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Abstract—Collective self-adaptive systems (CSAS) are dis-
tributed and interconnected systems composed of multiple agents
that can perform complex tasks such as environmental data
collection, search and rescue operations, and discovery of natural
resources. By providing individual agents with learning capabili-
ties, CSAS can cope with challenges related to distributed sensing
and decision-making and operate in uncertain environments. This
unique characteristic of CSAS enables the collective to exhibit
robust behaviour while achieving system-wide and agent-specific
goals. Although learning has been explored in many CSAS
applications, selecting suitable learning models and techniques
remains a significant challenge that is heavily influenced by expert
knowledge. We address this gap by performing a multifaceted
analysis of existing CSAS with learning capabilities reported in
the literature. Based on this analysis, we introduce a 3D frame-
work that illustrates the learning aspects of CSAS considering the
dimensions of autonomy, knowledge access, and behaviour, and
facilitates the selection of learning techniques and models. Finally,
using example applications from this analysis, we derive open
challenges and highlight the need for research on collaborative,
resilient and privacy-aware mechanisms for CSAS.

Index Terms—self-adaptive systems, learning, distributed sys-
tems, autonomic systems, taxonomy, multi-agent systems

I. INTRODUCTION

Distributed and interconnected software systems are increas-

ingly deployed in application domains characterised by dy-

namic environments, evolving requirements, and unpredictable

failures. Examples of such systems include network infrastruc-

tures [1], smart cities [2], and traffic ecosystems [3] with au-

tonomous vehicles [4]. During operation, these systems might

encounter several unexpected scenarios including variations in

system performance, sudden changes in system workload and

component failures. Dealing effectively with such scenarios

entails enhancing these systems with self-adaptive capabilities

so that they can autonomously identify abnormal situations,

analyse alternative adaptation options and, finally, self-adapt

to a suitable new (system-wide) configuration [5]–[7].

All authors contributed equally and are listed in alphabetical order.

The feasibility of effective self-adaptation in distributed

systems through centralised or hierarchical control is question-

able [8]–[10]. Indeed, using a single autonomic manager, i.e., a

single closed-loop controller such as the MAPE-K loop [11] or

the Observer/Controller tandem [12], to monitor a distributed

system and act upon system resources typically depends

on unrealistic assumptions. These assumptions, include, but

not limited to, the autonomic manager’s ability to obtain a

consistent and complete system-wide (i.e., global) view, and

its capacity to process this information, reason, and distribute

the decisions on time. Most importantly, centralised control

requires trust and is susceptible to well-known problems

including limited scalability and single points of failures [8].

Recent research has demonstrated that providing self-

adaptive capabilities to each component of a distributed system

can address the challenges faced by centralised control [9],

[13]–[15]. Based on this paradigm, each system component,

also known as an agent [16], can monitor its own environment

and interact with its peers leading to an emergent behaviour

of the system as a whole. This paradigm shift increases

resilience, improves scalability and eliminates single points of

failures [8], [17], [18]. Following Mitchell’s definition [19], we

refer to collective self-adaptive systems (CSAS) as distributed

systems comprising multiple agents such that each agent:

(i) can interact with other agents either directly or indirectly;

(ii) does not individually possess system-wide knowledge;

(iii) can exhibit learning to expand its personal knowledge;

and (iv) can make decisions based on collective or aggregated

knowledge from some of its peers.

Achieving effective self-adaptation in CSAS is undoubtedly

complex for several reasons. First, the environment in which

each agent might be situated is often highly dynamic, and sig-

nificantly more complex than that of systems with centralised

control. This CSAS feature makes it impossible to predict at

design time all possible scenarios that can occur at runtime and

provide CSAS agents with pre-specified adaptation plans. Sec-

ond, system-wide knowledge is distributed among the agents,



entailing that advanced mechanisms should be used for effi-

cient knowledge sharing and acquisition between agents. Also,

decision-making, both on agent and system levels, requires

sophisticated techniques for effective coordination, conflict

resolution, and avoidance of suboptimal behaviour [13], [20].

To address these issues, CSAS agents must be enhanced

with learning capabilities, allowing them both to instantiate

learning models using the knowledge acquired from observing

the environment and their peers, and to refine these models by

assessing the outcomes of their actions. These learning models

provide the means to improve quality attributes (e.g., perfor-

mance, cost) of an individual agent or the entire collective [21].

Although learning has been explored in many self-adaptive

applications, e.g. [2], [13], [14], the use of different types of

learning models in CSAS is still a handcrafted process that

relies heavily on domain expertise. More specifically, the adop-

tion of learning involves an understanding of the application

particularities as well as the requirements that these particular-

ities impose on the designed learning model. However, there is

no body of knowledge about best practices in learning-enabled

CSAS leaving researchers and practitioners without guidance

on how to mitigate this recurrent CSAS concern. Existing

surveys on multi-agent learning are restricted to reviewing

alternative techniques proposed in this context [17], [22],

[23]. In particular, the benefits of using self-organisation to

address the challenging research issues in multi-agent systems

are studied in [17]. Cooperative and competitive multi-agent

techniques are investigated in [23], while [22] analyses the

differences between these techniques. In contrast, our study

focuses on understanding the state of practice in developing

learning-enabled CSAS. To this end, we investigate research

related to CSAS that use learning techniques and models as a

means of enabling CSAS agents to adapt their behaviour when

encountering scenarios unanticipated at design time.

Our investigation is made by means of a systematic litera-

ture review of 52 related research papers out of 215 candidates,

selected using the research method introduced in Section II.

In Section III, we analyse the selected studies from multiple

perspectives, including the CSAS characteristics, application

domain and type of employed agents to understand the virtue

of learning in the context of CSAS. Based on this analysis, we

introduce in Section IV a three-dimensional framework that

consolidates key aspects (i.e., autonomy, knowledge access

and behaviour) that must be taken into account to instantiate

learning-based solutions when developing CSAS. Engineers

can employ the proposed framework as a reference to reinforce

their design decisions associated with learning-based agents

in CSAS. Finally, we discuss related open challenges in

Section V and conclude the paper in Section VI.

The main contributions of this paper are as follows: (1) a

systematic literature review that captures the state-of-practice

of learning-based CSAS; (2) a three-dimensional framework

for classifying CSAS based on autonomy, knowledge access

and behaviour characteristics, that enables the selection of

suitable learning techniques and models; and (3) a discussion

of learning-specific open challenges for CSAS.

II. RESEARCH METHOD

The adopted research method introduced in this section follows

the standard practice in systematic literature reviews [24].

Since our study focuses on learning-based CSAS, the scope

of the review is restricted to CSAS solutions in which agents

within the collective are enhanced with learning abilities. 1

A. Research Questions

We use a set of research questions to steer our review. Each

selected paper (representing a learning-based CSAS solution)

is analysed considering the following research questions.

RQ1: What are the characteristics of the described CSAS?

RQ2: What is the purpose of learning within the CSAS?

RQ3: Which learning techniques are employed?

RQ4: What are the triggers to update the learning models?

B. Selection Method

We specify next the strategy adopted to search the literature

and the criteria used to select the analysed studies.

1) Search Terms and Query String: Our goal is to identify

research papers describing how decentralised learning is used

within a CSAS. To this end, we used these search terms

and synonyms: (i) self-adaptive: self-adapt*, self-organi*, au-

tonom*; (ii) software: application, system; and (iii) learning.

We combined these terms and used the search string below.

(self-adapt* OR self-organi* OR autonom*) AND (soft-

ware OR application OR system) AND learning

2) Searched Databases and Venues: We investigate how

learning is used in the context of distributed collective self-

adaptive and self-organising systems. We focus on reviewing

advanced and high-quality studies published in the main

conferences and journals in the areas of self-adaptive, self-

organising, and multi-agent systems (MAS); see Table I. We

exclude workshop papers as they typically report work-in-

progress. The listed venues were searched using the respective

databases. Figure 1 shows the adopted multi-stage search and

selection process. We should emphasise that our objective

is the analysis of learning-based CSAS solutions rather than

the investigation of sophisticated machine learning techniques.

Likewise, we focus on top venues researching autonomous and

multi-agent systems (e.g., AAMAS, JAAMAS). While we do

not exhaustively search the entire MAS domain, initial ex-

ploratory searches (Stage 1) indicate that these venues provide

a representative number of studies related to the scope of our

survey. Other top venues specialised in machine learning and

not necessarily in CSAS (e.g. NIPS, ICML, etc.) are excluded

to keep the analysis more focused and manageable in terms

of number of reviewed papers, while our search and filter

strategy (Stages 3 and 4) remains highly comprehensive within

the defined scope and filters out irrelevant studies. A more

extensive review with broader scope is a subject of future work.

1A replication package of our systematic literature review, including the list
of selected studies and details of the collected and analysed data is available
at https://github.com/mi-da/CSAS-learning.
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Fig. 1. Multi-stage search and selection process

We carried out automatic searches on the following

databases: ACM DL, IEEE Xplore, Springer and Elsevier.

To ensure that the selected studies capture recent scientific

advances, we considered studies published in or after 2000.

3) Inclusion and Exclusion Criteria: To select studies suit-

able for analysis, we considered four inclusion criteria (IC) and

three exclusion criteria (EC); see Table II. A study is included

for review if it satisfies all IC and no EC.

4) Study selection procedure: The preliminary study se-

lection is conducted by two reviewers. The resulted studies

from the initial database querying (prior to any filtering by the

venues) have been manually sampled. The sampled studies are

analysed by the two reviewers to confirm their relevance (and

of the corresponding venues) to the scope of the survey and

remove irrelevant studies/venues. In case of doubt, advice from

the other five reviewers resolved the dilemma. To exclude a

certain venue from the search results, a full agreement between

all the reviewers was required. However, a minimum of one

positive vote advocating to include a certain venue resulted in

its inclusion with the rationale to include as many potentially

relevant venues as possible, thus, minimising false negatives.

All refined (by venues) search results are manually inspected

by the two reviewers to confirm their relevance to the scope of

the survey. Next, the retrieved papers are equally distributed

among the seven reviewers to be further investigated regarding

the IC and EC (Table II). When necessary, the opinion of a

second reviewer was requested to address any uncertainty (e.g.,

confirm if a paper is eligible or not). Finally, the remaining

studies are included in the survey for further analysis.

C. Analysis Method

We systematically analyse all selected studies to answer the

research questions (cf. Section II-A). Each study is analysed

by a different reviewer than the one who applied the IC and

EC, thus, enhancing the validity of the review. For each study,

we extract the following data items. We show in parenthesis

the research question covered by each data item.

Table I. LIST OF INCLUDED VENUES

Name Venue Publisher # Studies by Venue

AAMAS Conference ACM 58
ASE Conference IEEE/ACM 3
FSE Symposium ACM 4
ICAC Conference IEEE 28
ICSE Conference IEEE/ACM 22
SASO Conference IEEE 45
SEAMS Symposium ACM 7

Applied Soft Comp. Journal Elsevier 19
ASE Journal IEEE 0
JAAMAS Journal Springer 0
TAAS Journal ACM 25
TLT Journal IEEE 2
TOSEM Journal ACM 0
TSE Journal IEEE 2

• Application Domain (RQ1): classify the domain of the

developed CSAS application;

• Agents (RQ1): identify agents within the collective with

learning abilities;

• Autonomy (RQ1): determine whether agents act au-

tonomously or are supervised by external entities;

• Knowledge Access (RQ1): assess the amount of infor-

mation provided to an agent by its peers;

• Behaviour (RQ1): evaluate how an agent behaves with

respect to other agents’ behaviour;

• Learning Tasks (RQ2): establish the objectives of learn-

ing by an agent and the collective;

• Emergent Behaviour (RQ2): determine the behaviour

that emerges from agents’ interactions and is observed at

the system level as system properties;

• Learning Technique (RQ3): classify the techniques used

by agents to enable learning;

• Learning Trigger (RQ4): identify the triggers driving

knowledge processing and refinement of learning models.

D. Selected Studies

We ran the search query on the scientific databases on October

24, 2018, and obtained a total of 6147 studies (including

duplicates). After refining the results by the publication year,

the number of studies reduced to 5405 (including duplicates).

Further refinement according to the selected venues resulted in

215 studies (excluding duplicates). Each study was evaluated

against the IC and EC. We show in Table II the number of

studies that satisfied each criterion. In summary, 52 studies

satisfy all IC and no EC, which are included for review.

Table II. INCLUSION (IC) AND EXCLUSION (EC) CRITERIA

Inclusion Criteria #Studies satisfying each criterion

IC-1: The paper describes an implemented software system 158

IC-2: The system involves multiple agents 109

IC-3: At least one agent is provided with the capability of learning 181

IC-4: There is no centralised learning process 88

Exclusion Criteria

EC-1: The learning process is not described in the paper 53

EC-2: The paper is a glossary, extended abstract, tutorial, etc. 8

EC-3: A more complete version of the paper is selected for review 6

Total included studies (satisfying all IC and no EC) 52



III. RESULTS AND ANALYSIS

Based on our analysis of the selected studies, we discuss ob-

servations regarding the research questions (cf. Section II-A).

A. RQ1: CSAS Characteristics

1) Application Domain and Agents: The first step of ex-

tracting CSAS characteristics considers application domains

and agents with the ability to learn. As shown in Figure 2, the

most dominant applications are cyber-physical systems (CPS)

such as robotics, sensor systems and smart energy applications.

This is inline with the increasing interest in CPS, especially

in the area of self-adaptive systems [25]. Learning agents in

these studies include robots [26]–[33], smarts sensors [34]–

[41] and smart grid elements [42]–[45]. Network-based ap-

plications are the second most explored domain with net-

work controllers [46], [47] or network nodes [48]–[53] being

the learning agents. CPS and network-based applications are

employed in more than half of the studies (53%). This is

interesting since these two interconnected domains both relate

to infrastructure applications (i.e., industrial or facility-based

processes that exist in the physical world [25]). Other infras-

tructure applications include traffic scenarios with cars [54]

and traffic controllers [55]–[58] as agents, cooperative games

with agents as players [59]–[63], and market applications with

investors [64], sellers [65], or task allocation managers [66].

In contrast to the infrastructure applications, some studies

consider more applied applications such as task allocation,

scheduling and classification. In [67]–[70] abstract entities

(agents) are adopted to tackle the task allocation problem in a

distributed manner, while software agents are used in [71] for

classification and in [72] for scheduling. Although the majority

of applications belong to the domains mentioned above, the

classification of the applications is not exclusive. For instance,

the study in [73] introduces a CSAS solution for simulating

human motor units in which agents are nodes of an artificial

neural network. Finally, four studies describe the solution to

learning in CSAS using abstract multi-agent organisational

models but do not report any concrete applications [74]–[77].

2) Autonomy: We define CSAS autonomy to be the level

of self-authorisation provided to agents within the collective.

An agent is autonomous when there is no external or internal

(i.e., by other agents) control over its behaviour. Most of the

analysed studies assume full autonomy for all agents, i.e.,

the agents are not supervised, and all their decisions are put

into action in their environment. This implies that all agents

are responsible for their actions and cannot be overwritten

by a hierarchically higher entity. This interesting observation

can be partly explained by our search strategy which favours

decentralised agents and penalises the use of a centralised

learning process (cf. inclusion criterion IC-4 in Table II). We

found only six studies (∼12% in Table III) explicitly modelling

CSAS agents with restricted autonomy [34], [38], [45], [58],

[66], [72]. Within a restricted autonomy setting, there is at

least one agent whose actions are supervised and could be

overwritten by other agents.
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Fig. 2. Distribution of application domains among the reviewed studies

3) Knowledge Access: Our analysis reveals that some

agent-based models explicitly exchange learning information

with each other. We call this concept knowledge access. CSAS

support the definition of different levels of knowledge access

and our analysis identifies five different levels (see Table III).

Many reviewed studies (∼35%) consider minimal knowledge

access settings, i.e., agents do not exchange information with

each other. Hence, each agent should reason and act based

on its own view and experiences. The opposite extreme,

termed maximal knowledge access, is less common with only

8 studies [29], [31], [35], [62], [65], [72], [75], [76]. Here, all

agents share complete knowledge with each other aiming to

achieve the highest possible benefit for the collective.

Interestingly, the second largest group of studies (∼ 31%)

applies a form of local or neighbourhood-like knowledge

access. This means that, at least to a certain degree, agents

share information with “nearby” agents within their neigh-

bourhood. This type of limited knowledge access could occur

because agents outside a neighbourhood are either unknown,

untrustworthy or too distant (communication is infeasible).

Another group of studies [28], [33], [38], [49], [53], [73],

[77] consider CSAS in which agents share limited information

and not their full state. This limited information could take

the form of selected agent configurations [73], adaptation

tactics [28] or expected rewards [33], [38], [53]. Although

the term can subsume many degrees of knowledge access,

information sharing between agents in these studies is not

enough to directly influence the adopted learning processes.

Finally, three studies [42], [45], [69] explicitly consider

tunable degrees of knowledge access and investigate how

adjusting this degree influences the learning behaviour of

agents within the collective.

4) Behaviour: The behaviour of agents within a CSAS

indicates whether an agent has the objective to maximise its

own utility, i.e., it is selfish, to maximise the CSAS utility,

i.e., it is altruistic, or adopts an intermediate role. Our analysis

shows the absence of a clear-cut between selfish and altruistic

agents but the existence of a continuum space comprising

different modalities and combinations (see Table III).

In most studies (∼ 46%), agents are purely selfish. Krae-

mer et al. [26] apply independent Q-learning [78]. In this

reinforcement learning technique, each agent learns values

of its own actions, disregarding other learning agents in the

environment. Similarly, Fang et al. [39] introduce a Bayesian-



Table III. CLASSIFICATION BASED ON AUTONOMY, KNOWLEDGE
ACCESS, AND BEHAVIOUR

Autonomy # Studies Percentage

Full Autonomy 46 88,46%
Restricted Autonomy 6 11,54%

Knowledge Access # Studies Percentage

Minimal 18 34.62%
Neighborhood 16 30.77%
Maximal 8 15.38%
Limited 7 13.46%
Tunable (Various evaluations) 3 5.77%

Behaviour # Studies Percentage

Selfish 24 46.15%
Selfish (collaborative) 9 17.31%
Altruistic 7 13.46%
Altruistic (collaborative) 7 13.46%
Altruistic locally / Selfish globally 3 5.77%
Both versions explored 2 3.85%

based learning algorithm in which all model inferences can be

done independently for each selfish agent without any form of

inter-agent communication.

Other studies (∼ 17%) experiment with selfish but collab-

orative agents. This could take the form of a decentralised

structural adaptation method applied locally to each selfish

CSAS agent [74]. The collaborative aspect involves pairs of

agents exhibiting cooperative behaviour and jointly estimating

the utility of changing their learning models.

Moreover, there are studies in which agents are altruis-

tic (∼13%). Coordination between agents typically occurs

through communication, e.g., using a mutual notification al-

gorithm that is proven to converge to the system’s optimal so-

lution [33]. Other scenarios comprise agents that are altruistic

and collaborative (∼ 13%), as in [57], where a collaborative

and self-organising traffic control system is designed through

dynamic traffic light coordination. Finally, in∼6% of the stud-

ies, agents are altruistic locally (neighbourhood) but globally

selfish [28], [55], [56]. We only found two studies that explore

both altruistic and selfish agents [42], [59].

An interesting outcome of our review is the following. In

several studies [30], [35], [36], [39], [43]–[45], [48], [49],

[53], [61], [63], [69], [70], the system is designed in a way

that each individual selfish agent learns a “learning task” and

is not aware of the fact that it is collaborating. In these

circumstances, the emergent behaviour of the system is the

result of the agents’ unaware collaboration and is often a

system-wide collaboration scheme achieving a global goal.

Moreover, our review highlights that only a few studies

explore incentivisation/penalty mechanisms to promote agent

collaboration [38], [44], [64], [66], [75]. In contrast, most

of the studies rely on the assumption that agents follow

the same goals within the collective. We highlight that such

simplifying assumption limits the real-world applicability of

the proposed techniques. In fact, CSAS can be deployed in

open networks comprising untrusted and malicious agents that

is not possible to control or trust a priori. Hence, an open

CSAS challenge is the smooth integration of incentivisation

and learning mechanisms.

B. RQ2: Learning Purpose

The purpose of CSAS is defined by its learning tasks, which

typically correspond to system-wide objectives. Besides the

learning tasks, interactions between agents (intentional or

inadvertent) may lead to emergent behaviour for the collective.

The emergent behaviour cannot be predicted a priori as it is not

a simple aggregation of the individual agents’ behaviour [18],

[19]. To answer the second research question, we analyse the

studies based on their learning tasks (learning purpose) and

possible emergent behaviours. The analysis of the relationship

between these two aspects revealed the following observations.

A key difference between the studies is the learning task and

emergent behaviour of interest. Several studies do not report

any specific emergent behaviour but associate the emergent

behaviour with the anticipated learning task [37], [52]. In a

subset of these studies, the learning task and the associated

emergent behaviour are fulfilled without requiring the agents

to collaborate actively. For instance, in [28] the learning task to

score a goal is fulfilled by each agent (a player of the team)

individually learning adversary soccer moves that contribute

to scoring a goal (emergent behaviour). Similarly, Beetz et

al. [32] show that the learning task for the robots to play

soccer can be achieved by each robot learning individually,

without collaboration, to move towards a predefined target.

Another subset of studies with similar learning task and

associated emergent behaviour have system-wide collaborative

tasks [27], [37], [62], [63]. In these studies, learning tech-

niques are directly employed to support collaborative learning,

i.e., agents are aware of their collaboration. For instance,

agents actively collaborate to win a cooperative game [62],

[63], smart sensors cooperate to patrol an area [37], or soccer

robots collaborate to form a squad and win the game [27].

Another interesting observation concerns studies in which

emergent behaviour is different than the learning task. In these

settings, the learning task is independent (and non-cooperative)

per agent, and system-wide collaboration is realised as emer-

gent behaviour. In [59]–[61], agents learn individually how to

play the specified games and cooperate to achieve a positive

outcome, i.e., win the game. Similarly, within the network

domain, agents individually learn to propagate messages [50],

predict the loss [48], and other individual tasks [46], [49], [53].

In this context, the emergent CSAS behaviour is the system-

wide optimal dissemination of information. Other studies ad-

dress learning tasks within the smart energy domain [42]–[45];

agents learn individually to solve allocation problems [42],

predict energy consumption [43] or prosumers behaviour [44],

which helps the team to learn system-wide energy optimisation

strategies (emergent behaviour). In [35], [38], [39], [41],

emergent behaviour involves agents (smart sensors) learning

system-wide sensor configurations by individually learning

self-configuration strategies.

In summary, we identified two main groups regarding the

relation between learning tasks and emergent behaviour. One

group concerns studies that associate the emergent behaviour

to the exact anticipated learning task of the collective. The



learning task in these studies is either a collection of individual

non-collaborative tasks (e.g., each soccer agent scoring a goal

on their own [27]) or a system-wide collaboration among

the agents (e.g., smart sensors collaborating to patrol an area

successful [37]). In the other group of studies, collaboration

between the agents emerges to a different behaviour than the

anticipated learning task (e.g., [42]–[44]). These studies often

define learning tasks as individual goals for the agents and

agents are not aware of any implicit collaboration among them.

As a result, a system-wide collaboration emerges.

C. RQ3: Learning Techniques

Reinforcement Learning (RL) is a widely used technique in

CSAS. Referring to Table IV, the results from our review

highlight that ∼60% of the selected studies use RL. In [67]

and [68] learning is used to self-organise the network. Q-

learning is chosen due to its simplicity and suitability for rep-

resenting the behaviour of the proposed mechanism in terms of

actions and rewards [68]. In [55], the authors deal with multi-

policy optimisation problems in self-organising systems using

Distributed W-Learning (DWL), an RL approach inspired by

W-Learning [79], where each policy is implemented by a

single Q-learning process. The authors claim that Q-learning

is a suitable learning and optimisation technique in situations

where no pre-specified model of the environment is avail-

able. Similarly, in [26], RL is used in decentralised planning

problems since the agents do not need to know a model a

priori but can learn policies via repeated interaction with the

environment and among each other. Multi-agent reinforcement

learning (MARL) is employed in [43] to solve problems in

a distributed manner in non-stationary environments when

centralised control becomes infeasible. MARL is also used

in [54] to tackle the complexity emerging in MAS domains,

as it enables adaptive and autonomous agents to improve their

learning models from experience.

The wide adoption of RL in CSAS lies in its simple and

straightforward resemblance between the actions and rewards

of its theoretical model and the behaviour of agents in the

employed application domains (cf. Section III-A) [79]. Most

importantly, RL techniques (e.g., Q-learning, W-learning) do

not necessarily need a model of the environment and can

learn directly from raw experience. In fact, in large-scale

decentralised application domains of interacting agents (e.g.,

CPS with many robots and smart IoT devices), building a

complete model of the environment is a challenging and often

an impossible task. Since self-adaptive systems aim at tackling

scenarios unpredicted at design time, such models of the

environment are not only hard to realise, but also need to

change in a timely manner together with the CSAS variability.

This is a primary factor driving the use of model-free learning

approaches for decentralised CSAS [75]. The use of model-

based RL techniques for CSAS is also an open research area.

Since RL techniques are widely used for enhancing CSAS

with learning abilities, some of the reviewed studies focus on

improving RL [26], [29], [43], [69]. The need for additional

exploration in decentralised RL settings entails that the collec-

Table IV. CLASSIFICATION BASED ON LEARNING TECHNIQUE

Learning Technique # Studies Percentage

Reinforcement Learning 31 59,62%
Game Theory 5 9,62%
Supervised Learning 5 9.62%
Probabilistic 4 7.69%
Statistics 2 3.85%
Swarm System 2 3,85%
Applied Logic 1 1.92%
Evolutionary Process 1 1.92%
Game Theory and RL 1 1.92%

tive should converge fast to its decision. Driven by research

in [67], which shows that self-organisation leads to faster

convergence of the learning task, [69] proposes a hierarchical

self-organising framework to coordinate agent exploration and

shows that coordinated exploration activities of agents can lead

to faster learning convergence.

When CSAS agents are homogeneous (i.e., they perform

the same learning task) building a fully observable [29] or

a hierarchically observable context [69], in situations where

agents have partial knowledge access to the environment and

their peers, helps to speed up decentralised learning tasks.

This context can be a collective memory (i.e. an environment

holding a centralised socially-shared memory) which serves

as a blackboard for all the agents (analogous to a shared

past) [62]. Even though this centralisation of knowledge may

be a viable approach for some CSAS, this is not always

the case. Hence, an interesting research area for CSAS using

RL is investigating in-depth the different levels of knowledge

access and their role in improving the speed of convergence

of learning tasks, considering their practical applicability in

target CSAS applications.

Game Theory (GT) is used in∼10% of the reviewed studies.

In [63], a consensus algorithm is introduced to establish coop-

eration among the agents. Similarly, [49] promotes emergent

coordination among agents using a game theoretical approach

based on an incentivisation mechanism that assigns penalties

through a dynamic payoff matrix. A GT-based approach is also

used in [61], by means of evolutionary and social learning, to

promote cooperative behaviour among distributed agents and

solve an N-player prisoner’s dilemma. Finally, GT is combined

with RL in [41] to facilitate cooperation among agents in a

distributed wireless sensor network.

Our survey shows that GT approaches are mainly used

in application domains requiring collective and coordinated

actions by the agents. However, we highlight that some of the

considered domains lack real-world applicability (e.g., [61]).

A research area that needs further investigation is how to

promote and rely on collective and collaborative actions in

an open network of (untrusted) agents. In fact, as shown in

Section III-A4, incentivisation mechanisms promoting collab-

oration, which address the free-rider problem in a decentralised

network of selfish agents [80], are rarely used.

Supervised Learning (SL) techniques are applied in∼10% of

the studies. In [42], support vector data description (SVDD),

a variant of support vector machines (SVM), is used to solve



a system-wide energy optimisation problem in a distributed

way. The proposed trust- and cooperation-based algorithm is

trained offline with a big set of previously observed values.

The authors claim that their approach can be applied to generic

self-organising hierarchical system structure domains. SVM is

used in [44] to regulate the behaviour of prosumers in a smart

energy scenario (i.e., produce or consume). In [52], different

supervised learning approaches (i.e., neural network, support

vector regression, and regression decision trees) are used for

modelling the performance of total order broadcast protocols.

Most of the reviewed studies in this group, guide the online

agents’ behaviour based on a model that has been trained

offline using SL techniques. A recurrent challenge for offline

model training, e.g., [81], is identifying when, i.e., determine

effective stopping criteria, that enable an agent to generalise

from the training data to unseen situations while reducing the

risk of overfitting [82]. We did not find any study based on

SL dealing with this problem in CSAS.

Our review highlights that ∼ 8% of the studies uses prob-

abilistic approaches (e.g., Bayesian Dynamic Linear Mod-

els [39], Bayesian Learning [28], [50] and Gaussian Mixture

Models [34]), while two other studies use applied logic [76]

and evolutionary processes [73]. Finally, swarm systems are

used for collective self-organisation in two studies [40], [65].

In conclusion, learning techniques range from fit-for-

purpose statistics-based approaches to more sophisticated con-

cepts, e.g., combining RL with neural networks to make

informed decisions [47]. Some approaches use additional

(external) information to guide the learning process (e.g. detect

mutual information [83] or build trust relationships [84], and

augment the condition part of RL). Despite its high relevance,

existing CSAS solutions neglect privacy-aware global mod-

elling/learning concepts such as federated learning [85].

D. RQ4: Triggers for Model Learning and Refinement

Beyond the adopted learning techniques, the process employed

for learning new or updating existing models is an equally

important factor affecting the ability of agents within CSAS

to operate in uncertain environments. The distributed nature

of most CSAS solutions entails that revising learnt models

by accessing and analysing knowledge while agents operate

might be inhibited due to physical limitations or reduced

computational resources. Thus, the successful operation of

CSAS depends also on determining effective triggers that

enable learning new or revising existing agents’ models.

Our analysis of the selected CSAS studies targeted the

identification of when gathered knowledge is initially exploited

and when learning models are updated. Table V summarises

our analysis. As expected, the initial trigger that enables

building the first version of learning models is predominantly

associated with launching the CSAS solution to perform its

learning task (cf. Section III-B). The majority of the reviewed

studies initialises these models randomly, i.e., without any

initial knowledge. This is an effective means of reducing bias

and enabling effective evaluation of the CSAS solution. When

peers have some initial knowledge, which is accessible to other

Table V. CLASSIFICATION BASED ON TRIGGERS

Initial Trigger # Studies Percentage

No initial knowledge (random) 33 63.46%
Not mentioned 9 17.31%
Domain knowledge / humans 7 13.46%
From peers and other agents 3 5.77%

Trigger Update # Studies Percentage

Periodic 14 26.92%
Action (load/message/decision/step) 13 25.00%
Learning task threshold achieved 8 15.38%
Task/Episode 7 13.46%
Not mentioned 6 11.54%
Social interaction 4 7.69%

agents, this could trigger the instantiation of learning models

driven by knowledge extracted from peers [26], [48], [71].

Other studies (e.g., [62], [72], [75]) use domain knowledge

for setting boundaries on what agents can learn at runtime

and for accelerating learning, while in [28] the initial trigger

and knowledge are provided through human demonstration.

Triggers for refining learnt models reveal a more balanced

distribution that can be partitioned further into time-based

and event-based triggers. Time-based triggers represent∼27%

of the reviewed studies and activate model refinement peri-

odically (i.e., at regular intervals). This group assumes that

sufficient knowledge has been gathered, the analysis of which

enables effective model refinement. In contrast, event-based

triggers can be partitioned further considering the type of

event. These triggers range from action-based refinement (i.e.,

upon making a decision [28], or performing an action [67],

[69]) to achieving a learning-task specific threshold [44], [56]

and from episodic updates [33], [59], [60], [76] to refinements

upon interacting with peers [27], [37], [50], [51].

In summary, the trigger for instantiating the initial learning

model typically occurs upon launching a new learning task,

whereas we observe an equal spread between time-based

and event-based triggers for updating the models. Selecting

effective update triggers capable of improving model accuracy

and driving efficient achievement of the CSAS objectives

remains an open challenge. In fact, this challenge resembles

the exploration-exploitation dilemma in RL [79].

IV. A 3D FRAMEWORK OF CSAS

The analysis of the selected literature, focusing on CSAS

applications with decentralised learning, enables us to identify

the key characteristics of the learning process in CSAS agents.

These characteristics are the basis for a framework comprising

three dimensions. Similarly to the framework proposed in [86],

which is in the context of norms in MAS, we explore CSAS

with varying combinations of dimension values. We discuss

the impact of dimensions on the learning process and highlight

application classes that can be investigated in future research.

A. Framework Dimensions

Figure 3 depicts the proposed three-dimensional framework.

Driven by the investigated data items (Section II-C), we

identified characteristics of CSAS agents that influence design







Table VI. EXAMPLE APPLICATIONS LOCATED IN THE CORNERS OF THE 3D FRAMEWORK

Autonomy Behaviour Knowledge Application Description

Full
Autonomy

Selfish
Minimal Autonomous cars deciding which route to take based on individual goals and only observing neighbours.

Maximal Autonomous cars sharing information about destination, speed, etc. but each car pursues its own goals.

Altruistic
Minimal

Software components processing data stream owned by a single provider, (restricted knowledge access due
to bandwidth/scalability).

Maximal
Traffic lights aiming to optimise the traffic flow taking other traffic lights into account (e.g., signalisation,
control of green light duration, routing, coordination).

No
Autonomy

Selfish
Minimal Bike sharing system with agents acting on behalf of humans, utilising the bike sharing stations.

Maximal
Self-adapting software components (considering other components data) that contribute to a global
behaviour (e.g. self-healing) through prioritising their own goals.

Altruistic
Minimal Car sharing system where software controls cars to serve other users, maximising the interest of car owners.

Maximal Robots jointly monitoring and splitting an area for distributed tasks such as surveillance, cleaning, etc.

agents’ environment that is feasible, though expensive, using

general-purpose RL techniques (e.g., Q-learning). However,

models easily become outdated when the environment changes

radically. In time-critical applications that can experience un-

expected events, limited knowledge access can result in signif-

icant inefficiencies and risks. In contrast, maximal knowledge

access provides a larger spectrum of learning techniques (cf.

Section III-C). However, this is not the norm in distributed

systems such as CSAS. Robust CSAS usually have by design

some partial knowledge access (limited or neighbourhood on

our 3D framework). This entails using more complex learn-

ing techniques, specialised in coordination processes between

agents and collective intelligence. Recent work towards this

direction can be found in [13], [94], [95].

Our findings can help researchers to make design choices

when developing CSAS with learning capabilities. For in-

stance, consider an application scenario that requires minimal

knowledge access between agents (e.g., privacy policies). This

requirement acts as a filter within the 3D framework that

enables choosing among autonomy and behaviour options. As

such, the 3D framework highlights the current state of practice

that meets this requirement and provides design intuition based

on systematically collected and analysed empirical evidence.

A. Resilience and Fault-tolerance

CSAS are typically employed in CPS and network applica-

tion domains (cf. Section III-A) that frequently experience sev-

eral uncertainties such as network latency, component failures

and limited resources, i.e., battery lifetime [17], [19]. Several

applications discussed in our study fall in this class, i.e., traffic

systems, sensor networks, smart grids etc. These uncertainty

types can disrupt the learning process, limit the data required

for training or even invalidate data on which learning is

performed. Self-organisation is often proposed as the means

to cope with such uncertainties. It can come, however, with

prohibitive computational and communication costs as it usu-

ally requires continuous proactive agent interactions. It also

perplexes the design of new learning techniques, i.e., learning

to self-organise vs. self-organise via learning, that is the

subject of active research [96], [97]. An alternative approach

is the introduction of learning mechanisms that are by design

self-adaptive to network uncertainties. Self-adaptation may

refer to the localisation of the learning process, applying the

concept of dropout in the communication network to improve

performance, and balance exploration and exploitation [92].

B. Privacy and Accountability

Learning with personal and privacy-sensitive data poses

several challenges and threats [98]. Privacy violation, profil-

ing actions over users’ activities can undermine users’ trust

in learning systems, and enable discriminatory data analyt-

ics and nontransparent recommender systems [99]. Recent

research in the area introduces novel learning algorithms

that employ privacy-preserving techniques such as differential

privacy [100], homomorphic encryption [101] and secure

data management via distributed ledgers [102]. CSAS with

limited/neighbourhood-style knowledge access are by design

more effective in privacy-preservation as data is not aggregated

in single locations. Since CSAS management is diffused

among all agents, it is computationally harder for single agents

to manipulate the system as a whole. In contrast, holding an

agent accountable for specific CSAS is not straightforward and

democratic governance mechanisms could be useful [103].

VI. CONCLUSION

Our systematic review of learning-enabled CSAS shows that

behavioural and collaboration modalities are perplexed when

learning is required. This reveals that learning tasks, emergent

behaviour, learning techniques and triggers play a key role

when designing learning-enabled CSAS. Minimal knowledge

access, high autonomy and the prevalence of reinforcement

learning are some key characteristics that we observe, to-

gether with their use in CPS. Based on these findings, we

introduce a 3D framework capturing the characteristics of

learning-enabled CSAS. Given the dimensions of autonomy,

knowledge access and behaviour, we present a canonical view

of the learning process with which applications and learning

implications can be classified, and discuss how these impli-

cations are different to those in centralised-controlled CSAS.

Open challenges such as the design of collaborative learning

techniques, privacy and accountability in open environments

without trusted third parties, the resilience, fault-tolerance and

provision of assurances [104], [105] of learning in distributed

environments are highlighted as opportunities for future work.

ACKNOWLEDGEMENT

This study was financed in part by CAPES - Brasil - Finance

Code 001 and by the Swedish Knowledge Foundation, Grant

No. 20150088: Software Technology for Self-Adaptive Systems.



REFERENCES

[1] V. Cardellini, M. D’Angelo, V. Grassi, M. Marzolla, and R. Mirandola,
“A decentralized approach to network-aware service composition,”
in European Conference on Service-Oriented and Cloud Computing.
Springer, 2015, pp. 34–48.

[2] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and
D. Hughes, “Deltaiot: A self-adaptive internet of things exemplar,” in
SEAMS’17, May 2017, pp. 76–82.

[3] H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-Schloer,
and H. Schmeck, “Organic Traffic Control,” in Organic Computing’11,
2011, pp. 431–446.

[4] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv

preprint arXiv:1604.07316, 2016.

[5] C. Müller-Schloer and S. Tomforde, Organic Computing – Techncial

Systems for Survival in the Real World, 2017.

[6] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.
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