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Implementing an Intrusion Detection and Prevention
System Using Software-Defined Networking:

Defending Against Port-Scanning and
Denial-of-Service Attacks

Celyn Birkinshaw, Elpida Rouka, Vassilios G. Vassilakis∗

Dept. of Computer Science, University of York, York, United Kingdom

Abstract

Over recent years, we have observed a significant increase in the number
and the sophistication of cyber attacks targeting home users, businesses, gov-
ernment organizations and even critical infrastructure. In many cases, it is
important to detect attacks at the very early stages, before significant damage
can be caused to networks and protected systems, including accessing sensitive
data. To this end, cybersecurity researchers and professionals are exploring the
use of Software-Defined Networking (SDN) technology for efficient and real-
time defense against cyberattacks. SDN enables network control to be logically
centralised by decoupling the control plane from the data plane. This feature
enables network programmability and has the potential to almost instantly
block network traffic when some malicious activity is detected.

In this work, we design and implement an Intrusion Detection and Pre-
vention System (IDPS) using SDN. Our IDPS is a software-application that
monitors networks and systems for malicious activities or security policy vi-
olations and takes steps to mitigate such activity. We specifically focus on
defending against port-scanning and Denial of Service (DoS) attacks. How-
ever, the proposed design and detection methodology has the potential to be
expanded to a wide range of other malicious activities. We have implemented
and tested two connection-based techniques as part of the IDPS, namely the
Credit-Based Threshold Random Walk (CB-TRW) and Rate Limiting (RL). As
a mechanism to defend against port-scanning, we outline and test our Port
Bingo (PB) algorithm. Furthermore, we include QoS as a DoS attack mitigation,
which relies on flow-statistics from a network switch. We conducted extensive
experiments in a purpose-built testbed environment. The experimental results
show that the launched port-scanning and DoS attacks can be detected and
stopped in real-time. Finally, the rate of false positives can be kept sufficiently
low by tuning the threshold parameters of the detection algorithms.
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1. Introduction

The number and the sophistication of cyber attacks has significantly in-
creased over recent years, from the devastating impact of WannaCry and Petya
to the explosion of cryptojacking [1]. Modern day cybercriminals are targeting
home users, businesses, government organizations, and critical infrastructure.5

In many cases, even small delays in the detection and prevention of malicious
activity may cause significant damage to the protected systems or may enable
cybercriminals to get unauthorized access to confidential data. This necessitates
early detection of cyberattacks, typically using anomaly-based detection ap-
proaches [2]. In recent years, cybersecurity researchers and professionals have10

taken a greater interest in exploring the use of Software-Defined Networking
(SDN) [3] and network programmability for developing effective and efficient
defense mechanisms against cyberattacks [4, 5, 6].

The programmable network is a concept that has recently seen a significant
resurgence with much of the attention generated by SDN, which enables15

network control to be logically centralised by decoupling the control plane
from the data plane [7]. The SDN architecture includes a centralised network
controller with a global view of the network and an Application Programming
Interface (API) for developing network applications. Among the advantages of
SDN is the potential to almost instantly drop malicious traffic from a network20

interface once it has been detected.
Intrusion detection is the activity of detecting unauthorised access to com-

puter systems or devices. It typically involves automated detection and alerts
to a security system about intrusions that have happened or are happening
[8, 9]. In this work, we design and implement an Intrusion Detection and25

Prevention System (IDPS) using SDN. Our IDPS is a defense system, continu-
ously monitoring a network for unusual activity and malicious network traffic
and implementing countermeasures against cyberattacks. Our design is based
on the OpenFlow protocol, which is the most popular SDN protocol today
for the communication between the controller and the network switches [10].30

In particular, we have implemented and tested two connection-based tech-
niques as part of the IDPS, namely the Credit-Based Threshold Random Walk
(CB-TRW) and the Rate Limiting (RL) techniques, a port-scanning detection
technique which we call Port Bingo (PB), and a QoS technique which relies on
flow-statistics to mitigate against DoS attacks. Our developed solution has been35

tested against port-scanning and Denial of Service (DoS) attacks, which account
for 4% and 10% of the total network attacks respectively, in a recent McAfee
report [11], and are generally identified among the most prevalent network
attacks. Moreover, the proposed IDPS design and the detection methodologies
have the potential to be expanded to defend against a wide range cyberattacks,40

involving both anomaly-based and signature-based approaches.
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The experimental part is carried out in a purpose-built Virtual Machine (VM)
testbed environment that includes an SDN switch (OvS 2.7 [12]) and multiple
VMs. One VM acts as the SDN controller (Python-based POX controller [13]).
Other VMs are used as attackers, targets, and benign hosts. Our extensive45

experimental results show that the launched port-scanning and DoS attacks
can be quickly detected and stopped in real time. Finally, the rate of false
positives can be kept sufficiently low by tuning the threshold parameters of
the detection algorithms.

The rest of the paper is organised as follows. Section 2 briefly covers the50

required background of SDN and the OpenFlow protocol. Section 3 reviews the
related work on SDN-based defense mechanisms. Section 4 describes our IDPS
design and implementation. Section 5 presents our testbed and experimental
setup. Sections 6, 7, and 8 present our IDPS experimental results and analysis
for port-scanning and different types of DoS attacks. Section 9 concludes the55

paper by summarising the contributions of our work and discussing possible
future directions.

2. Background

According to Casado et al. [14], legacy computer networks are too hard to
change. McKeown et al. [7] describe this as "ossification" of computer networks,60

which they attribute to the coupling of the control plane to the data plane, a
bane for innovation cycles at both planes according to RFC 7526 [15]. On the
contrary, the SDN architecture is based on the following design principles: (i)
separation of the control plane and data plane; (ii) programmability of network
services; and (iii) logically centralised control. In the following paragraphs, we65

briefly describe the core SDN components.

2.1. SDN Flows, Control Models, and Interfaces

Most applications send data in flows that are made of many individual
packets. Traditionally, a switch uses the addressing information in each packet
to make routing decisions for each packet. In SDN, the first packet of a flow70

is sent to the controller and returned to the switch with routing controls that
are reused by the subsequent packets in the flow. A flow can be specified with
some combination of packet header values such as the source and destination
address, the protocol and the application [3]. In SDN the unit of control is a
flow of packets. SDN provides either reactive control whereby switches consult75

a controller for routing information, or proactive control whereby switches are
pre-populated with forwarding rules to reflect the network policy rules. A
combination of both types of control can be used.

Interactions between a controller and a switch take place across the south-
bound API (Fig. 1), typically implemented using the OpenFlow protocol.80

Interactions between a controller and a network application, take place across
the northbound API..
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Figure 1: High-level structure of an SDN.

2.2. SDN Controllers and Applications

SDN controllers have access to a uniform set of switch statistics, and the
ability to implement network controls and security policies. Security checks85

can be generated inside a controller [16] or by applications that handle events
from a controller.

The northbound API from the controller, enables users to extend the func-
tionality of a programmable network through the development of SDN applica-
tions, including network security applications. Applications are often user-built90

to meet some specific need. In terms of network security, applications benefit
from the controller’s global view of the network, which offers network-wide
intrusion detection capabilities. SDN applications typically rely on data from
a controller but can also use data from external sources. For example, an
intrusion detection application can use the Snort IDPS [17] and its databases95

for signature detection.

2.3. The OpenFlow Protocol

OpenFlow outlines the essential components and the protocol specification
for the southbound API, proposed by McKeown et al. [7]. A secure channel
between controller and switch is established using Secure Sockets Layer (SSL)100

or Transport Layer Security (TLS) protocols followed by the transfer of ‘’Hello”
messages. The traffic between a controller and a switch includes PacketIn and
PacketOut packets, which may encapsulate other types of OpenFlow packets.

PacketIn packets are sent from a switch to a controller, typically when there
is no flow-entry for a packet. Every OpenFlow switch has a flow-entry called105
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a table-miss which specifies what to do if there is no matching flow-entry. A
“Send to Controller” action in the table-miss means the default action of the
switch is to send the packet to the controller.

PacketOut packets are sent from a controller to a switch, usually as a
response to a PacketIn. To exemplify typical packet encapsulations in Open-110

Flow, PacketOut packets often encapsulate a FlowMod packet which contains
flow-entry information required by the switch.

A flow-table contains the current flow-entries; i.e., those that have been
installed and have not expired. Flow-entries are used to match packets and
assign actions to them. Actions include: forward the packet to a specific port,115

send the packet to a controller over the secure channel, drop the packet, or
flood the packet on all ports.

When a switch receives a new flow-entry, it caches the instructions so that
future packets can be rapidly forwarded without further communication from
the controller until the flow-entry is timed-out. Flow-entry parameters include120

match fields, counters, and actions. Match fields are used to identify different
types of incoming packets.

On receipt of an incoming packet, the switch processes the packet for
packet-matching based on the priority of the flow-entry, which is set by the
controller or an application. If duplicate matches are found for a packet at the125

end of the matching process, then the switch arbitrarily selects one of the best
matching flow-entries. As packets are matched, the switch updates counter
fields in the matching flow-entry which provides the controller with switch
statistics.

3. Related Work130

Studies into SDN security have largely resulted in the development of
systems that tackle security issues associated with the use of OpenFlow. For
example, researchers have proposed improvements to enable the prioritisation
of security related flow-entries [18, 19]. Implementation of such improvements
has been complicated by the lack of a standardised northbound API and com-135

patibility issues between different SDN switches and controllers. The following
paragraphs summarise the most important proposed security systems in SDN.

Feamster et al. [20] present a system for implementing security policies
in SDN, including data-caps and access control. Their system, called Procera,
involves scanning would-be users of the network for vulnerabilities. Users140

that pass the scanning process are authenticated and granted network access
until inactivity causes them to time-out from the network and the process can
repeat.

FortKNOX [18] is a role-based authentication and Security Enforcement
Kernel (SEK) designed for use with the C++ based NOX SDN controller using145

OpenFlow. The SEK is a control layer component that offers additional security
features alongside the NOX controller. FortKNOX is designed to detect and
reconcile conflicting flow rules before they are installed in a switch.
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FRESCO [19] is an SEK that provides an API for modular applications, a key-
management system, an IP reputation model, and a set of Python/OpenFlow-150

based actions to enforce security. The authors outline an anomaly detection
system that is based on two algorithms: Credit-Based Threshold Random
Walk (CB-TRW) and Rate Limiting (RL). They test their system using TCP and
UDP network traffic. This pairing of algorithms has previously been shown to
perform well in simulations using TCP network traffic [21, 19].155

SDN-Mon [22] is an SDN-based framework for efficiently providing switch
statistics that can be used by a variety of monitoring applications. The authors
evaluate the performance of their system and show that it can provide improved
monitoring capabilities in a trade-off with switch speed.

Recent studies into SDN intrusion detection systems have shifted towards160

machine-learning and deep-learning techniques. For example, Tang et al. [23]
present an anomaly-based IDS which uses a Gated Recurrent Unit Recur-
rent Neural Network (GRU-RNN) algorithm that is accurate and inexpensive.
Abubakar et al. [24] present a machine-learning IDS for SDN, which provides
Snort-based signature detection via a tap on network switches. Their sys-165

tem is supported by an anomaly-based intrusion detection system to enable
mitigation against zero-day attacks.

Kreutz et al. [25] have produced a set of attack countermeasures (shown in
Table 1) for OpenFlow-based SDN. Our current work has made inroads into
the following four countermeasures: attack detection, event filtering, firewall170

and IPS, intrusion tolerance, packet dropping, and rate limiting.

4. IDPS Design and Implementation

4.1. IDPS Overview

Figure 2 outlines network security in SDN and is used to frame the scope of
this work: the implementation of an SDN-based IDPS. Our IDPS relies on the175

information that is received by the network controller. We intercept PacketIn
events and use them to detect anomalies in the network traffic.

In this section, we outline three anomaly detection algorithms, also includ-
ing their pseudocode. Firstly, we introduce an anomaly detection technique
that acts as a countermeasure against TCP-based port-scanning. We then de-180

scribe our implementations of CB-TRW and RL, which have been designed to
minimise the amount of hub-like forwarding through network switches com-
pared to existing implementations. For example, in the case of a DoS attack,
hub-like behaviour in switches is undesirable because it amplifies the number
of packets that can be sent by an attacker which can impact the network. In185

addition to these changes, our RL algorithm has been extended to include
anomaly detection for TCP, UDP and ICMP network traffic.

4.2. Implementation of Anomaly Detection Against Port-Scanning: Port Bingo

Our countermeasure against port-scanning is based on the principle that the
attacker will send packets that are destined to a large number of different ports190
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Table 1: Attack Countermeasures in OpenFlow Networks.

Measure Description

Access control Provide strong authentication and authorisation
mechanisms on devices.

Attack detection Implement techniques for detecting different types of
attacks.

Event filtering Allow or block certain types of events to be handled
by special devices.

Firewall and IPS Tools for filtering traffic, which can help to prevent
different types of attacks.

Flow aggregation Course-grained rules to match multiple flows to pre-
vent information disclosure and DoS attacks.

Forensics support Allow reliable storage of traces of network activities
to find the root causes of different problems.

Intrusion tolerance Enable control platforms to maintain correct opera-
tion despite intrusions.

Packet dropping Allow devices to drop packets based on security
policy rules or current system load.

Rate limiting Support rate limit control to avoid DoS attacks on the
control plane.

Shorter timeouts Useful to reduce the impact of an attack that diverts
traffic.

  Host-based    
   system  

    Implementing an IDS / IPS using
SDN   

  SDN as a solution   
  against traditional attacks   

   SDN Network Security  

SDN as a new vulnerability 

Anomaly
detection 

Signature
detection 

Examples of attacks: 
- DoS attack against SDN controller
- Poisoning network visibility
- Poisoning switch 

   Network-based  
    system  

Focus of this project Possible future work 

Threat vectors: 
- Vulnerable SDN switches 
- Vulnerable control plane
- Vulnerable applications 
- Vulnerable interfaces

Figure 2: Framework for implementing an IDPS using SDN and focus area of this project.
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and that scans will typically prioritise the most valuable TCP port probes in
descending order of accessibility. We monitor the TCP packet headers between
pairs of network hosts and compare the packet destination ports with a list
of twenty ports associated with port-scanning. This is reffered to as the Port
Bingo (PB) algorithm and is shown in Algorithm 1. We define an anomaly as195

an accumulation of a subset of these ports in communications from one host
to another, where the subset is equal in length to some threshold value and
which has been accumulated in a period that is less than the maximum period
used for tracking.

Algorithm 1 IDPS Pseudo-code: Port Bingo (PB)

1: Variables:
2: top_tcp_port_probes, [80,25,22,443,21,113,23,53,554,3389,1723,389,636,...]
3: threshold, var1

4: timeout, var2

5: tracked_connections, []
6: ⊲ format of a tracked connection: src, dst, set_of_dst_ports, time
7: procedure Input(PacketIn intercepted from the controller)
8: if PacketIn.type = TCP then
9: ensure connection is tracked ⊲ Use Ethernet addresses

10: delete tracked connection if it has timed-out
11: if tcp_dst_port in top_tcp_port_probes then
12: Add tcp_dst_port to tracked_connection.set_of_dst_ports
13: if len(tracked_connection.set_of_dst_ports) > threshold then
14: Log a warning to the POX console
15: Set flow-entry: drop packets from attacker

4.3. Implementation of CB-TRW200

CB-TRW is based on the assumption that TCP connection requests made
by a benign network host will generally be successful. If the host initiates
a TCP connection with the server by transmitting a TCP[SYN] packet across
the network via a switch, assuming the switch does not have a flow-entry to
forward the packet, it will be sent to the controller and through the CB-TRW205

algorithm which will increase the tally of unsuccessful TCP connections by
one. If the server replies to the host with a TCP[SYN,ACK] packet, then the
TCP connection turned out to be successful, and so the tally of unsuccessful
connection initiations is decreased by one. An anomaly occurs when the
number of TCP[SYN] packets sent from the host to the server, compared to210

the number of TCP[SYN,ACK] packets from the server to the host, exceeds a
predefined threshold. When an anomaly is detected, the IDPS fires an alert to
the POX console and a flow-entry is installed in the network switch to drop
packets from the attacker (the default setting is to drop packets indefinitely).
Algorithm 2 shows the pseudo-code for the CB-TRW implementation. In the215

pseudo-code, “Return” indicates the application is exited and the PacketIn
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is returned to the controller for normal processing. Since the attributes of
PacketIn are accessed using dot notation, this is also used in the pseudo-code.
For example, PacketIn.src means the source address of PacketIn.

Algorithm 2 IDPS Pseudo-code: CB-TRW

Require: PacketIn intercepted from the controller
1: THRESHOLD ⇐ 50 ⊲ threshold for anomaly
2: tracker ⇐ []
3: if PacketIn.type != TCP then return

4: if PacketIn.flags != SYN or SYN,ACK then return

5: if PacketIn.flags = SYN and not ACK then
6: if PacketIn.src not in tracker then
7: Add PacketIn to tracker
8: else
9: Increase counter by 1

10: if counter value > THRESHOLD then
11: Log a warning to the POX console
12: Set flow-entry: drop packets from attacker

13: else ⊲ Packets are TCP [SYN,ACK]
14: if PacketIn.src in tracker then
15: Decrease counter by 1

Figure 3 shows the IDPS design, outlining the separate detection (IDS)220

and prevention (IPS) functionality. In the IDS, the functionality of CB-TRW is
shown. In Fig. 3, “Return” indicates the PacketIn is returned to the controller
for normal processing.

4.4. Implementation of Rate Limiting

RL is based on the premise that a benign host is unlikely to make many225

connection-initiations in a short amount of time, whereas an attacker is more
likely to do so. The same algorithm can be generalised to include connectionless
protocols such as UDP. In the latter case, an anomaly is defined as an excessive
number of UDP packets sent from one host to another. To mitigate against
TCP-based attacks, the IDPS tracks TCP[SYN] packets sent by a host to a server,230

flagging an anomaly if the rate of connection-initiations exceeds the threshold
value. After some predefined time (e.g., one minute) if the rate-limiting
threshold has not been exceeded then the tracked connection is deleted. If an
anomaly is detected, the IDPS logs an alert to the POX console and installs a
flow-entry in the switch to drop packets from the attacker. Algorithm 3 shows235

the pseudo-code for our implementation of the RL algorithm.

4.5. Implementation of Attack Blocking and QoS Based on Flow-Statistics

Open vSwitch enables queuing on switch ports which can be used to apply
QoS to flow-entries. Our implementation of QoS is designed to detect flooding
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Figure 3: IDPS Design: IDS (CB-TRW) and IPS Functionality
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Algorithm 3 IDPS Pseudo-code: Rate Limiting

Require: PacketIn intercepted from the controller
1: THRESHOLD ⇐ 50 ⊲ threshold for anomaly
2: tracker ⇐ []
3: if PacketIn.type in [TCP,UDP,ICMP] then
4: ensure src=>dst connection is tracked
5: delete tracked connection if it has timed-out
6: if PacketIn.type = TCP then
7: if PacketIn.flags = SYN then ⊲ Only SYN
8: Increase TCP RL counter by 1

9: else if PacketIn.type = UDP then Increase UDP RL counter by 1

10: else if PacketIn.type = ICMP then Increase ICMP RL counter by 1

11: if counter value > THRESHOLD then
12: Log a warning to the POX console
13: Set flow-entry: drop packets from attacker

attacks. This is achieved by routinely checking the flow-entry statistics for240

anomalies. Specifically, we check for an excessive byte-count or an excessive
packet-count in flow-entries that carry TCP, UDP, or ICMP packets between two
hosts. If an anomaly is detected, the IDPS generates a flow-entry to enqueue
subsequent packets on the appropriate egress switch port. Algorithm 4 shows
the pseudo-code for our implementation of the QoS algorithm.245

5. Experimental SDN Testbed

For the experimental part, we built the SDN testbed shown in Fig. 4. The
virtual network runs on a Dell Inspiron with 8GB RAM, an Intel Core i5-3337

CPu and a 64-bit OS, running Ubuntu 16.04 LTS Desktop. Experimentation is
performed using the POX controller (Eel version), OpenFlow 1.0, OvS 2.7, and250

Linux hosts. Ubuntu kernel version 4.4 is used on the testbed machine due to
compatibility requirements with OvS 2.7.

We used a virtual Ethernet learning switch, which "learns" how to forward
packets by using information from previously received packets. Specifically,
the switch correlates the source MAC address of a packet with the switch-255

port number that the packet was received on. Subsequently, if a packet is
received with a destination MAC address that is in the {source MAC address :
switch-port number} mapping data, the switch directs the packet towards its
destination by sending it out on the switch-port in the mapping. For example,
if a packet is received at the switch on port 3 and the packet header includes the260

source MAC address 08:00:00:00:02:00, the switch can use this information to
direct subsequent packets to 08:00:00:00:02:00 out through port 3. Flow-entries
include a parameter for the output port.

An OvS bridge named ’ovs-br’ is used to connect four VMs. Wireshark is
used to capture packets received by ovs-br. VirtualBox 5.2.12 is used with the265
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Algorithm 4 IDPS Pseudo-code: QoS

Require: Request flow-statistics every five seconds
1: t1, t2, t3, ... ⊲ set threshold values for anomaly
2: for item in flow-statistics do
3: if network protocol = TCP then
4: if num_bytes > t1 or num_pkts > t2 then
5: Set flow-entry: drop TCP packets between these hosts

6: else if num_bytes > t3 or num_pkts > t4 then Set flow-entry: queue
TCP packets between these hosts

7: if network protocol = UDP then
8: if num_bytes > t5 or num_pkts > t6 then
9: Set flow-entry: drop UDP packets between these hosts

10: else if num_bytes > t7 or num_pkts > t8 then Set flow-entry: queue
UDP packets between these hosts

11: if network protocol = ICMP then
12: if num_bytes > t9 or num_pkts > t10 then
13: Set flow-entry: drop ICMP packets between these hosts

14: else if num_bytes > t11 or num_pkts > t12 then Set flow-entry:
queue ICMP packets between these hosts

Open vSwitch

Host

VirtualBox

Attacker-vm Victim-vm Pox-vm 

192.168.10.1
22:d4:ec:19:10:49

192.168.10.2
08:00:00:00:02:00 

vnet2 vnet4

vnet3

Wireshark

Traffic-vm 

vnet1

enp0s3 enp0s3 enp0s3 enp0s3

192.168.10.3
08:00:00:00:03:00 

192.168.10.4
08:00:00:00:04:00 

192.168.10.5
08:00:00:00:05:00 

Figure 4: Experimental SDN Testbed.

default settings as the VM hypervisor. Ubuntu 16.04 LTE Desktop is used on
the host laptop and as the OS for each VM. The four VMs each have 1024 MB
of memory, an Intel PRO/1000 MT Desktop virtual network adapter and a
bridged connection to the virtual network. They are connected to the switch
with virtual 10 Mbps cables. Each VM is assigned with a static IP address and270
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an easily identifiable MAC address. Table 2 outlines the VM configurations.

Table 2: VirtualBox VMs created for the testbed

VM Name Network IP Address MAC Address Software

Attacker-vm Bridged 192.168.10.2 08:00:00:00:02:00 Nmap, LOIC
Victim-vm Bridged 192.168.10.3 08:00:00:00:03:00

Pox-vm Bridged 192.168.10.4 08:00:00:00:04:00 POX
Traffic-vm Bridged 192.168.10.5 08:00:00:00:05:00 Tcpreplay

The attacker was equipped with Nmap - a popular network scanning tool
[26] and three attack scripts: a purpose-built Python DoS attack script, Dos.py,
and two popular DoS scripts, Hammer.py [27] and the Low Orbit Ion Cannon
(LOIC) [28]. Dos.py, attempts to send 10K TCP[SYN] packets to the victim,275

containing a short payload.
Victim-vm was used as a Web server. Traffic-vm was used to send regular

HTTP GET requests to the victim’s Web server, measuring the round-trip time
for the request and response. This was used to indicate the state of the network.
The time taken for each request to get a response was logged to file for analysis.280

Traffic-vm was also used to generate benign traffic using Tcpreplay, a program
that can generate network traffic from packet-capture files [29].

6. Anomaly-Based IDPS: Port-Scanning

6.1. Experiment Description

In this experiment, we tested the IDPS against an Nmap port-scan. Initially,285

we looked at the effect of an unmitigated port-scan on the network. Using
Wireshark, we recorded a packet capture showing the Nmap port-scan across
OvS interface. The IO-graph of this is presented in Figure 5 and shows that the
network traffic from the attack peaked at about 1.5k packets per second (pps)
and lasted for about ten seconds. The Wireshark packet capture shows us that290

the port-scan is using TCP packets and so we would expect our TCP-based
algorithms to potentially detect the scan. We used the following threshold
settings in the IDPS: PB=10, CB-TRW=1000, and RL-TCP=1000. Our TCP-based
QoS algorithm would not be expected to detect this scan since the flow-stats
would not identify any anomalies in the number of bytes or the number of295

packets contained in the flow-entries.
To test the IDPS in our simulation, OvS and Wireshark were started on

the host laptop and we used Wireshark to record the network traffic passing
through the switch. The POX controller was invoked with the functionality of
a virtual Ethernet learning switch and our IDPS:300

~/pox/pox . py forwarding . l 2 _ l e a r n i n g idps

Victim-vm was running a Web server and so port 80 was open:

sudo python3 −m http . server 80

13



Wireshark IO Graphs: nmap_pscan.pcapng

21:55:00
04.08.18

21:55:30
04.08.18

21:56:00
04.08.18

21:56:30
04.08.18

21:57:00
04.08.18

21:57:30
04.08.18

21:58:00
04.08.18

Time (s)

0

250

500

750

1000

1250

1500

P
a

ck
e

ts
/1

 s
e

c

Figure 5: Port-Scan IO Graph.

Traffic-vm measured the impact of the port-scan on the network using
a Python script to periodically measure the time to get a response from an305

HTTP GET requests to the Web server. At this point, the attacker attempted a
port-scan on the Web server:

nmap 1 9 2 . 1 6 8 . 1 0 . 3

6.2. Results and Analysis

Figure 6 shows the POX console after an intrusion has been detected. An310

alert has been logged at the level ’WARNING’ which shows that our algorithm
’pb_tcp’; the PB algorithm, has detected a port-scan. There is information about
the Ethernet addresses involved and the time of detection.

Figure 6: POX Console: Port-Scanning Intrusion Detection

A flow-entry has been generated by the IDPS to drop packets from the
Ethernet address of the attacker to the Ethernet address of the victim, as shown315

in Figure 7.

Figure 7: Flow-Table: Port-Scanning Intrusion Prevention
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Wireshark shows us information about the port-scan and our ability to
mitigate it. Figure 8 shows packets from the IP address of the attacker to the
victim. Since, the attacker is not sending normal flow-based network traffic,
each of the packets in the port-scan are first sent to the controller so that they320

can be forwarded by the switch. As a result, the IDPS is able to check the range
of destination ports in the communications and our PB algorithm can detect
and block the attack by the time the attacker has sent only tens of packets.
Actually, the number of packets that have been sent by the attacker as shown
at the bottom of the display in Figure 8 include both the packets sent by the325

attacker to the controller and the subsequent packets sent by the controller to
the switch in order to forward the packets. Therefore, according to the display,
the attack has been mitigated after twenty six packets have been sent by the
attacker. This figure may be improved with further tuning.

Figure 8: Wireshark: Port-Scanning

If intrusion detection using PB is switched off, we might expect our other330

TCP-based algorithms, CB-TRW and RL-TCP, to perform. The basic Nmap
port-scan requires an attacker to send 1000 packets to the victim and we tested
CB-TRW and RL-TCP with threshold settings at 1000. Both of the algorithms
were able to detect the port-scan. In the case of CB-TRW, every connection
initiation failed and so the intrusion detection required an attack composed335

of at least a number of packets equal to the threshold used by the algorithm.
Likewise, the RL algorithm required the same number of connection-initiation
packets to identify an anomaly. The associated Wireshark IO graph for the
experiment looked very similar to Figure 5. With these settings, the attack
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mitigation did not limit the attack, since all packets were able to be transmitted340

before communications were dropped by installing an appropriate flow-entry
in the switch. However, the attacker was unable to send any subsequent
packets on the network. Lower threshold settings for these algorithms would
better detect the attack but would attract more false positive alerts caused by
benign network traffic.345

7. Anomaly-Based IDPS: DoS Attacks

We tested the IDPS using a range of DoS attacks. The experiments were
carried out twice for each of the attacks to observe the characteristics of the
attacks and to measure the effectiveness of the IDPS; the attacks were performed
once with the IDPS switched off and once with the IDPS switched on. Between350

each experiment, POX was restarted, the switch flow-table cleared, and other
scripts were restarted as necessary. For example, the Victim-vm Web server
was restarted if it had crashed. The network configuration, shown in Figure 4,
is the same as in the previous experiment.

7.1. Brute-force DoS Attack355

In this experiment, the attacker attempted a TCP-based DoS attack using
the Python script Dos.py. Using a Wireshark display filter it is possible to
examine the sequence of packets that the attacker sent to the victim:

ip . s r c == 1 9 2 . 1 6 8 . 1 0 . 2

The source port of the packets sent by the attacker changed with every360

transmitted packet. Since the default switch setting is to generate flow-entries
that do not include wildcard values for the ports, this means that a unique flow-
entry was required for each packet in the attack. According to Wireshark, the
first packet of the attack was received at ovs-br was at 20:25:16.37 and the last
was sent at 20:26:05.32, meaning that the attack continued for approximately365

49.0 seconds.

Figure 9: Brute-Force DoS Attack Against Victim Server.

If the Python attack script Dos.py is set to generate 10K packets, Wireshark
shows that 20K packets are sent by the attacker. There is a simple pattern
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in the packets that are sent by the attacker: one TCP[SYN] packet that is
identified by Wireshark’s colouring rules as "HTTP" or ordinary HTTP traffic;370

followed by one TCP[SYN] packet coloured in black that is identified as "Bad
TCP", which means the packet is suspected of being a frame segment that is
out-of-sequence. Fig. 9 shows a section of the Wireshark output, displaying the
repeating pattern of TCP packets that are sent from the attacker to the victim.
This repeating pattern in the transmission of packets happened throughout the375

attack: a PacketIn packet followed by a PacketOut. This behaviour arises when
there is no matching flow-entry for a packet: the attacker sends a packet to
the switch and then the packet header gets encapsulated using the OpenFlow
protocol and sent to the controller as a PacketIn packet.

In theory, there are three possible explanations as to why the switch sends380

a PacketIn to a controller: (i) a table-miss entry, (ii) TTL checking, or (iii) a
"send to the controller" action [30]. Inspection of several packets in Wireshark
show the OpenFlow packet encapsulation, which includes the explanation for
sending the PacketIn: "Reason: No matching flow (table-miss flow-entry)". The
controller returns the packet header to the switch as a PacketOut, which is385

encapsulated within another OpenFlow packet; a FlowMod packet, as shown
in Fig. 10. The parameters in the FlowMod are used to set a flow-entry in the
switch. The packet has been buffered at the switch and can now be forwarded
to the victim.

The reason that each packet in the attack requires a new flow-entry is down390

to the fact that every time the attacker transmits a new packet, the source
port number is increased by two. Figure 10 shows the FlowMod (denoted as
OFPT_FLOW_MOD), i.e. the flow-entry, sent by the controller, showing that
no wildcards are in the flow-entry, and since the source port number increases
with each packet sent by the attacker, there is never an existing flow-entry in395

the switch to forward a packet in the attack.
Even though this type of TCP-based packet transmission is not being

handled well by the l2 learning switch (every packet to the switch is delayed
by a round-trip to the controller), in terms of tracking the connection between
the attacker and the victim, and the number of TCP[SYN] packets which are400

sent to the victim, it is not a problem for the IDPS algorithm.
CB-TRW does not detect this attack because the server is very co-operative;

the packets from the victim to the attacker are very similar to the packets sent
by the attacker. The victim server responds to the attacker with 20K packets.
10K packets from the victim are TCP[SYN,ACK] packets; the type of packets405

that decrease the CB-TRW counter used to indicate an attack. All of the packets
are sent by the switch to the controller for a flow-entry. The implementation
of CB-TRW cannot detect this attack because there are equal numbers of
TCP[SYN] packets and TCP[SYN,ACK] packets in response. Therefore, the
algorithm identifies successful TCP connections and not an attack.410

Another characteristics of the attack that is measurable, is the dispropor-
tionate number of non-session-based TCP streams as compared to the number
of session-based TCP streams. Every TCP stream in the attack is four packets
in total. This information could potentially be used to set an anomaly that

17



Figure 10: OpenFlow Packet Encapsulation - Flow-Entry.

triggers the IDPS when some threshold is exceeded. These considerations are415

left for future work.
In summary, using Wireshark to analyse the attack showed that even though

only 10K packets were actually transmitted from Attacker-vm, 20K packets
were transmitted with the source IP address of the attacker. Further inspection
showed that every packet sent by the attacker to the switch, was sent by the420

switch to the controller and then returned by the controller with a flow-entry
to enable the packet to be sent to the victim. Likewise every packet sent by
the victim to the attacker also included a round-trip from the switch to the
controller and back for a flow-entry. Even though CB-TRW did not detect this
attack, we believe that this analysis of the network traffic created by the attack425

indicates an advantage of our implementation of CB-TRW, in the sense that
in existing implementations, each packet from the attacker would be first sent
to the controller and then flooded out of the switch on all ports, leading to a
significant increase in the number of packets associated with the attack.

This brute-force DoS attack identified a limitation in the CB-TRW algorithm430
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used by the IDPS; the server returned a TCP[SYN,ACK] for every TCP[SYN]
packet sent by the attacker and so there was no anomaly. The intrusion was
detected by the RL algorithm; an excessive number of TCP connections were
initiated by the attacker. It also highlights one of the flaws in OpenFlow-based
SDN: the volume of traffic which can be sent to the controller under certain435

conditions can be a concern, especially if the controller is physically remote
from the switch and the round-trip time for packets between a switch and a
controller are increased. However, RL uses a detectable characteristic of the
attack; the excessive rate of connection initiations, and blocks the attack.

7.2. Hammer DoS Attack440

The attacker used the Python script Hammer.py to launch a DoS attack
against the victim’s Web server. The IDPS detected the attack and installed
a flow-entry in the switch to drop packets from the attacker’s MAC address.
The attack crashed the server instantly and so Traffic-vm’s HTTP requests to
the victim all timed out once the attack started.445

According to Wireshark, the first packet of the attack was received at ovs-
br at 20:31:57.37 and the final packet sent by the attacker was at 20:31:57.63,
meaning that the attack lasted for approximately 0.25 seconds before it was
prevented by the IDPS.

After the attack, the flow-table included a flow-entry to drop all packets450

from the attacker’s MAC address, as outlined by the following Bash command
and subsequent flow-entry:

sudo ovs−o f c t l dump−f lows ovs−br

cookie =0x0 , durat ion =104 .670 s , t a b l e =0 , n_packets =785 , n_bytes =58170 ,
id le_age =0 , p r i o r i t y =65535 , d l _ s r c = 0 8 : 0 0 : 0 0 : 0 0 : 0 2 : 0 0 a c t i o n s =drop455

Similarly to the previous experiment (brute-force DoS attack), each TCP
packet stream was four packets in length until the final three TCP packet
streams, which are TCP streams of only two packets; a packet to the switch
which is sent to the controller followed by a packet from the controller to the
switch. These three streams do not include any packets from the victim’s server460

and mark the end of the attack. At this stage, the attacker’s console was filled
with the line ’no connection! server maybe down’.

The IDPS blocked the attacker almost instantly after which point a perman-
ent flow-entry was installed in the switch to drop packets from the attacker
and the attacker was added to a blacklist, used for MAC blocking any fur-465

ther packets to the controller. This approach can also be used as a possible
mitigation against IP spoofing attacks.

7.3. LOIC DoS Attack

In this experiment, the attacker used LOIC to launch a DoS attack against
the victim’s Web server. The attack was mitigated using the RL algorithm. The470

HTTP requests made by Traffic-vm to the server began to timeout soon after
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Figure 11: Round-Trip Time For a Benign Packet.

the attack started, as shown in Fig. 11, so the attack impacted the network
before it was prevented.

Analysis of the packet-capture shows that CB-TRW cannot be used to detect
this attack because the victim’s server has returned a sufficient number of475

TCP[SYN,ACK] packets; the criterion for a successful connection (CB-TRW
would have succeeded had the server crashed). An additional experiment
was conducted with RL switched off to verify the latter claim. According to
Wireshark, the first packet of the attack arrived at ovs-br at 20:41:24.55, and the
final packet of the attack, at 20:50:08.46 when the attack was stopped - the attack480

would have continued indefinitely. In this time, a similar pattern emerged
as was described in previous attacks. 518 packets were transmitted from the
attacker to the victim; 249 PacketIn packets from the switch to the controller
and 269 PacketOut packets from the controller to the switch. The extra twenty
PacketOut packets are likely re-transmissions. Each packet required a new485

flow-entry. As with previous experiments, each of the TCP packets sent by the
attacker was transmitted on a different source port (the source port increased
by two with each successive TCP packet from the attacker). Furthermore, the
TCP packet streams are all four packets in total; two TCP[SYN] packets from
the attacker and two TCP[SYN,ACK] packets from the attacker. Assuming that490
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a TCP stream occurs mainly between the initial three-way handshake and the
finishing sequence, then the TCP streams should usually be much greater than
four packets, and the majority of the packets in a TCP stream should not have
the SYN flag set. This feature may be useful in the specification of an anomaly
detection technique.495

In summary, in this experiment, the victim server returned a sufficient
number of TCP[SYN,ACK] packets to mitigate the occurrence of an anomaly
according to CB-TRW. The server remained up throughout the attack but the
HTTP GET requests made by Traffic-vm to the server, began to time out soon
after the attack started. The IDPS detected and prevented the attack using the500

RL algorithm. Table 3 outlines the results of the four attacks described in this
section.

Table 3: Summary of the results from experiments of Section 8.

Scan Brute-
force

Hammer LOIC

Intrusion Detection CB-TRW RL CB-TRW RL
Intrusion Prevention Yes Yes Yes Yes
Server crashed No No Yes No1

8. IDPS Algorithms: Threshold Testing Using a Network Traffic Dataset.

In this experiment, we tested the IDPS using a dataset of benign net-
work traffic. We used the results of this experiment to determine appropriate505

threshold values for the algorithms in the IDPS. The independent variable in
our experiment is the threshold value within the IDPS algorithms that differ-
entiates between normal network traffic and network attacks. The dependent
variable is the number of false positives that are generated by the IDPS. We also
measured the CPU usage of the process that is used to run the Pox controller510

and the IDPS; python2.7. We have limited the period of time in which the IDPS
can detect an anomaly to sixty seconds, since it is sufficient time to detect a
DoS attack and a normal Nmap port-scanning attack, while keeping memory
usage low in the IDPS. Other variables are assumed to be constant.

The network traffic dataset is a packet capture file containing five minutes515

of real network traffic from the access point of a busy private network to the
Internet [31]. The traffic includes 133 unique Ethernet addresses, 132 different
applications, an average throughput of 3k pps, and a peak throughput of 5k
pps. Figure 12 shows the IO-graph of the dataset and specifications of the pcap
file are presented in Table 4. The dataset was replayed to the switch using520

Tcpreplay, which provided the necessary switch-controller network traffic.

1The victim server did not crash but HTTP requests from Traffic-vm started to time-out

21



Wireshark IO Graphs: bigFlows.pcap
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Figure 12: Dataset: Volume of Network Traffic.

Table 4: Specifications for bigFlows.pcap.

Parameter Value

Date and time recorded 26th February 2013 10pm GMT
Size 368 MB
Packets 791615

Percent TCP 80.1
Percent UDP 19.3
Percent ICMP 0.5

Flows 40686

Average packet size 449 bytes
Duration 5 minutes
Number of applications 132

Number of MAC addresses 133

Experiments were performed three times for reliability and Table 5 shows
the averages of our results. Figure 13 is a graph that shows the relationship
between the threshold setting and the number of false positives for each of the
IDPS algorithms. Table 5 shows combined CPU usage of the POX controller525

and the IDPS across the range of IDPS settings and Fig. 14 shows how the CPU
usage changes if the IDPS is switched on or off. At a low threshold setting, the
CPU usage falls when the IDPS is switched on. In general terms, this is because
the process of mitigating against anomalies is cheaper than forwarding packets
using the l2_learning component that is provided with the POX controller.530

However, Table 5 shows that decreasing the threshold settings can result in an
increased number of false positive alerts.

TCP packets make up about eighty percent of our network traffic, and so
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it is not surprising that CB-TRW and RL-TCP result in the highest numbers
of false positives. UDP traffic makes up almost twenty percent of the total535

traffic, about a quarter as much as TCP traffic, but the results show that the
number of false positives generated by RL-UDP are higher than RL-TCP at
low thresholds and no false positives were recorded by RL-UDP at thresholds
greater than 100. Given that ICMP packets make up only one half of a percent
of the total traffic, RL-ICMP provides a disproportionately high number of540

false positives at low thresholds. Finally, the PB algorithm does not generate
any false positive alerts at order of magnitude settings greater than one. At a
threshold setting of ten, the PB algorithm fires an alert if a network host tried
to send packets to another host using ten of the twenty top destination ports
that are commonly associated with network scanning.545

Table 5: False Positive Alerts and %CPU Usage Results from Testing the IDPS Using Benign
Network Traffic.

Algorithm False Positive Alerts %
Threshold CB-TRW RL-TCP RL-UDP RL-ICMP PB CPU

IDPS off - - - - - 96.4
1 3,742 3,742 3,814 446 18,710 47.4
10 548 548 812 61 0 74.8

100 72 72 42 5 0 94.3
1k 4 4 0 0 0 97.6

10k 0 0 0 0 0 96.9

The selection of appropriate threshold values in the IDPS depends on
network security policy and should be adjusted to match the sensitivity of the
network. We propose the use of order of magnitude algorithm threshold values
to set our IDPS for any further testing against network attacks, as shown by
Table 6.550

Table 6: Proposed Order of Magnitude Threshold Settings For The IDPS.

Algorithm Threshold Setting

CB-TRW 10,000

RL-TCP 10,000

RL-UDP 1,000

RL-ICMP 1,000

PB-TCP 10

Table 7 shows the results of experiments that use our implementation of
attack blocking and QoS based on flow-statistics. The pseudocode of our
implementation of QoS as an attack mitigation technique is shown in Figure
4 and it includes a mechanism to drop network traffic, or enter it into a
queue on the appropriate switch port, or allow unmitigated packet forwarding555
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Figure 13: False Positives in Benign Network Traffic.

depending on the number of bytes or the number of packets in the flow-
statistics that we retrieve periodically from the switch. The values in Table
7 show the number of false positive alerts that are generated by running
the network traffic sample outlined in Table 4 through our virtual network,
which is used to model the normal or expected network traffic and to set560

the boundaries that define anomalous traffic. We propose setting the IDPS to
drop packets that are outside of the range of network traffic that is measured
using benign network traffic datasets, and enqueue packets that are close to
the boundaries of normal traffic flows. For example, Table 7 shows that the
network traffic dataset did not include any flow-entries that had been used to565

forward 10k TCP packets or greater. So we would proceed to carry out further
tests on the IDPS using a threshold value of 10k TCP packets before packets
are dropped. We also see that there were only two alerts caused by flow-entries
for TCP packets that had been used to handle more than 1k TCP packets.
In this case, we would carry out further testing on the IDPS by enqueuing570

subsequent packets matching such flow-entries. In this way we propose the
use flow-statistics to identify anomalies such as DoS attacks.
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Table 7: False Positive Alerts Resulting from QoS Implementation Based on Flow-Statistics and
Tested Using Benign Network Traffic Dataset.

- False Positive Alerts
Threshold TCP UDP ICMP

bytes pkts bytes pkts bytes pkts

10 - 329 - 30 - 8

100 - 169 - 314 - 0

1k 4548 2 920 9 6 0

10k 383 0 78 0 0 0

100k 134 0 24 0 0 0

1m 11 - 5 - 0 -
10m 0 - 0 - 0 -

9. Conclusions and Future Work

In this work, we have demonstrated that certain features of SDN can be
used to both detect and prevent intrusions as well as to almost instantly drop575

packets when an attack is detected. An anomaly-based IDPS was designed,
implemented, and tested. Two types of rate-based connection monitoring
algorithms were used: CB-TRW and RL, including attacks based on TCP, UDP,
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and ICMP. We introduced PB as a port-scanning detection technique. Further-
more, we included a QoS algorithm which relies on flow-statistics to defend580

against DoS attacks. According to the results from extensive experiments in
a purpose-built SDN testbed, the IDPS was shown to be capable of detecting
Nmap port-scans and various types of DoS attacks. This is done by monitoring
communications between hosts on a network and taking automated steps to
mitigate attacks. The intrusion detection part of the system included firing585

an alert to the POX controller console, to notify a user to the presence of an
attack, showing which algorithm detected the attack, the time of the attack and
a notification about the nature of the attack. The intrusion prevention part of
the system automatically created and sent a flow-entry to network switches to
drop packets from an attacker. Further testing was also carried out using real590

network traffic to measure the relationship between false positives, algorithm
threshold settings, and the CPU usage.

Potential future work includes implementing countermeasures for a broader
range of attacks and protocols. An interesting extension would be the addition
of a machine learning module for anomaly detection. Further extensions may595

include: IDPS optimisation for resource-constrained IoT devices, incorporation
of collaborative SDN controllers [32], or multi-step attack detection [33].
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