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Abstract: Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease

(COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each

year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory

response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK.

These pathways also have roles in interferon production, viral replication, mucus production, and T

cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity

phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in

the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in

regulation of cytokine expression, mucin production, and viral replication in the airway. The central

role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will

also be highlighted. In addition, the importance of this protein family in the lung, and the necessity

of further investigation into their roles in airway disease, will be discussed.
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1. Introduction

Inflammatory airway diseases are major causes of morbidity and mortality. The most common

chronic respiratory diseases are asthma and chronic obstructive pulmonary disease (COPD), affecting

around 300 million and 65 million people worldwide, respectively [1,2]. Both diseases are characterized

by chronic inflammation of the respiratory tract, which is worsened in acute exacerbations, leading to

airway obstruction, wheezing, and breathlessness [3]. The main cause of exacerbations is infection

with respiratory viruses, including rhinovirus, respiratory syncytial virus (RSV), and influenza.

Studies to determine the aetiology of exacerbations detected respiratory viruses in 65–82% of asthma

exacerbations and 37–56% of COPD exacerbations [4–11].

The airway epithelium is the main target of respiratory viruses. Pattern recognition receptors

(PRRs) on the surface and within epithelial cells recognize components of viruses and activate a range

of signaling pathways, including the mitogen-activated protein kinase (MAPK) pathways [12,13].

The MAPK pathways consist of a three-tier kinase cascade, culminating in the dual-phosphorylation

and activation of the MAPKs: extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK),

and p38. These proteins translocate to the nucleus and activate a range of transcription factors, such

as NF-κB and AP-1, leading to the production and release of many different molecules, including

interferons, cytokines, and adhesion molecules [12,14], initiating inflammatory responses.
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These responses are aberrant in patients with underlying airway disease. The reasons for this

remain incompletely understood, but involve impaired control of viral infection [15,16], damaged

epithelium [17,18], and altered lymphocyte responses [19,20]. This review will discuss the roles

of the MAPK pathways in these processes and their regulation by a group of proteins known as

dual-specificity phosphatases (DUSPs) or MAPK phosphatases (MKPs).

2. The Epithelial Response to Respiratory Viral Infection

Activation of PRRs in respiratory epithelial cells leads to induction of the MAPK pathways, as

summarized in Figure 1 [21]. Respiratory viral infection of epithelial cells can also activate the MAPKs

through other means; for example, p38 can be activated by infection with rhinovirus, through the

protein kinase Syk [22–24], or influenza, through the endoplasmic-reticulum stress response [25].

Once activated, the MAPKs have roles in many different processes, with severe implications in airway

disease. These roles are summarized in the following sections.

Ȯ

 

śȝ

Figure 1. Activation of signaling pathways in respiratory epithelial cells upon viral infection. PRRs

detect viral infection of the cell: TLRs 2 and 4 can bind components of the viral surface, TLR3 binds

dsRNA, TLR7/8 bind ssRNA, and the RLRs bind dsRNA or 5′-triphosphorylated ssRNA. Adaptor

proteins MyD88, TRIF, and MAVS mediate the activation of signaling pathways, including the MAPK

pathways. The MAPKs translocate into the nucleus where they activate transcription factors, leading

to the transcription of genes for inflammatory cytokines. TRIF and MAVS signaling activates IRF3,

leading to interferon production. The MAPK pathways can also activate IRF3. Inflammatory cytokines

and interferons are released by the cell and act upon surrounding cells. IFN binds to the IFN receptor

complex IFNAR1/2, activating the JAK/STAT pathway. JAK1 and Tyk2 phosphorylate STAT1 and

STAT2 which dimerize, translocate to the nucleus and bind IRF9, forming ISGF3, which induces

transcription of interferon stimulated genes (ISGs).
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2.1. The MAPKs and Cytokine Release

The specific roles of each MAPK pathway have been examined using small molecule inhibitors.

Pyridinyl imidazole compounds inhibit p38 by competing with ATP for its binding site, blocking its

catalytic activity [26]. Griego et al. used two pyridinyl imidazole inhibitors, SB203580 and SB239053,

to examine the role of p38 in cytokine and chemokine production by the BEAS-2B human bronchial

epithelial cell line in response to infection with rhinovirus [27]. They found that infection caused a

time- and dose-dependent increase in p38 phosphorylation. Treatment with either inhibitor prior to

infection led to a significant reduction in the secretion of all cytokines and chemokines examined,

including CXCL8, growth-related oncogene-α (GRO-α), granulocyte colony-stimulating factor (G-CSF),

and granulocyte-macrophage colony-stimulating factor (GM-CSF), all of which have important roles

in neutrophilia [27]. Recent work has furthered this knowledge, showing reduced production of

CXCL8 by primary bronchial epithelial cells when p38 signaling was inhibited prior to infection with

rhinovirus [28].

Inhibitors of p38 have also been used to highlight its importance in inflammatory cytokine

production in response to other respiratory viruses. Treatment of A549 cells with SB203580 decreased

release of CCL5 in response to RSV infection, and CXCL8 in response to parainfluenza virus

infection [29,30]. Supporting this, inhibition of p38 in primary bronchial epithelial cells reduced

mRNA production of IL-1β and TNF-α in response to RSV infection [31]. This pro-inflammatory

role of p38 has also been demonstrated in vivo, as treatment of influenza-infected BALB/c mice with

SB203580 lowered the concentration of TNF-α, IL-1β and IL-6 protein in lung homogenates [32].

The ERK pathway also has roles in cytokine induction in epithelial cells in response to viral

infection. Liu et al. and Newcomb et al. treated airway epithelial cell lines with U0126 prior to

rhinoviral infection. U0126 inhibits the ERK pathway by blocking activation of upstream kinases

MEK1/2 [33]. Treatment with this drug reduced the secretion of CXCL8 in response to rhinovirus to

almost baseline levels [34,35]; however, this was not replicated in primary bronchial epithelial cells

treated with the MEK inhibitor PD90859 [28]. This could be due to differences in potency between

the two chemical inhibitors, or between primary and immortalized cells. ERK signaling also induces

inflammatory cytokine release in response to infection with RSV, with decreased levels of CXCL8 and

CCL5 in supernatants of infected A549 cells treated with PD98059 [29,36].

Less is known about the role of the JNK pathway in inflammatory cytokine production in viral

infection of the airway. One study showed weaker production and release of CXCL8 in response

to infection with two strains of rhinovirus in primary bronchial epithelial cells treated with the

JNK inhibitor SP600125 [28]. Together, these studies illustrate the central role of the MAPKs in the

inflammatory response to respiratory viral infection. The precise contribution of each pathway seems

to depend on the specific virus and cell type studied, but together they induce a large proportion of

inflammatory cytokine production.

Respiratory epithelial cells release type I and type III interferons in response to viral infection

(Figure 1) [37–39]. Interferons limit replication of respiratory viruses; pre-treatment of airway epithelial

cells with interferon-β (IFN-β) significantly reduced replication of rhinovirus or influenza virus [40,41].

Several viruses, including influenza and RSV, target components of the interferon pathway in order

to limit the antiviral response [42,43], and highly pathogenic strains of influenza induce lower levels

of interferon [41]. The MAPK pathways have previously been implicated in interferon induction in

response to influenza infection. Infection of MDCK cells or chicken macrophages with avian influenza

viruses in the presence of JNK inhibitors led to increased viral replication due to decreased activation

of IRF3 [44,45]. Recently, a gene expression array compared the response of primary HUVECs infected

with highly pathogenic avian influenza viruses with and without SB202190, a p38 inhibitor. In addition

to diminished production of inflammatory mediators, p38 inhibition reduced expression of IFN-β [46].

Signaling by ERK has also been linked to interferon signaling in RSV infection; ERK inhibition in A549

cells lessened activation of STAT1 in response to RSV [47]. This identifies the MAPKs as key pathways

in both the anti-viral and pro-inflammatory responses to viral infection (Figure 1).
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2.2. The MAPKs and Viral Replication

In addition to regulating respiratory viral infection through the interferon response, the MAPKs

may also have roles in the viral life cycle. Marchant et al. showed that inhibition of p38 using SB203580

in the bronchial epithelial cell line 1HAEo- reduced replication of a number of respiratory viruses,

including: influenza, RSV, coxsackie virus B3, human parainfluenza virus 3, and adenovirus [48].

Influenza genome replication occurs within the nucleus, forming viral ribonucleoprotein (vRNP)

complexes, which are then exported into the cytoplasm [49]. Inhibition of either p38 or ERK was

found to decrease influenza virus replication in MDCK cells due to a reduction in vRNP export from

the nucleus [49–51]. Nencioni et al. hypothesized this was due to phosphorylation of vRNP by p38,

affecting its affinity for the viral surface protein M1 [51]. This was supported by co-localization of p38

and vRNP in the nucleus of MDCK cells, and a reduction of vRNP phosphorylation when p38 was

inhibited [51].

The roles of the MAPK pathways in RSV replication have also been investigated. Inhibition of

p38 or ERK diminished levels of viral RNA and progeny release in A549 cells [52,53]. In both cases,

this was thought to be due to impaired transport of viral proteins through the secretory pathway.

Inhibition of p38 in vero cells decreased phosphorylation of the SH protein, a viral membrane protein

with unknown function [54]. This altered the cellular distribution of SH, increasing localization in

the golgi, implying that phosphorylation of SH may be necessary for transport through the secretory

pathway and thus, viral assembly [54]. A similar role was proposed for ERK, as treatment of A549

cells with U0126 reduced surface expression of the viral F protein [53].

RSV and influenza viruses can also successfully evade the immune response and antiviral

therapies by direct cell to cell spread [55,56]. RSV forms syncytia in the airway epithelium by fusing

the membranes of neighbor cells, leading to cytosol mixing and viral transfer. RSV can also induce

the formation of long filaments to reach, and spread to, more distant cells. This process is dependent

on actin rearrangement through RhoA and the Arp2/Arp3 complex [56,57]. In wound healing

assays, inhibition of ERK in epithelial cell lines reduced Arp2/3 recruitment and actin polymerization,

indicating a possible role for ERK in syncytia formation during RSV infection [58]. ERK has previously

been implicated in syncytia formation in cancer, with U0126 treatment of a choriocarcinoma cell line

mitigating syncytia formation [59]. One result of syncytia formation in RSV infection is disruption of

the epithelium and decreased membrane barrier integrity, which can lead to pneumonia and secondary

bacterial infection. This can be modelled in A549 cells, where RSV infection lowers trans-epithelial

resistance and causes paracellular gap formation. Treatment of A549 cells with SB203580 lessened these

effects of RSV infection on the cell monolayer [60]. This was associated with reduced phosphorylation

of heat shock protein 27 (Hsp27), a protein involved in actin rearrangement [60], suggesting that p38

may also be involved in syncytia formation through Hsp27.

As the MAPKs are involved in a wide variety of processes, they may also be indirectly involved

in viral replication. For example, enteroviruses, such as rhinovirus, utilize the host cell endocytosis

machinery, mainly the protein Rab11, to traffic cholesterol to replication organelles [61]. p38 has

been shown to phosphorylate and activate guanyl-nucelotide dissociation inhibitor, a protein which

facilitates cycling of Rab proteins between the membrane and the cytosol in endocytosis [62].

Cholesterol plays an important role in viral polyprotein processing and genome synthesis, and

inhibition of cholesterol trafficking blocks viral replication [61]. Thus, p38 activation of Rab protein

cycling may facilitate viral replication.

Overall, the literature suggests that respiratory viruses hijack the MAPKs and their downstream

targets for their own ends; utilizing them for protein trafficking, viral assembly, and cell to cell spread.

This highlights the need for strict regulation of these pathways, in order to limit viral replication, and

proposes the MAPKs as targets for antiviral therapies [63].
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2.3. The MAPKs and Mucus Production

A defining feature of asthma and COPD is goblet cell hyperplasia and excessive mucus

production. This can lead to blockage of the airway and contributes to asthma-associated deaths [64].

The predominant mucin in asthma and COPD is MUC5AC [65,66]. The T helper 2 cytokine IL-13

is thought to be the main inducer of goblet cell hyperplasia and MUC5AC production in murine

models of asthma, through activation of STAT6 [67,68]. The MAPKs also participate in this process;

inhibition of p38 or ERK in differentiated primary murine or human airway epithelial cell monolayers

reduced the IL-13 induced upregulation of goblet cell numbers and MUC5AC expression [69–71].

Furthermore, activation of p38 in response to IL-13 is weaker in epithelial cells from STAT6 knock out

mice, indicating STAT6-induced mucin production occurs via p38 [69].

Respiratory viral infection has also been shown to upregulate mucus production. Double-stranded

RNA is a common component or replication intermediate of viruses. Stimulation of NCI-H292 cells

with double-stranded RNA upregulated expression of mucin MUC2, and this could be reversed by

treatment with a p38 inhibitor [72]. MUC5AC expression is raised in ovalbumin murine models of

asthma, and is increased further by RSV infection [73]. This observation may be dependent of IL-33,

as IL-33 levels are higher in the lungs of RSV-infected mice, leading to enhanced production of IL-13.

In addition, treatment of RAW cells with MAPK inhibitors decreases the release of IL-33 in response to

RSV [74]. Inhibition of p38 has also been shown to repress IL-33 production in primary nasal epithelial

cells in response to TNF-α stimulation [75].

Another mechanism by which mucin production is upregulated is via activation of the EGF

receptor (EGFR) and Ras-Raf-MEK-ERK pathway [76,77]. Rhinovirus infection of differentiated

primary human tracheal epithelial cells upregulates MUC5AC RNA levels and protein release, as well

as RNA for MUC2, MUC3, MUC5B and MUC6 [78,79]. This induction was mediated by the EGFR

pathway, as treatment with MEK or EGFR inhibitors returned MUC5AC levels to baseline. The authors

hypothesized this was due to an autocrine loop, where rhinoviral infection induced production and

release of EGRF ligands, as shown in NCI-H292 cells, which activated EGRF on the cell surface,

and thus activated the ERK pathway [79]. This highlights the roles of the MAPKs in viral induced

mucus production and has substantial implications for airway disease, where mucus hyperplasia is a

common symptom.

2.4. Regulation of the MAPKs by DUSPs in Respiratory Viral Infection

The above studies underline the importance of the MAPK pathways in respiratory viral infection

and airway disease. Although the majority of these studies rely on small molecule inhibitors which

have significant off-target effects [80], they do indicate roles for the MAPKs in many of the processes

implicated in exacerbations of asthma or COPD, including inflammation, mucus production and

elevated viral replication. Thus, regulation of the MAPKs is of extreme importance. These pathways

are primarily inactivated by simultaneous dephosphorylation of the threonine and tyrosine residues

within the MAPK activation motif by dual-specificity phosphatases (DUSPs) (Figure 2) [81].



Int. J. Mol. Sci. 2019, 20, 678 6 of 23

 

·

Figure 2. Regulation of the MAPK pathways by DUSPs in epithelial cells upon viral infection. PRR

recognition of viruses or viral components activates the MAPK and IRF3 pathways. The MAPKs

and IRF3 translocate to the nucleus and induce expression of inflammatory cytokines and interferon.

These pathways are negatively regulated (red arrows) through dephosphorylation by DUSPs. DUSP1

is present in the nucleus and dephosphorylates all three MAPKs. DUSP4 is a nuclear protein, and

is thought to dephosphorylate ERK. DUSP10 is present in both the nucleus and the cytoplasm and

dephosphorylates JNK, p38 and IRF3. Black arrows represent activating interactions, red arrows

represent inhibition.

2.4.1. DUSP1/MKP1

Much of the literature regarding DUSPs in innate immunity have focused on bacterial infection,

and few studies have examined their roles in viral infection. DUSP1 (MKP1) is the archetype of

the family and the most well studied. DUSP1 is a nuclear protein, capable of dephosphorylating

p38, JNK and ERK, with substrate specificity depending on the stimuli and cell type [82,83]. It has

been characterized as an early response gene, with undetectable expression at baseline, and rapid

upregulation upon exposure to a variety of stimuli [82,84]. The airway epithelial cell line NCI-H292

upregulates DUSP1 mRNA within one hour in response to the synthetic double-stranded RNA

molecule polyinosinic:polycytidylic acid (poly(I:C)) [85]. Poly(I:C) is a ligand for the PRRs toll-like

receptor 3 (TLR3) and the RIG-I-like receptors (RLRs), which are predominantly activated by viral

infection. Knock down of DUSP1 expression using small-interfering RNA (siRNA) in NCI-H292 cells

amplified the release of two pro-inflammatory cytokines in response to poly(I:C) stimulation, CXCL8

and IL-6 [86]. A similar role for DUSP1 was seen in infection of the NCI-H1299 cell line with the avian

coronavirus infectious bronchitis virus, with DUSP1 siRNA treatment increasing mRNA levels of

CXCL8 in response to infection [87]. This augmented cytokine expression is likely to be due to elevated

MAPK activation, with increased levels of phosphorylated p38 and JNK found in RSV infected A549

cells treated with DUSP1 siRNA [88].

DUSP1 has also been implicated in regulating the interferon response, with DUSP1 knock

down in hepatocyte cell lines increasing STAT1 activation in response to hepatitis C virus or IFN-γ
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stimulation [89,90]. However, a yeast two-hybrid assay was unable to find an interaction between

DUSP1 and STAT1, and overexpression of DUSP1 in COS-1 cells did not affect the level of STAT1

activation in response to IFN-γ [91]. Thus, the effects of DUSP1 knock down on the interferon response

to hepatitis C infection may be indirect effects of increased MAPK activation (Section 2.1) rather than

direct inactivation by DUSP1.

The inflammatory cytokine TNF-α is induced by respiratory viral infection, with higher expression

in asthmatic patients [92,93], and elicits secondary inflammatory cytokine release from airway smooth

muscle (ASM) cells [94]. Stimulation of primary ASM cells with TNF-α also caused the upregulation

of DUSP1 mRNA and protein. When DUSP1 expression was knocked down in ASM cells, the release

of CXCL8 increased in response to TNF-α stimulation [95]. CXCL8 is a neutrophil chemoattractant

commonly detected in asthmatic airways [96]. Neutrophilia can harm the airway, causing epithelial cell

damage and necrosis, and levels of CXCL8 correlate with asthma severity [96,97]. TNF-α stimulation

of epithelial cells also induced the expression of mucins, and DUSP1 knock down in NCI-H292 cells

further amplified the expression of airway mucin MUC5AC in response to TNF-α [98]. Taken together,

this work suggests that DUSP1 has an important role in the response of the epithelium to insult,

including regulation of inflammatory cytokine and mucin production.

2.4.2. DUSP10/MKP5

DUSP10 (MKP5) is expressed ubiquitously in the nucleus and cytoplasm [99], and is upregulated

in response to viral infection: bone-marrow derived macrophages (BMDMs) infected with influenza

virus or stimulated with poly(I:C) have enhanced DUSP10 mRNA and protein expression [100].

Knock down of DUSP10 in primary bronchial epithelial cells increased the release of the neutrophil

chemoattractants CXCL8 and CXCL1 in response to stimulation with a key proinflammatory cytokine

IL-1β, suggesting that, like DUSP1, DUSP10 negatively regulates the inflammatory response in the

airway [28]. Importantly, rhinoviral infection of airway epithelial cells or monocytes causes the release

of IL-1β [28,101]; and combined stimulation with rhinovirus and IL-1β leads to an even greater

inflammatory response in DUSP10 knock down primary bronchial epithelial cells from both healthy

and COPD donors [28]. This identifies DUSP10 as a central regulator of the inflammatory response

to respiratory viruses: infection of epithelial cells induces release of IL-1β, which acts back on the

epithelium to promote inflammation, which is negatively regulated by DUSP10.

The role of DUSP10 in respiratory viral infection has also been examined in vivo: DUSP10 knock

out mice infected with influenza had elevated levels of IL-6 in bronchoalveolar lavage (BAL) than

wild-type mice. Interestingly, DUSP10 knock out mice also had decreased viral titres and better survival

in response to infection. This was associated with raised expression and phosphorylation of IRF3, and

therefore increased interferon (IFN) expression. Further investigation established that DUSP10 and

IRF3 directly interact, indicating IRF3 as a novel substrate for DUSP10 and highlighting the importance

of DUSP10 in regulating not only the inflammatory response, but also the anti-viral response.

Sustained, uncontrolled pulmonary inflammation can lead to acute lung injury, often seen in

severe influenza infection. Murine models of acute lung injury can be generated by intratracheal

injection of lipopolysaccharide (LPS), a TLR4 agonist. When DUSP10 knock out mice were utilized in

an acute lung injury model, they exhibited greater disease severity than wild-type mice, with increased

lung injury and pulmonary edema [102]. This was associated with augmented neutrophil influx

in the lungs, and inflammatory cytokines in BAL. BMDMs isolated from these mice had elevated

activation of p38 and JNK, and to a lesser extent ERK, in response to LPS treatment. Adoptive transfer

of these BMDMs into wild-type mice led to enhanced lung inflammation in response to intratracheal

LPS injection than the transfer of wild-type BMDMs [102]. This is in keeping with the in vitro data

described above, and demonstrates that DUSP10 has an anti-inflammatory role in the airway, and is

important in limiting immune-mediated lung damage.
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2.4.3. DUSP4/MKP2

Interestingly, one DUSP has been found to have a pro-inflammatory role in murine models of

acute lung injury. In response to intratracheal LPS injection, DUSP4 (MKP2) knock out mice had

decreased inflammatory cytokines in BAL and neutrophil infiltration in to the lung [103]. These data

fit with an earlier study showing a pro-inflammatory role for DUSP4 in sepsis, with improved survival

in DUSP4 knock out mice [104]. BMDMs taken from these mice produced lower levels of inflammatory

cytokines in response to LPS injection than wild-type mice, associated with reduced activation of

p38 and JNK, but increased activation of ERK. The authors suggest this was due to ERK-induced

DUSP1 transcription, as has been demonstrated previously [105]. These studies indicate that different

DUSPs may have pro- or anti-inflammatory roles in pulmonary inflammation. It should be noted that

Al-Mutairi et al. found conflicting results, with DUSP4 knock out BMDMs releasing higher levels of

inflammatory cytokines in response to LPS, although it is unclear why these studies differ [106].

3. T Cell Responses

Around 50% of asthma cases have an allergic phenotype, characterized by predominantly

eosinophilic inflammation and T helper 2 (Th2) responses [19,107]. Higher levels of several Th2

cytokines have been found in BAL of asthmatics, including IL-4, IL-5, IL-13, IL-25, IL-33, and

TSLP [108–110], and the levels of Th2 cytokines correlate with severity of asthma exacerbation [20].

The Th1/Th2 balance is also crucial for the immune control of respiratory viral infection. Asthmatics

experimentally infected with rhinovirus had increased viral titres compared to infected healthy controls,

with greater airway inflammation, bronchial hyperreactivity, and reductions in lung function associated

with increased levels of IL-4, IL-5 and IL-13 in BAL [19]. The MAPKs have been implicated in induction

of Th2 cytokines in the airway. Inhibition of p38 or ERK pathways in primary nasal epithelial cells or

alveolar macrophages decreased release of IL-33 in response to TNF-α stimulation or RSV infection,

respectively [74,75]. ERK and p38 inhibitors have also been used to confirm roles for these pathways in

TSLP production in ASM cells in response to TNF-α or IL-1β stimulation [111]. Transcription of TSLP

in ASM cells is also partially dependent on the AP-1 transcription factor, suggesting the involvement

of JNK [112].

Early infection with RSV has been linked to the development of asthma, possibly through skewing

the immune response towards a Th2 phenotype. Cytokine profiles of children infected with RSV

revealed an expansion of Th2 cytokines and decreased Th1 cytokines [113], and RSV infection of

mouse pups led to increased Th2 responses and impaired regulatory T (Treg) cell responses [114].

Enhanced T cell recruitment in RSV infection correlates with worsening symptoms [115], and ablation

of either CD4+ cells or CD8+ cells in mouse models mitigates disease severity [116]. This Th2 skewing

in response to infection may involve p38 MAPK. Infection of monocyte-derived dendritic cells with

RSV induced expression of indoleamine-2,3-dioxygenase, an enzyme which favors Th2 differentiation

by inducing apoptosis in Th1 cells. The expression of indoleamine-2,3-dioxygenase was reduced by

treatment with the p38 inhibitor SB202190 [117].

Taken together, this work illustrates the importance of regulating the T cell response, and the

T helper subset balance. In addition to affecting T cell activation through cytokine production by

epithelial cells, the MAPKs have roles in T cells themselves, affecting their activation, proliferation and

function [118].

The Roles of DUSPs in T Cell Responses

Several studies have implicated DUSPs in the regulation of T cells and in the differentiation

of T helper subsets (Table 1). DUSP1 knock out mice have been utilized to demonstrate roles for

DUSP1 in T cell priming, proliferation, and T cell subset skewing. Antigen presenting cells (APCs),

such as dendritic cells, have roles in this altered response. DUSP1 knock out dendritic cells had

increased activation of p38, and thus altered cytokine production. This led to impaired priming of
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naïve wild-type T cells, with reduced differentiation into Th1 cells and augmented Th17 and Treg cell

differentiation [119]. DUSP1 knock out T cells exhibit reduced proliferation in response to activation

with anti-CD3 antibodies, and lower levels of IFN-γ and IL-17, Th1 and Th17 cytokines, respectively;

while the Th2 cytokine IL-4 levels remained unchanged. These studies emphasize the different roles

of DUSP1 in different cell types, with knock out having differing effects on APC mediated and T

cell intrinsic responses. The overall effect of DUSP1 knock out was observed in influenza infection,

with a decline in Th1 and CD8+ T cell numbers, leading to impaired control of the virus and greater

disease severity. This altered response was associated with decreased nuclear translocation of NFATc1,

a transcription factor important for T cell proliferation and function [120]. JNK was previously found

to negatively regulate NFATc1 by phosphorylation [121], implying that the impaired T cell responses

in DUSP1 knock out mice were due to increased JNK activation.

DUSP10 also plays a role in T cell proliferation. DUSP10 knock out mice have decreased numbers

of virus specific CD4+ cells and CD8+ cells in the lung in response to influenza infection [100].

These mice also have diminished CD4+ cell proliferation in response to anti-CD3 and anti-CD28

antibodies; however, T cell effector functions were increased, with greater levels of Th1 and Th2

cytokine release. This elevated cytokine release was also observed in response to secondary infection

with lymphocytic choriomeningitis virus, leading to immune-mediated death [122].

Three other DUSPs have also been implicated in T helper subset skewing: DUSP4, DUSP5

and DUSP16. DUSP4 negatively regulates Treg cell differentiation through inactivating STAT5 [123].

STAT5 is activated by IL-2, and is required for induction of Treg cells [124]. Overexpression of

DUSP4 in HEK-293T cells reduced phosphorylation of STAT5 in response to IFN-β stimulation, and

DUSP4 and STAT5 were co-immunoprecipitated, indicating that DUSP4 directly dephosphorylates

STAT5. DUSP4 knock out mice had increased numbers of Treg cells and fewer Th17 cells [123].

In contrast to the negative regulatory role of DUSP4 in Treg cell generation, DUSP5 (hVHR3) seems

to act as a positive regulator. Mice overexpressing DUSP5 had decreased inflammation and disease

severity in a collagen-induced arthritis model, due to raised numbers of Treg cells and higher STAT5

activation, and reduced Th17 cells and lower STAT3 activation [125]. DUSP16 (MKP7) knock out

shows embryonic lethality; however, mice expressing a dominant negative DUSP16 protein have

been generated, and have an altered Th1/Th2 balance. T cells isolated from these mice produce

increased levels of IFN-γ and diminished IL-4, IL-5 and IL-13 in response to anti-CD3 and anti-CD28

antibodies or ovalbumin [126,127]. In contrast to this, mice with a DUSP16 knock out specifically in

the hematopoietic compartment do not display altered Th1 or Th2 responses, but demonstrate a role

for the protein in regulating IL-2 production [128]. These mice had enhanced release of IL-2 and T cell

proliferation, compared to wild-type mice, in response to anti-CD3 antibodies. This was associated

with increased activation of ERK, which is critical for IL-2 expression [128]. IL-2 has previously been

shown to inhibit the expansion of Th17 cells [129], and these mice exhibited a decrease in numbers of

IL-17 producing cells, which was reversed by treatment with the ERK inhibitor U0126 [128].

In addition to their roles in T cell proliferation and T helper subset skewing, DUSPs have also been

found to regulate T cell receptor (TCR) signaling. Binding of the TCR to antigen leads to recruitment

of Lck, a tyrosine kinase, which phosphorylates the ζ chain, leading to ZAP-70 recruitment and the

initiation of a range of signaling pathways [130]. Lck knock out mice emphasize its importance in the

induction of TCR signaling [131]. T cells isolated from DUSP22 (JKAP) knock out mice had higher

activation levels of several molecules downstream of the TCR, including Lck, ZAP-70, IKK, and the

MAPKs, in response to anti-CD3 antibodies. DUSP22 and Lck were co-immunoprecipitated from

murine splenic T cells, and DUSP22 was found to dephosphorylate Lck on Tyr394, inactivating it [132].

Further downstream of ZAP-70, TAB1 is activated by PKC-θ. TAB1 binds to TAK1, inducing

an activating conformational change, triggering the IKK, p38 and JNK pathways. When DUSP14

(MKP-L) knock out T cells were stimulated with anti-CD3 antibodies, the numbers of activated CD69+

T cells were significantly higher than in wild-type T cells [133]. To investigate the reason behind this,

HEK293T cells were transfected with wild-type or non-functional mutant DUSP14 and stimulated with
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anti-CD3 antibodies. Levels of activated Lck and ZAP-70 were unchanged between cells expressing

wild-type and mutated DUSP14; however, IKK and MAPK activation was increased in cells expressing

mutated DUSP14. Mass spectrometry was used to identify the binding protein and target of DUSP14

as TAB1, and further analysis revealed DUSP14 dephosphorylates TAB1 at the Ser358 residue [133].

These data illustrate that DUSPs have fundamental roles in adaptive immunity, affecting the

activation, proliferation and differentiation of T helper cells. Although many of these studies have

examined T cells in isolation, they identify the DUSPs as important regulators and suggest essential

roles for them in airway diseases.

Table 1. Roles of DUSPs in T cells.

DUSP
Regulates

Proliferation

Regulates TCR
Signaling

Regulates Subset Differentiation
Reference

Th1 Th2 Th17 Treg

DUSP1 X Promotes Promotes Inhibits [120]

DUSP4 Promotes Inhibits [123]

DUSP5 Inhibits Promotes [125]

DUSP10 X [122]

DUSP14 X X [133]

DUSP16 X Inhibits Promotes Promotes [127,128]

DUSP22 X X [132]

* Blank boxes = not determined.

4. The Role of DUSP1 in Steroid Treatment

Exacerbations of asthma or COPD are treated with corticosteroids to limit the inflammatory

response [134]. Steroids interact with the glucocorticoid receptor (GR) in the cytosol, inducing a

conformational change, which allows the GR to translocate to the nucleus where it interacts with

and inhibits transcription factors, such as NF-κB and AP-1 [135,136]. More recent evidence revealed

that steroids mediate many of their actions through DUSP1. Treatment with the glucocorticoid

dexamethasone increased DUSP1 expression in airway epithelial cell lines [137,138] and airway

smooth muscle cells [139–141]. In mouse models, dexamethasone treatment reduced the release of

inflammatory cytokines, TNF-α and IL-6, in serum in response to LPS injection. This inhibitory action

of dexamethasone was weakened in DUSP1 knock out mice [142]. BMDMs or peritoneal macrophages

isolated from DUSP1 knock out mice show that this was due to impaired inhibition of MAPK activation,

and thus cytokine release, in response to LPS when DUSP1 is not present [142,143]. Dexamethasone

treatment can also promote wound healing responses, upregulating proteins such as arginase 1 and

fibroblast growth factors. This was diminished in peritoneal macrophages isolated from DUSP1 knock

out mice in response to alternative macrophage activators IL-4 and IL-13, indicating that DUSP1 both

restricts inflammation and promotes wound healing [144]. Interestingly, bone-marrow derived mast

cells from DUSP1 knock out mice did not differ from wild-type in the levels of cytokines released in

response to IgE cross-linking and dexamethasone treatment. This may be due to redundancy within

the DUSP family, as dexamethasone also upregulated DUSPs 2, 4 and 9 [145]. This suggests the actions

of DUSPs in dexamethasone treatment differ depending on cell type and stimulus. The role of DUSP1

in steroid treatment of the airway epithelium has also been investigated. siRNA knock down of DUSP1

in the A549 cell line blocked the anti-inflammatory action of dexamethasone on MAPK activation and

cytokine release in response to IL-1β [146,147].

Around 10% of asthmatics are resistant to steroid treatment [148]. Several studies have examined

the different responses between asthmatics who are sensitive to steroids, and those who are resistant.

Bronchial biopsies from steroid-sensitive asthmatics show a reduction in JNK activation after

treatment with dexamethasone, which was not seen in bronchial biopsies from steroid-resistant

asthmatics [149]. Higher activation levels of p38 were also detected in alveolar macrophages isolated
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from steroid-resistant asthmatics than in steroid-sensitive cells. This was associated with reduced

expression of DUSP1 in response to dexamethasone [150]. Lower expression of DUSP1 was also found

in peripheral blood neutrophils from steroid-resistant asthmatics in comparison to steroid-sensitive

asthmatics [151].

Exacerbations of asthma and COPD caused by viral or bacterial infection are also more

resistant to steroid treatment than non-viral exacerbations [152,153]. Rhinovirus infections impair the

anti-inflammatory actions of steroids, partly by reducing nuclear translocation of the glucocorticoid

receptor [154]. Treatment of A549 cells with dexamethasone reduced inflammatory cytokine release

and upregulated DUSP1 in response to IL-1β stimulation. However, when these cells were infected

with rhinovirus, this suppression by dexamethasone was abrogated, as was the upregulation of

DUSP1 expression [154]. Treatment of A549 cells with the TLR2 ligand Pam3CSK4 also induced

steroid resistance, but had no effect on DUSP1 expression. However, Pam3CSK4 treatment did induce

oxidative stress, and a proportion of the DUSP1 present in these cells was oxidized [155]. Oxidation of

the catalytic cysteine residue in the active site of DUSPs renders them inactive [156]. These findings

suggest that steroid insensitivity in asthmatics, or in infected airways, may be due to a defect in DUSP1

expression or activation. Furthermore, polymorphisms in the DUSP1 gene have been associated with

steroid responsiveness [157]. The roles of other DUSPs in steroid treatment remain to be investigated.

Another therapy commonly used to treat asthmatics are bronchodilators, such as β2-recpetor

agonists. In addition to bronchodilation, β2-agonists also have some anti-inflammatory effects.

Treatment of cells with β2-agonists increases intracellular levels of cAMP [158]. The promoter of

DUSP1 contains a cAMP-response element [159], and β2-agonist treatment of airway epithelial cell

lines and airway smooth muscle cells has been found to upregulate DUSP1 expression [160,161].

The role of DUSP1 in the anti-inflammatory action of the β2-agonist salbutamol was investigated by

inducing paw edema in wild-type and DUSP1 knock out mice. Salbutamol treatment reduced the

level of inflammation by around 70% in wild-type mice, but only by around 40% in DUSP1 knock out

mice [137]. This signifies that DUSP1 also has an important role in mediating the anti-inflammatory

effects of β2-agonists, in addition to corticosteroids.

5. Studies Linking DUSPs to Asthma and Sarcoidosis

It has been suggested that several of the DUSPs may be dysregulated in people with asthma.

This is an intriguing explanation for the excessive inflammatory response seen in these patients,

particularly because activation of the MAPK proteins is elevated in asthmatics. Baseline levels of

phosphorylated p38 are higher in bronchial epithelial cells isolated from asthmatics than healthy

controls, and phosphorylated ERK is greater in T cells isolated from asthmatics both at baseline and in

response to anti-CD3 antibodies [162,163]. A study in 2008 isolated nasal epithelial cells from healthy

individuals and patients with house dust mite allergy, a common allergy associated with asthma.

They performed a microarray to determine any gene expression changes in response to stimulation

with house dust mite. In non-allergic controls, DUSP1 mRNA expression was upregulated in response

to house dust mite challenge; however, in allergic patients, DUSP1 expression did not alter [164].

Altered expression and activation of p38 and DUSP1 has also been observed in sarcoidosis. Sarcoidosis

is a systemic inflammatory disorder, often characterized by granulomas within the lung. Rastogi et al.

isolated and cultured leukocytes from the BAL of controls and sarcoidosis patients [165]. Activation

levels of p38 and inflammatory cytokine production were higher in cells isolated from patients, both

at baseline and after PRR stimulation. This coincided with much lower DUSP1 protein expression in

controls than sarcoidosis patients [165]. These findings suggest impaired DUSP1 upregulation as a

reason for enhanced inflammatory responses in asthma and sarcoidosis.

Cigarette smoke exposure can lead to the development of asthma and is the most common cause

of COPD [166]. This is partially through the induction of inflammatory responses in the lung, with

higher levels of inflammatory cytokines detected in the lungs of smokers [167]. Higher levels of p38

activation have also been detected in smokers’ lungs [168], and treatment of BEAS-2B cells with p38
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inhibitors reduced the release of cytokines in response to cigarette smoke [169]. DUSP1 may also have

a role in this process, as ferrets exposed to cigarette smoke for six months had reduced levels of DUSP1

protein in lung tissue, although the functional effects of this have yet to be examined [170].

DUSP10 may also be differentially expressed in asthmatic patients. A transcriptional profile

of Th2 cells taken from asthmatic and healthy subjects showed lower baseline mRNA expression

of DUSP10 in the asthmatic Th2 cells than the healthy cells [171]. Intriguingly, a single nucleotide

polymorphism in the DUSP4 gene was identified in a genetic screen for variants associated with severe

asthma. However, this was not statistically significant, possibly due to the limited number of patients

in the study [172]. Studies examining the relationship of other DUSPs and asthma would be of interest

and are yet to be carried out.

6. Conclusions

The MAPK pathways have important roles in airway inflammation and are aberrantly activated

in several inflammatory airway diseases. This may in part be due to altered expression of DUSPs, with

lower baseline levels of DUSP10 and lower induction of DUSP1 expression upon allergen stimulation

or steroid treatment in asthmatics. DUSPs have central roles in regulating inflammation, therefore,

this aberrant expression could have important functions in the pathogenesis of lung inflammation.

Underlying airway disease also leads to greater susceptibility to lower respiratory tract infections,

due to impaired control of viral replication. The literature discussed here suggest a possible role for

DUSPs in controlling viral-induced exacerbations of airway disease, not only in terms of regulating

the MAPKs and their roles in viral life cycles, but also IFN production, T cell proliferation and Th2

skewing. Current treatments of airway inflammation are not always effective and cause significant side

effects. Therefore, the development of new, more specific, treatments is of extreme importance. MAPK

inhibitors have been investigated for therapeutic application with varying success [173]. An alternative

method of reducing inflammation would be via upregulation of DUSPs. Mechanisms by which

this may be achieved have been reviewed previously [174]. DUSPs represent potential targets for

novel anti-inflammatory treatments of airway disease and future work into their roles in the airway

is imperative.
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Abbreviations

AP-1 Activator protein 1

APC Antigen presenting cell

Arp Actin regulated protein

ASM Airway smooth muscle

ATP Adenosine triphosphate

BAL Bronchoalveolar lavage

BMDM Bone marrow derived macrophages

cAMP Cyclic adenosine monophosphate

CCL C-C motif chemokine ligand

CD Cluster of differentiation

COPD Chronic obstructive pulmonary disease

CXCL C-X-C motif chemokine ligand

dsRNA Double stranded ribonucleic acid

DUSP Dual specificity phosphatase

EGF Epidermal growth factor
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EGFR Epidermal growth factor receptor

ERK Extracellular signal regulated kinase

G-CSF Granulocyte colony stimulating factor

GM-CSF Granulocyte macrophage colony stimulating factor

GR Glucocorticoid receptor

GRO Growth related oncogene

Hsp Heat shock protein

hVHR3 Human vaccinia virus related phosphatase 3

IFN Interferon

IFNAR Interferon-α/β receptor

Ig Immunoglobulin

IKK IκB kinase

IL Interleukin

IRF Interferon regulatory factor

ISG Interferon stimulated gene

ISGF Interferon stimulated gene factor

JAK Janus kinase

JKAP JNK pathway associated phosphatase

JNK c-Jun N-terminal kinase

Lck Lymphocyte specific protein tyrosine kinase

LPS Lipopolysaccharide

MAPK Mitogen activated protein kinase

MAVS Mitochondrial antiviral signaling protein

MEK MAPK/ERK kinase

MKP MAPK phosphatase

MUC Mucin

MyD88 Myeloid differentiation primary response gene

NF-κB Nuclear factor of κ-light-chain-enhancer of activated B cells

NFATc Nuclear factor of activated T cells

PKC Protein kinase C

Poly(I:C) Polyinosinic:polycytidylic acid

PRR Pattern recognition receptor

RhoA Ras homolog gene family member A

RLR Retinoic acid inducible gene-like receptor

RSV Respiratory syncytial virus

siRNA Small interfering RNA

ssRNA Single stranded RNA

STAT Signal transducer and activator of transcription

Syk Spleen tyrosine kinase

TAB Transforming growth factor β-activated kinase 1-binding protein

TAK Transforming growth factor β-activated kinase

TCR T cell receptor

Th T helper

TLR Toll like receptor

TNF Tumor necrosis factor

Treg T regulatory

TRIF TIR-domain containing adaptor-inducing interferon-β

TSLP Thymic stromal lymphoprotein

Tyk Tyrosine kinase

vRNP Viral ribonucleoprotein

ZAP Zeta-chain associated protein kinase
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