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Nonlinear PI controller for systems with state constraint requirements

George C. Konstantopoulos and Pablo R. Baldivieso-Monasterios

Abstract— PI control is widely applied in industrial appli-
cations to guarantee a desired regulation for both linear and
nonlinear systems. However, when a state constraint require-
ment is needed for the plant, conventional PI controllers fail
to guarantee a desired upper bound for the system states of
a generic nonlinear plant at all times. In this paper, a novel
nonlinear PI controller is proposed to achieve regulation with
state constraint satisfaction for a class of nonlinear systems
with constant disturbances. An upper bound for the desired
closed-loop system states is guaranteed based on nonlinear
ultimate boundedness theory and closed-loop stability is an-
alytically proven for the desired equilibrium point. In addition,
a detailed analysis is presented for the appropriate design of the
proportional and integral gains of the proposed controller. A
practical example of a dc/dc power converter is investigated and
simulation results demonstrate the effectiveness of the proposed
nonlinear PI control compared to the conventional approach.

I. INTRODUCTION

Integral control has been widely used in industry for the

past 40 years because of its properties of asymptotic regu-

lation and disturbance rejection. The problem of controlling

linear dynamics with a PI controller is now well understood,

but its application to nonlinear systems in order to guarantee

the desired regulation and closed-loop system stability still

remains a challenge [1], [2], [3], [4]. The existing methods

leverage on the properties of the system, i.e. minimum phase,

to guarantee either local or global stability [5], [6], [7]. In

[8], the authors have proposed a robust nonlinear integral

controller, based on high gain observers, capable of stabi-

lizing non-minimum phase dynamics with a desired output

regulation. Whereas in [9], the output feedback controller

tracks references generated from an external source without

using an internal model. The authors bring attention to

the closed-loop performance deterioration when including

an internal model in the controller structure. However, this

problem can be circumvented by using a high-gain feedback

controller and observer, as presented in [10] and [11].

While the aforementioned approaches offer global or semi-

global stability guarantees, they do not tackle the problem

of constraint satisfaction (input or state constraints) which

arises from safety requirements and actuator limitations in

a real engineering system. Safety of operation and stability

guarantees are essential in modern processes such as power

networks and chemical processes. In the former, [12] and

[13] list some of the potential pitfalls of not considering the

power converter limits into the control strategy, i.e. loss of
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stability, performance degradation, and operation outside the

desired ranges because of system malfunctions. For example

consider the one dimensional system ẋ = −wx3 + u, where

w is a constant unknown disturbance defined in the range

w ∈ [wmin, wmax] > 0. The objective is to regulate the state

x towards a desired constant reference r while satisfying

the state constraint |x| ≤ xmax, ∀t ≥ 0. In general, the

conventional PI controller of the form u = kP (r − x) + σ,

σ̇ = kI(r − x), can achieve the desired regulation but

does not offer any guarantees when it comes to constraint

satisfaction. It can easily be shown that the solution may

exhibit overshoots violating constraints. Therefore, an effec-

tive management of constraints may increase the operation

ranges in both the transient and the steady-state regimes.

Although the output regulation problem with input con-

straint satisfaction has been well studied and addressed via

anti-windup methods [14], [15] or bounded integral control

[16], [17], a state constraint requirement often requires more

advanced control methods that change the traditional PI

control architecture. For example, techniques such as Model

Predictive Control (MPC), see [18] for an excellent survey

on its different properties, include the constraints into their

formulation and aim to exploit the behavior of the system

around the constraints. These methods, however, present

limitations in their implementation because they require the

solution of an optimization problem online. The authors

in [19] propose an MPC controller for linear systems that

operates at megahertz; however, this approach is aimed at

linear system and quadratic performance objectives which

is at odds with nonlinear formulations of the problem.

Hence, the output regulation problem with state constraint

satisfaction for nonlinear systems using PI control, which is

a well known and applied controller in the industry, is still

an open problem.

To address this issue, in this paper, a nonlinear PI con-

troller is proposed for a class of nonlinear systems with

constant uncertainties or disturbances to achieve output

regulation with a desired state constraint satisfaction. The

desired state constraint is guaranteed using nonlinear ultimate

boundedness theory. Furthermore, asymptotic stability is

analytically proven for the desired equilibrium point without

the required system states violating an upper limit during

transients, which is a significant advantage compared to

the conventional PI control. Furthermore, a detailed design

procedure for both the proportional and the integral gains is

presented to guarantee the closed-loop system stability.

Overall, the novelties and contributions of the paper are

summarized as follows:

1) The design of a novel nonlinear PI controller for a class



of nonlinear systems capable of guaranteeing a desired state

constraint on a number of the plant states.

2) Detailed stability analysis and design considerations for

the proposed controller, and comparison with the conven-

tional PI control scheme.

In Section II, we present the problem statement and

an analysis of the conventional PI controller for nonlinear

systems. Section III presents the proposed controller, its

corresponding stability analysis and synthesis considerations.

The controller is applied to a dc/dc converter application

in Section IV to highlight its importance in a practical

implementation. Finally, concluding remarks are provided in

Section V.

II. PROBLEM DESCRIPTION

A. Nonlinear plant dynamics and properties

Consider the nonlinear plant of the form:

ẋi = fi(xi, w) + gi(w)ui, ∀i = 1, 2, ..., n (1)

ż = q(x, z, u, w), (2)

yi = xi, ∀i = 1, 2, ..., n (3)

with x = [x1 ... xn]
T ∈ Rn, where x̄ =

[

xT zT
]T

∈
Rn+m, u = [u1 ... un]

T ∈ Rn and y = [y1 ... yn]
T ∈ Rn are

the state, input and output vectors, respectively, and w ∈ Rl

is a vector that contains unknown constant parameters or

disturbances. The functions f , g,and q are continuous and

differentiable in (x̄, u) and continuous in w for x̄ ∈ D ⊂
Rn+m, u ∈ Rn and w ∈ Dw ⊂ Rl, where D and Dw are

open connected sets.

The main goal is to design a controller that regulates y to

a constant reference r ∈ Dr ⊂ Rn, where r = [r1 ... rn]
T

and Dr is an open connected set, and guarantees a desired

state constraint for the states xi, ∀i = 1, 2, ..., n, of the form

|xi| ≤ xmax
i , ∀t ≥ 0, (4)

for some xmax
i > 0. It is underlined that the desired state

constraint requirement is applied only to the state vector

x. It is assumed that there exists a vector r such that for

each pair (r, w) there is a unique pair (x̄e, ue) that depends

continuously on (r, w) such that

0 = fi(xie, w) + gi(w)uie, ∀i = 1, 2, ..., n (5)

0 = q(xe, ze, ue, w) (6)

ri = xie, ∀i = 1, 2, ..., n, (7)

where xie satisfies |xie| < xmax
i , representing the desired

equilibrium point.

For system (1)-(3), consider the following assumptions:

Assumption 1: w ∈ [wmin, wmax], with wmin and wmax

being known

Assumption 2: gi(w) > 0, ∀i = 1, 2, ..., n

Assumption 3: For each i = 1, 2, ..., n, there exists a

continuously differentiable function Vi(xi, w) : Di×Dw →

R, four positive constants bi1, bi2, ci, δi with ci > δi > 0
and two class K functions ai1 and ai2 such that

ai1(|xi|) ≤ Vi(xi, w) ≤ ai2(|xi|) (8)

∂V

∂xi

fi(xi, w) ≤ −cix
2
i (9)

bi1xi ≤
∂V

∂xi

gi(w) ≤ bi2xi. (10)

Although the plant dynamics and above assumptions can

seem restrictive, it should be mentioned that: i) several

engineering applications are described by (1)-(3), e.g. power

electronic converters [14] and ii) a wide class of nonlin-

ear systems can be brought in the form of (1)-(3) using

partial feedback linearization. In such case, one can obtain

fi(xi, w) = Ai(w)xi, with Ai(w) ≤ 0, and by knowing the

upper/lower bounds of the uncertain parameter or disturbance

w (equivalently g(w)), then the function Vi =
1

2
pix

2
i , with

pi > 0, is proven to guarantee all conditions (8)-(10).

B. Conventional PI controller

Based on the previous conditions, the desired regulation

scenario can be achieved using a conventional PI controller

of the form

ui = kPi (ri − xi) + σi (11)

σ̇i = kIi (ri − xi) , (12)

where kPi, kIi > 0 and at the desired equilibrium point,
there is σie = uie. The closed-loop system takes the form

ẋi=fi(xi, w)+gi(w)kPi(ri−xi)+gi(w)σi, ∀i=1, 2, ..., n
(13)

σ̇i = kIi (ri − xi) , ∀i = 1, 2, ..., n (14)

ż = q(x, z, kP (r − x) + σ,w), (15)

where kP = diag {kPi}, σ = [σ1 ... σn]
T . For system (13)-

(14), stability of the equilibrium point
[

xT
e σT

e

]T
can be

analyzed by investigating the Jacobian matrices

Ai=

[

∂fi
∂xi

∣

∣

∣

xi=xie

− kPigi(w) gi(w)

−kIi 0

]

, ∀i=1,2,...,n

which can be proven to be Hurwitz for a suitable selection

of the proportional gain kPi, i.e.

kPi > max

{

0,
∂fi

∂xi

∣

∣

∣

∣

xi=xie

1

min {gi(w)}

}

. (16)

Now, by setting v = ve + ṽ, where v =
[

xT σT
]T

,

ve =
[

xT
e σT

e

]T
, ṽ =

[

x̃T σ̃T
]T

, and z = ze + z̃,

then (15) can be rewritten in the generic form

˙̃z = q̃(ṽ, z̃, w), (17)

where the desired equilibrium has been shifted to the origin.

When asymptotic stability at the equilibrium point ve of (13)-

(14) is guaranteed by the controller gains kPi, then if (17)

is locally input-to-state stable when ṽ is considered as the

input, according to Lemma 5.6 in [1], the equilibrium point



[

xT
e σT

e zTe
]T

of the closed-loop system (13)-(15) is

asymptotically stable.

Although the desired equilibrium point can be proven to

be asymptotically stable using a conventional PI controller,

it is not guaranteed that |xi| ≤ xmax
i , ∀t ≥ 0. This state

constraint is crucial in several practical examples, such as

power electronic converters and electromechanical systems

[14], [12] where a current, voltage or speed is required to

remain bounded below a given value at all times to avoid

damaging the device. To overcome this problem a nonlinear

PI controller is proposed in the sequel.

III. PROPOSED NONLINEAR PI CONTROLLER

A. Control design to satisfy the required state constraint

By considering the same assumptions for the plant (As-

sumptions 1, 2 and 3) and the same regulation task at the de-

sired constant r, which corresponds to a unique equilibrium

that satisfies (5)-(7) with |xie| < xmax
i , a novel nonlinear PI

controller is proposed of the form

ui = −kPixi +Mi sinσi (18)

σ̇i =
kIi

Mi

(ri − xi) cosσi, (19)

where Mi, kPi, kIi > 0 and at the desired equilibrium point,

there is σie = sin−1
(

uie+kPixie

Mi

)

. Here, it is assumed that

−π
2
< σie <

π
2

. By substituting the proposed controller (18)-

(19) into the plant dynamics (1)-(3), the closed-loop system

becomes

ẋi=fi(xi, w)−gi(w)kPixi+gi(w)Mi sinσi, ∀i=1,2,...,n

(20)

σ̇i =
kIi

Mi

(ri − xi) cosσi, ∀i = 1, 2, ..., n (21)

ż = q(x, z,−kPx+M sinσ,w), (22)

where M = diag {Mi} and sinσ = [sinσ1 ... sinσn]
T

.

Consider now a continuously differentiable function

Vi(xi, w) for system (20) satisfying conditions (8)-(10) of

Assumption 3. Then

V̇i =
∂V

∂xi

fi(xi, w)−
∂V

∂xi

g(w)kPixi +
∂V

∂xi

g(w)Mi sinσi

≤ −(ci + kPibi1)x
2
i + bi2xiMi sinσi

≤ −(ci + kPibi1) |xi|
2
+ bi2Mi |xi| . (23)

Considering that ci = c̄i + ǫi ≥ δi > 0, with c̄i > 0 and ǫi
representing an arbitrarily small positive constant, then (23)

can be rewritten as

V̇i = −(c̄i + ǫi +kPibi1) |xi|
2
+ bi2Mi |xi|

≤ −ǫi |xi|
2
, ∀ |xi| ≥

bi2Mi

c̄i + kPibi1
, (24)

which proves that the solution xi(t) is uniformly ultimately

bounded. Therefore every solution xi(t) that starts with

initial condition xi(0) satisfying

|xi(0)| ≤
bi2Mi

c̄i + kPibi1

will remain in this range for all future time, i.e.

|xi(t)| ≤
bi2Mi

c̄i + kPibi1
, ∀t ≥ 0.

In order to guarantee the required constraint |xi| ≤
xmax
i , ∀t ≥ 0, the controller parameters Mi and kPi can

be selected to satisfy

bi2Mi

c̄i + kPibi1
≤ xmax

i

Mi ≤ xmax
i

c̄i + kPibi1

bi2
. (25)

This concludes the design of the controller parameter Mi to

guarantee a desired upper bound for the system states xi.

B. Stability analysis

Although the state constraint is guaranteed, in order

to analyze the stability of the desired equilibrium point
[

xT
e σT

e

]T
, where xie ∈ (−xmax

i , xmax
i ), σie ∈

(

−π
2
, π
2

)

, ∀i = 1, 2, ...., n, the Jacobian matrix of system

(20)-(21) is calculated as

Ai=

[

∂fi
∂xi

∣

∣

∣

xi=xie

− kPigi(w) gi(w)Mi cosσie

−kIi

Mi

cosσie 0

]

, ∀i=1,2,...,n.

Thus, the equilibrium point
[

xT
e σT

e

]T
will be asymp-

totically stable when

kPi > max

{

0,
∂fi

∂xi

∣

∣

∣

∣

xi=xie

1

min {gi(w)}

}

, (26)

which matches the condition (16) of the conventional PI

control. Hence, by selecting kPi according to (26), then Mi

can be chosen to satisfy (25). For the remaining dynamics,

similarly to the analysis of the conventional PI controller,

(22) can be rewritten in the generic form

˙̃z = q̄(ṽ, z̃, w), (27)

with the desired equilibrium being shifted at the origin z̃ = 0.

As explained in Subsection II-B, if (27) is locally input-to-

state stable with respect to the input ṽ, according to Lemma

5.6 in [1], the equilibrium point
[

xT
e σT

e zTe
]T

of the

closed-loop system (20)-(22) is asymptotically stable.

It is highlighted that the asymptotic stability of the de-

sired equilibrium point
[

xT
e σT

e

]T
has been proven in

a neighborhood of the equilibrium point (as in the case

of the conventional PI control). In order to prove that the

asymptotic stability holds in the entire constrained range

xi ∈ [−xmax
i , xmax

i ], the nonlinear dynamics of (20)-(21)

should be further investigated. In particular, for each i, (20)-

(21) describe a second-order system. In order to guarantee

that the solution will converge to the unique equilibrium
[

xie σie

]

, it should be proven that no limit cycles exist

in the range xi ∈ [−xmax
i , xmax

i ]. Based on the Bendixon

theorem [20], in order to prove the non-existence of limit

cycles the following expression

∂fi

∂xi

− kPigi(w)−
kIi

Mi

(ri − xi) sinσi



should not vanish or change sign. Since |xi| ≤ xmax
i , then

∂fi
∂xi

− kPigi(w) < 0 can be guaranteed by selecting kPi as

kPi > max

{

0,max

{

∂fi

∂xi

}

1

min {gi(w)}

}

, (28)

which covers the condition (26) as well. Then no limit cycles

will exist in the constrained range if

∂fi

∂xi

− kPigi(w) +
kIi

Mi

max |ri − xi| < 0, ∀t ≥ 0. (29)

Given that xi ∈ [−xmax
i , xmax

i ], then the expression

max |ri − xi| can be analytically calculated and condition

(29) can be satisfied by a suitable choice of the integral gain

kIi as

kIi < min

{

kPigi(w)−
∂fi

∂xi

}

Mi

max |ri − xi|
. (30)

The importance of the proposed nonlinear PI controller and

the design procedure for selecting the controller gains is

better understood in a real-example application as explained

in the following section.

IV. A DC/DC POWER CONVERTER EXAMPLE

A. System and controller design

Consider the dynamic equations of the dc/dc boost con-

verter connected to a resistive load R, given as in [21]:

L
di

dt
= −ri− (1− u)v + Vin (31)

C
dv

dt
= (1− u)i−

v

R
(32)

where Vin > 0 is the dc input voltage, L is the converter

inductance with a series resistance r, C is the converter

capacitance, x̄ =
[

i v
]T

is the state vector and u is the

control input describing the duty-ratio input of the converter,

which has physical bounds defined as u ∈ [0, 1]. The dc/dc

converter can achieve a higher dc voltage v at its output com-

pared to the input voltage Vin. The main task is to regulate

the converter current i to a constant reference iref , while

maintaining a desired constraint |i| ≤ imax, where imax > 0
represents the maximum allowed current of the converter to

avoid damage of the device. It is assumed that L, C, r and R

are not accurately known, i.e. L ∈ [Ln−∆L,Ln+∆L] > 0,

C ∈ [Cn−∆C,Cn+∆C] > 0, r ∈ [rn−∆r, rn+∆r] > 0
and R ∈ [Rn − ∆R,Rn + ∆R] > 0, where Ln, Cn, rn
and Rn are the corresponding known nominal quantities and

that both the current i and voltage v can be measured. By

defining the control input u as

u = 1−
Vin − ū

v
(33)

and replacing it in (31)-(32), the converter dynamics take the

form

di

dt
= −

r

L
i+

1

L
ū (34)

dv

dt
=

Vin − ū

Cv
i−

v

CR
(35)

y = i, (36)

which is in the form of (1)-(3) considering the control input

ū. Note that g(w) = 1

L
> 0 with L ∈ [Ln −∆L,Ln +∆L],

which confirms that both Assumptions 1 and 2 hold. Since

(34) is a linear dynamic equation, then by considering the

function V = 1

2
Li2, which satisfies (8), there is

∂V

∂i
f = −ri2

∂V

∂i
g = i,

hence (9) and (10) are also satisfied with c = r > 0 and

b1 = b2 = 1, yielding that Assumption 3 holds as well. As a

result, both the conventional PI controller and the proposed

nonlinear PI controller can be implemented to regulate x̄ to

the desired unique equilibrium x̄e =
[

ie ve
]T

, where

ie = iref ∈ [−imax, imax] and ve =
√

Riref (Vin − riref ).
It is underlined that due to its physical properties, the boost

converter output voltage is always higher than the input

voltage, i.e. v ≥ Vin > 0. For any proportional gain kP > 0,

the equilibrium point ie = iref of (34) will be asymptotically

stable since conditions (16) and (26) will be satisfied for

both the conventional and the proposed PI controller. For the

proposed controller, from (25), parameter M should satisfy

M ≤ imax(r̄ + kP ), (37)

where r̄ = r − ǫ, for an arbitrarily small positive number ǫ.

To this end, M can be selected as

M = imax(rn −∆r − ǫ+ kP ), (38)

which satisfies (37) using the known system parameters.

Finally, from (30), the integral gain kI should satisfy

kI < min

{

kP + r

L

}

M

max |iref − i|
. (39)

Since the proposed controller guarantees the state constraint

|i| ≤ imax according to the analysis in Subsection III-A and
∣

∣iref
∣

∣ < imax, then max
∣

∣iref − i
∣

∣ = 2imax. As a result,

taking into account the choice of M from (38) and the range

of the uncertain parameters L ∈ [Ln −∆L,Ln +∆L] > 0
and r ∈ [rn −∆r, rn +∆r] > 0, inequality (39) becomes

kI <
(kP + rn −∆r)(rn −∆r − ǫ+ kP )

2(Ln +∆L)
. (40)

By setting i = ie + ĩ, v = ve + ṽ and σ = σe + σ̃, then (35)

becomes

dṽ

dt
=

Vin + kP (ie + ĩ)−M sin(σe + σ̃)

C(ve + ṽ)
(ie + ĩ)−

ve + ṽ

CR

= q̃(x̃, ṽ, w). (41)

Considering a set Dṽ for ṽ, where ṽ > −ve in Dṽ , then both
∂q̃
∂ṽ

and ∂q̃
∂x̃

are bounded in Dṽ , where x̃ =
[

ĩ σ̃
]T

. In

addition, the unforced system, i.e. for x̃ = 0, becomes

dṽ

dt
=

Vinie

C(ve + ṽ)
−

ve + ṽ

CR
. (42)



TABLE I

CONVERTER PARAMETERS

Parameters Values Parameters Values

L 12mH Ln 10mH

∆L 5mH r 8mΩ

rn 10mΩ ∆r 8mΩ

C 120µF Cn 100µF

∆C 50µF R, Rn 10Ω

Vin 10V ∆R 5Ω

The Jacobian of system (42) results in

Av = −
Vinie

Cv2e
−

1

CR
= −

1

CR

(

Vin

Vin − riref
+ 1

)

< 0

and therefore the origin of (42) is asymptotically stable.

Then according to Lemma 5.4 in [1], system (41) is locally

input-to-state stable. As a result, the desired equilibrium

point
[

ie σe ve
]T

of system (34)-(35) with both the

conventional PI and the proposed nonlinear PI controller will

be asymptotically stable.

B. Simulation results

To demonstrate the proposed nonlinear PI controller per-

formance in comparison to the conventional PI control, the

dc/dc converter system of (31)-(32) was simulated using

the parameters shown in Table I. For the conventional PI

controller, the integral gain is selected as kI = 1200, while

two different values are tested for the proportional gain

kP = 4 and 6. For the proposed nonlinear PI controller gains,

the design procedure mentioned in the previous subsection

is followed, providing the selection kP = 20 and kI =
1.33× 104.

The desired scenario is for the converter to regulate ini-

tially the current i to a desired value iref = 2A, while at the

time instant t = 0.1s the reference current changes to iref =
3.8A. It is required that the converter current i remains lim-

ited below imax = 4A at all times, i.e. even during transients.

As it is illustrated in Fig. 1(a), both the proposed and the

conventional PI controllers (with both proportional gains)

manage to regulate the converter current to any desired value.

The converter voltage reaches the expected steady-state value

ve =
√

Riref (Vin − riref ), as demonstrated in Fig. 1(b).

However, when the conventional PI controller is applied,

the desired state constraint |i| ≤ imax is not guaranteed

at all times, since during the transient response the current

i violates the desired maximum value (Fig. 1(a)). On the

other hand, as expected from the theoretical analysis, the

proposed nonlinear PI controller leads the converter current

to the desired regulation without violating the maximum

bound. It should be highlighted that for a different choice

of the proportional and integral gains, it is possible that the

conventional PI controller can maintain the current below the

maximum value for the given regulation scenario. However,

there is no analytic method for calculating the gains and

guarantee that |i| ≤ imax, ∀t ≥ 0, for different values of
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Fig. 1. Simulation results of a dc/dc power converter using the conventional
and the proposed nonlinear PI controller

the iref or different load cases, opposed to the proposed

approach which guarantees the desired state constraint at all

times. Furthermore, from the duty-ratio input performance

shown in Fig. 1(c), it is clear that for a larger value of kP
for the conventional PI controller, the input value will exceed

the value of 1, which represents the physical limit of the

converter. As a result, the proposed nonlinear PI controller

offers a superior performance during transients and state

constraint satisfaction, while the analysis presented in this

paper offers a rigorous methodology for the selection of the

proportional and integral gains.

V. CONCLUSIONS

A novel nonlinear PI controller was proposed in this paper

to guarantee accurate output regulation and state constraint

satisfaction. The proposed controller can be applied to a

wide class of nonlinear systems with constant uncertainties or

disturbances. Asymptotic stability of the desired equilibrium

point and a given upper bound for the desired system

states were analytically proven. A design procedure for the



controller gains was also presented. The superiority of the

proposed nonlinear PI controller compared to the conven-

tional approach was demonstrated in a practical example

consisting of a dc/dc power electronic converter application.
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