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Deep Learning based Single Carrier

Communications over Time-Varying Underwater

Acoustic Channel
Youwen Zhang, Junxuan Li, Yuriy Zakharov, Senior Member, IEEE, Jianghui Li, Member, IEEE, Yingsong Li,

Member, IEEE, Chuan Lin, Xiang Li

Abstract—In recent years, deep learning (DL) techniques have
shown great potential in wireless communications. Unlike DL-
based receivers for time-invariant or slow time-varying channels,
we propose a new DL-based receiver for single carrier commu-
nication in time-varying underwater acoustic (UWA) channels.
Without the off-line training, the proposed receiver alternately
works with online training and test modes for accommodating
the time variability of UWA channels. Simulation results show a
better detection performance achieved by the proposed DL-based
receiver and with a considerable reduction in training overhead
compared to the traditional channel-estimate (CE) based decision
feedback equalizer (DFE) in simulation scenarios with a mea-
sured sound speed profile. The proposed receiver has also been
tested by using the data recorded in an experiment in the South
China Sea at a communication range of 8 km. The performance
of the receiver is evaluated for various training overheads and
noise levels. Experimental results demonstrate that the proposed
DL-based receiver can achieve error free transmission for all
288 burst packets with lower training overhead compared to the
traditional receiver with a CE-based DFE.

Index Terms—Channel equalization, deep learning, deep neu-
ral network, DFE, machine learning, single carrier communica-
tion, underwater acoustic network.

I. INTRODUCTION

Underwater acoustic (UWA) channel features frequency-

dependent limited bandwidth, long time-varying multipath

spread and severe Doppler effect, which pose a great chal-

lenge for reliable and effective UWA communications [1]–

[7] and networks [8]–[10], leading to relatively low data

rates in a range between a few bits/s (bps) to several tens

of kbits/s (kbps) and often unsatisfied performance [11].
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Generally, single-carrier (SC) modulation schemes with time-

domain equalization techniques enjoy high spectral efficiency

and robust performance at the cost of a high receiver com-

plexity [1], [4], [12]. Historically, in order to combat the

inter-symbol interference (ISI) induced by the time-varying

multipath spread, many channel equalization techniques have

been thoroughly studied, g.e., linear equalizer (LE), decision

feedback equalizer (DFE) etc. [13]–[16]. However, there is still

a great room for the improvement in UWA communication

systems.

In recent years, machine learning techniques have attracted

attention in different fields. In particular, deep learning (DL)

techniques feature great potential for solving nonparametric

problems such as object detection and recognition, voice

recognition, and object tracking [17]–[19], [21]. Although DL

has been adopted for terrestrial radio wireless communication

only recently [22]–[25], it has also been utilized in UWA com-

munications [26]. In [22]–[24], DL techniques were proposed

for joint channel estimation and symbol detection in OFDM

systems. Simulation results demonstrate that deep neural net-

work (DNN) has the ability to learn and analyze characteristics

of wireless channels with nonlinear distortion and interference

in addition to the frequency selectivity. In [25], learning

assisted (LA) algorithms are proposed for estimation of time-

varying channels. The DNN based channel estimators are

utilized to track channel variations. Simulation results validate

the effectiveness of the algorithms in online tracking the

channel variations. In [26], inspired by the works in [23],

[24], a DL-based UWA OFDM communication scheme is

proposed and verified by simulation in a UWA channel with

a measured sound speed profile (SSP). Despite the success of

DNN in time-invariant or slow time-varying channels, DNN-

based wireless communication over fast time-varying channels

induced by severe Doppler effects has not been studied yet.

In this paper, we propose a DL-based receiver for UWA SC

communications over time-varying channels. As compared to

existing works, our main contributions are summarized below:

1) Different from the existing DL-based receivers with the

offline training and online test modes, we propose a DL-

based receiver with online training and test modes for

accommodating time-varying UWA channels.

2) The performance of the proposed DL-based receiver

is evaluated by a statistical channel simulator with a

measured SSP. Numerical results show that the proposed

receiver achieves a better detection performance than
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the traditional CE-based decision-feedback equalization

(DFE) receiver and with lower training overhead.

3) The performance of the proposed receiver has been

tested in the South China Sea experiment, at a commu-

nication distance of 8 km. We show that the proposed

DL-based receiver can achieve a substantial performance

gain over the traditional CE-based DFE receiver with

the second-order PLL. With less training overhead, the

proposed receiver can achieve error-free transmission of

288 data packets at the signal-to-noise ratio (SNR) as

low as SNR=5dB, while the traditional CE-based DFE

receiver cannot achieve that even at as high SNR as

SNR = 15 dB and with a significantly longer training

sequence. At the best of our knowledge, this is the first

time that a DL based receiver is validated using data

from a sea trial instead of simulated data.

The rest of this paper is organized as follows. In Section

II, the time-varying UWA SC communication system model

is presented and the CE-based DFE receiver with second-

order PLL is reviewed. Section III presents the proposed DL-

based receiver for UWA communication over time-varying

UWA channels. Simulation results are presented in Section

IV. Section V presents results from the sea trial. Conclusions

are drawn in Section VI.

Notation: Matrices and vectors are denoted by boldface

uppercase and lowercase letters, respectively. (·)
†
, (·)

∗
and

(·)T denote the Hermitian transposition, complex conjugate

and transposition, respectively.

II. SYSTEM MODEL FOR UWA SC COMMUNICATIONS

OVER TIME-VARYING CHANNEL

A. Signaling Model

We consider a single-input single-output UWA SC com-

munication system. Fig. 1 depicts the block diagram of the

transmitter. The binary information bit vector b is split into

groups of P bits, where P represents the number of bits

per symbol, and each group is mapped to one of the 2P -ary

symbols of the alphabet A = {αp}
P

p=1, where αp is a complex

number. The sequence of 2P -ary symbols is multiplexed with a

training symbol sequence of length Nt, producing the payload

symbol vector x
∆
= {xn}

Ns

n=1. Symbols from the vector x pass

through a square-root raised-cosine pulse-shaping filter with

an impulse response g (t) to produce the baseband signal b(t).
The complex baseband signal b(t) is expressed as [27]

b (t) =

Ns
∑

n=1

xng (t− nTs), (1)

where xn is the transmitted symbol, g (t) is a square-root

raised cosine pulse-shaping filter with roll-off factor γ, Ts is

the symbol interval. The signal b (t) is then modulated onto

a carrier of angular frequency ωc to produce the transmitted

signal s(t) as [1], [27]

s (t) = Re{b (t) ejωct}. (2)

Preamble and postamble linear frequency modulation

(LFM) waveforms are added before and after s(t) for the

purpose of the coarse frame synchronization and Doppler

estimation.

b t s t

Fig. 1. Block diagram of the transmitter for the UWA SC communication
system.

In this paper, we consider the narrowband signaling model,

i.e., the Doppler effect can be represented as a carrier frequen-

cy offset without time scaling. We assume that the maximum

channel delay (in symbol intervals) is L.

So the received baseband signal distorted by multipath

spread and noise can be expressed as

yb(t) =
L−1
∑

l=0

βl(t)b
(

t− τl
)

ejωc(−τl) + η (t) , (3)

where βl(t) is time-varying amplitude fading factor corre-

sponding to the l-th path, τl is the delay associated with the

l-th path and η (t) is additive complex white Gaussian noise

(AWGN) with zero mean and variance σ2
η at hydrophone,

which is independent from b (t).

B. Traditional CE-based DFE Receiver with PLL

Fig. 2 depicts the receiver with the traditional CE-based

DFE and PLL. This type of DFE is widely used for combatting

the inter-symbol interference (ISI) and phase distortion in

UWA communication channels [15], [27].

On the receiver side, the passband signal yp(n) is trans-

formed into baseband signal yb(n) by a demodulator, and the

baseband signal yb(n) is downsampled into y(k), where k is

the time index in the symbol interval Ts. Assume that a DFE

consists of an Lf -length feedforward filter (FFF) with the tap

vector f(k) and Lb-length feedback filter (FBF) with the tap

vector g(k), and the equalizer delay is l [27], [28].

At time instant k, the transmitted symbol x(k− l) estimated

by DFE as [28]

x̂(k − l) = yT (k)f(k) + x̂T (k)g(k), (4)

where y(k) = [y(k), y(k − 1), · · · , y(k − Lf + 1)]
T

,

and the already estimated symbol vector x̂(k) =
[x̂(k − l − 1), x̂(k − l − 2), · · · , x̂(k − l− Lb)]

T
. Fig. 3

depicts the structure of this type DFE in details. The

equation (4) can be written in vector form as [27], [28]

x̂(k − l) = mT (k)n(k), (5)

where

m(k) =

[

y(k)

−x̂(k)

]

,n(k) =

[

f(k)

g(k)

]

. (6)

With an adaptive channel estimator, we can estimate the

equivalent time-varying baseband channel matrix Ĥ(k) by
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Fig. 2. Block diagram of the receiver structure for the traditional CE-based DFE.
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Fig. 3. Structure of a symbol-spaced DFE. x̄(k−l) denotes the hard decision
of x̂(k − l)

using the training symbols or the hard decisions of estimated

data symbols [28]. Finally, the equalizer taps f̂(k) and ĝ(k) are

generated and updated by solving the equivalent mean square

error (MSE) equation as follows [27]

Γ(k)n(k) = Ψ(k), (7)

where Γ(k) = E
{

m(k)mH(k)
}

, Ψ(k) = E {m(k)x̂∗(k−
l)}.

In order to compensate the phase distortion induced by the

Doppler effect, the second-order PLL is incorporated into the

CE-based DFE for joint carrier phase synchronization and

equalization [29]. For easy understanding, we set the decision

delay l = 0, so at time instant k, output of the FFF is given

by

p(k) = f†(k)y(k)e−jθ(k), (8)

and the output of the FBF is written as

q(k) = ĝ†(k)x̂(k), (9)

where the time-varying phase can be tracked by the second-

order PLL as follows [29]

θ(k + 1) = θ(k) +Kf1Φ(k) +Kf2

k
∑

i=0

Φ(i), (10)

where Kf1 and Kf2 are proportional coefficient and integral

coefficient of loop filter, respectively.

III. PROPOSED DL-BASED RECEIVER FOR UWA SC

COMMUNICATION OVER TIME-VARYING CHANNELS

A. Review of DNN

DNN is an artificial neural network (ANN) with multiple

hidden layers composed of many neurons [30]. Fig. 4 depicts

the general structure of a DNN model with Q > 3 layers,

where the layer 1 and layer Q are called as input layer and

output layer, respectively, and the other layers are hidden

layers. Data flow propagates from the input layer to the hidden

layers, then the output layer.

( )1
1
b

( )
1

ˆ Qb

Input Layer Hidden Layers Output Layer

( )1
j

( )1
1

( )1
J

( )1
jb

( )

( )
1

1

J
b

( )

( )ˆ
Q

Q

J
b

( )2
j

( )2
1

( )2
J

( )q
j

( )
1
q

( )q
J

( )1q
j

-

( )1
1
q-

( )1q
J

-

( )1Q
j

-

( )1
1
Q-

( )1Q
J

-

( )
1
Q

( )Q
J

Layer 1 Layer 2 qLayer QLayer

Fig. 4. General structure of a DNN model.

The input layer (i.e. layer 1) has J (1) variables in vector

b(1) =
[

b
(1)
1 , · · · , b

(1)
j , · · · , b

(1)

J(1)

]T

, then the j-th neuron’s

input of layer 2 is

a
(2)
j =

J(1)
∑

i=1

u
(1)
ij b

(1)
i + v

(1)
j , j = 1, 2, · · · , J (2), (11)
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where u
(1)
ij is a weight between the i-th neuron of layer 1

and the j-th neuron of layer 2, v
(1)
j is a bias of the j-th

neuron in layer 2, J (2) is the number of neurons of layer 2.

In each hidden layer, there is a nonlinear activation function

f(·) which transforms the linear combinations of inputs to

non-linear outputs. The j-th neuron’s output of layer 2 is thus

given by [30]

b
(2)
j = f (2)

(

a
(2)
j

)

. (12)

Then b(2) =
[

b
(2)
1 , · · · , b

(2)
j , · · · , b

(2)

J(2)

]T

will be the next

layer’s input. Similarly, the j-th neuron’s input a
(q)
j and output

b
(q)
j of layer q are

a
(q)
j =

J(q−1)
∑

i=1

u
(q−1)
ij b

(q−1)
i + v

(q−1)
j , j = 1, 2, · · · , J (q), (13)

b
(q)
j = f (q)

(

a
(q)
j

)

, (14)

where J (q−1) and J (q) are the number of neurons of layer

(q − 1) and q, respectively.

The nonlinear activation functions may be the Sigmoid func-

tion fS(n) =
1

1+e−n , or Rectified Linear Unit (ReLU) function

fR(n) =max(0, n) [30]. Hence, the final output of the DNN

b̂(Q) =
[

b̂
(Q)
1 , · · · , b̂

(Q)
j , · · · , b̂

(Q)

J(Q)

]T

is a cascade nonlinear

transformation of input b(1) =
[

b
(1)
1 , · · · , b

(1)
j , · · · , b

(1)

J(1)

]T

,

and can be expressed as

b̂(Q) = f
(

b(1), · · · ,b(q), · · · ,b(Q−1);u(1), · · · ,u(q),

· · · ,u(Q−1); v(1), · · · ,v(q), · · · ,v(Q−1)
)

= f (Q−1)
(

f (Q−2)
(

· · · f (1)
(

b(1)
)))

, (15)

where f (q)(·) is the activation function adopted by layer q.

Vectors u(q) and v(q) denote the weights and bias at layer q.

Through the offline or online training process, the weights and

bias can be optimized following a target function.

B. Proposed DL-based Receiver

In a time-invariant channel, a DL-based receiver usually

comprises two stages: 1) offline training stage, and 2) online

deployment/test stage [23]. However, this type of training and

deployment mode is not suitable for the DL-based receiver

over time-varying channels.

In order to accommodate the time variability of UWA

channels, we propose a DL-based receiver with online training

and test mode. As shown in Fig. 5(a), the proposed receiver is

alternatively working at two modes: 1) online training mode,

and 2) online test mode. As shown in Fig. 5(b), the whole

payload is divided into D sub-blocks with Ns symbols in each.

For the i-th sub-block, the first {N i
p}

D
i=1 symbols are utilized

as the training symbols and the remaining N i
d = Ns − N i

p

symbols are the data symbols. So the number of total training

symbols is Np =
∑D

i=1 N
i
p. The resulting training overhead

is β = Np/Ns/D.

Yes

DNN

Model

b̂

Online test mode

( )p ny

Online training mode

( )ky

DNN

Model

No

vu

2
L a£

Demodulator
( )b ny

Downsampler

Training symbols

Received symbols

Received symbols

(a)

pilots ...data pilots data pilots data pilots data

training

mode

test

mode
u v

training

mode

test

mode
u v

training

mode

test

mode
u v

...

1
b̂

2
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ˆ
Db

1
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1

dN
2

pN
2

dN
D

pN
D

dN
1D

pN
- 1D

dN
-

1

ˆ
D-b

(b)

Fig. 5. Structure of the proposed DL-based receiver for time-varying UWA
channels: (a) DL-based receiver, and (b) alternatively working between the
training mode and test mode.

When the receiver is receiving known training symbols, the

DL-based receiver switches to the online training mode. Given

the received symbols y(k), the known training symbols x(k)
and estimated symbols of previous sub-block, the DNN utilizes

the Adam (Adaptive moment estimation) optimizer which is

based on the stochastic gradient descent algorithm [30] to

minimize the mean-square error of the loss function given by

Li
2 =

1

N i
p

Ni
p−1
∑

k=0

(

b̂i(k)− bi(k)
)2

, i = 1, 2, · · · , D. (16)

The online training mode is stopped if Li
2 becomes lower than

a predefined threshold a as shown in Fig. 5(a) or if k = Np−1.

When the training mode ends, the DNN produces the weight

set u
∆
=
{

u(q)
}Q−1

q=1
and bias set v

∆
=
{

v(q)
}Q−1

q=1
, which are

utilized in the online test mode.

The DL-based receiver switches into the online test mode

after obtaining the weights vector u and bias vector v. In

the online test mode, we obtain the estimate {b̂i}Di=1 of the

transmitted symbols {bi}Di=1 by using the equation (15).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

DL-based receiver and compare it to the traditional DFE

receiver with the recursive least squares (RLS) based channel

estimator and embedded second-order PLL by using simulated

time-varying channels.
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Fig. 6. Measured SSP and predicted TL with a source at 50 m depth. The
transmission loss is shown in dB.

TABLE I
SIMULATION PARAMETERS SETUP

sea depth (H) 250 m

channel distance (d) 800 m

spreading factor (k) 1.7

speed of sound in bottom (cb) 1574 m/s

density in bottom (ρb) 1.269 g/m3

attenuation coefficient in bottom (α) 0.01875 dB/wavelength

minimum frequency (fl) 8 kHz

carrier frequency (fc) 12 kHz

bandwidth (B) 8 kHz

modulation type BPSK

sample frequency (fs) 48 kHz

symbol rate (Rs) 4 kHz

A. Simulation Environment

A statistical channel simulator [31] is used to generate the

time-varying UWA channels for evaluating the performance of

the proposed DL-based receiver and the traditional CE-based

DFE receiver. The parameters for the time-varying channel

simulator are listed in Table I. We use a SSP measured in

a sea experiment and shown in Fig. 6. We also compute the

transmission loss (TL) as shown in Fig. 6, the computation is

done using the Bellhop acoustic toolbox [31]. The maximum

TL is approximately 60 dB. In order to investigate how the

surface and bottom affect the UWA channel characteristics, we

construct three configurations of transducer-hydrophone pair

listed in Table II.

Following the parameters and configurations shown in Ta-

ble I and Table II, we obtain the time-varying UWA CIRs and

corresponding channel scattering functions as shown in Fig. 7,

Fig. 8, and Fig. 9. It can be seen that the simulated channels

are time varying.

B. Training Scheme

For short packet bursts, we adopt the same training scheme

for both the proposed DL-based receiver and the traditional

CE-based DFE receiver as shown in Fig. 10. For each received

TABLE II
DEPTH OF THE TRANSDUCER-HYDROPHONE PAIR

Configuration Transmitter Depth (m) Receiver Depth (m)

C1 50 50

C2 200 50

C3 200 200

packet with Ns = 500 symbols, the first Np symbols are uti-

lized as the training symbols and the remaining Nd = Ns−Np

symbols are the data symbols. The resulting training overhead

is β = Np/(Np + Nd), and the corresponding data rate is

(1− β)×Rs kbps.

For the proposed DL-based receiver, the DNN has Q = 4
layers, in which J (1), J (2), J (3) and J (4) are set to 128, 96,

48, and 32, respectively. All layers utilize the sigmoid function

as the active functions. The number of pilot symbols Np is set

to 64, then the resulting training overhead is β = 12.8%.
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Fig. 7. Simulated time-varying channel characteristics under the configuration
C1: (a) time-varying CIRs, and (b) corresponding channel scattering function.

For the traditional CE-based DFE receiver as shown in

Fig. 2, we set Np to 200 for ensuring that the traditional CE-

based DFE receiver can get good performance. The length of

the feed forward filter and feedback filter are set according to

the CIRs shown in Fig. 7, Fig. 8, and Fig. 9, but the following

parameters are common for all the three configurations: for-

getting factor λ of the RLS adaptive algorithm is set to 0.995,

proportional coefficient and integral coefficient of PLL, i.e.

Kf1 and Kf2 , are set to 0.001 and 0.000001, respectively.

C. Test Results

Following the above three simulation configurations, we

compare the performance of the proposed DL-based receiver

with that of the traditional CE-based DFE receiver in terms

of bit error rate (BER). As shown in Fig. 11(a), Fig. 11(b),

and Fig. 11(c), with lower training overhead, the proposed

DL-based receiver consistently outperforms the traditional CE-

based DFE receiver.
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Fig. 8. Simulated time-varying channel characteristics under the configuration
C2: (a) time-varying CIRs, and (b) corresponding channel scattering function.
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Fig. 9. Simulated time-varying channel characteristics under the configuration
C3: (a) time-varying CIRs, and (b) corresponding channel scattering function.

pN dN

Fig. 10. Training scheme for the proposed DNN-based receiver and the
traditional CE-based DFE receiver.
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Fig. 11. BER performance of the proposed DL-based receiver and the
traditional CE-based DFE receiver under the configuration: (a) C1, (b) C2,
and (c) C3.

V. EXPERIMENTAL RESULTS

A. Experimental Environment

The experiment was carried out in the South China Sea in

November 2014. Fig. 12 depicts the layout of this experiment.

The sea depth at the experimental site is about 99 m. One

transducer was deployed to a depth of approximately 15 m

from a ship. During the experiment, the ship was drifting

on the sea surface. A receive vertical linear array of 48

hydrophones was moored with the first hydrophone at about

72 m below the surface, and other hydrophones evenly spaced

by 0.25 m. The communication range was about 8 km at

the start of the experiment. The system timers of transmitter

and received array are synchronized by the GPS time before

deployment.

B. Data Structure

For transmission, the input bits were encoded by a rate

Rc = 1/2 convolutional coder with generator polynomial

[171, 133] in octal format. The carrier frequency was fc = 3
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Fig. 12. Layout of the South China Sea experiment.

kHz and the symbol rate was 1 k symbols per second (ksps).

The pulse shaping filter was a square-root raised cosine filter

with a roll-off factor of 0.5 [27], leading to an occupied

channel bandwidth of about 1.5 kHz. The sampling rate was 25

kHz at the receiver end. The structure of the transmitted data

stream and relevant parameters are shown in Fig. 13. Pream-

ble up-chirp and postamble down-chirp, Doppler-insensitive

waveforms, were added before and after the data burst for

coarse frame synchronization and estimation of an average

Doppler shift over the whole data burst. Following the frame

synchronization signal is one data packet (payload). Only data

with BPSK modulation was used for performance evaluation

for the proposed DL-based receiver. The payload is separated

from up-chirp or down-chirp signal by the gap of the duration

150 ms for avoiding the inter-block interference. The length

of each payload is 5500 symbols between two guard intervals.

Each burst packet is transmitted every 6.1 s. The approximate

SNR, which is estimated by using the signal part and silent

part of the received signal, is in the range of 15 dB to 16 dB.

LFM
Data

Sequence

Training

Sequence 1

Training

Sequence 2
LFM

150ms 150ms 150ms150ms500ms 500ms4500ms

Guard

Time

Guard

Time

Fig. 13. Structure of the signal transmitted in the sea experiment.

In order to show characteristics of the UWA channel during

the experiment, we estimate the CIRs by using the matched

filter applied to the preamble and postamble chirp signals and

the RLS algorithm applied to the data signals. It can be seen

that the channel is fast time varying within a single burst. From

Fig. 14, we can observe that the channel multipath spread

is about 15 ∼ 30 ms, corresponding to a channel length of

15 ∼ 30 taps in terms of the symbol rate Rs = 1 ksps. The

arrival paths fluctuate very rapidly and CIRs are clustering.

C. Training Scheme

In order to evaluate the performance of the proposed DL-

based receiver and traditional CE-based DFE receiver, we use

6 transmitted bursts. For each burst, we have 48 received

packets, so in total we have 288 received packets. We choose

5000 symbols including training sequence and data sequence

in each packet depicted in Fig. 13 to test the performance of

above receivers.

For the proposed DL-based receiver, the DNN has Q = 5
layers, in which J (1), J (2), J (3), J (4) and J (5) are set to 96,

48, 16, 8, and 1, respectively. All layers utilize the sigmoid

function as the active functions. Training symbols are peri-

odically inserted into the data to train the DNN. As shown

in Fig. 15(a), the whole payload is divided into D = 10 sub-

blocks with Ns = 500 symbols in each. For the i-th sub-block,

the first N i
p symbols are utilized as the training symbols and

the remaining Nd = Ns −N i
p symbols are the data symbols.

So the number of total training symbols is Np =
∑10

i=1 N
i
p.

The resulting training overhead is β = Np/500/10.

For the traditional CE-based DFE receiver, as shown in

Fig. 15(b), we follow the training scheme usually used in

this receiver, then with Ns = 5000, the first Np symbols are

utilized as the training symbols and Nd = Ns −Np symbols

are the data symbols. The length of the feed forward filter and

feedback filter are set to 60 and 29 according to the channel

characteristic analysis. Forgetting factor is 0.995, proportional

coefficient and integral coefficient of the PLL loop filter are

set to 0.001 and 0.000001, respectively.

tN dN

(a)

pN dN

(b)

Fig. 15. Training schemes for (a) proposed DNN-based receiver; (b)
traditional CE-based DFE receiver.
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Fig. 14. Examples of the CIR estimated over one burst transmission. The CIRs measured between transducer and first hydrophone are shown in (a), (c),
(e). The CIRs measured between transducer and last hydrophone are shown in (b), (d), (f). CIR is measured using: (a) and (b) the preamble up-chirp with
the correlation method; (c) and (d) the postamble down-chirp with the correlation method; (e) and (f) data signals and the classical RLS algorithm with
λ = 0.995.
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Fig. 16. Phase estimated by PLL at SNR ≈ 15 dB.
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Fig. 17. BER versus the training overhead at SNR ≈ 15 dB.

D. Test Results

Fig. 16 shows the time-varying phase estimated by using the

PLL for one received signal packet. Fig. 17 shows how the

performance of receivers is effected by the training overhead.

We observe that the total number of training symbols Np

significantly affects the performance of the traditional CE-

based DFE receiver. It can be seen that, when Np is less than

50, the traditional CE-based DFE receiver cannot converge.

The performance of the proposed DL-based receiver can be

improved with a few training symbols per subblock. When

N i
p = 5 for the i-th subblock, i.e. the total number of training

symbols Np = 10 × 5 = 50, the BER can reach 10−2. With

N i
p = 6, the proposed DL-based receiver can reach zero BER

for all 288 received packets. The traditional CE-based DFE

receiver needs at least 60 training symbols to converge to a

BER below 3.7× 10−4.

For the traditional CE-based DFE receiver, the improvement

in BER performance is small with the increase of training

symbols. The error free transmission cannot be achieved even

with a training overhead β = 300/5000 = 6%, while the

proposed DL-based receiver only needs 60 pilot symbols to

achieve the error-free transmission for all 288 packets with a

training overhead as low as β = 6× 10/5000 = 1.2%.

Since the data were originally acquired in a relatively

high SNR, we can evaluate the performance of the receivers

over different noise levels by adding recorded noise into the

received data. Fig. 18 and Fig. 19 show how the performance
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Fig. 18. BER versus the training overhead at SNR ≈ 10 dB.
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Fig. 19. BER versus the training overhead at SNR ≈ 5 dB.

of the receivers is effected by the lower SNR.

Fig. 18 shows the performance at an SNR of 10 dB. It can

be seen that, when Np is less than 50, the traditional CE-based

DFE receiver cannot converge. With Np = 60 BER can only

reach BER=1.1×10−3. With the proposed DL-based receiver,

when the N i
p = 5 for each subblock, i.e. the total training

number is 50, all 288 packets can be received without errors.

Fig. 19 shows the receiver performance at SNR= 5 dB. It

can be seen that, with the the lower SNR, the performance of

the two receivers degrades. For the traditional CE-based DFE

receiver an error floor is BER=7.5× 10−3. The proposed DL-

based receiver, with Np = 400, can reach zero BER with a

training overhead β = 400/5000 = 8%.

VI. CONCLUSIONS

In this paper, we have proposed a DL-based receiver for

UWA SC communications over time-varying UWA channels.

Unlike the DL-based receivers over time-invariant channel,

the proposed receiver works with the online training stage

and online test stage for accommodating the time variability

of UWA channels. Simulation results show that the proposed

receiver outperforms the traditional CE-based DFE receiver

even if using a significantly shorter training sequence. The

proposed receiver has also been tested using sea trial data

recorder at a communication range of 8 km. The performance

of the receiver is evaluated for various training overheads and

SNRs. Experimental results demonstrate that the proposed DL-

based receiver achieves error-free transmission at all SNR

conditions with lower training overhead compared to the

traditional CE-based DFE receiver, which cannot provide the

error-free transmission.
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