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Dynamic economic and emission dispatch model considering wind power under Energy 1 

Market Reform: a case study 2 

Fangting Hu, Kevin J. Hughes, Derek B. Ingham, Lin Ma, Mohamed Pourkashanian 3 

Energy 2050, Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK 4 

Abstract 5 

With the increasing issues in the environmental and the high requirement for energy, the Energy Market 6 

Reform (EMR) was introduced by the UK government. This paper develops a novel Dynamic Economic and 7 

Emission Dispatch (DEED) model for a combined conventional and wind power system incorporating the 8 

carbon price floor (CPF) and the Emission Performance Standard (EPS) that is supported by the EMR. The 9 

proposed model aims to determine the optimal operation strategy for the given system on power dispatch 10 

taking into account wind power waste and reserve and also the environmental aspect, especially the CPF of 11 

greenhouse gases and the emission limit of the EPS for different decarbonisation scenarios. Case studies for 12 

the demand profile in the Sheffield region in the UK with different time intervals is presented. The results 13 

indicate that renewable power is superior in both the economics and emissions to a mid to long-term energy 14 

strategy in the UK. 15 

Keywords: Dynamic economic and emission dispatch; Electricity Market Reform; carbon price.  16 

Nomenclature 17 

Acronyms 18 

AEP American electric power  

BEIS Department for Business, Energy and Industrial Strategy 

CCS Carbon capture and storage  

CEED Combined economic and emission dispatch 
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CHP Combined heat and power  

CPF Carbon price floor 

DED Dynamic economic dispatch 

DEED Dynamic economic and emission dispatch 

ED Emission dispatch 

EMR Electricity market reform  

EPS Emission performance standard 

EU ETS European Union emissions trading system  

GA Genetic algorithm  

GHG Greenhouse gases  

PF Pareto front 

SQP Sequential quadratic programming 

STOR Short term operating reserves 

UC Unit commitment  

  

Roman alphabet 1 

ai, bi, ci  Coefficients in the cost function of the ith conventional generator (£/MW3h, £/MW2h, 

£/MWh) 

c Scale factor of Weibull distribution (m/s) 

C Total fuel cost in the electrical system (£/h) 

COW,j, CUW,j Overestimation and underestimation in the cost of jth wind powered generator 

respectively (£/h) 

CP,i Cost of the ith conventional generator (£/h) 

CW,j Direct cost of the jth wind powered generator (£/h) 
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D Total demand on the electrical system at time step t (MW) 

di, ei, fi Coefficients in the emission function of the ith conventional generator (t/MW3h, 

t/MW2h, t/MWh) 

E Total emission in the electrical system (tCO2e/h) 

EP,i Emission of the ith conventional generator (tCO2e/h) 

EElimit The emission limits of each conventional generator (tCO2e/h) 

F Fitness function (£/h) 

gj Coefficient of the cost function of the jth wind powered generator (£/h) 

k Dimensionless shape factor of Weibull distribution 

kO,j, kU,j Coefficient of the overestimation/underestimation cost function of the jth wind 

powered generator (£/h) 

M Number of wind powered generators 

N Number of conventional powered generators 

Pi Power output of the ith conventional generator (MW) 

Pi,min, Pi,max Minimum and maximum power output of the ith conventional generator (MW) 

RRDi, RRUi Ramp rate down/up of the ith conventional generator (MW/h) 

r Carbon price (£/tCO2e) 

SR Spinning reserve (MW) 

Tt Time of time step t (h) 

V Wind speed random variable (m/s) 

W Wind power random variable (MW) 

Wj Scheduled power output of the jth wind powered generator (MW) 

Wr,j Rated wind power of the jth wind powered generator (MW) 

WA,j Available power output of the jth wind powered generator (MW) 
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w Wind power (the wind power random variable) (MW) 

wr Rated wind power (MW) 

Greek alphabet 1 

v Wind speed (the wind speed random variable) (m/s) 

vi Cut-in wind speed (m/s) 

vr Rated wind speed (m/s) 

vo Cut-out wind speed (m/s) 

1. Introduction 2 

With the increasing environmental issues, the UK government is committed to the Climate Change Act by 3 

reducing emissions by 80% from their 1990 levels by 2050 [1-3]. In order to achieve this carbon target, the 4 

Electricity Market Reform (EMR) is stated in the Energy Act 2013 and it is supported by the Carbon Price 5 

Floor (CPF) and an Emission Performance Standard (EPS) [4, 5].  6 

EMR was  introduced by the UK government for three objectives, which are to keep the lights on (security), 7 

to keep energy bills affordable (affordability), and to decarbonise energy generation (sustainability) [5, 6].  8 

Moreover, in order to improve the environmental conditions and reduce the greenhouse gases (GHG), the 9 

European Union Emissions Trading System (EU ETS) provides a market for the trading of the carbon 10 

allowances and sets the carbon price [7]. The CPF is a tax rate on the emission of one tonne of CO2 or the 11 

equivalent GHG [8].  12 

EPS is a regulatory component of the National Planning policy. It provides a limit on the emissions of new 13 

fossil fuel power stations [5, 9].  The UK Department for Business, Energy and Industrial Strategy (BEIS) 14 

states that one of the options to place the closure of unabated coal into effect is to modify the existing EPS on 15 

the emission limit per unit of generated electricity at any point in time, rather than have an annual limit [10].  16 
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In order to satisfy all the strategies in electrical system operation when taking into account the EMR, an 1 

improved Dynamic Economic and Emission Dispatch (DEED) model is proposed in this paper. The security 2 

of the system is approached by balancing the power flow, the affordability is satisfied by the economic 3 

dispatch (ED) of the system and the sustainability is considered by the renewable power and the emission 4 

dispatch in the system.   5 

The ED of the thermal power generating units have been proposed since 1920, or even earlier [11, 12]. Further, 6 

in order to minimize the instantaneous operating cost of an electrical power system over a certain period, the 7 

dynamic economic dispatch (DED) was proposed in the 1980s [13-16]. With the growing environmental 8 

problems, combined economic and emission dispatch (CEED) models have been developed for an electrical 9 

system consisting of fossil-fired power plants in the 1990s [17-20]. Then the DEED model was developed in 10 

the 2000s [21]. It deals with the schedule of the generator outputs with the predicted load demands over a 11 

certain period of time in order to minimize the costs and the emissions simultaneously [22].  12 

With the ever-increasing use of renewable power, the power system network now is not only allocating system 13 

power from conventional generators but also from renewable power plants, such as wind farms [23, 24], solar 14 

PV plants [25, 26] and hydro power stations [27, 28]. Nowadays, wind power is in the top two of the renewable 15 

energies in the UK and its capacity is still increasing [29].  16 

Some of the researches on renewable power have focussed on the stochastic, robustness and security in the 17 

power system. For instance, Hreinsson et al. [30], proposed a stochastic ܰ െ ͳ security constrained unit 18 

commitment (UC) with wind power. Then, Morales-España et al. [31] demonstrated the dispatchable wind 19 

with an equivalent single-level mixed-integer program robust UC problem. Wang et al. [32] established a day-20 

ahead UC model for forecast error and reserve decision by considering a time sequence segment-fitting 21 

method, three classes reserve strategies and time-varying confidence levels. 22 

Moreover, some research has been performed on modelling the stochastic uncertainty in the nature of the wind 23 

speed and the waste penalty and reserve costs of wind power, where the waste penalty appears when the 24 

system is not using all the available wind power and the reserve costs related to the requirement of the reserve 25 
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power when the available wind power is not enough [24, 33-36]. First of all, Hetzer et al. [33] created a new 1 

ED model for the conventional power generators and wind-powered generators. They introduced direct waste 2 

penalties and reserves costs of the wind power into the ED problem. In this model, the wind power scheduled 3 

from a particular generator is strongly dependent on the value of the reserves and the penalty cost factors 4 

associated with that generator. Then, Mondal et al. [36] introduced the emission dispatch into the ED model 5 

proposed by Hetzer et al. [33] using a gravitational search algorithm. They used price penalty factors to blend 6 

the emissions with the normal fuel cost. Moreover, Jin et al. [24] added an environmental objective function 7 

for the emission as well as the penalty and reserves wind power costs. In addition, Zhang et al.[37] improved 8 

Jin’s research by implementing the hybrid Sequential Quadratic Programming – Particle Swarm Optimization 9 

(SQP-PSO) algorithm. Then, Dubey et al. [35] applied a hybrid flower pollination algorithm (HFPA) to the 10 

CEED model by Jin et al. [24] that includes the time dimension. Further, Durga Hari Kiran et al. [38] took 11 

into account demand response and pumped hydro storage. Furthermore, Hu et al. [39] first introduced CPF 12 

into the CEED model by using a Genetic Algorithm (GA) - SQP algorithm.  13 

This paper aims to investigate a novel DEED model under UK energy policies, especially the emission aspect, 14 

and an analysis of the practical results based on the influence of the energy policies. Thus, this model considers 15 

CPF and EPS in the classical DEED problem incorporating wind power. Further, it deals with the dispatch in 16 

a power system with conventional power plants and wind farms. The aim of the dispatch is to operate the 17 

system under the minimum fuel cost and pollution conditions within the emission allowances. Thus, two 18 

objective functions for the minimal economic cost and emissions should be considered. As the dispatch 19 

problem aims at finding the optimal power outputs for each generator, this function investigates the 20 

relationship between the power outputs and the pollution. The emission function can be costed by CPF, which 21 

is the charge in the emissions by the UK and EU [2, 7].  22 

This novel model aims to simulate different scenarios in the UK from 2010 to 2050 and an off-grid system 23 

with the demand profile in the Sheffield region of the UK is investigated as a case study. According to the 24 

distributed generation data by Northern Powergrid [40], the power stations supplying the Sheffield region 25 

currently consists mainly of coal-fired power plants, with some contribution from other very small generators, 26 
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such as biomass and combined heat and power (CHP). However, wind power is already the largest capacity 1 

of renewable power in Yorkshire. As a part of Yorkshire, and from the Fifth Carbon Budget [3], Sheffield 2 

may start to use wind power in the near future. Therefore, this model considers conventional and wind powered 3 

generators. 4 

The main contributions and the novel characteristics of this paper are the novel and reality method to simulate 5 

the emission dispatch optimization for the DEED model by taking CPF into account. Moreover, this research 6 

takes into account the EPS as an emission constraint; furthermore, a practical case in the Sheffield region is 7 

studied.  8 

The proposed DEED model has the ability to effectively generate solutions for different time intervals in real-9 

time dynamic dispatch. Moreover, this research uses current practical data to obtain the DEED solutions for 10 

the Sheffield region. Furthermore, the case study in the Sheffield region indicates that the renewable power is 11 

superior in both the economics and emissions in a mid to long-term energy strategy for the UK. 12 

2. Methodologies   13 

The aim of a DEED is to operate the system under the minimum fuel cost and pollution conditions within the 14 

emission allowances in a given time period. In the DEED model, the time dimension and the constraints that 15 

are effected by time are included in the model.   16 

2.1. Objective functions 17 

2.1.1. Cost functions 18 

The cost function C(t) aims to minimize the running cost of the generators in the electrical power system that 19 

includes conventional and wind power over a certain period of time t. Thus, the governing equation is given 20 

as follows [33]: 21 
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min ሻݐሺܥ ൌ  ሾ ǡ୧୲ܥ ሺ ୧ܲ୲ሻ ே
ୀଵ  ǡ୨୲ܥ ൫ ୨ܹ୲൯ ெ

ୀଵ  ǡ୨୲ܥ ൫ ୨ܹ୲ െ ܹǡ୨୲ ൯ ெ
ୀଵ  ǡ୨୲ܥ ൫ ܹǡ୨୲ െ ୨ܹ୲൯ெ

ୀଵ ሿ்
௧ୀଵ  (1) 

where C(t) is the total cost at the time step t,  ܥǡ୧୲  is the conventional power cost of the ith generator at time 1 

step t, ܥǡ୨୲  is the wind power cost of the jth wind turbine at time step t, ܥǡ୨୲  is the overestimation cost of the 2 

j th wind turbine at time step t, ܥǡ୨୲  is the underestimation cost of the jth wind turbine at time step t, Pi
t is the 3 

power output of the ith generator at time step t, Wj
t is the required power output of the jth wind turbine at time 4 

step t and ܹ ǡ୨୲  is the available power output of the jth wind turbine.  5 

In industry, the standard practice is that the fuel cost is a function of the power output of a conventional 6 

generator, such as a coal or gas turbine, and in the ED it is handled by the use of a polynomial function [41]. 7 

Usually, the cost objective function of the power output is expressed by a smooth quadratic function [14, 33, 8 

42, 43], a cubic function [41, 44, 45], or a quadratic function with the non-smooth valve-point effects [22, 24, 9 

35, 46, 47]. Figure 1 indicates the fuel cost as a function of the power output of a typical conventional generator 10 

unit [48]. In this research, the cost function with the inclusion of the time dimension is a quadratic function of 11 

the power output [33, 49], namely 12 

ǡ୧୲ܥ ሺ ୧ܲ୲ሻ ൌ ܽ୧ ୧ܲ୲ଶ  ܾ୧ ୧ܲ୲  ܿ୧ (2) 

where ai, bi, ci are the coefficients in the cost function of the ith conventional generator.  13 

 14 

Figure 1 Fuel cost as a function of the power output of a typical conventional generator unit [48]. 15 
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The direct cost function of the wind powered generator is calculated from the scheduled wind power used in 1 

the electrical network. It is assumed to be a linear function of the scheduled wind power and reflects the 2 

payment to the wind farm operator for the wind power [33]. It is defined as follows: 3 

ǡ୨୲ܥ ൫ ୨ܹ୲൯ ൌ ݃୨ ୨ܹ୲ (3) 

where gj is the coefficient of the cost function of the jth wind turbine, which is also the price of the wind power. 4 

If the wind farm belongs the system operator, there is no wind power cost and gj is 0 [33]. However, if the 5 

wind farm is outside the system, the owner needs to buy wind power and gj is the price of the wind power. 6 

The overestimation cost function of the wind powered generator is due to the available wind power being less 7 

than the scheduled wind power. The available wind power is the wind power available from the wind farm 8 

without any manipulations. This cost is for the reserve requirement related to the difference between the 9 

available wind power and the scheduled wind power [33], namely 10 

ǡ୨୲ܥ ൫ ୨ܹ୲ െ ܹǡ୨୲ ൯ ൌ  ݇ǡ୨ ൈ ሺ ୨ܹ୲ െ ܹǡ୨୲ ሻ  
ൌ ݇ǡ୨ ൈ ሺන ൫ ୨ܹ െ ൯ݓ ݂ሺݓሻ݀ݓௐౠ  ୨ܹ ൈ ݓሼݎܲ ൌ Ͳሽሻ 

(4) 

where kO,j is the coefficient of the overestimation cost function of the jth wind turbine.  11 

This term is the reserve power cost of the wind power. 12 

Similar to the overestimation cost function, the underestimation cost function of the wind powered generator 13 

is due to the penalty cost for not using all the available wind power [33], namely 14 

ǡ୨୲ܥ ൫ ܹǡ୨୲ െ ୨ܹ୲൯ ൌ ݇ǡ୨ ൈ  ൫ ܹǡ୨୲ െ ୨ܹ୲൯ 

ൌ ݇ǡ୨ ൈ ሺන ሺݓ െ ୨ܹሻ ݂ሺݓሻ݀ݓௐ౨ǡౠௐౠ   ሺ ୰ܹǡ୨ െ ୨ܹሻ ൈ ݓ൛ݎܲ ൌ ୰ܹǡ୨ൟሻ 

(5) 

where kU,j is the coefficient of the underestimation cost function of the jth wind turbine.  15 

This term is the waste power penalty of the wind power.  16 
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2.1.2. Emission functions 1 

The purpose of the emission function is to minimize the pollution from conventional powered generation 2 

including the oxides of carbon, sulphur and nitrogen. Assuming that the wind turbines do not produce these 3 

pollutants, and the reserve power is from the energy storage that also does not produce pollutants, the emission 4 

function contains the conventional powered generators term only [43], namely 5 

min ሻݐሺܧ ൌ    ǡ୧୲ܧ ሺ ୧ܲ୲ሻே
ୀଵ

்
௧ୀଵ  (6) 

where E(t) is the total cost at time step t and ܧǡ୧୲  is the emission of the ith generator at time step t.  6 

The conventional powered generators emission function is similar to the cost function, which is also 7 

formulated for practical cases as follows: 8 

ǡ୧୲ܧ ሺ ୧ܲ୲ሻ ൌ ݀୧ ୧ܲ୲ଶ  ݁୧ ୧ܲ୲  ୧݂  (7) 

where di, ei, fi are the coefficients in the emission function of the ith generator. 9 

2.1.3. Emission constrained costs  10 

According to the EU ETS, the emissions from the power generation need to be paid for according to the carbon 11 

price, which is the amount that must be paid per tonne of emitted CO2 [8]. Thus, the cost equation is 12 

constrained by the emission equation as follows: 13 

min ሻݐሺܨ ൌ ሻݐሺܥ   ݎ ൈ  ሻ (8)ݐሺܧ

where r is the CPF. 14 

According to the Equation (8), the emission is simulated as an emission constrained cost by taking the CPF 15 

into account. Therefore the emission becomes an emission cost. Thus the multi-objective problem in the model 16 

becomes a single objective problem. 17 
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2.2. Constraints 1 

Constraints in this model are considered to be in several aspects due to the operational security of the power 2 

network and the system components.  3 

2.2.1. Real power balance 4 

The first constraint is the real power balance, which is relevant to the system security and the minimization of 5 

the cost. In an ideal power network, the load and supply should be equal and this system power balance 6 

equation may be expressed as follows [33]: 7 

 ୧ܲ୲ே
ୀଵ   ୨ܹ୲ெ

ୀଵ ൌ  ୲ (9)ܦ

where Dt is the total demand on the electrical system at time stamp t.  8 

2.2.2. Power output limit 9 

The second constraint is the generator limit. The output limit for the conventional generator and the limit of 10 

the wind turbine may be expressed as follows [33]: 11 

୧ܲǡ୫୧୬  ୧ܲ୲  ୧ܲǡ୫ୟ୶ (10) Ͳ  ୨ܹ୲  ୰ܹǡ୨ (11) 

where Pi,min and Pi,max are the minimum and maximum power output of the ith conventional generator and Wr,j 12 

is the rated wind power of the jth wind powered generator.  13 

2.2.3. Ramp rate 14 

In addition, the ramp rate is a dynamic constraint of the conventional generators. In a dynamic system, a 15 

conventional powered generator has a maximum ramp rate which limits how fast it can change its output 16 

between time stamps. Therefore, situations can arise in which the generator cannot reach the desired higher 17 

power output due to the ramping limit even if the output is within its overall limit and it is given by [50]: 18 

െሺ ୲ܶ െ ୲ܶିଵሻ ൈ ୧ܦܴܴ  ୧ܲ୲ െ ୧ܲ୲ିଵ  ሺ ୲ܶ െ ୲ܶିଵሻ ൈ ܴܴ ୧ܷ (12) 
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where Tt and Tt-1 are the time of the current time stamp t and the previous time stamp t-1, respectively, and 1 

RRDi and RRUi are the ramp rate down and ramp rate up of the ith conventional generator, respectively. 2 

2.2.4. Emission limit 3 

Further, the emission allowance gives the emission levels of each generator, or the total emission limits at 4 

each time stamp. The emission allowance is an important constraint to satisfy the EPS [9] in the UK electricity 5 

system. The emission allowances of the conventional generators are given by 6 

Ͳ  ǡ୧୲ܧ ሺ ୧ܲ୲ሻ   ୪୧୫୧୲ (13)ܧܧ

where EElimit is the emission limit of each conventional generator at each time stamp. 7 

2.2.5. Spinning reserve 8 

The last constraint is the spinning reserve, also known as the synchronized reserve, which is an online but 9 

unloaded reserve capacity. It can respond rapidly to maintain the grid security and reliability [51-53] and it is 10 

given by [35]: 11 

ሺ ୧ܲǡ୫ୟ୶ െ ୧ܲ୲ሻ  ܴܵ୲ (14) 

where SRt is the spinning reserve at time step t. 12 

2.3. Wind power uncertainty modelling 13 

To deal with obtaining an accurate solution of the CEED problem in an electrical system with conventional 14 

and wind resources, the stochastic nature of the wind speed and wind power can be modelled by the Weibull 15 

distribution [24, 33]. The probability density function (pdf) for a Weibull distribution of wind speed can be 16 

mathematically expressed as follows [24, 33]: 17 

௩݂ሺݒሻ ൌ ൬݇ܿ൰ ቀܿݒቁିଵ ݔ݁ ൬െ ቀܿݒቁ൰ (15) 

where v is a random variable of the wind speed, k is the dimensionless shape factor of the Weibull distribution 18 

and c is the scale factor with the unit m/s. 19 
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The Weibull cumulative distribution function (cdf) of the wind speed can be expressed as follows [24]: 1 

ሻݒ௩ሺܨ ൌ න ௩݂ሺݒሻ݀ݒ௩
 ൌ ͳ െ ݔ݁ ൬െ ቀܿݒቁ൰ (16) 

Because of the uncertainty in the wind speed, the power output of a wind turbine is unpredictable. For 2 

simplicity, the power output for a given wind speed is categorized as follows [24]: 3 

ݓ ൌ ൞ Ͳǡ ݒ ݎ݂ ൏ ݒ ݎ ୧ݒ  ୰ݓ୭ݒ  ൈ ݒ െ ୰ݒ ୧ݒ െ ୧ ǡݒ ୧ݒ ݎ݂   ݒ  ୰ǡݓ ୰ݒ ୰ݒ ݎ݂  ݒ  ୭ݒ
 (17) 

where vi is the cut-in wind speed of the wind turbine, vo is the cut-out speed and vr is the rated speed. 4 

It can be seen that when the wind speed is less than the cut-in wind speed or higher than the cut-out wind 5 

speed, there is no power output. Then, if the wind speed is between the cut-in and rated wind speed, the power 6 

output is a linear function of the rated power. Otherwise, if the wind speed is between the rated and cut-out 7 

wind speed, the power output is equal to the rated power.  8 

2.3.1. Discrete portions of the wind power Weibull cdf  9 

For the discrete portions of the wind power output in equations (17), the probability of ݓ ൌ Ͳ can be calculated 10 

from equations (16) and (17), as follows [34]:  11 

ݓሼݎܲ ൌ Ͳሽ  ൌ ݒሼݎܲ  ୧ሽݒ  ݒሼݎܲ   ୭ሽݒ
ൌ ሻݒ௩ሺܨ  ൫ͳ െ ሻ൯ݒ௩ሺܨ ൌ ͳ െ ݔ݁ ൬െ ቀݒ୧ܿቁ൰  ݔ݁ ൬െ ቀݒ୭ܿቁ൰ 

(18) 

Similarly, the probability of ݓ ൌ ݓሼݎܲ ௧ௗ can be expressed by [34]:   12ݓ ൌ ୰ሽݓ  ൌ ݒሼݎܲ  ݒ   ሽݒ
ൌ ሻݒ௩ሺܨ െ ሻݒ௩ሺܨ ൌ ݔ݁ ൬െ ቀݒ୭ܿቁ൰ െ ݔ݁ ቆെ ቀݒ୰ܿቁ୩ቇ 

(19) 



14 
 

2.3.2. Continuous portion of the wind power Weibull pdf  1 

For the continuous portion, the wind speed distribution should be converted to the wind power distribution. 2 

This transform can be expressed as a linear relationship when the wind speed is between the cut-in and rated 3 

wind speed in equation (17), namely [24]: 4 

W ൌ TሺVሻ ൌ aV  bǡ ݒ  ݒ    (20)ݒ

ܽ ൌ ݒݓ െ ݒ ǡ ܾ ൌ ݓ ൈ ݒݒ െ   ݒ

where T(V) is a transform of the V. 5 

The wind power Weibull probability density function (pdf) can be expressed as follows [34]:   6 

୵݂ሺݓሻ ൌ ௩݂൫Tିଵሺwሻ൯ ቈ݀Tିଵሺwሻ݀ݓ  ൌ ௩݂ ൬ݓ െ ܾܽ ൰ ฬͳܽฬ ൌ ୰ݓ୧ܿݒ݈݇ ቆሺͳ  ୧ܿݒሻ݈ߩ ቇିଵ ݔ݁ ൭െ ቆሺͳ  ୧ܿݒሻ݈ߩ ቇ൱ (21) 

݈ ൌ ݒ െ ݒݒ ǡ ߩ ൌ   ݓݓ

2.4. Optimization Algorithm 7 

The optimization problem in this research is bounded and constrained. Therefore the constraint handling 8 

technique is required.  9 

2.4.1. Genetic algorithm 10 

The genetic algorithm (GA) is a stochastic method to solve global optimization problems. GA is a good 11 

technique to avoid local optimization due to its crossover operator [54].  12 

The implementation of the GA contains of five main stages: initialization, evaluation, selection, crossover and 13 

mutation. 14 

i. Initialization: an initial generation population t is generated randomly. In this model, the generation 15 

population consists of the outputs of all the power generators. 16 
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ii.  Evaluation: evaluate the fitness of the population t, which determined by the objective functions. The 1 

fitness of this model is the emission constrained costs, which is shown in equation (8). 2 

iii.  Selection: select the parent generation from the population t. The better individuals with better fitness 3 

are selected to be the parents of the next generation.  4 

iv. Crossover: employ a crossover operator on the population t to create the next generation population 5 

t+1. The crossover choses two parents from the population t using the selection operator and the values 6 

of the two bit strings are exchanged at randomly chosen points.  7 

v. Mutation: employ a mutation operator on the population t+1 for low probability. The mutation operator 8 

flips some bits in the population t+1 to generate the next generation.  9 

Stages ii to v are repeated until the individuals are sufficiently accurate. The results become more and more 10 

optimal with time because only better individuals survive. Thus, the balance between optimization and 11 

simulation time is considered. 12 

2.4.2. Sequential quadratic programming 13 

The sequential quadratic programming (SQP) method is one of the iterative algorithms for solving smooth 14 

nonlinear optimization problems. The SQP method is similar to Newton's method for constrained optimization 15 

problems. An approximation is made of the Hessian matrix of the Lagrangian function by using the quasi-16 

Newton method at each iteration. Therefore, subproblems of the quadratic programming (QP) are generated 17 

to form the original search direction to a line search procedure [55-57]. Theoretically, the resolution of the 18 

constrained smooth nonlinear optimization problem is very accurate through SQP, especially when the 19 

Karush-Kuhn-Tucker (KKT) conditions are applied [54, 58-62]. 20 

2.4.3. Hybrid GA-SQP algorithm 21 

The GA algorithm is good for the global search. However, it needs a long simulation time and may not be 22 

very accurate in the local search [57]. On the other hand, SQP has been found to be a very accurate technique 23 

but it is very sensitive to its initial points [54, 58-63]. Therefore, a hybrid GA-SQP algorithm can reduce the 24 

computational time and ensure the accuracy [39, 54, 57, 63].  25 
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Firstly, using GA as a first stage global optimizer, in order to obtain some reasonable starting points, by 1 

exploiting the GA's global search ability. Secondly, use the obtained solution as found by GA is a starting 2 

point to the second stage local searching method SQP in order to refine the first stage result. Figure 2 indicates 3 

the flow chart of the hybrid GA-SQP optimisation algorithm.   4 



17 
 

 1 

Figure 2 Flow chart of hybrid GA-SQP optimisation algorithm.  2 

A MATLAB program that is based on the CEED model is developed for various scenarios investigated using 3 

the GA with an additive form penalty function for constraint handling. If no violation occurs, the penalty term 4 

will be zero. Otherwise, the penalty term will be a very large positive number in Matlab [64]. Then a 5 
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constrained nonlinear optimization algorithm, SQP solver, is applied by using the result found by the GA as 1 

a starting point. The average run-time of each scenario is about 400 s and the computational cost [65] for this 2 

model is approximately 0.1 s. 3 

3. Case study 4 

This research aims to simulate and analyse a dispatch model under the UK policies. The employed 5 

optimization algorithm is GA-SQP [39] and it should be noted that the starting time step of the model is that 6 

obtained from the optimal steady state prediction for the first time step, namely the power output of the 7 

generators are able to achieve their optimized outputs at the first time step. 8 

In Case 1, an IEEE 30 bus system with six conventional-powered generators and a large scale wind farm, 9 

which is shown in Figure 3, is used to illustrate the proposed model for the Sheffield region. Figure 4 shows 10 

the electricity demand in the Sheffield region on a typical weekday in March 2015. The red line in Figure 4 is 11 

a real half-hourly demand profile in the Sheffield region as provided by Northern Powergrid [66].  12 
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 1 

Figure 3 An IEEE 30 bus system with 6 conventional generators and a wind farm [67]. 2 

 3 

Figure 4 Electricity demand in the Sheffield region on a typical weekday in March 2015. 4 



20 
 

As a dynamic model, the main difference between the DEED and CEED models is the impact of the ramp 1 

rate. In Case 1, with half-hourly time interval demand, the changes in each time step are less than the ramp 2 

rate of a single generator. Therefore, it is unable to illustrate the impact of the ramp rate. In the National Grid, 3 

the day-ahead forecast is normally half-hourly embedded for wind generation and demand forecast. However, 4 

in the real-time dispatch, the control room team could react on a shorter timescale. Case 1 in this research with 5 

a half-hourly embedded power demand. The half hourly load demand data in Case 1 is a practical demand 6 

provided by the Northern Powergrid [40]. As the demand changes between 2 half-hourly time steps are black-7 

boxed, assuming in the Case 1, the demand in a half hour changes linearly with time. Therefore, Case 2 is a 8 

DEED model with a 10 minute time interval (1/3rd of the given half-hourly demand) to find the impact of the 9 

time interval. Also, the demand in Case 2 is shown as the black line in Figure 4. This demand is modified 10 

from the half hourly time interval demand. It is estimated to remain constant in the following 20 minutes from 11 

the time step in Case 1 and starts to change linearly with time after the 20th minute. Figure 5 illustrates 12 

theoretical electricity demands by focussing on the first three steps in Figure 4 in order to clarify the demand 13 

in Case 2.  14 

 15 

Figure 5 Illumination of the first three steps for the electricity demand in the Figure 4. 16 
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In order to model a system that has a practical significance and considers the current and future carbon price 1 

and emission standard performance, the fuel cost and the demand should also have been converted to the 2 

current value. The coefficients and constraints of the conventional power are collected from the IEEE 30 bus 3 

test system [68, 69] which is an American Electric Power (AEP) system in the Midwestern US with coal-fired 4 

generators. Table 1 presents the modified coefficients of the cost functions of the 6 coal-fired generators that 5 

takes into account the coal price in the UK at the 2016 level of 54.29 £/t [70]. The modified factor is about 6 

16.5. Table 2 lists the  coefficients of the emission functions [69].  7 

Table 1 Coefficients in the cost functions and constraints in the power outputs of the IEEE 30 buses 8 
system with 6 thermal generators [69]. 9 

Cost 

function 
ai (£/MW2h) bi (£/MWh) ci (£/h) Pi,min (MW) Pi,max (MW) 

P1 0.0612 33.0461 0 50 200 

P2 0.2892 28.9153 0 20 80 

P3 1.0327 16.5230 0 15 50 

P4 0.1378 53.6999 0 10 35 

P5 0.4131 49.5691 0 10 30 

P6 0.4131 49.5691 0 12 40 

 10 

Table 2 Coefficients in the emission functions and constraints in the power outputs of the IEEE 30 buses 11 
system with 6 thermal generators [69]. 12 

Emission functions di (t/MW2h) ei (t/MWh) fi (t/h) 

P1 0.0126 -1.2000 22.983 

P2 0.0200 -0.1000 25.313 

P3 0.0270 -0.0100 25.505 

P4 0.0291 -0.0050 24.900 

P5 0.0290 -0.0040 24.700 

P6 0.0271 -0.0055 25.300 

 13 

Table 3 shows the ramp rates of the 6 thermal generators of the IEEE 30 buses system [69]. 14 
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Table 3 Ramp rates of the IEEE 30 buses system with 6 thermal generators [69]. 1 

Ramp rate RRU (MW/h) RRD (MW/h) 

P1 65 85 

P2 12 22 

P3 12 15 

P4 8 16 

P5 6 9 

P6 8 16 

 2 

Furthermore, the spinning reserve in the UK is operated as Short Term Operating Reserves (STOR) [71]. It 3 

was 4 GW in 2010 and will be double this value by 2020 due to the rapidly increasing wind power capacity 4 

[53, 72]. In order to increase the robustness and reduce the unpredictability of the wind power, the spinning 5 

reserve is required to be a fast response to unpredictable generators. Therefore, the increase in wind power 6 

leads to more STOR to standby. This represents about 9.4% of the total capacity in 2020 and thus the spinning 7 

reserve is approximated to be 9.4% in this system. 8 

The wind power cost is the strike price in the delivery year at 105 £/MWh for 2021/22  [73, 74]. The under 9 

and over estimation wind power cost are according to the wind turbine in [75], where the overestimation 10 

coefficient is 14 £/MWh and the underestimation coefficient is 7.7 £/MWh. 11 

In this research, the carbon price in the UK from 2010 to 2050 are used in the model according to the Fourth 12 

Carbon Budget by the Committee on Climate Change [2], which are shown in Table 4. The carbon price in 13 

2010 is zero because the carbon price floor policy only started in 2013. 14 

Table 4 The carbon price floor (CPF) in the UK [2]. 15 

Year 2010 2020 2030 2040 2050 

Carbon price (£/tCO2e) 0 27 70 135 200 

 16 
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3.1. Case 1 1 

Two types of analysis will be applied to this case, one is the inter-day and the other is the intra-day. The inter-2 

day analysis gives the optimization results in different scenarios for the whole day and the intra-day analysis 3 

indicates the hourly optimization results in different scenarios on a typical day. 4 

3.1.1. Inter-day results 5 

For an inter-day analysis, 60 scenarios using 3 different factors, namely wind power penetration, CPF and 6 

EPS, are considered. The scenarios are under 3 different wind power penetrations, 10%, 20% and 30%, 7 

respectively, and 5 CPF, which is due to the scenarios in different years in Table 4.  8 

From the calculation of the unlimited emission scenarios, the minimum emission level is about 200 tCO2e/h 9 

at 10% wind power penetration, 180 tCO2e/h at 20% penetration and 160 tCO2e/h at 30% penetration. 10 

Therefore 5 different emission limits of EPS are undertaken, namely unlimited, 230 tCO2e/h and 210 tCO2e/h 11 

for all wind penetrations, 190 tCO2e/h for 20% and 30% penetration and 170 tCO2e/h for 30% penetration 12 

only. The corresponding demand is the demand in Case 1. 13 

Moreover, as the electricity demand in Figure 4 is given every half an hour, in order to analyse the inter-day 14 

results, bases in the energy-power convert equation, where the time step in Case 1, is 0.5 h.  On assuming that 15 

the power output is constant between every 2 time steps, the estimated energy in a day could be found. Further, 16 

the optimized results at each time step will be approximately multiplied by 0.5 h in order to obtain the total 17 

cost and emission of the typical day.  18 

Figure 6 shows the Pareto Front (PF) of the emission and total cost on a typical day for the given system for 19 

a day with 10% to 30% wind power penetration, different CPF and unlimited to highly restricted emission 20 

limits of EPS. 21 
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 1 

Figure 6 Case 1: PF for the given system of a day with (a) no emission limit, (b) 230 tCO2e/h, (c) 210 2 
tCO2e/h, (d) 190 tCO2e/h, and (e) 170 tCO2e/h emission limit of EPS. 3 

As shown in Figure 6, for the given electrical system with the constant fuel and wind power cost (without 4 

considering inflation), the total cost in the Sheffield region on the typical day increases by about a factor of 6 5 

from 2010 to 2050, from £170k when the carbon price is 0 in 2010 to £1030k when the carbon price is 6 

increased to 200 £/t CO2e in 2050 due to the CPF applied.  7 

From Figure 6, it can be seen that the EPS dominates the cost and the emissions before 2020 and the wind 8 

power penetration does not significantly affect the cost and emission. This is because the wind power cost is 9 

higher than the fuel and emissions costs. In 2020, the emissions under the 190 tCO2e/h emission limit in (d) 10 

reduces by 6.7% compared to the no EPS model (a) in the system with 20% wind power penetration. However, 11 
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the cost only increases 2.0%. Further, the emission under the 170 tCO2e/h emission limit (e) reduces to 8.7% 1 

with 30% wind power penetration and the cost increases by 5.4%.  2 

Moreover, according to (a) to (d) in Figure 6, the wind power penetration becomes a high impact factor on the 3 

cost and emissions due to the high CPF after 2020. In 2050, high wind power penetration shows its superiority 4 

in both the cost and emissions. The cost of the scenarios with 30% wind penetration are 5.6% and 3.5% less 5 

than the cost for the 10% and 20% wind penetration, respectively, at the same EPS conditions. Meanwhile, 6 

the emissions in the scenarios with 30% wind penetration are 12.0% and 7.0% less than the cost of the 10% 7 

and 20% wind penetration, respectively. 8 

3.1.2. Intra-day results 9 

In the intra-day analysis, 2 scenarios are considered, namely the Gone Green scenario and the No Progression 10 

scenario [76]. Gone Green is a scenario where the energy policies and innovations are effective in reducing 11 

the emissions to achieve the 2050 carbon reduction target, which is 80% of the 1990 level. In addition, No 12 

Progression is a scenario where the power activities are as at present where fossil fuels dominate the power 13 

generation and there are only a few renewable resources installed, and the energy policies are as at present. 14 

The two scenarios are modelled in Table 5 according to the data provided by [2, 72, 76, 77]. The data has been 15 

modified because the renewable resources in the Sheffield region are less than that over all the UK. Therefore, 16 

the Gone Green scenario in this case in Table 5 has a lower renewable penetration and higher emission limit 17 

compare to that in the overall UK scenario, which is 34% in 2020 and zero emission in 2045 [78]. 18 

Table 5 Case 1: Future energy scenarios for the Gone Green and No Progression.  19 

Year 
Gone Green No Progression 

Wind power 
penetration (%) 

Emission limit of 
EPS (tCO2e/h) 

Wind power 
penetration (%) 

Emission limit of 
EPS (tCO2e/h) 

2010 10 n/a 10 n/a 

2020 10 230 10 230 

2030 20 210 10 230 

2040 30 190 10 210 

2050 30 170 20 210 
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 1 

 2 

Figure 7 Case 1: Cost of the Gone Green scenario from 2010 to 2050. 3 



27 
 

 1 

Figure 8 Case 1: Cost of the No Progression scenario from 2010 to 2050. 2 

Figures 7 and 8 are the cost of the Gone Green and No Progression scenarios, respectively, and it can be seen 3 

that the cost increases exponentially from 2010 to 2050. Further, the cost increases in the Gone Green scenario 4 

is 5% less than that in the No Progression scenario in this model and this is because of the high CPF and wind 5 

power penetration. 6 

Meanwhile, the cost difference within a day becomes not that significant. In 2010, the cost at the peak time is 7 

about 1.8 times that at the off peak time. However, this value becomes 1.3 in the Go Green scenario and 1.4 8 

in the No Progression scenario in 2050. This is because of the emission differences in these two scenarios as 9 

shown in Figures 9 and 10. With increasing carbon price, the emissions lead to a higher influence in cost 10 

compared to the fuel cost. 11 
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 1 

Figure 9 Case 1: Emissions in the Gone Green scenario from 2010 to 2050. 2 

 3 

Figure 10 Case 1: Emissions in the No Progression scenario from 2010 to 2050. 4 
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Figures 9 and 10 show the emission of the Gone Green and No Progression scenarios, respectively, from 2010 1 

to 2050. Clearly, it can be seen that the emissions in the Gone Green scenario are much lower than in the No 2 

Progression from 6:00 to 17:00 after 2030. In the Gone Green scenario, the emissions are reduced by 36% at 3 

the peak time and by 24% on average from 2010 to 2050. However, in the No Progression scenario, the 4 

emissions are reduced by 29% at the peak time and by 20% on average. 5 

3.2. Case 2 6 

 7 

Figure 11 Power output at (a) Case 1: 30 min time interval, and (b) Case 2: 10 min time interval, where 8 
P1 to P6 are conventional generators 1 to 6 and W is the scheduled wind power. 9 
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In this case, the model is in the scenario with 20% wind power penetration and no EPS and zero £/tCO2e CPF. 1 

This is because the maximum demand difference between two continuous time steps is higher than the 10% 2 

wind penetration but less than 20%. In addition, in the scenario with no EPS and zero £/tCO2e CPF, the impact 3 

of the change in the ramp rate can be seen more clearly.  4 

It can be seen clearly from Figure 11 that the power output changes between each time step, but in (b) it is 5 

sharper. In addition, it is noticeable that before 6:00 am there is a sudden increase in the electricity demand 6 

requirement. In (a), as the conventional power generators have enough time to increase, the scheduled wind 7 

power is not used due to the high price in the no EPS and CPF scenario. Moreover, in (b), the conventional 8 

power generators are unable to supply enough power in that short time interval due to the limited ramp rate of 9 

the conventional generators. Therefore, the wind power is used at this time step, which is shown under the red 10 

colour area. The different time intervals in the demand may lead to the different power outputs. 11 

 12 

Figure 12 Case 1 and 2: Total cost at each time step of a typical day in the Sheffield region with the 10 13 
min and 30 min time intervals, respectively. 14 

Figure 12 is the total cost at each time step on a typical day in the Sheffield region with the 10 min and 30 min 15 

time intervals, respectively, which is derived from Equation (8)(6). It is observed that the costs are slightly 16 
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different at the same instant of time. This is because the different previous stage leads to different generator 1 

usage in the current stage, and this is especially clear at about 6:00 am, where the wind power is used in Figure 2 

11 (b), which is under the red colour area, the cost increases dramatically. 3 

Moreover, for the 10 min model, although the cost of the first time step of the three time steps with the same 4 

demand is higher than that of the 30 min model, the costs in the following time steps still tend to the same 5 

optimal result as for the 30 min model. 6 

 7 

Figure 13 Case 1 and 2: Emissions at each time step on the typical day in the Sheffield region with the 8 
10 min and 30 min time intervals, respectively. 9 

Figure 13 shows the emissions at each time step on the typical day in the Sheffield region with the 10 min and 10 

30 min time intervals, respectively, which is derived from Equation (6). In Figure 13, the emissions at 06:00 11 

with the 10 min time interval is less than that of the 30 min time interval and this is because the use of the 12 

wind power leads to less emissions.  13 
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4. Discussion 1 

From the inter-day results for the Case 1, it can be seen that the total cost increases dramatically due to the 2 

carbon price applied for the given electrical system with the constant fuel and wind power cost (without 3 

considering inflation). This produces the increase in the electricity price or the reduction in the profit for the 4 

system owner. 5 

In addition, the EPS dominates the cost and emissions from 2010 to 2020 as the wind power costs are higher 6 

than the fuel and emissions costs. After 2020, the wind power penetration has a high impact factor on the cost 7 

and emissions due to the high carbon price. Therefore, by 2050, the high wind power penetration, namely the 8 

renewable power, shows its superiority and advantages in both the cost and emissions in power generation.  9 

Moreover, the intra-day results of Case 1 describe the cost and emissions of the Go Green and No Progression 10 

scenarios. The emissions reduction in the Go Green scenario compared to the No Progression scenario is 11 

higher than the cost reduction for the given electrical system. However, this model does not consider the 12 

reduction in the wind power strike price and the application of Carbon Capture and Storage (CCS) 13 

technologies for the future scenarios. According to [74, 79-81], the strike price of wind power will keep on 14 

reducing. However, as yet, the far future strike price is not given. In addition, CCS can reduce by 90% the 15 

emissions from the generator [82]. However, the coal CCS strike price will increase to above 140 £/MWh by 16 

2020 [83, 84], which is even higher than the strike price of the wind power. Further, it is important to note 17 

that there will be no CCS applied to industry in the UK until the 2020s and there are no planned projects in 18 

the Sheffield region before 2030 [83-86].  19 

In the Case 2, when the demand changes greatly, the model can supply the demand by using only the cheapest 20 

generators. However, if the model has a shorter time interval, or changes dramatically, then more generators 21 

and the rapid response resources will be used to supply the demand. Of course, this increases the total cost. 22 

Furthermore, this model can work effectively and satisfy different time intervals in real-time dynamic 23 

dispatch. 24 
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To conclude, the benefit to the system owner of using renewable power may not be that significant as in recent 1 

years. However, under the current UK policy, installation of every 10% renewable power penetration will 2 

result in an approximate 3% cost reduction for the given system. Therefore, in a mid to long-term strategy, 3 

renewable power will have its superiority in both the economic and emissions aspects.  4 

In future research, start-up (hot, warm, cold) and shut-down decision and costs are interesting operation phase 5 

and cost terms interesting operation phase and cost terms that worth be taken into account, especially in a 6 

power system with increasing penetration of wind power. The flexibility of a power systems is a challenging 7 

issue that needs to be considered.[87, 88]. In addition, the uncertainty in the load is also an interesting and 8 

important part in the smart grid. Some recent researches investigate the uncertainty in the load by taking into 9 

account the confidence level [89], demand response [38] or demand side management [90, 91]. 10 

5. Conclusion  11 

In this paper, a DEED model has been developed under current UK energy policies, which considers coal-12 

powered generators and wind-powered generators with emission allowances. This DEED model considers 13 

both the economic and environmental aspects in the dynamic electrical system. It minimizes the total fuel cost 14 

and the emission cost of the system while satisfying the demand and power system constraints over a dispatch 15 

period. Further, it introduces EPS and CPF constraints and considers the UK energy policies in the model. 16 

Two case studies in the Sheffield region are supplied by an IEEE 30 bus system with six coal-powered 17 

generators and a wind-powered generator at different scenarios are performed.   18 

It observed from the results obtained that the proposed DEED model has the ability to effectively generate 19 

solutions for different time intervals in the real-time dynamic dispatch. This research uses current practical 20 

data in the UK to obtain operational strategy. Further, the total cost increases dramatically due to the carbon 21 

price applied. In addition, the EPS dominates the cost and emissions before 2020, then the wind power 22 

penetration has a high impact factor on the cost and emissions due to the high CPF. Moreover, the emissions 23 

reduction in the Go Green scenario compared to the No Progression scenario is higher than the cost reduction. 24 
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Furthermore, the energy strategy faces to the challenge of high CPF and low EPS in the future, and the 1 

emission cost will become to dominate the total cost. Therefore, a more general conclusion that can be 2 

highlighted is that the renewable power has the superiority in both the economics and emissions to a mid to 3 

long-term strategy to the UK and the restrictions should be imposed on the conventional power with high 4 

emissions.  5 

 6 
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