionals consistently

reach a lower minimum than the one-state functionals. This observation is in contrast with the one- and two-state

ERT functionals, which reached comparable normalized minimum values. This result may indicate that QSEI is

more sensitive than ERT to the way in which the inverse problem is parameterized. Some possible explanations for

this include, (i) high susceptibility to errors induced via interpolation of data to a coarse mesh, (ii) reconstruction

improvement via error absorption in E1 reconstructions, (iii) differing degrees of modeling errors in QSEI and ERT

forward models, and (iv) differing sensitivity of the parameter field to input data (i.e. differences in ill-posedness

between the QSEI and ERT inverse problems).

Joint ERT/QSEI imaging of damage in plates

In this subsection, we aim to demonstrate the feasibility of a joint framework with a structural operator for simultaneous

ERT and QSEI reconstruction of a discrete crack numerically. We begin by observing the form of Eq. 70 and note that

the magnitudes of the data norm, regularization functional, and constraint functional may differ by orders of magnitude.

While Eq. 70 is certainly feasible for joint reconstruction, we observed that, due to the large differences in functional

magnitudes, results were generally more reliable with less visual artifacts when the cost functional was modified by

taking the base 10 logarithm of each component and adding positivity constraint as follows

ΨJ ,E/Q = log10(||LJ (DJ − UJ (ΘJ ,E/Q))||
2) + log10(RJ (ΘJ ,E/Q)) + log10(κCΨC) + log10(κΨC) (74)

where κC = 10−3, κ = 1.0, and the threshold parameter τ = 0.1 were selected. For regularization, TV was utilized,

αTV = 6× 10−3 and β = 160 were used for both ERT and QSEI reconstructions. Since no information on joint

ERT/QSEI imaging is available in the literature, these parameters were selected on the basis of trial and error. To

corroborate the joint approach, we compare joint results with a dual problem, namely, simultaneously reconstructing

E and σ by simply adding the cost functions provided in Eqs. 55 and 61 and separately solving each minimization in

the same Gauss-Newton loop with different search directions and steps. The resulting dual problem cost functional is

the written as ΨD = ΨERT,1 +ΨQSEI,1.
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Figure 6. Discretizations used for (a) simulating joint ERT/QSEI data and (b) solving the joint inverse problem. ERT

electrodes are shown in red.

For both the joint and dual problems, we use the same 10× 10 unitless data simulation and inverse meshes shown

in Fig. 6a and 6b for the QSEI and ERT problems, respectively. The target 4 × 0.12 unit length crack was modeled

as a discontinuous inclusion in the fine mesh using six node triangles with quadratic basis functions and Nel = 3, 653
and Nn = 7, 515 elements and nodes. The inverse mesh, on the other hand, uses a continuous mesh with the same

order triangles and Nel = 423 and Nn = 904 elements and nodes. The selection of the higher-order triangles and

discontinuous mesh was done to (i) test the efficacy of joint reconstructions employing higher order hpk elements

(Surana and Reddy 2016), (ii) test the regimes’ robustness to added modeling uncertainties – in addition to the standard

1.0% noise commonly used in ERT and QSEI reconstructions, and (iii) demonstrate the simulated ERT/QSEI data

may be generated by means other than setting E ≈ 0 or σ ≈ 0 at the target location (as is commonly done). Moreover,

we investigate a node-wise solution to the QSEI problem (rather than element-wise), which doubles the degrees of

freedom in E relative to the three-node triangular meshing. This also increases the computational demand by roughly

a factor of 4. This is due to the increased degrees of freedom by solving the problem node wise, thereby significantly

increasing the time required to compute a pertubed Jacobian. We therefore utilize the Jacobian computation technique

used in (Vilhunen et al. 2002), requiring only one forward solution per iteration, rather than the perturbation method

with central differencing requiring 2Nn solves of the forward model.

To simulate the ERT data, 16 equally spaced electrodes were used and a unitless homogeneous background

conductivity σ = 10 was considered. A total of 16 direct current injections were applied between electrodes i and

j, i = 1, 5, 9, 13 and j = 1, ..., 16, i 6= j. Corresponding to each current injection, 225 adjacent electrode potentials

were measured. In simulating the QSEI data, a uniform tensile force of 1 unit/length was applied to the right side

of the geometries with a homogeneous and unitless background E = 10, while the left side was fixed. The same

displacement field interpolation scheme for interpolating the simulated data to the inverse mesh used in section was

also used here.

Reconstructions for the dual and joint problems are shown in Figs. 7a and 7b, respectively. Images shown in Fig. 7

clearly localize the crack location and capture the crack angle for both the dual and joint approaches, supporting the

feasibility of both frameworks. Interestingly, ERT reconstructions are visually most accurate. The improved resolution

in ERT images largely results from the fact that added interpolation error is not present in ERT measurements, which

also explains the smoothness in QSEI crack reconstructions.

As a whole, the joint reconstructions with a structural operator are only slightly better that the dual problem

reconstructions. This observation is supported by Fig. 8, reporting the normalized drops in the cost functionals and

an overall lower normalized minimum in the joint cost function relative to the dual problem. Moreover, the drops

in the cost functionals for the dual and joint problems decrease only slightly before the the functionals increase,

which resulted in termination of the algorithm and storing of the previous iteration as the final estimate. There are

numerous potential reasons for the observed behavior of the dual and joint problems, which highlight some challenges

in dual/joint inverse problems. Some common factors contributing to the challenges in joint problems are discussed in

the following itemization:

• The use of coupled regularization. The regularization scheme used in this approach was selected based on the

physical realization that the crack is sharp and TV regularization is therefore a natural choice. However, the

choice of dependent variables in β and αTV were static for ERT and QSEI, i.e. they did not change at each

iteration. Moreover, the selection was done by trial and error and is therefore not optimal. Better selection
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Figure 7. QSEI (left column) and ERT (right column) reconstructions for the (a) dual problem and (b) joint problem with a

structural operator. Reconstructed parameters σ and E are unitless.

of these parameters may be conducted by taking into account the noise level, relative tradeoffs with the data

discrepency norm, convergence rate of the joint cost functional, etc. (Holler et al. 2018).

• Selection of a structural operator ΨC. There are countless possible choices for ΨC, which may have a

significant effect on the reconstruction quality; for example, one may chose functional proportionality to the

gradient of the normalized parameter field C(ϑn) ∝ C(∇ϑn), the curvature of the normalized parameter field

C(ϑn) ∝ C(∇2ϑn) (Haber and Oldenburg 1997), or a combination C(ϑn) ∝ C(∇2ϑn +∇ϑn + ϑn). Often, a

smoothing function F is applied to the parameter field C(ϑn) ∝ F(∇2ϑn +∇ϑn + ϑn), which may improve

the numerical behavior by avoiding saw-tooth instabilities resulting from sudden drops in ΨC.

• Choosing the threshold τ . At present, the optimized selection of a static τ for joint ERT/QSEI reconstruction

is ambiguous. Intuitively, one may wish to select τ = 0.5 as a first approximation. In our analysis, however,

we found that τ = 0.5 led to significantly over-penalized and over-smoothed reconstructions. By decreasing

τ , reconstruction sharpness improved and reconstructions were more robust to changes in regularization

parameters. One should use this observation with some caution when selecting more complicated structural

operators. On the other hand, τ may selected at each iteration, by sweeping through representative values such

that the lowest cost functional is minimized.

• Selection of structural operator and constraint weighting coefficients κ and κC . This issue was somewhat

circumvented by taking the logarithm of each component in Eq. 74, essentially scaling the component

functionals to values ranging from 1 - 8, rather than the disproportional 10 - 108. This is a a rather rudimentary

technique, where more advanced scaling of κ and κC may be chosen iteratively or statically, based on a suite of

parameters, such as the noise level, choice of regularization, convergence, etc. (Matthews and Anastasio 2017)

Despite the present challenges in joint ERT/QSEI imaging, which, to the authors’ knowledge was first

proposed/addressed herein, joint ERT/QSEI imaging was effective in localizing damage in distributions of both σ
and E. Moreover, the joint framework is promising, in that, it doubles the information given by tomography – which

may be used in a complimentary or independent manner. In future research, optimization of regularization parameters,

ΨC, τ , and the weighting coefficients in joint frameworks will be further investigated.

Recommendations for implementing damage tomography frameworks

In this section, we provide basic recommendations for implementing structural damage tomography frameworks. We

begin by providing a brief tutorial for first-time users implementing damage tomography. Owing to the complexities

of solving stationary damage tomography problems in general, we include only essential aspects required for new

users to implement one-state least-squares based damage tomography. Following, we concisely provide general

recommendations for implementing damage tomography frameworks.
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Figure 8. Minimization curves for the dual and joint problems, the cost functionals are denoted by ΨD and ΨJ ,E/Q,

respectively.

Approaching damage tomography for the first time

For users who are new to damage tomography, the initial coding of a damage tomography algorithm can be a daunting

task. For this health reasons, we recommend that the user begin their journey with the most simple framework: one-

state tomography. One way of approaching this task is to list the bare minimum function requirements needed to solve

a least-squares based damage tomography problem:

1. Forward model

2. Cost function

3. Jacobian

4. Linesearch

5. Iterative loop including a stopping criteria

Although all items in the enumeration are essential, item (1) is possibly the most important for first implementations.

This is especially true when experimental data d is used, since the forward model needs to accurately represent

the problem physics. Luckily, in many cases, open source FEM software is readily available. In implementing such

software, users should take note that the majority of open-source FEM software solves problems where the parameter

field is homogeneous – therefore, the user will generally need to write a loop to update the inhomogeneous parameter

field at each iteration.

After the user has acquired a forward model U , the user will then need to decide exactly which tomography

problem he/she would like to solve. For the very first implementation we recommend solving a Tikhonov regularized

least squares problem without weighting (adding the weighting matrix W is very straight forward). Using the same

nomenclature as in previous sections for estimating a parameter θ, the least squares update would be written explicitly

as

θ̄ = (JTJ + Γ−1
T )−1(JT (d− U(θk−1)) (75)

where αT = 10−3 is a recommended starting point for the Tikhonov regularization parameter in ΓT and the Jacobian

J , updated at each iteration k, can most simply be computed using Eq. 66 (obviously substituting the correct parameter

θk−1).

Moreover, since the problem is solved iteratively, the user will need to make an initial guess for θk=1. For this, one

could use the best homogeneous guess (recommended) or simply make a guess based on an a reasonable expected

value. Now that the user has a sketch of the least squares problem, he/she will need to write down the corresponding

cost functional. Since weighting is not used at this point, the cost functional may be written simply as

Ψ = ||d− U(θ)||2 + ||ΓT θ||
2. (76)

The last items required are a linesearch and an iterative loop with some stopping criteria. For the linesearch, which

is required to ensure Ψ is maximally decreasing at each step, the user may simply write a function which searches for

the step length sk which minimizes Ψ(θk−1 + skθ̄) in a trust region, for example (0,2). It is important to remark here
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that since we generally assume θ > 0, we need to ensure this to avoid numerical problems with U (such as complex

numbers). For the purposes of a first attempt at tomography, the projection method may be used, where we simply

project values of θ < 0 such that θ > r where r is a small number (e.g. 10−4). In writing the iterative loop, there are

three primary items to consider: (i) that θ̄, J , and sk are updated at each iteration, (ii) θk and Ψk are stored at each

iteration, and that (iii) the the program is terminated once a stopping criteria is reached. There are many examples for a

stopping criteria; we recommend a simple form, such as (Ψk−1 −Ψk < tol or Ψk > Ψk−1) where tol is a sufficiently

small number. To summarize this algorithmic components discussed in this subsection, pseudocode is provided in

Algorithm 1.

Data: d, resulting from (a) experiment or (b) noisy simulations utilizing U
Result: Damage tomography, reconstructing parameter θ
initialize θk=1, Ψk=1,maxiterations, ΓT = αT I , r, tol;
for k = 2:maxiterations do

Compute J ;

Compute θ̄ = (JTJ + Γ−1
T )−1(JT (d− U(θk−1));

Find sk using linesearch by solving: min(Ψ(θk−1 + skθ̄));
Update solution: θk = θk−1 + skθ̄;

Project θk < 0 to ensure θk > r;

Compute Ψk(θk);
Store Ψk and θk;

if Ψk−1 −Ψk < tol or Ψk > Ψk−1 then
Break

end

end

Algorithm 1: Generic pseudocode for first-time users of damage tomography aiming to reconstruct the parameter

field θ.

General recommendations and potential pitfalls

The primary motivation for providing one-state, two-state, and joint frameworks that may be parameter-

ized/constrained/regularized in a flexible and combinatory manner is to promote creative solutions, potentially

improving reconstructions obtained using damage tomography. However, it is the experience of the authors that, simply

increasing the complexity of the tomographic approach does not necessarily yield better reconstructions than simple

regimes. In the following, we concisely list some practical recommendations and potential pitfalls in implementing the

damage tomography frameworks derived in this article and general recommendations related to damage tomography

functionalities in general.

1. Increasing the degrees of freedom in the inverse problem does not guarantee improvements in reconstructions.

While increasing the degrees of freedom in a numerical forward model often lowers the error in, e.g., FEM

forward models, the same is not always true for inverse problems. In fact, by increasing the degrees of freedom,

not only does the inverse problem become more computationally demanding, the size of the solution space may

also increase (Benning and Burger 2018).

2. Use prior knowledge whenever possible. Prior knowledge, often associated with the way a parameter field

is regularized, may also be incorporated in the implementation of constraints, selection of framework

parameterization, selection of regularization schemes, error approximation, and much more. Often, simply

considering the problem physics, especially regarding how the state of the parameter field changes before and

after damage, offers significant prior information.

3. Begin solving damage tomography problems using the most simplistic model first. Often, one-state solutions

offer sufficient resolution for the task at hand. Implementing two-state and joint regimes is time intensive

(coding), computationally demanding, and should only be considered if the results from one-state solutions

are insufficient.

4. In general, projection – alone – is not sufficient. This pitfall is subtle and is often not considered until the user

has issues deciphering why the problem is not behaving as expected. Applying a positivity constraint by only
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projecting values such that the parameter field is greater than 0, e.g. θ > 0, can lead to problems. As a rule of

thumb, the constraint gradient(s) and Hessian(s) should always be included in the least-squares update.

5. Terms in the least-squares updates should be be reflected in the cost functional. This may seem like common

sense, however, a lot of heartache can be avoided if terms in the least-squares update (related to constraints,

regularization, etc.) are properly reflected in the cost function. This comment is increasingly important as the

complexity of the framework increases and terms are possibly lost due to human error.

6. More data does not always improve reconstruction quality. This comment is somewhat counter-intuitive.

However, in some cases, especially in cases where successive data sets were collected using different means,

noise models that worked for one data set may not work as well for others – in such cases simply adding more

data may actually degrade reconstruction quality. For example, data set one may have Gaussian-distributed noise,

where data set two has Poisson noise. As another example, using a expected noise variance (a) for data one and

noise variance (a) for data two may not be sufficient some cases. We note however, that this phenomenon is not

common in our experience and should not be the first consideration when tailoring a tomographic framework

7. Visualization is an powerful tool in understanding problem behavior. It is certainly gratifying to observe accurate

reconstructions of damage when the solution framework is fully functional. However, much of solving inverse

problems involves attempting to understand why the algorithm is not working and debugging. For this purpose,

it is helpful to plot and visualize aspects such as: the data fidelity (e.g., real data d vs. U(θ)), the rate at which

the cost function is being minimized, and updated reconstructions at each iteration.

8. Starting “from scratch” is not necessary. There are many open source tomographic regimes available, which

may serve as a starting point, benchmark, or reference for new users. Some open source options include:

EIDORS (ERT) (Adler and Lionheart 2006), open source D-Bar for ERT (with experimental data) (Hauptmann

et al. 2017), OpenQSEI (QSEI) (Smyl et al. 2018b), Ncorr (DIC) (Blaber et al. 2015), and more.

Conclusions

This article focused on the development of straightforward frameworks for stationary tomography of structural

damage. In this effort, we provided 38 tomographic frameworks for one-state, two-state, and joint imaging of structural

damage. The frameworks were based on least-squares inverse methods and are adaptable for incorporating different

regularization, constraints, and structural models based on realization of the problem physics. To give insight into

potential practical applications, the frameworks were applied to two emerging structural imaging modalities, Electrical

Resistance Tomography (ERT) and Quasi-Static Elasticity Imaging (QSEI). Following, selected frameworks were

employed to test their feasibility to image damage in structural members using experimental- and numerically-obtained

data. Lastly, a primer for first-time users of the damage tomography framework and recommendations/potential pitfalls

in using the proposed frameworks were discussed.

ERT, QSEI, and joint ERT/QSEI frameworks were shown to be effective in detecting damage, especially in the case

of discrete cracking. In doing this, it was also demonstrated that the frameworks were robust to considerable levels of

random measurement noise, interpolation errors, and modeling errors. In the case of joint ERT/QSEI tomography, a

novel imaging regime, the images showed moderate artifacts and over smoothing. The causes of these discrepancies

were found to result primarily from non-optimization of coupled regularization parameters, a simplistic structural

operator, the selection of the threshold parameter, and rudimentary nature of weighting component functionals

within the joint cost functional. Despite the present shortfalls, joint ERT/QSEI imaging offers double the structural

information than individual tomographic regimes and therefore has significant potential for stationary tomography of

structural damage.
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