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Introduction 

A challenge to formulate composites with high solid 
loading is the vast change in rheology that occurs when the 
solid loading increases. This change in rheology could 
prevent such composites from being processed in certain 
processes, for example high load content inks are 
challenging for piezo-based inkjet-printing due to the 
associated high viscosity [1].  
In piezo-based inkjet printing of digital composites, instead 
of fabricating structures from a reservoir of an already-
blended material, digital composites can be deposited from 
different reservoirs [2,3] each contains a material that can 
be deposited at high resolution (drop diameter is ~50µm 
and a thickness of < 10µm) using additive manufacturing 
process known as material jetting in order to produce a 
digital blend on the substrate as shown in Figure 1. 

 

Figure 1, Schematic diagram of the digital composite printing 

apparatus. 

 
Material jetting (MJ), based on inkjet printing technology, 
holds a high potential for depositing multiple materials in 
a single process. MJ has been used as a fabrication method 
to deposit a wide range of functional inks with a diverse 
spectrum of properties [4,5]. The fact that inks are ejected 
from print-heads with a large number of micro-nozzles 
offers scalability through a droplet on demand (DoD) 
regime, one that is commonly enabled through 
piezoelectric inkjet print technology. This regime is key to 
enable the deposition of different materials 
contemporaneously. 
To produce highly tailorable dielectric structures using MJ 
the materials used to form the digital composite should 

have intrinsically different electrical properties [1,3]. In 
this study we used a UV curable polymer ink as an 
electrically insulative material and carbon black ink as an 
electrically conductive material. 

Experimental Methods 

Inks: A water-based carbon black ink (graphite) from 
Methode Development Co. (3800 Series) and an in-house 
formulated diacrylate UV curable monomer ink were used.  
Tri(Propylene Glycol) DiAarylate  (TPGDA) was 
purchased from Sigma Aldridch and used as received. 2,4-
diethylthioxanthone (DETX) and Ethyl 4-(dimethylamino) 
benzoate (EDB) were used as the incorporated photo-
initiation system. TPGDA was mixed with 1wt% of DETX 
and EDB respectively at room temperature in an amber vial 
and then stirred at 800rpm until the initiators were fully 
dissolved. The prepared ink was then degassed by purging 
Nitrogen through for 15 minutes to help minimize 
inhibitions brought by pre-dissolved oxygen.  
A silver nanoparticle (AgNP) ink from Advanced Nano 
Products (SilverJet DGP-40LT) was used as an electrode 
material in order to measure the dielectric constant of the 
digital composite.  
Fabrication: Silver ink was printed on glass slides to form 

thin films of highly conductive electrode for dielectric 

measurement purposes. TPGDA and carbon black inks 

were loaded into Dimatix (DMP-2831) printheads and 

inkjet-printed on top of the silver films. Chessboard-like 

patterns were used to form the digital composite as shown 

in Figure 2. 

 

Figure 2, Chessboard-like pattern to form the digital composite. 

The ratio of carbon to polymer droplets in the pattern was 

1:1 as shown in Figure 2. TPGDA cells were first printed 

followed by carbon to fill the gaps between the TPGDA 

cells. The two materials form 1 layer of digital composite.  

To manipulate that ratio and tailor the dielectric properties 

digitally the number of carbon layers were increased to 

increase the loading ratio of carbon. This was enabled 

because the thickness of dry carbon layer is around 1 µm 

whereas the thickness of each cured TPGDA layer is 

around 8 µm, hence 1:1, 1:2, 1:3 and 1:4 TPGDA layers to 

carbon layers were printed. The weight of each solid 

droplet of the inks was measured and the weight percent of 

each digital composite was measured.   
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Dielectric characterization: To measure the dielectric 

properties of the digital composites the printed carbon-

TPGDA layers were placed under an aluminum plate. The 

capacitance of the digital composite was measured 

between the printed silver film and the aluminum plate 

using ModuLab XM instrument from Solartron.   

The dielectric constant ( ߝ ) was calculated from the 

capacitance (ܥ) values and the dimensions of the structures 

as follows: ߝ ൌ ஼ௗఌబ஺               (1) 

where (݀) is the total thickness of the digital composite, 

 is the area of (ܣ) is the permittivity of free space and (଴ߝ)

the digital composite. 

Results and discussions  

Ink printability: To evaluate the printability of the inks a 

rheology indicator (Z) was used as follows: ܼ ൌ ඥఘ஽ఊఓ                (2) 

where ȝ is the viscosity, ȡ is the density, Ȗ is the surface 

tension and D is the diameter of the nozzle from which the 

liquid is ejected. Although the value of a printable Z 

number is still under investigation [4-6] inks of Z values 

1< Z < 10 are considered to be in the printable range [6]. 

Table 1 shows the properties of all inks used in the study 

and the Z number as calculated from equation 2. 

Table 1, Properties of inks used in the study with printability 

indicator Z. 

Ink Density 

(g/mL) 

Viscosity 

(mPa.s) 

Surface tension 

(mN/m) 

Z 

Carbon* 1.01 12 37 2.33 

TPGDA 1.03 10.03 30.78 2.57 

AgNP* 1.04 13 36 2.15 

*data as provided by the supplier 
 

Ratio of materials: To determine the ratio of materials in 

the digital composite and calculate the weight percent of 

the carbon to polymer a known number of droplets from 

each ink were printed onto a glass substrate. The net weight 

of the dry droplets was divided by the number of deposited 

droplets to calculate the weight of each droplet. The weight 

of each solid TPGDA and carbon droplet was 7.39 ng and 

3.71 ng, respectively. The thickness of each solid layer of 

the materials was measured using white light 

interferometry and found to be around 8 µm and 1 µm for 

TPGDA and carbon black, respectively. This explains the 

weight difference as the polymer droplet is heavier than the 

carbon droplet. 

Dielectric properties: Digital composites were printed as 

shown in Figure 2 with a planer geometry of 10 x 10 mm 

for each sample. To manipulate the weight percent of 

carbon in each sample the ratio of carbon to TPGDA layers 

was increased from 1:1 to 1:4 as described in the 

experimental methods section. The net weight percent of 

carbon in each sample was 28.8%, 44.7%, 54.8 and 61.8%. 

The dielectric constant was calculated as described in the 

experimental methods section. Figure 3 shows the 

dielectric constant of each digital composite sample as it 

changes with the percentage of carbon black at 1 kHz 

frequency.  

 

 

Figure 3, Dielectric constant change against carbon content at a 

frequency of 1 kHz. 

The impedance of the samples decreases as the percentage 

of carbon is increased as shown in Figure 4.  

 

Figure 4, Impedance of digital composite samples of 28.8 wt% 

and 61.8 wt% carbon loading. 

This impedance indicates to a percolation effect between 

the carbon cells which can be reduced by sandwiching the 

digital composite between two printed films of TPGDA 

layers. Such configurations and a variety of other patterns 

will be investigated in further studies.  

The tailored high dielectric properties obtained in this 

study can be very desirable for many applications such as 

manipulating electromagnetic waves and energy storage 

applications.  
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