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Abstract 

DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, 

enhancer and transcription factor binding sites. Many studies have revealed that disease-

associated variants were concentrated in DHS related regions. However, limited studies are 

available on the roles of DHS-related variants in lung cancer. In the current study, we performed 

a large-scale case-control study with 20,871 lung cancer cases and 15,971 controls to evaluate 

the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The 

eQTL (expression quantitative trait loci) analysis and pathway enrichment analysis were 

performed to identify the possible target genes and pathways. Additionally, we performed 

motif-based analysis to explore the lung cancer related motifs using sequence kernel association 

test (SKAT). Two novel variants, rs186332 in 20q13.3 (C>T, OR = 1.17, 95% CI: 1.10-1.24, P 

= 8.45×10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02×10-6) 

showed significant association with lung cancer risk. The eQTL analysis suggested that these 

two SNPs might regulate the expression of MRGBP and SLC16A1 respectively. What’s more, 

the expression of both MRGBP and SLC16A1 were aberrantly elevated in lung tumor tissues. 

The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71×10-4). 

Our findings suggested that variants in DHS might modify lung cancer susceptibility through 

regulating the expression of surrounding genes. This study provided us a deeper insight into the 

roles of DHS related genetic variants for lung cancer. 
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Introduction 

Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-

related death worldwide. It was estimated that there were about 1.8 million new cases (12.9% 

of the total cancer cases) and 1.6 million deaths (19.4% of the total cancer deaths) worldwide 

in 2012 (1). In European and North American regions, lung cancer was the third diagnosed 

cancer but the leading cause of cancer-related death based on GLOBOCAN 2012. Numerous 

studies have shown that both environmental and genetic risk factors contributed to the process 

of carcinogenesis (2). 

Since the first genome-wide association study (GWAS) of lung cancer was performed 

about ten years ago, 45 lung cancer susceptibility loci have been identified (3-5). Most of these 

loci are located in non-coding regions, suggesting that genetic variants in non-coding regions 

may play vital roles in the development and progress of lung cancer. DNase I–hypersensitive 

sites (DHS), which are important components in the non-coding regions, are abundant in 

regulatory elements, including promoter, enhancer and transcription factor binding sites (6-8). 

Previous studies have highlighted that common variants associated with diverse human diseases 

and phenotypic traits were concentrated in regulatory DNA marked by DHS (9-11). What’s 

more, portion of the genetic variants in DHS could modify the affinity of DNA transcription 

factor binding and regulate the expression of target genes (11). Moreover, several studies 

indicated that trait-associated single nucleotide polymorphisms (SNPs) were more likely to be 

expression quantitative trait loci (eQTL) (12-14). All these findings suggested that variants 

(especially the regulatory variants) in DHS played vital roles in disease susceptibility. However, 

limited studies are available that evaluated the associations between variants of DHS and lung 

cancer susceptibility. 

Recently, Maurano MT et al. identified 483,415 single nucleotide variants (SNVs) that 



7 

 

were likely to affect transcription occupancy by using DNase-seq data from 166 individuals and 

114 cell types (15). These findings provided us an unprecedented opportunity to systematically 

estimate the associations between regulatory variants in DHS and lung cancer risk. Highlighting 

these bases, we hypothesized that regulatory variants in DHS could contribute to lung cancer 

risk by regulating gene expression through disturbing the binding of specific transcription 

factors.  

A large-scale case-control study was performed with a total of 20,871 lung cancer cases 

and 15,971 controls. Regulatory variants in DHS were systematically screened and the 

associations between genetic variants and lung cancer risk were further evaluated using logistic 

regression analysis. Furthermore, we conducted eQTL analysis to explore the potential target 

genes and underlying biological mechanisms beyond the associations between our identified 

variants and lung cancer risk. Our study will provide a deeper insight into the roles of DHS 

related genetic variants in lung cancer. 

 

Materials and Methods 

Study subjects 

 This study was performed based on two European-descent datasets: OncoArray dataset 

(16) (for screening stage) and DCEG Lung Cancer Study (17) (for validation stage). The 

OncoArray dataset was applied from the dbGap (phs001273.v1.p1), 43,398 subjects with 

imputed genotype information were included (16). Samples satisfied any of the following 

criteria were removed: (1) Call rate < 95%; (2) Shared Identity By Descent (IBD) > 0.45; (3) 

Gender inconsistency. As a result, 18,444 cases and 14,027 controls were retained in the 

screening stage. For the samples of the validation stage, the data of DCEG Lung Cancer Study 

was downloaded from dbGap (phs000336.v1.p1), which initially included 3,782 cases and 
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3,840 controls, consisting of three cohort studies: the Alpha-Tocopherol, BetaCarotene Cancer 

Prevention Study (ATBC), the Prostate, Lung, Colon, Ovary Screening Trial (PLCO) and the 

Cancer Prevention Study II Nutrition Cohort (CPS-II). We further eliminated the overlapping 

individuals between the OncoArray dataset and DCEG Lung Cancer Study (IBD >= 0.45). As 

shown in Figure S1, the same QC process was applied for the imputation data of the DCEG 

Lung Cancer Study, resulting in 2,427 cases and 1,944 controls. In total, 20,871 cases and 

15,971 controls were available for joint analyses. All participants in this study signed an 

informed consent form which was approved by the local internal review boards or ethics 

committees. 

Genotype quality control and screening for the regulatory variants 

According to the database released by Maurano et al., 483,415 SNVs in DHS could 

influence the binding of transcript factors (15). A stringent quality control process was applied 

to these variants. Imputed SNPs that satisfied any of the following criteria were excluded: (1) 

poor quality: INFO < 0.8, genotype call rate < 95%, MAF (Minor Allele Frequencies) in 

controls < 0.005, HWE (Hardy-Weinberg Equilibrium) in cases < 1×10-12 or HWE in controls 

< 1×10-7; (2) SNPs located at MHC region from 29 to 34 Mb on chromosome 6 (NCBI Build 

37); (3) Non-regulatory variants: SNPs with CATO (contextual analysis of transcription factor 

occupancy) value < 0.1; (4) Non-eSNPs: variants with no significant eQTL signals (P ≤ 0.05, 

based on GTEx v6p database in 278 lung tissues). As a result, 44,619 regulatory SNPs in DHS 

were remained for the association analysis. The flowchart and QC process of this study were 

described in Figure S1.  

eQTL and pathway enrichment analysis 

For revealing the regulatory relationships between our identified SNPs and the expression 

of surrounding genes, we performed eQTL analysis based on GTEx V6p database (including 
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278 normal lung tissues). Furthermore, for these regulated eQTL-genes and host genes of our 

identified SNPs, we analyzed their expression levels in 107 paired lung tumor-normal tissues 

using the TCGA database. To explore the functions and pathways that eQTL-genes and host 

genes enriched, we conducted pathway enrichment analysis based on GTEx database and 

DAVID Bioinformatics Resources 6.8 website (18). 

Motif-based analysis 

In this study, we not only examined the separate effects of single genetic variant, but also 

aimed to identify lung cancer related motifs through evaluating the overall effects of all the 

SNPs in each respective motif. The sequence kernel association test (SKAT) package was used 

to calculate the joint effects of genetic variants located in the same motif (19,20). SKAT is a 

powerful approach to identify phenotype-related regions (for example, genes and other moving 

windows across the genome) by combining the effects of both common and rare variants in the 

same region. This method has been widely applied in previous studies and multiple novel trait-

related genes were successfully identified, including novel oncogenes in lung cancer (21-23). 

In our study, all of the 44,619 SNPs were annotated into 308 motifs (only motifs containing 

more than four SNPs were reserved). Age, gender and principal components were adjusted. We 

used Bonferroni correction to correct for multiple comparisons. 

Statistical analysis 

The associations between genetic variants and lung cancer risk were estimated by odds 

ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression analysis. Age, 

gender and principal components were taking as adjustments. In OncoArray dataset, the 

principal component analysis (PCA) was performed using FlashPCA and the first three 

eigenvalues were adjusted as covariates (16). In DCEG dataset, Plink 1.9 was used to calculate 

the principal components and the first principal component was included into the regression 
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model. For continuous variables, student’s t-test (equal-variance assumed) was adopted to 

compare the difference between cases and controls, while Fisher’s exact test was used for the 

categorical variables. Gene differential expression analysis was performed using paired 

student’s t-test based on TCGA database. The Pearson’s Correlation model was applied to carry 

out gene co-expression analysis. We used meta-analysis to combine the overall effects between 

the OncoArray dataset and the DCEG Lung Cancer Study. For variants with P value of 

heterogeneity test ≥ 0.05, the fixed-effects model was adopted; otherwise, the random-effects 

model was applied.  

Association analyses were conducted using the SNPTEST (v2.5.4) package and the other 

analyses were performed using R software (version 3.3.3). The Bonferroni correction was used 

to account for multiple comparisons. 

 

Results 

Basic information of study participants 

The demographic characteristics and clinical information of participants in each dataset 

were summarized in Table S1. Briefly, a total of 20,871 cases and 15,971 controls were 

included in this study. Among these cases, there were 4,490 lung squamous cell carcinoma 

(SCC) cases and 6,819 lung adenocarcinoma (AD) cases. The mean age for these cases was 

63.79 years old, and 61.77 years for controls. 

Association between regulatory genetic variants and lung cancer risk 

In total, 44,619 regulatory genetic variants in DHS were analyzed using a logistic 

regression model. Among them, 3,069 SNPs were significantly (P ≤ 0.05) associated with lung 

cancer risk in the screening stage. Further, 157 of 3,069 SNPs were validated in the DCEG 

Lung Cancer Study. These 157 SNPs that showed significant association with the susceptibility 
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of lung cancer in two stages were remained for meta-analysis. As a consequence, 8 SNPs 

showed statistically significant association with lung cancer susceptibility after taking multiple 

comparison tests (Bonferroni correction, the cutoff is 0.05/44,619 = 1.12×10-6). The Manhattan 

plot (44,619 variants, result from meta-analysis) was shown in Figure 1. Table 1 showed the 

detailed association between our identified 8 significant SNPs and lung cancer susceptibility. 

Two novel independent lung cancer susceptibility variants were identified 

Five of eight significant SNPs were located in 15q25.1 and showed low or medium LD 

with rs55781567 and rs4886591 (Table S2), which have been reported in previous GWAS (16). 

Rs12459249 in 19q13.2 was in medium LD with previously reported rs56113850 (r2 = 0.54) 

(24). Conditional analysis was further performed to evaluate the independence of our identified 

SNPs. As shown in Table 2, five SNPs in 15q25.1 were not significantly associated with lung 

cancer risk after conditioning on rs55781567 and rs4886591 in OncoArray dataset. Similarly, 

when conditioning on rs56113850, association between rs12459249 and lung cancer 

susceptibility was not significant any more. The same result was observed in DCEG Lung 

Cancer Study. These results suggested that five SNPs in 15q25.1 and rs12459249 in 19q13.2 

were not novel lung cancer susceptibility loci. Rs186332 in 20q13.33 showed no LD with 

rs41309931 (r2 = 0.015, European population, 1000 genomes database), which has been 

reported by McKay JD et al., suggesting that rs186332 was a novel lung cancer risk variant in 

this region (16). The 1p13.2 locus has not been reported in previous study. Therefore, rs186332 

in 20q13.33 (C>T, OR = 1.17, 95%CI: 1.10-1.24, P = 8.45×10-7) and rs4839323 in 1p13.2 (T>C, 

OR = 0.92, 95%CI: 0.89-0.95, P = 1.02×10-6) were novel lung cancer susceptibility variants. 

Subgroup analysis 

We performed subgroup analysis based on the histologic types of lung cancer: AD and 

SCC. The same QC process as described above was applied in the subgroup analysis. In the 
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SCC subgroup population, we did not observe any novel significant loci that satisfied multiple 

comparison. Notably, in the AD subgroup (6,819 cases & 14,027 controls), four variants 

showed significant association with the susceptibility of lung adenocarcinoma (rs77468143 in 

15q21.1, T>G, OR = 0.86, 95% CI: 0.82-0.91, P = 3.07×10-9; rs55779747 in 3q28, A>C, OR 

= 0.87, 95% CI: 0.84-0.91, P = 4.18×10-9; rs2282245 in 9p21.3, C>T, OR = 1.24, 95% CI: 

1.16-1.32, P = 6.33×10-9; rs4886592 in 15q25.1, T>C, OR = 1.11, 95% CI: 1.07-1.16, P = 

1.41×10-7, Table S3). However, all of them have been reported (or showed high LD with 

previously reported variants) in previous studies (16,25). The detailed association results in 

subgroup populations were shown in Table S3. 

eQTL analysis 

In the interests of exploring the associations between identified significant variants and 

the expression of their surrounding genes (±1Mb), we conducted eQTL analysis based on 

GTEx database. As shown in Figure S2 and Figure 2, the T allele of rs186332 showed a 

significant association with increased expression of MRGBP (β = 0.279, P = 0.006). Notably, 

the expression of MRGBP in 107 lung tumor tissues was significantly higher than that in paired 

adjacent tissues (Table S4, upregulated in all samples, P = 2.64×10-42). Besides, the T allele of 

rs186332 was significantly associated with the downregulated expression of SRMS (β = -0.478, 

P = 0.006) and C20orf195 (β = -0.212, P = 0.035). SRMS was significantly elevated in lung 

tumor tissues (P = 1.45×10-10), while the expression of C20orf195 in tumor tissues was 

downregulated (P = 2.93×10-5, Figure S3). For rs4839323, we found that C allele was 

associated with increased expression of SLC16A1 (β = 0.09, P = 0.033, Figure 2 & FigureS2), 

a significant upregulated gene in lung tumor tissues (upregulated in 76.64% of samples, P = 

1.25×10-13, Figure 2).  

Pathway enrichment analysis 
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To explore the possible biological functions and potential pathways that eQTL-genes and 

host genes enriched, we conducted pathway enrichment analysis based on GTEx database and 

DAVID Bioinformatics Resources 6.8. As shown in Table S5 and Figure 3, MAGI3 and PTK6 

related genes were abundant in metabolic related pathways, such as Metabolic pathways, 

Propanoate metabolism, Carbon metabolism and so on. Co-expression genes with MRGBP 

were mainly enriched in signaling transduction related pathways, such as Ras signaling pathway 

(Fold enrichment = 2.0, P = 3.50×10-6), MAPK signaling pathway (Fold enrichment = 1.7, P = 

1.10×10-3), Notch signaling pathways (Fold enrichment = 2.6, P = 4.40×10-2), and so on. All of 

these pathways played important roles in carcinogenesis process (26,27). Co-expression genes 

with SLC16A1 were enriched in protein biogenesis or protein processing related pathways, for 

example, Protein processing in endoplasmic reticulum (Fold enrichment = 2.0, P = 5.50×10-9), 

Ribosome biogenesis in eukaryotes (Fold enrichment = 1.9, P = 1.80×10-6), Valine, leucine and 

isoleucine degradation (Fold enrichment = 2.4, P = 5.10×10-3). All these pathways participated 

in the biogenesis and processing of proteins, aberrant changes in these pathways might 

influence the normal functions of specific proteins. 

Motif-based analysis 

To investigate the overall effects of motifs on lung cancer risk, we mapped genetic variants 

to the corresponding motifs and performed motif-based SKAT analysis. In total, there were 292 

motifs with more than four genetic variants. As shown in Table 3, 10 motifs showed significant 

association with lung cancer risk at the Bonferroni significance level of P < 1.71×10-4 

(0.05/292). Among them, motif JDP2_bZIP_1 was the most significant one (P = 2.77×10-7) 

and 397 variants (305 common variants and 92 rare variants) were contained. This motif was 

the specific binding sites of transcription factor JDP2, which was the member of the activator 

protein-1 (AP-1) family. For the other motifs, all of them were the binding sites of specific TFs, 
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such as RUNX2, BACH1, CEBPB, and so on. Our findings suggested that 10 significant motifs 

and their corresponding TFs might play important roles in the carcinogenesis of lung cancer. 

Discussion 

DHS region contains various regulatory elements and genetic variants in DHS may 

regulate the expression of surrounding genes. Therefore, genetic variants in this region could 

play important roles in the development of cancer. For lung cancer, many variants reported by 

GWAS were located in DHS, such as rs2736100 (5p15.33), rs77468143 (15q21.1), rs55781567 

(15q25.1) and so on (28). In the current study, we comprehensively evaluated the relationships 

between regulatory variants in DHS and lung cancer risk using 20,871 lung cancer cases and 

15,971 controls from Caucasian population. We successfully identified two novel lung cancer 

risk loci: rs186332 in 20q13.3 and rs4839323 in 1p13.2. 

SNP rs186332 was located in 20q13.33 and contained in the binding site of transcription 

factor CEBPB. The CATO score of rs18332 was 0.149, suggesting that this variant could disturb 

the binding of CEBPB. The same result was observed in JASPAR 2018 database (Figure S4) 

(29). Genotypes of this variant showed significant association with the expression of MRGBP, 

SRMS and C20orf195. The SRMS gene encodes a non-receptor tyrosine kinase and participates 

in the cell differentiation (30). To date, studies about the functions and roles of SRMS and 

C20orf195 in the tumorigenesis were limited. The MRGBP (also known as C20orf20) was the 

component of NuA4 histone acetyltransferase complex and participated in the transcriptional 

activation of target genes (31). Several studies indicated that MRGBP was significantly 

upregulated in colorectal cancer tissues and knockdown MRGBP could inhibit proliferation of 

colorectal cancer cells (32,33). SA Watt and colleagues found that MRGBP was  

overexpressed in cutaneous squamous cell carcinoma cells and knockdown of MRGBP resulted 

in reduced tumor cell viability (34). Furthermore, they revealed that MRGBP siRNA 
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knockdown could reduce tumor growth in vivo, suggesting that MRGBP could be the potential 

therapeutic targets for cutaneous squamous cell carcinoma. In addition, upregulated expression 

of MRGBP was also observed in pancreatic ductal adenocarcinoma, prostate cancer and 

cervical cancer cells (35-37). All these studies suggested that MRGBP functioned as an 

oncogene that could promote the tumorigenesis. Consistent with previous studies, we found 

that MRGBP was elevated in all 107 lung tumor tissues, suggesting that MRGBP could play 

similar role in the progression of lung tumorigenesis. Pathway enrichment analysis indicated 

that co-expression genes with MRGBP were significantly enriched in signaling transduction 

related pathways, such as Ras signaling pathway, MAPK signaling pathway and Notch 

signaling pathway. The risk T allele of rs186332 was significantly associated with upregulated 

expression of MRGBP, suggesting that rs186332 might regulate the expression of MRGBP. 

Highlighting these evidences, we speculated that rs186332 could modify lung cancer risk 

through regulating the expression of MRGBP by influencing the binding of TF CEBPB. 

SNP rs4839323 was located in 1p13.2 and in the first intron of MAGI3, which encodes the 

membrane associated guanylate kinase (38). The C allele of rs4839323 was not associated with 

the expression of MAGI3, but showed significant association with increased expression of 

SLC16A1. The SLC16A1 was a member of solute carrier family 16 and encoded a 

monocarboxylate transporter (MCT1) that mediated the transport of lactate and pyruvate (39). 

In addition, SLC16A1 participated in a variety of biological processes, including energy 

metabolism, activation of T lymphocytes, spermatogenesis, drug metabolism and so on (39). 

Many studies have revealed that MCT1 could influence the sensitivity of tumor cells for 

antitumor drugs, suggesting that the expression of MCT1 could influence the prognosis of 

patients with cancers (40,41). However, limited studies were available about the roles that 

SLC16A1 played in the development of malignant tumors. Fang J et al. found that SLC16A1 
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was upregulated in neuroblastoma and could be a potential therapeutic target for high-risk 

neuroblastoma (42). Li KK and colleagues revealed that SLC16A1 was significantly elevated 

in medulloblastoma and knockdown of SLC16A1 by siRNA induced cell death in 

medulloblastoma cells (43). In lung cancer, upregulated SLC16A1 expression was observed and 

increased expression of SLC16A1 was associated with poorer prognosis of patients with lung 

adenocarcinoma (44). In the present study, we further found that SLC16A1 was significantly 

elevated in lung tumor tissues. Based on these findings, rs4839323 might influence lung cancer 

susceptibility through regulating the expression of SLC16A1.  

Apart from this, our motif-based SKAT analysis discovered ten motifs significantly 

associated with lung cancer risk. Of these motifs, JDP2 belonged to the component of AP-1 

transcription factor and involved in a variety of transcriptional responses, such as UV-induced 

apoptosis, cell differentiation and tumorigenesis. Previous studies have suggested that JDP2 

could act as a tumor suppressor (45-47). However, the function and role of JDP2 in lung cancer 

was still unclear and more studies are warranted. For the other motifs, their corresponding 

transcription factors, such as CEBPB, RUNX2 and BACH1 played important roles in the 

development of tumorigenesis (48-50). More functional studies are needed to reveal their roles 

in lung cancer. 

Besides our findings, there are several limitations need to be considered. First, this analysis 

was performed based on the annotation results from multiple tissues and cells because of the 

limited number of regulatory variants in DHS in A549 cell. Second, for our identified novel 

variants, we speculated their potential target genes and possible mechanisms just relying on the 

bioinformatic analysis. Functional assays are warranted to validate our findings. 

In conclusion, we systematically screened the regulatory variants in DHS, and two variants 

were identified associated with lung cancer risk. For the mechanism underlying these 
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observations, we speculated that these SNPs could modify lung cancer susceptibility by 

regulating related genes expression. These findings contribute to a better understanding of the 

importance of genetic variants in DHS and their potential mechanisms. 
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Figure Legends 

 

Figure 1. The manhattan plot of associations between regulatory variants in DHS and 

lung cancer risk.  

The black solid line represented the P value of 1.12×10-6; five SNPs were located in 15q25.1, 

the other three SNPs were located in 1p13.2 (rs4839323), 19q13.2 (rs12459249) and 20q13.33 

(rs186332). 
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Figure 2. Relationships between genotypes of our identified SNPs and the expression of 

surrounding genes and differential expression of these genes.  

(A) Rs186332 was significantly associated with the expression of MRGBP based on GTEx v6p 

database (278 normal lung tissues); (B) The MRGBP was elevated in all 107 tumor tissues 

compared with adjacent lung tissues based on TCGA database; (C) Rs4839323 showed 

significant association with SLC16A1 expression based on GTEx v6p database; (D) The 

SLC16A1 was significantly upregulated in lung tumor tissues based on TCGA database. 
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Figure 3. Results of KEGG pathway enrichment analysis.  

(A) Co-expression genes with PTK6 were mainly enriched in metabolic related pathways (The 

number in the right of bar chart represented the fold enrichment in each pathway); (B) Co-

expression genes with MRGBP were mainly enriched in signaling transduction related 

pathways; (C) Co-expression genes with MAGI3 were mainly enriched in metabolic and 

biosynthesis of proteins related pathways; (D) Co-expression genes with SLC16A1 were mainly 

enriched in pathways of biosynthesis and process of proteins; Co-expression genes with SRMS 

were enriched in metabolic pathways. 
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Table 1. Associations between our identified 8 significant SNPs in DHS and lung cancer susceptibility. 

Characteristics  OncoArray  DCEG GWAS  Meta 

Cytoband SNP Gene CATO a E/R b  OR(95%CI) c P  OR(95%CI) d P  OR(95%CI) e P_fixed 

15q25.1 rs4886592 

CHRNA5-

CHRNA3-

CHRNB4 

0.383 C/T  1.13(1.09-1.16) 2.92×10-13  1.15(1.05-1.25) 2.54×10-3  1.13(1.09-1.16) 3.04×10-15 

15q25.1 rs4886982 

CHRNA5-

CHRNA3-

CHRNB4 

0.106 G/A  1.11(1.07-1.14) 9.12×10-9  1.10(1.00-1.21) 3.97×10-2  1.11(1.07-1.14) 1.04×10-9 

15q25.1 rs7182694 

CHRNA5-

CHRNA3-

CHRNB4 

0.186 T/C  1.11(1.07-1.15) 2.13×10-8  1.10(1.00-1.21) 4.30×10-2  1.11(1.07-1.15) 2.63×10-9 

15q25.1 rs76412132 

CHRNA5-

CHRNA3-

CHRNB4 

0.183 T/C  1.11(1.07-1.15) 8.12×10-8  1.11(1.01-1.22) 2.45×10-2  1.11(1.07-1.14) 6.03×10-9 

15q25.1 rs76681511 

CHRNA5-

CHRNA3-

CHRNB4 

0.166 T/C  1.11(1.07-1.15) 8.12×10-8  1.11(1.01-1.22) 2.45×10-2  1.11(1.07-1.14) 6.03×10-9 

19q13.2 rs12459249 CYP2A6 0.168 C/T  1.10(1.06-1.13) 1.14×10-7  1.17(1.07-1.28) 9.58×10-4  1.11(1.07-1.14) 9.44×10-10 

20q13.33 rs186332 PTK6 0.149 T/C  1.15(1.08-1.22) 7.96×10-6  1.24(1.02-1.52) 2.96×10-2  1.17(1.10-1.24) 8.45×10-7 

1p13.2 rs4839323 MAGI3 0.164 C/T  0.92(0.89-0.96) 1.23×10-5  0.90(0.81-0.99) 2.48×10-2  0.92(0.89-0.95) 1.02×10-6 

a The CATO (contextual analysis of transcription factor occupancy) score, SNPs with CATO ≥0.1 have higher possibility to influence the bindings of transcription factors; 
b E/R: Effect allele and reference allele; c Age, gender, PCA1, PCA2 and PCA3 were adjusted in OncoArray data; 
d Age, gender and PCA were adjusted in DCEG GWAS; e Meta-analysis (the fixed effect model) was used to combine the results between these two datasets. 
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Table 2. Associations between 6 significant SNPs and lung cancer risk after conditioning on the GWAS reported variants in 15q25.1 and 19q13.2. 

Dataset SNP Cytoband E/R c 
Condition on rs55781567 d  Condition on rs4886591 d  Condition on rs56113850 e 

OR(95%CI) P  OR(95%CI) P  OR(95%CI) P 

OncoArray a 

rs4886592 15q25.1 C/T 1.00(0.97-1.04) 0.856  0.93(0.86-1.01) 0.095   / / 

rs4886982 15q25.1 G/A 0.98(0.94-1.02) 0.352  1.01(0.96-1.05) 0.803   / / 

rs7182694 15q25.1 T/C 1.05(1.01-1.09) 0.008  1.03(0.99-1.08) 0.124   / / 

rs76412132 15q25.1 T/C 1.05(1.01-1.09) 0.007  1.04(0.99-1.08) 0.100   / / 

rs76681511 15q25.1 T/C 1.05(1.01-1.09) 0.007  1.04(0.99-1.08) 0.100   / / 

rs12459249 19q13.2 C/T / /  / /  0.99(0.93-1.05) 0.661  

DCEG b 

rs4886592 15q25.1 C/T 1.01(0.91-1.12) 0.840   1.02(0.85-1.21) 0.853   / / 

rs4886982 15q25.1 G/A 0.97(0.88-1.08) 0.633   1.01(0.91-1.13) 0.814   / / 

rs7182694 15q25.1 T/C 1.05(0.95-1.15) 0.319   1.03(0.93-1.15) 0.527   / / 

rs76412132 15q25.1 T/C 1.06(0.96-1.17) 0.221   1.05(0.95-1.16) 0.367   / / 

rs76681511 15q25.1 T/C 1.06(0.96-1.17) 0.221   1.05(0.95-1.16) 0.367   / / 

rs12459249 19q13.2 C/T / /  / /  1.00(0.88-1.13) 0.968  

a Age, gender, PCA1, PCA2 and PCA3 were adjusted in OncoArray data; 
b Age, gender and PCA were adjusted in DCEG GWAS; 
c E/R: Effect alleles and reference alleles; 
d Rs55781567 and rs4886591 in 15q25.1 were reported in previous study (PMID: 28604730); 
e Rs56113850 in 19q13.2 was reported in previous study (PMID: 28604730 and 27488534). 
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Table 3. Associations between 10 significant motifs and lung cancer risk using motif-based SKAT analysis. 

Motif N_All a N_Test b N_Rare c N_Common d P P_Bonferroni e 

JDP2_bZIP_1 397 397 92 305 2.55×10-7 7.44×10-5 

RUNX2_RUNX_3 359 359 67 292 4.88×10-6 1.42×10-3 

V_BACH1_01 475 475 78 397 3.00×10-5 8.77×10-3 

V_AML1_Q4 507 507 98 409 3.20×10-5 9.33×10-3 

CEBPB_bZIP_1 1362 1362 243 1119 3.75×10-5 1.10×10-2 

NFIX_NFI_4 737 737 151 586 5.42×10-5 1.58×10-2 

V_NRF2_Q4 264 264 52 212 8.06×10-5 2.35×10-2 

V_E2A_Q6 170 170 31 139 1.32×10-4 3.86×10-2 

CREB5_bZIP_1 994 994 184 810 1.41×10-4 4.13×10-2 

MA0136.1-ELF5 376 376 70 306 1.52×10-4 4.45×10-2 

a Total number of SNPs located in each motif; 
b Total number of SNPs included in the test; 
c Total number of rare genetic variants (MAF<0.05) contained in the test; 
d Total number of common SNPs contained in the test; 
e The P value after taking Bonferroni correction (292 motifs). 

 


