

This is a repository copy of RAFT dispersion polymerization of glycidyl methacrylate for the synthesis of epoxy-functional block copolymer nanoparticles in mineral oil.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144245/

Version: Supplemental Material

Article:

Docherty, P.J., Derry, M.J. orcid.org/0000-0001-5010-6725 and Armes, S.P. orcid.org/0000-0002-8289-6351 (2019) RAFT dispersion polymerization of glycidyl methacrylate for the synthesis of epoxy-functional block copolymer nanoparticles in mineral oil. Polymer Chemistry, 10 (5). pp. 603-611. ISSN 1759-9954

https://doi.org/10.1039/c8py01584h

© The Royal Society of Chemistry 2019. This is an author produced version of a paper subsequently published in Polymer Chemistry. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for RAFT Dispersion Polymerization of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nanoparticles in Mineral Oil

Philip J. Docherty, Matthew J. Derry* and Steven P. Armes*

Table S1. Summary of targeted (co)polymer composition, GlyMA conversions, GPC molecular weights, DLS data and observed TEM morphology for two series of $PSMA_{19}$ -PGlyMA_x and $PSMA_{13}$ -PGlyMA_x diblock copolymers prepares by RAFT dispersion polymerization of GlyMA in mineral oil at 70 °C using T21s initiator. Conditions: [PSMA macro-CTA]/[T21s] molar ratio = 5.0, 20% w/w total solids concentration.

Target Composition	% GlyMA	CHCl ₃ GPC		DLS		TEM
		M _n / g mol ⁻¹	M _w /M _n	D / nm	PDI	Morphology
PSMA ₁₈ macro-CTA	-	5,700	1.19	-	-	-
PSMA ₁₈ -PGlyMA ₅₀	97	12,700	1.26	21	0.05	Spheres
PSMA ₁₈ -PGlyMA ₇₅	99	15,700	1.23	25	0.05	Spheres
PSMA ₁₈ -PGlyMA ₁₀₀	99	19,200	1.17	29	0.03	Spheres
PSMA ₁₈ -PGlyMA ₁₂₅	98	22,200	1.27	32	0.03	Spheres
PSMA ₁₈ -PGlyMA ₁₅₀	98	23,800	1.31	36	0.05	Spheres
PSMA ₁₈ -PGlyMA ₁₇₅	96	25,700	1.25	37	0.04	Spheres
PSMA ₁₈ -PGlyMA ₂₀₀	97	29,300	1.38	41	0.03	Spheres
PSMA ₁₈ -PGlyMA ₃₀₀	97	40,300	1.64	51	0.03	Spheres
PSMA ₁₃ macro-CTA	-	4,100	1.22	-	-	-
PSMA ₁₃ -PGlyMA ₅₀	98	10,800	1.16	22	0.04	Spheres
PSMA ₁₃ -PGlyMA ₇₅	95	13,600	1.17	27	0.09	Spheres
PSMA ₁₃ -PGlyMA ₁₀₀	96	16,100	1.19	31	0.04	Spheres
PSMA ₁₃ -PGlyMA ₁₂₅	94	17,400	1.18	33	0.09	Spheres
PSMA ₁₃ -PGlyMA ₁₅₀	94	22,100	1.22	45	0.09	Spheres
PSMA ₁₃ -PGlyMA ₁₇₅	97	24,400	1.33	47	0.10	Spheres
PSMA ₁₃ -PGlyMA ₂₀₀	98	30,700	1.24	55	0.08	Spheres
PSMA ₁₃ -PGlyMA ₃₀₀	98	38,900	1.38	64	0.07	Spheres
PSMA ₁₃ -PGlyMA ₃₇₅	96	48,300	1.31	74	0.04	Spheres
PSMA ₁₃ -PGlyMA ₄₀₀	97	53,800	1.43	86	0.05	Spheres

Figure S1. Assigned partial ¹H NMR spectrum in $CDCl_3$ for $PSMA_{18}$ -PGlyMA₁₀₀ directly after synthesis. Comparing the integral of the peak assigned to the PSMA oxymethylene protons at 3.9 ppm (a) with those assigned to the GlyMA residues (b, c and d) confirmed that all epoxy groups survived the RAFT dispersion polymerization in mineral oil.

Figure S2. Assigned partial ¹H NMR spectrum for PSMA₁₈-PGlyMA₁₀₀ in CDCl₃ after 0 weeks (blue data) and after 16 weeks (red data). Peak integration indicated a 27% reduction of epoxide functionality after storage at 20 °C for 16 weeks.

Figure S3. Intensity-average DLS particle size distributions recorded for PSMA₁₈-PGlyMA₁₀₀ nanoparticles immediately after synthesis (blue dotted data) and after 16 weeks (green dashed data).

Scheme S1. Possible side-reactions involving ring-opening of epoxy groups by secondary hydroxyl groups (generated during the epoxy-amine reaction) that could lead to light chain-branching between PGlyMA chains (as suggested by GPC analysis, see Figure 4 in the main manuscript).