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A CCA secure cryptosystem using matrices over group rings

Delaram Kahrobaei, Charalambos Koupparis, and Vladimir Shpilrain

Abstract. We propose a cryptosystem based on matrices over group rings
and claim that it is secure against adaptive chosen ciphertext attack.

1. Cramer-Shoup cryptosystem

The Cramer-Shoup cryptosystem is a generalization of ElGamal’s protocol. It
is provably secure against adaptive chosen ciphertext attack (CCA). Moreover, the
proof of security relies only on a standard intractability assumption, namely, the
hardness of the Diffie-Hellman decision problem in the underlying group (see [2],
[3]), and a hash function H whose output can be interpreted as a number in Zq

(where q is a large prime number). An additional requirement is that it should
be hard to find collisions in H. In fact, with a fairly minor increase in cost and
complexity, one can eliminate H altogether.

1.1. Definition of provable security against adaptive chosen cipher-

text attack. A formal definition of security against active attacks evolved in a se-
quence of papers by Naor and Yung, Rackoff and Simon, Dolev, Dwork and Naor.
The notion is called chosen ciphertext security or, equivalently, non-malleability.
The intuitive thrust of this definition is that even if an adversary can get arbitrary
ciphertexts of his choice decrypted, he still gets no partial information about other
encrypted messages. For more information see [2], [3].

We define the following game, which is played by the adversary. First, we
run the enryption scheme’s key generation algorithm, with the necessary input
parameters. (In particular, one can input a binary string in {0, 1}n, which describes
the group G on which the algorithm is based.) The adversary is then allowed to
make arbitrary queries to the decryption oracle, decrypting ciphertexts which he
has chosen.

The adversary then chooses two messages, m0 and m1, and submits these to
the encryption oracle. The encryption oracle chooses a random bit b ∈ {0, 1} and
encrypts mb. The adversary is then given the ciphertext, without knowledge of b.
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Upon receipt of the ciphertext from the encryption oracle, the adversary is
allowed to continue querying the decryption oracle. Of course the adversary is not
allowed to submit the output ciphertext of the encryption oracle.

Finally, at the end of the game, the adversary must output b′ ∈ {0, 1}, which
is the adversary’s best guess as to the value of b. Define the probability that b′ = b
to be 1/2 + ǫ(n), ǫ(n) is called the adversary’s advantage, and n ∼ |G|.

We say the cryptosystem is CCA-2 secure if the advantage of any polynomial-
time adversary is negligible. Note that a negligible function is a function that grows
slower than any inverse polynomial, n−c, for any particular constant c and large
enough n.

1.2. The Cramer-Shoup Scheme.

Secret Key: random x1, x2, y1, y2, z ∈ Zq

Public Key:

group G; g1, g2 �= 1 in G
c = g1

x1g2
x2 , d = g1

y1g2
y2

h = g1
z.

Encryption of m ∈ G: E(m) = (u1, u2, e, v), where

u1 = g1
r, u2 = g2

r, e = hrm, v = crdrα, where r ∈ Zq is random, and
α = H(u1, u2, e).

Decryption of (u1, u2, e, v):

If v = u1
x1+αy1u2

x2+αy2 , where α = H(u1, u2, e),
then m = e/u1

z

else “reject”

1. Theorem: [2] The Cramer-Shoup cryptosystem is secure against adaptive
chosen ciphertext attack assuming that (1) the hash function H is chosen from a
universal one-way family, and (2) the Diffie-Hellman decision problem is hard in
the group G.

2. A CCA-2 secure cryptosystem using matrices over group rings

In [4], the authors proposed a public key exchange using matrices over group
rings. They offer a public key exchange protocol in the spirit of Diffie-Hellman, but
they use matrices over a group ring of a (rather small) symmetric group as the plat-
form and discuss security of this scheme by addressing the Decision Diffie-Hellman
(DDH) and Computational Diffie-Hellman (CDH) problems for that platform.

Here we propose to use a similar platform and show that a scheme similar to
the Cramer-Shoup scheme is CCA-2 secure. Our protocol is as follows:
Secret Key: random x1, x2, y1, y2, z ∈ Zn

Public Key:

3× 3 non-identity matrices M1,M2 ∈ M3×3(Z7[S5]) such that M1 is invertible and
M1M2 = M2M1

c = M1
x1M2

x2 , d = M1
y1M2

y2

h = M1
z.

Encryption of a message N ∈ M3×3(Z7[S5]): E(N) = (u1, u2, e, v), where

u1 = M1
r, u2 = M2

r, e = hrN, v = crdrα, r ∈ Zn is random, and
α = H(u1, u2, e).
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Decryption of (u1, u2, e, v):

If v = u1
x1+αy1u2

x2+αy2 , where α = H(u1, u2, e),
then N = (u1

z)−1e (Note that u1 is invertible since M1 is chosen to be invertible.)
else “reject”

Remarks : M1 must always be chosen to be an invertible matrix, whereas M2 is just
any matrix such that M1M2 = M2M1. One must also decide what group Zn to
use, i.e., n must be specified.

3. Adaptive CCA security for matrices over group rings

We aim to show, by using Theorem 1, that if for invertible matrices over
M3×3Z7[S5] the DDH problem is hard, then the previously mentioned cyrptosystem
is secure against adaptive chosen ciphertext attack. More formally,

2. Theorem: The Cramer-Shoup cryptosystem using the semigroup G =
M3×3Z7[S5] is secure against adaptive chosen ciphertext attack assuming that (1)
the hash function H is chosen from a universal one-way family, and (2) the decision
Diffie-Hellman problem is hard in the group G.

Before beginning the proof of the theorem we need the following two experi-
mental facts.

(1) Given an invertible matrix M ∈ G = M3×3Z7[S5] and random integers
a, b and c ∈ N, it is not possible to distinguish between the distributions
generated by (Ma,M b,Mab) and (Ma,M b,M c).

(2) Given an invertible matrix M ∈ G = M3×3Z7[S5] and a random integer
a, it is not possible to extract information about a from Ma and M . In
other words, the distributions generated by a random matrix N and Ma

are indistinguishable.

We offer the following two experiments as evidence for the plausibility of
the above facts. For these tests we used invertible matrices over the group ring
M3×3Z7[S5]. For the first we chose a random invertible matrix M (see section
3.1.1) and random integers a, b and c ∈ N. We choose a and b in the interval
[1022, 1027) and c in the interval [1044, 1054) so that ab and c were roughly of the
same size. For each pair of resulting matricesMab andM c we counted the frequency
of elements of S5 appearing in each entry.

Repeating this 500 times for randomly chosen a, b and c, we obtained a fre-
quency distribution of elements of the group ring in each entry of the two matrices.
From this we created the QQ-plots for each of the 9 matrix entries. QQ-plots are a
quick and easy way to test for identical distributions, in which case the plots should
be straight lines. As we can see from Figure 1, it appears that from the generated
distributions it is not possible to distinguish DH pairs from non-DH pairs.

For verification of the second fact, we conducted a similar experiment, except
in this case, for each of the 500 draws we varied all parameters N , M and a. We
again generated QQ-plots as shown in Figure 2, and these show that no information
about a is leaked from publishing M and Ma.

We are now ready to prove Theorem 2. The proof will proceed in a similar
fashion as Cramer-Shoup’s original proof. We will begin by constructing an algo-
rithm D to attack the DDH assumption. This algorithm relies on a probabilistic
polynomial time adversary A attacking our scheme, which succeeds with proba-
bility p, PA(Success) = p. Denote by DH the set of valid Diffie-Hellman tuples
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Figure 1. DDH results for M c vs. Mab

Figure 2. Results for Ma vs. N

(M1,M2,M
r
1 ,M

r
2 ), and by R the set of all random tuples (M1,M2,M3,M4). Then

the algorithm is constructed as follows:

• D receives input (M1,M2,M3,M4) from DH or R.
• Pick x1, x2, y1, y2, z ∈ Zn and a universal one-way hash function H.
• The adversary A receives the public key, PK, which is

(M1,M2, c = Mx1

1 Mx2

2 , d = My1

1 My2

2 , h = Mz
1 , H).

• The adversary picks two messages m0,m1 and publishes them.
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• D picks b ∈ {0, 1} and passes to A

(M3,M4,M
z
3 ·mb,M

x1+αx2

3 My1+αy2

4 ),

where α = H(M3,M4,M
z
3 ·mb).

• With this information A tries to determine b and returns its guess b′.
• If b = b′ return “DH”, else “R”.

The proof is then verifying that this algorithm cannot attack the DDH prob-
lem. It is built from the following three claims.

Claim 1: |P(D = DH|DH)− P(D = DH|R)| < ǫ. This claim is trivially true
since D is a PPT algorithm and the DDH assumption holds as verified previously.

Claim 2: P(D = DH|DH) = PA(Success). If we are given a DDH tuple, then
all decryption queries succeed for A. Hence the output of A will match the choice
of b with PA(Success).

Claim 3: |P(D = DH|R) − 1
2 | < ǫ. Since P(D = DH) = P(A = b), the

proof of this claim relies on the proof of two pieces. We need to show that for all
decryption queries where u1 = Mr1

1 and u2 = Mr2
2 with r1 �= r2, the decryption

verification fails with non-negligible probability. In addition to this, we must also
show that assuming all invalid decryptions fail, the adversary A does not learn any
additional information about z.

We first start with the latter piece. If all invalid decryptions fail, then the only
additional information A receives is when valid decryptions are performed. Thus,
at the onset of the attack A only has information available that is given to him
from PK, namely h = Mz

1 . If A submits a valid ciphertext (u′

1, u
′

2, e
′, v′), where

u′

1 = Mr′

1 , then A obtains that hr′ = Mzr′

1 . However, based on the results above,

if we denote M = Mz
1 , then hr′ = Mr′ and the distributions of any random matrix

N and Mr′ generated by r′ are indistinguishable, hence nothing is revealed about
z.

Furthermore, from the encryption information passed to A, the only additional
information A has is Mz

3 · mb, which leaves him with obtaining information from
Mz

3 and Mz
1 , i.e. solving a Diffie-Helmann problem, which we assumed was difficult

in our scheme setup.
We are now left with showing that decryption almost always fails for invalid ci-

phertexts. Suppose that the adversary submits an invalid ciphertext, (u′

1, u
′

2, e
′, v′)

�= (u1, u2, e, v). Then we have the following cases:
Case 1: If (u1, u2, e) = (u′

1, u
′

2, e
′) and v �= v′, then the hash values α and α′

will be the same, however decryption will certainly be rejected.
Case 2: If (u1, u2, e) �= (u′

1, u
′

2, e
′) but a = a′, then this means that A has

found a collision in H. But we assumed H was collision resistant, and since A runs
in polynomial time, this can only happen with negligible probability.

Case 3: If H(u1, u2, e) �= H(u′

1, u
′

2, e
′), then we have the following system

of equations where we denote by log = logM1
and w = log(M2), and u1 = Mr1

1 ,

u′

1 = M
r′
1

1 , u2 = Mr2
2 and u′

2 = M
r′
2

2 :

log c =x1 + wx2,(1)

log d =y1 + wy2,(2)

log v =r1x1 + wr2x2 + αr1y1 + αwr2y2,(3)

log v′ =r′1x1 + wr′2x2 + α′r′1y1 + α′wr′2y2.(4)
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These equations are linearly independent as can be verified by looking at

det

⎛

⎜

⎜

⎝

1 w 0 0
0 0 1 w
r1 wr2 αr1 αwr2
r′1 wr′2 α′r′1 α′wr′2

⎞

⎟

⎟

⎠

= w2(r2 − r1)(r
′

2 − r′1)(α− α′).

The above determinant is nonzero since we are considering bad decryptions and
hence

r1 �= r′1, r2 �= r′2, α �= α′.

Therefore, almost surely any bad decryption queries of this form will be rejected.
Thus we have shown from Claim 3 that the adversary A is unable to correctly

determine b given a random tuple, which we saw is equivalent to our algorithm not
being able to distinguish a random tuple from a DH tuple when given a random
tuple. This together with Claim 1 shows that our algorithm cannot distinguish
between tuples no matter what the input was. And finally, from Claim 2, we
get that the adversary is unable to attack our scheme with an adaptive chosen
ciphertext attack. �

3.1. Parameters for the Cramer-Shoup-like scheme using matrices

over group rings. Here we address two problems relevant to key generation in
our scheme, namely, (1) how to sample invertible matrices and (2) how to sample
commuting matrices.

3.1.1. Invertible matrices. Sampling invertible matrices can be done using var-
ious techniques. The first method is to construct a matrix which is a product of
elementary matrices,

M =

n
∏

i=1

Ei,

where Ei is any elementary matrix from M3×3(Z7[S5]). Elementary matrices can
be of one of the three types below. In the matrix Ti(u), the element u should be
invertible in Z7[S5].

Ti,j =































1

. . .

0 1

. . .

1 0

. . .

1































, Ti(u) =



























1

. . .

1
u

1

. . .

1



























,

Ti,j(v) =































1

. . .

1

. . .

v 1

. . .

1































.
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We can then easily compute M−1 as

M−1 =
n
∏

i=1

E−1
n−i+1.

The drawback of generating an invertible matrix this way is that we do not have a
good grasp of the randomness embedded in this process. In particular, how large
must n be to generate a truly random matrix? Given that there are 3 different types
of elementary matrices, does it matter in what order they are multiplied in and does
the number of elementary matrices of each form matter? These are questions that
have not been addressed and may influence the final invertible matrix generated in
unknown ways.

Here, instead of the previously mentioned method of sampling random matrices,
we propose an alternative solution. We start with an already “somewhat random”
matrix, for which it is easy to compute the inverse. An example of such a matrix
is a lower/upper triangular matrix, with invertible elements on the diagonal:

M =

⎛

⎝

u1 g1 g2
0 u2 g3
0 0 u3

⎞

⎠ .

Constructing the inverse of this matrix involves solving a matrix equation,

M ·M−1 = I

⇒

⎛

⎝

u1 g1 g2
0 u2 g3
0 0 u3

⎞

⎠ ·

⎛

⎝

u−1
1 g4 g5
0 u−1

2 g6
0 0 u−1

3

⎞

⎠ =

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠

⇒ g4 = −u−1
1 g1u

−1
2

g5 = u−1
1 g1u

−1
2 g3u

−1
3 − u−1

1 g2u
−1
3

g6 = −u−1
2 g3u

−1
3 .

We then propose to take a random product of such invertible upper and lower
triangular matrices. Since these matrices are more complex than elementary ma-
trices, it seems reasonable to assume that we arrive at a more uniform distribution
sooner than by simply using elementary matrices. In our experiments we used a
product of 20 random matrices, where each term of the product was chosen ran-
domly as either a random invertible upper or lower triangular matrix.

As mentioned previously, the benefits of this method are that inverses are easy
to compute and that the chosen matrix already has a large degree of randomness
built in. In particular, any element of Z7[S5] can be used off the diagonal, and any
invertible elements of the group ring can be used on the diagonal. These of course
include elements such as nu ∈ Z7[S5], where u ∈ S5 and n ∈ Z7.

Finally, we note that the order of the group GL3Z7[S5] of invertible 3 × 3
matrices over Z7[S5] is at least 10313. Indeed, if we only count invertible upper
and lower triangular matrices that we described above, then we already have (7 ·
120)3(7120)3 ∼ 10313 matrices.

3.1.2. Commuting matrices. Now that we have sampled an invertible matrix
(M1 in our notation – see Section 2), we have to sample an arbitrary (i.e., not
necessarily invertible) matrix M2 that would commute with M1.
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Given a matrix M1 ∈ G, define M2 =
∑k

i=1 aiM
i
1, where ai ∈ Z7 are selected

randomly. Then clearly M1M2 = M2M1. A reasonable choice for k is about 100 as
this would yield 7100 ∼ 1085 choices for M2, which is a sufficiently large key space.

3.1.3. Other parameters. As mentioned in the introduction of the Cramer-
Shoup algorithm adapted to our group rings, we need to specify the value of n
for Zn. Based on experiments in our previous paper [4] we suggest n ∼ 10100. This
seemed a reasonable choice of exponent since it both allowed quick computations
and ensured that the power a matrix was raised to could not be figured out by
brute force methods alone.

We also use a hash function H in our algorithm as did Cramer and Shoup. The
only requirement on H is that it is drawn from a family of universal one-way hash
functions. This is a less stringent requirement than to be collision resistant. The
latter implies that it is infeasible for an adversary to find two different inputs x and
y such that H(x) = H(y). A weaker notion of second preimage resistance implies
that upon choosing an input x, it is infeasible to find a different input y such that
H(x) = H(y).

It should be noted that in their paper Cramer and Shoup also give details of
their same algorithm without requiring the use of any hash functions. The modified
algorithm is only slightly more complicated but relies on the same principles.
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