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 
Abstract— Electrophysiological recordings from human 

muscles can serve as control signals for robotic rehabilitation 

devices. Given that many diseases affecting the human 

sensorimotor system are associated with abnormal patterns 

of muscle activation, such biofeedback can optimize human-

robot interaction and ultimately enhance motor recovery. To 

understand how mechanical constraints and forces imposed 

by a robot affect muscle synergies, we mapped the muscle 

activity of 7 major arm muscles in healthy individuals 

performing goal-directed discrete wrist movements 

constrained by a wrist robot. We tested 6 movement 

directions and 4 force conditions typically experienced during 

robotic rehabilitation. We analyzed electromyographic 

(EMG) signals using a space-by-time decomposition and we 

identified a set of spatial and temporal modules that 

compactly described the EMG activity and were robust 

across subjects. For each trial, coefficients expressing the 

strength of each combination of modules and representing the 

underlying muscle recruitment, allowed for a highly reliable 

decoding of all experimental conditions. The decomposition 

provides compact representations of the observable muscle 

activation constrained by a robotic device. Results indicate 

that a low-dimensional control scheme incorporating EMG 

biofeedback could be an effective add-on for robotic 

rehabilitative protocols seeking to improve impaired motor 

function in humans. 

 

Index Terms— Biofeedback, electromyography, muscle 

synergies, robotic rehabilitation. 

 

I. INTRODUCTION 

obotic rehabilitation has been proposed as a valuable 

tool to aid the recovery of motor function after 

neurological damage [1]. Several approaches on how best 

to control robotic assistive devices have been described. 

Traditionally, such assistance is based on the subject’s 

ability to voluntarily control movements [2]. More 

recently, biofeedback from the user has been included into 

rehabilitative protocols and in these cases 

electromyographic (EMG) signals were typically 

employed and displayed to the subject as visual feedback 

[3]. Previous research demonstrated the advantage of 

biofeedback in suppressing abnormal muscle activation 

                                                           

M.S. and S.P. are with the Neural Computation Laboratory, Istituto 

Italiano di Tecnologia, Rovereto, Italy (e-mails: 

marianna.semprini@iit.it, stefano.panzeri@iit.it). 

A.V.C. and V.S. are with the Robotics Brain and Cognitive Science 

Department, Istituto Italiano di Tecnologia, Genova, Italy (e-mails: 

anna.cuppone@iit.it, valentina.squeri@iit.it).  

and promoting motor recovery [4], and consequently the 

incorporation of biofeedback has been promoted for 

robotic rehabilitation [5-7]. However, when considering 

the interaction of a human patient with a rehabilitation 

robotic device, muscle activation patterns are going to be 

different from the activation patterns during functional and 

unconstrained movements. We have advocated that such 

differences should be taken into account when designing a 

rehabilitation protocol that includes the use of biofeedback 

[8]. Moreover, EMG signals of neurologic patients show a 

wide range of abnormalities due to the underlying 

pathophysiology and the larger between-patient variability 

inherent to disease states [9]. When designing a 

rehabilitation protocol, it is therefore necessary to take into 

account the differences in muscular activation due to the 

human-robot interaction together with the known 

electrophysiological abnormalities of the EMG signals 

associated with the disease.  

In order to use such biofeedback signals during robotic 

rehabilitation of patients that are known to have 

abnormalities in muscular activation, it is paramount to 

document in detail the patterns of EMGs in healthy 

subjects using robotic rehabilitation devices. Once the 

characteristic patterns of muscle activation imposed by a 

robotic rehabilitation device are known, these patterns can 

be used to produce standardized muscle innervation 

profiles for each task in which a patient shall engage as part 

of a rehabilitation protocol. That, in turn, will allow to 

quantify the degree of abnormality for each patient as the 

difference between a prototypical and a pathological EMG 

signal.  

Because such prototypical muscle activation profiles for 

robot-constrained interactions are largely not available, we 

here study muscular synergistic control during human-

robot interaction by mapping the EMG patterns of healthy 

adults interacting with a wrist robotic device. We tested 12 

healthy subjects performing goal-directed wrist 

movements using a 3 degrees-of-freedom (DoFs) wrist 

robot. Simultaneously, we recorded EMG activity of 7 

major arm and forearm muscles that rotate the wrist/hand 

complex in each of its three DoFs (flexion/extension, 

abduction/adduction, and supination/pronation). For each 

subject we extracted the underlying modules of muscle 
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activity using a novel space-by-time decomposition 

method [10] and then averaged them across subjects in 

order to obtain the typical temporal and spatial muscle 

activation patterns constrained by robotic devices. Finally, 

this analysis allowed representing each EMG signal as a 

set of coefficients in the modular space. 

II. MATERIALS AND METHODS 

A. Participants 

12 right-handed subjects (age: 29 ± 4 years) with no 

known neuromuscular disorders and naïve to the tasks 

participated to the study. All participants gave their 

informed consent prior to testing. The study was approved 

by the local ethics committee, Comitato Etico of the ASL3 

of Genova (Italy). 

B. Experimental Setup 

The robotic device was a wrist robot and consisted of a 

completely back drivable manipulandum with 3 DoFs [11]. 

The robot was powered by 4 brushless motors that provide 

an accurate haptic rendering and compensate for the 

weight and inertia of the device. Displacement at each DoF 

was measured by means of a high-resolution incremental 

optical encoder (2048 bits/rev). The haptic robot could 

apply forces during task execution (running frequency 1 

kHz). The system was integrated with a virtual reality 

environment that runs at 60 Hz and represented the visual 

feedback to the subject during the motor tasks. A computer 

screen, positioned in front of the subject about 1 m away, 

displayed the current positions of hand and target. Fig.  1 

shows the experimental setup. 

The robot system communicated with the EMG 

acquisition system (EMG USB2 OT BIOelettronica 64 

channels) using an Analog and Digital I/O PCI card 

(Sensoray, 626) that allowed the robot to send a digital 

signal to the EMG system in such a way as to synchronize 

the two systems. During recording, the EMG acquisition 

system was battery-powered in order to avoid electrical-

supply noise. The raw EMG signals were sampled at 2048 

Hz sampling rate with selectable amplification gain and 

high-/low-pass bandwidths. For EMG signals acquisition 

during the task execution, we selected a gain of 2000. 

While collecting for maximum voluntary contraction 

(MVC) data the gain was set to 1000, in order to avoid 

signal saturation. 

C. Experimental Protocol 

Participants sat on a chair, placed their right arm on the 

support of the robot and grabbed the end effector (Fig.  1). 

Subjects performed a center-out task with their wrist in one 

of the three DoFs, Flexion-Extension (FE), Abduction-

Adduction (AA) and Pronation-Supination (PS). The task 

consisted of a sequence of 6 discrete movements: wrist 

flexion, extension, abduction, adduction, and forearm 

pronation and supination. Subjects were restricted to move 

only along one DoF per movement with the other DoFs 

being dynamically blocked by the robot. Each movement 

was repeated 5 times, without any time constraint. Subjects 

received visual feedback about the current wrist position. 

On a computer screen movement along FE was visualized 

as a linear movement of a cursor on the x-axis, AA on the 

y-axis and PS as a rotation around the z-axis; the target and 

end effector were displayed as round circles (2 cm 

diameter) in FE and AA movements and as two vertical 

bars (2x5 cm2) of different colors during PS movements. 

The reaching task was executed in a workspace considering 

the 75% of the joint maximum active range of motion 

(RoM) in heathy adults, which we approximated to be 

respectively equal to ±70° for flexion and extension, ±20° 

for abduction and adduction and ±80° for pronation and 

supination [12]. The 0° corresponded to the central position 

where the robot axes are aligned with the wrist rotational 

axis.  

The above protocol was repeated under 4 different task 

conditions, differing on the force level applied by the 

robot: Null Field, Resistive Field (field of constant force 

opposite to the target direction), Assistive Field (field of 

constant force in target direction) and Passive Field (the 

robot moves the target end effector while subject closed 

the eyes). In Resistive and Assistive Field condition the 

amount of constant force was the same but the direction was 

opposite (against target movement in the Resistive Field 

condition) and it corresponded to the 70% of a maximum 

torque used in the Passive condition. Equation (1) describes 

the applied force: 𝐹 = ± 0.7 ∗ 𝑘 ∗ 𝑑 ∗ (𝑋𝐸𝐸 − 𝑋𝑇𝐺)|𝑋𝐸𝐸 − 𝑋𝑇𝐺|  (1) 

, where 𝑘 = 0.3 N·m/rad in FE and PS movements and 

0.6 N·m/rad in AA movements), 𝑑 = 0.05 rad, 𝑋𝐸𝐸 is the 

position of the end effector and  𝑋𝑇𝐺 the position of the 

target.  

In the Passive Field condition, we used an elastic force 

proportional to the distance between the end effector and a 

Fig.  1: Experimental setup. (a) Participants placed the wrist on the 

wrist robot and grasped the robot handle. Surface EMG electrodes 

were placed on the arm and forearm. A computer screen displayed 

the target and the wrist end effector position. (b) Robot allowed 

movements along three different DoFs: flexion/extension (top), 

abduction/adduction (middle) and pronation/supination (bottom). 

Fle = flexion, Ext = extension, Abd = abduction, Add = adduction, 

Sup = supination, Pro = pronation. (c) Typical recording of one 

single subject during extension: left panel shows 1 DoF target 

trajectory, middle panel target velocity and right panel EMG 

activation of Flexor Carpi Ulnaris muscle aligned in time; red 

dashed lines indicate target onset. 

Fle/Ext

Sup/Pro

Abd/Add

(a) (b)

(c)
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moving target from the initial position and the final 

position, expressed by equation (2):  𝐹 = 𝑘 (𝑋𝐸𝐸 − 𝑋𝑇𝐺) (2) 

, where 𝑘 = 0.3 N·m/rad. In this case, the target moved 

along a minimum jerk trajectory.  

EMG surface electrodes (Ag/AgCl with a diameter of 26 

mm) were placed on the arm and forearm with a center 

distance less than 2 cm to record the activity of 7 muscles 

involved in wrist movement. EMG recording was 

performed in single differential mode. Correct electrode 

placement was verified by observing the activation of each 

muscle during specific movements known to involve it 

[12]. During this procedure, EMG signals were monitored 

in order to optimize recording quality and minimize cross-

talk from adjacent muscles during isometric contractions. 

TABLE I lists the muscles we recorded from and the 

movement involving them. 

D.  Extraction of Synergistic EMG Activation 

Patterns 

To extract invariant activation patterns (or “modules”) 
of muscle activity from the EMG recordings we used a 

Non-Negative Matrix Factorization (NMF) method 

factorizable in space and time, which we call the space-by-

time NMF decomposition [13, 14]. This method 

decomposes the original dataset into 𝑁 non-negative 

spatial modules (describing the stereotypical patterns of 

simultaneous EMG activations of groups of muscles) and 𝑃 non-negative temporal modules (describing the 

stereotypical patterns of activation over time of these 

groups of muscles) such that single trial EMG recordings 

can be represented as a set of 𝑁 × 𝑃 non-negative 

activation coefficients describing the strength of 

recruitment of each of these modules in each single trial. 

The decomposition is defined by the following equation:  𝒎𝒔(t) = ∑ ∑ 𝑤𝑖(𝑡)𝑁
𝑗=1 𝑎𝑖𝑗𝑠 𝒘𝒋𝑃

𝑖=1 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

3) 

, where 𝒎𝒔(t) denote the EMG dataset, 1 > 𝑠 > 𝑆 is the 

number of samples (𝑆 being the total number of samples), 1 > 𝑡 > 𝑇 is the number of discrete time frames (𝑇 = 1000 

in our implementation), 𝑤𝑖(𝑡) are the temporal modules, 𝒘𝒋 are the spatial modules,  𝑎𝑖𝑗  are the activation 

coefficients and 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 indicates the reconstruction 

error. The decomposition algorithm uses an iterative 

procedure based on multiplicative update rules that 

minimize the total reconstruction error, therefore the 

algorithm is guaranteed to converge to a local minimum. 

The optimization problem is not convex, so the local 

minimum is not necessarily global. This also implies that 

the modules found are not unique. To address this, here for 

each module extraction we ran the algorithm 10 times and 

chose the decomposition that gave the lowest 

reconstruction error. Empirically, however, the modules 

were almost identical from one algorithm run to the next, 

which suggests that even one algorithm run would be 

sufficient to yield the reported results.  

Before applying the space-by-time NMF 

decomposition, EMG data were preprocessed as follows. 

EMG signals were filtered offline with a 6th order 

Butterworth band pass filter between 30 and 400 Hz, 

subsequently rectified and smoothed with a moving 

average filter using a window length of 150 ms. The 

filtered EMG was scaled by the relative maximum 

voluntary contraction (MVC) value, enabling inter-

subjects comparison of EMG data. We considered the 

portion of signal from target onset to target reach and 

resampled each signal using a linear interpolation for 𝑇 = 

1000 frames. 

1) Assessment of Extracted Modular 

Decompositions 

To evaluate the quality of the resulting modular 

decompositions, we quantified a) how well they 

approximated the original EMG recordings by computing 

the Variance Accounted For and b) how well they 

discriminated the performed motor tasks in single trials by 

computing single-trial task decoding performance [10, 

15]. 

The modular decomposition should approximate the 

recorded EMG signals as accurately as possible. To 

quantify this, we computed the Variance Accounted For 

(VAF) which evaluates the quality of reconstruction of the 

original EMG data from the modular decomposition. Here, 

following [16], VAF was defined as the total 

approximation error divided by the total variance of the 

dataset. The VAF indicates how well the EMG data can be 

reconstructed by combining modules and activation 

coefficients, e.g. if VAF = 0.9 then 90% of the original 

EMG data are reconstructed. 

Importantly, we aimed to identify the modular 

decomposition that explained the highest proportion of 

task-related variability in muscle activity.  To quantify this, 

we computed the single-trial task decoding metric.  We 

used as decoding parameters the activation coefficients of 

the modular decomposition, which encode the level of 

activation of spatial and temporal modules in individual 

trials. Specifically, task decoding was performed using the 

activation coefficients 𝑎𝑖𝑗𝑠  as input to a linear discriminant 

algorithm (LDA) combined with a leave-one-out cross-

validation procedure [13]. Decoding performance (DEC) 

was measured as the percentage of correctly decoded trials 

(% correct). Given that 6 movement directions were tested 

under 4 different force conditions, the total number of 

experimental conditions was 𝐾 = 6 × 4 = 24 and the 

chance level of the decoder was 1 𝐾⁄ = 0.041. Hence, a 

decoding performance value greater than 0.041 indicated 

that the decoder reliably discriminated across conditions. 

We assessed the statistical significance of decoding 

performance using the Bernoulli test [17]. In brief, 

TABLE I 

RECORDED MUSCLES AND THEIR ACTION. 

Muscle Action 

Flexor Carpi Radialis (FCR) Wrist flexion, abduction 

Flexor Carpi Ulnaris (FCU) Wrist flexion, adduction 

Extensor Carpi Radialis (ECR) Wrist extension, abduction 

Extensor Carpi Ulnaris (ECU) Wrist extension, adduction 

Biceps Brachii (BIC) Shoulder and elbow flexion 

Brachioradialis (BR) Elbow flexion, forearm supination 

or pronation 

Pronator Teres (PT) Forearm pronation 

List of the recorded muscles and the associated joint movement 

during concentric muscle contraction.  
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assuming each stimulus as a sequence of Bernoulli trials 
(independent trials with two possible outcomes: success 

and failure), the probability of successes follows the 

Binomial distribution. Hence, the p-value of K successes 

is computed by adding the probabilities of getting K or 

more successes by chance.  

2) Selecting the Number of Modules in the space-by-

time NMF decomposition 

Given that the number of spatial and temporal modules 

was not known a priori, we iteratively ran the space-by-

time decomposition method assuming all possible 

combinations of 𝑃 temporal and 𝑁 spatial modules, 

with 𝑁, 𝑃 = 1 ÷ 7. We chose 7 as the maximum number 

of modules given that we recorded from 7 muscles (7 

temporal and 7 spatial modules would potentially capture 

the activation pattern of each individual muscle).  

In order to establish the minimal number of modules 

capturing all the task-discriminating variability of the 

dataset, we computed a joint metric incorporating both 

VAF and decoding performance (𝑉𝐷𝑀 = 𝐷𝐸𝐶 × 𝑉𝐴𝐹, 0 ≤ 𝑉𝐷𝑀 ≤ 1). 𝑉𝐷𝑀 is a measure of the goodness of an 

EMG decomposition that takes into account both the data 

approximation (VAF) and the task discrimination power 

(percent correct decoding) of the decomposition [18]. We 

computed 𝑉𝐷𝑀 as a function of the number of temporal 

and spatial modules (𝑃 and 𝑁 respectively) and averaged 

it across subjects. We then chose the values of 𝑃 and 𝑁 that 

maximized 𝑉𝐷𝑀. This selection ensured the inclusion of 

all modules that accounted for task differences and the 

exclusion of modules that captured task-irrelevant (noise) 

variations. 

To compare the extracted modules with the ones 

obtained using other modularity models, we also 

implemented separate spatial decompositions [19-21] and 

temporal decompositions [22, 23]. We then calculated, for 

each subject, Pearson correlation between these modules 

and those obtained with the space-by-time NMF 

decomposition. 

3) Module Clustering and Calculation of Mean 

Activation Coefficients 

We then aimed to identify a set of modules (along with 

the corresponding activation coefficients) that describes 

muscle activations across all subjects. This could serve as 

a typical representation of the muscle activity of healthy 

participants for this experimental protocol. We therefore 

performed a clustering analysis and grouped modules from 

different subjects using a measure of similarity based on 

their correlation coefficients. We implemented the 

following procedure: 1) we sorted the modules of each 

subject based on which muscle they activated most 

(muscles were ordered as in Fig.  5); 2) we calculated the 

average modules across subjects and used these as 

reference; 3) we ordered the modules of every subject 

depending on their similarity (correlation coefficient) with 

the reference modules; 4) we clustered together modules 

from different subjects that had the highest similarity; 5) 

we averaged the modules within each cluster and we 

obtained the 𝐰𝐣 ̅̅ ̅̅  mean spatial and wi̅̅ ̅(t) temporal modules; 

6) we recomputed the activation coefficients for each 

subject with respect to 𝐰𝐣 ̅̅ ̅̅  and wi̅̅ ̅(t) modules, according 

to [10].  

 

Fig.  3: Decoding performance as a function of number of modules. 

Shown is the fraction of correctly discriminated trials for each 

combination of temporal (P) and spatial (N) modules. Decoding 

performances > 0.41 were obtained for module combinations having 

N ≥ 3 and 2 ≤ P ≤ 5.  

 

Fig.  2: Variance Accounted For as a function of the number of spatial 

and temporal modules. VAF expresses the goodness of EMG 

reconstruction from modules and activation coefficients. VAF = 1 

means that the data are perfectly reconstructed. Note that a 

combination of 3 temporal and 4 spatial modules accounts for 93% of 

the EMG data variance. 

 

Fig.  4: Averaged temporal modules. Each subplot represents the mean 

(black trace) and standard deviation (grey shaded area) across subjects 

of temporal modules profile. Note that the three temporal modules 

describe muscular activation best at three different times during the 

movement: first activation of agonist muscles, activation of antagonist 

muscles and second activation of agonist muscles. 
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III. RESULTS 

A. Temporal and Spatial Modules Underlying 

Recorded Muscle Activity  

To identify the spatial and temporal modules of muscle 

activity underlying performance of wrist movements using 

a robotic device, we applied the space-by-time NMF 

decomposition to the EMG recordings of each of the 12 

subjects we tested. We first aimed to establish the numbers 

of temporal and spatial modules (P and N respectively) that 

described best the recorded muscle activity across subjects. 

To this end, we varied P and N (both from 1 to 7) and 

computed VAF and decoding performance of the modular 

decompositions with these numbers of 

modules.  

We found that the average VAF 

across subjects showed a steady 

increase when P and N increased (Fig. 

2). Regarding decoding performance 

(Fig. 3), 𝑃 ≥ 3 temporal modules 

maximized average percent correct 

decoding for any choice of 𝑁 and the 

decoding curve saturated at 𝑁 = 3/4. 

As a result, 𝑉𝐷𝑀 was maximized for 𝑃 = 3, 𝑁 = 4, indicating that 3 

temporal and 4 spatial modules 

accounted for all the task-related 

information of the muscle activity and 

any additional modules captured data-

irrelevant variability, i.e. noise, in the 

EMG signal [13]. Hence, we selected 3 

temporal and 4 spatial modules to 

describe muscle activity of all subjects 

for this set of tasks. The resulting 

decompositions yielded 46% correct 

decoding (significantly above chance, 

p<10-4, chance level is 0.04) and 

VAF=0.93 on average across subjects. 

Fig.  4 shows that the three temporal 

modules of the decomposition captured 

the tri-phasic pattern of muscular activation that is known 

to occur for goal-directed, discrete reaching or pointing 

movements [24-26]: the initial activation of agonist 

muscles, the following activation of antagonists to break 

the movement and the second agonist burst to terminate the 

movement at the desired target.  

 Fig.  5 shows the extracted spatial modules averaged 

across subjects. The first synergy describes the 

simultaneous activation of Flexor Carpi Ulnaris and 

Extensor Carpi Ulnaris (mainly found in adduction). The 

second synergy describes the co-activation of extensor 

muscles and Brachioradialis (mainly found in abduction), 

the third synergy the co-activation of extensor muscles 

(mainly found during extension and supination but present 

also in all other movements) and fourth synergy the co-

activation of flexor muscles with Pronator Teres (mainly 

found in flexion and pronation). Biceps Brachii was almost 

never active.  

This result can be explained as a result of the lower 

muscle activity required in the Passive condition which 

results in smaller muscle activation differences across 

movement directions. 

B. Comparison with other Module Extraction 

Techniques 

To validate the robustness of the identified modules 

irrespective of the extraction method, we separately 

computed P=3 temporal modules using the temporal NMF 

decomposition and N=4 spatial modules using the spatial 

NMF decomposition. We then calculated, for each subject, 

Pearson correlation between these modules and those 

obtained with the space-by-time NMF decomposition. We 

found that modules extracted with separate temporal and 

spatial decompositions were highly similar to those 

obtained simultaneously (0.87±0.15 and 0.73±0.11 

TABLE II 

CORRELATION BETWEEN INDIVIDUAL SUBJECT AND AVERAGED MODULES 

 Temporal Spatial 

Subject 

Number 
P1 P2 P3 N1 N2 N3 N4 

1 0.9968* 0.9864* 0.9975* 0.8130* 0.8965* 0.9872* 0.4383 

2 0.9672* 0.9932* 0.9858* 0.2276 -0.0052 0.1645 0.9654* 

3 0.9781* 0.9658* 0.9924* 0.9305* 0.8180* 0.9889* 0.9206* 

4 0.9830* 0.9087* 0.9650* 0.9562* 0.8979* 0.9494* 0.9001* 

5 0.9970* 0.9634* 0.9942* 0.8220* 0.8498* 0.8775* 0.9584* 

6 0.9978* 0.8583* 0.9954* 0.4405 0.9677* 0.7140* 0.1211 

7 0.9927* 0.9975* 0.9951* 0.0159 0.9779* 0.9573* 0.7328 

8 0.9891* 0.9377* 0.9839* 0.8105* 0.9801* 0.9409* 0.9326* 

9 0.9699* 0.9554* 0.9870* 0.3381 0.1308 0.1635 0.7602* 

10 0.9561* 0.9417* 0.9754* -0.2859 0.7891* 0.6357 0.7896 

11 0.9875* 0.9812* 0.9955* 0.5116 0.7688* 0.9534* 0.1259 

12 0.9950* 0.9746* 0.9971* 0.5977 0.9433* 0.953* 0.8966* 

The table shows the value of the correlation coefficient between each module of single subjects and 

the corresponding averaged module. Each table element reports the correlation coefficients of a given 

module (column) of one given subject (row). In the few cases where the correlation was poor (e.g. 

subjects 2 and 9) the optimal number of modules was smaller than the chosen one and therefore some 

of the reference modules were no represented but instead more copies of the same modules were 

extracted. * indicates significant correlations, p-value < 0.05. 

 

Fig.  5: Mean spatial modules across subjects. Each bar represents the 

mean muscular activation found in each spatial synergy. Error bars 

represent one standard deviation. FCR = Flexor Carpi Radialis, FCU 

= Flexor Carpi Ulnaris, ECR = Extensor Carpi Radialis, ECU = 

Extensor Carpi Ulnaris, BIC = Biceps Brachii, BR = Brachioradialis, 

PT = Pronator Teres. 
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correlation for the temporal and spatial modules 

respectively, p<0.01). This similarity highlights the 

robustness of the modules reported in this study, and shows 

the power of the space-by-time NMF decomposition to 

extract - simultaneously rather than separately - robust 

features of EMG that describe both their spatial structure 

and their dynamics.  

C. Correlation between Modules 

To investigate whether the averaged modules were 

representative of each subject’s muscle activation patterns, 

we computed correlation between a subject’s modules and 

the corresponding averaged modules. The analysis 

revealed high correlation for the temporal modules and 

spatial modules. The individual correlations for each 

subject are shown in TABLE II. Mean correlation 

coefficient of the temporal components were r = 0.984 ± 

0.013 for P1, r = 0.955 ± 0.039 for P2 and r = 0.988 ± 0.010 

for P3 (significant in all cases, p < 10-4). For the spatial 

modules correlations were r = 0.514 ± 0.387 for N1, r = 

0.751 ± 0.330 for N2, r = 0.773 ± 0.305 for N3 and r = 0.711 

± 0.310 for N4. The correlation coefficients of the spatial 

modules for individual subjects (4x12 = 48 in total) ranged 

above 0.8 in 28 cases with p < 0.05, between 0.7 and 0.8 in 

6 cases with p < 0.05 in 4 out of 6 cases, between 0.4 and 

0.7 in 5 cases, and below 0.4 in the remaining 9 cases. 

Correlations below 0.7 were not significant. 

D. Activation coefficients  

The activation coefficients quantify the strength by 

which temporal and spatial modules are recruited in each 

trial in order to perform the task. Fig.  6(a) shows the 

average across repetitions of the same trials and across 

subjects of the activation coefficients calculated from the 

averaged modules. The activation patterns permit to 

discriminate across movement direction and interestingly 

they create complementary configurations for opposite 

movements along the same DoF. Extensor muscles 

(activated by spatial modules N2 and N3) are recruited in 

almost every movement and this is consistent 

with our previous finding that within the wrist 

robot the wrist is extended with respect to the 

neutral position [8] therefore activation of 

extensor muscles is present also in the 

beginning of flexion. Flexion (Fig.  6(a), first 

column) is characterized mainly by an 

activation of the second and third spatial 

modules (coefficients a12 and a13) 

corresponding to the co-activation of extensor 

muscles, and it is followed, especially in the 

Resistive Field condition, by a second 

activation of the fourth spatial module 

(coefficients a24 and a34) corresponding to the 

co-activation of Flexor Carpi Radialis and 

Pronator Teres. Extension (Fig.  6(a), second 

column) reveals a strong activation of the 

extensor muscles, recruited by the second and 

third spatial modules (mainly coefficients a12, 

a23 and a33). Abduction (Fig.  6(a), third 

column) is produced by Flexor Carpi Radialis 

and Extensor Carpi Radialis and indeed are 

recruited the second and third spatial modules 

involving these muscles (coefficients a13, a22 

and a32). Conversely adduction (Fig.  6(a), 

fourth column) is produced by Flexor Carpi Ulnaris and 

Extensor Carpi Ulnaris and indeed starts with an 

activation of the third spatial module (activation of 

Extensor Carpi Ulnaris, coefficient a13) and is followed by 

an activation of the first spatial modules (activation of 

Flexor Carpi Ulnaris, coefficient a21 and a31). Supination 

(Fig.  6(a), fifth column) involves Biceps Brachii and 

Brachioradialis and therefore second and third spatial 

modules are activated by the first and third temporal 

modules (coefficients a12, a13, a32, and a33). Finally 

pronation (Fig.  6(a), sixth column) begins with activation 

of the extensor muscles (a12 and a13) and terminates with 

Pronator Teres (coefficients a34).   

The level of muscular activation is naturally a function of 

the forces imposed by the robot. The coefficients of the 

space-by-time NMF decomposition captured this 

physiological feature, i.e. showed an increase of activation 

from the Passive to the Resistive Field condition (Fig.  

 
Fig.  6: Activation coefficients averaged across subjects. (a) Each panel shows the level of 

activation of the averaged coefficients in different task conditions and for different 

movements and is represented as a matrix of P = 3 rows and N = 4 columns, corresponding 

to the modules each coefficients is related to. Each movement (column panels) is 

characterized by the activation of a different set of coefficients that recruit the modules they 

are referred to. Coefficients also increase their value as a function of task condition 

(horizontal panels). (b) Amount of force field applied to each task condition. (c) Scheme to 

easily address the coefficients of (a). Fle = flexion, Ext = extension, Abd = abduction, Add 

= adduction, Sup = supination, Pro = pronation. 

a12a11 a14a13

a22a21 a24a23

a32a31 a34a33

(a) (c)

(b)

Coefficients

 
Fig.  7: Activation coefficients as a function of force modality. 

Shown are the mean and standard error activation value of 

coefficient a34. Colors represent the different wrist movements. Fle 

= flexion, Ext = extension, Abd = abduction, Add = adduction, Sup 

= supination, Pro = pronation. 
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6(a)). Fig. 7 shows as an example, the average activation 

of coefficient a34 plotted as a function of force level, a34 

bonded the third temporal module with the fourth spatial 

module, corresponding to the co-activation of Flexor  

Carpi Radialis and Pronator Teres. These muscles are 

involved in flexion and pronation and indeed, when these 

movements were performed, the coefficient increased with 

the level of force. When other movements were performed, 

a34 activation was very low. 

Finally, to quantify the dependence of the activation 

coefficients on movement direction and force level, we 

decoded these two experimental variables separately. We 

found that both variables were discriminated significantly 

above chance level (p < 10-4) which indicates that the 

activation coefficients captured reliably the dependence of 

muscle activity on both experimental factors. Percent 

correct decoding of force conditions (i.e. considering only 

trials of one given movement with different force 

conditions) ranged between 50%-70% for the different 

movement directions (decoding values: 57% ± 9% for 

flexion; 50% ± 14% for extension; 59% ± 22% for 

abduction; 63% ±16% for adduction; 70% ± 18% for 

supination and 59% ± 16% for pronation). Percent correct 

decoding of movement directions ranged between 39%-

70% for the different force level conditions (decoding 

values: 0.39 ± 0.16 for Passive motion; 0.63 ± 0.09 for 

Assistive Field; 0.54 ± 0.12 for Null Field and 0.70 ± 0. 17 

for Resistive Field). Movement decoding in the Passive 

condition was significantly lower than for the other force 

conditions (ANOVA test, p < 10-4 with Assistive and 

Resistive condition, p < 0.05 with Null condition) probably 

because of the lower muscle activity required in the 

Passive condition, which results in smaller muscle 

activation differences across movement directions. 

IV. DISCUSSION 

This study examined the human muscle activation 

patterns underlying wrist movements under different force 

conditions imposed by a wrist robot. Using a space-by-

time NMF decomposition method, we decomposed EMG 

signals into concurrent temporal and spatial modules. We 

then derived a set of activation coefficients that captured 

the recorded EMG patterns of single trials.  

A combination of 𝑃 = 3  temporal and 𝑁 = 4  spatial 

modules yielded an optimal trade-off between data 

approximation and task discrimination while minimizing 

the number of modules representing the observed 

electromyographic activity. Variance Accounted For of the 

selected decomposition was 93% indicating that the 

resulting representation approximated accurately the 

recorded EMG signals. Overall decoding performance was 

46% and was one order of magnitude larger than the 

chance level of 4%. When accounting for differences in 

movement directions and imposed force levels, 

discrimination for both factors was well above chance 

level, yielding decoding performance ranging between 

39%-70%. This clearly indicates that the identified 

decomposition was able to capture information in muscle 

activity relating to both task variables, meaning movement 

direction and imposed force. Interestingly, movement 

direction decoding was maximal for the Resistive Field 

condition and minimal for the Passive Field condition. 

From an electrophysiological perspective, this is highly 

plausible, because it reflects the number of motor units 

recruited and their firing frequency during no or assistive 

force conditions, which are both necessarily lower than 

during a resistive force condition [27, 28]. This finding 

highlights that the force conditions imposed by the robot 

will affect motor unit recruitment and their firing 

frequency (rate coding), which, in turn, will affect the 

biofeedback signal, its decomposition and its later use as a 

control signal for a rehabilitation robot. The choice of 𝑃 =3  temporal modules matched the three different muscular 

activation timing patterns of agonist-antagonist bursts that 

characterize goal-directed arm movement [24, 25]. 

Moreover 𝑁 = 4  spatial modules included all the 

muscular co-activations that we previously found during a 

similar human-robot interaction protocol [8].  

The consistency between the extracted modules and 

those obtained using separate spatial and temporal NMF 

decompositions showed the effectiveness of space-by-time 

method in a) incorporating spatial and temporal modularity 

into a unique compact decomposition and b) capturing 

reliably the invariant (temporal and spatial) structure 

underlying the movements to different targets under 

different force conditions.  

The high module correlation across subjects indicated 

that this structure was also shared across individuals. 

However, for some subjects the correlation of one or more 

of the 4 spatial modules was poor. This is explained by the 

fact that for those subjects the optimal number of spatial 

modules was likely to be 𝑁 < 4. Assuming that for a given 

subject the spatial modules capturing all the essential 

information are 𝑁 = 3 and we then impose the extraction 

of 𝑁 = 4 spatial modules, the algorithm will find the three 

modules plus an additional one, similar to one of the first 

three. This last module therefore will not correlate well 

with the reference module to which it was paired. This 

caveat needs to be considered when applying the method 

to extract biofeedback signals that ultimately shape the 

force control signals of a robot interacting with a human 

patient.Finally, when extracting patterns of muscle 

activation in neurological patients, it is important to 

consider the notion of primary deficits and compensatory 

control. For example, in our recordings of healthy humans 

the Biceps Brachii muscle showed low activation levels, 

which is not surprising given that this muscle acts 

primarily as an elbow flexor and is typically not active 

during single-joint wrist movements. We here included the 

muscle into our analysis, because certain neurological 

patients such as cortical stroke survivors are known to 

show forearm muscle activation in order to compensate for 

impaired wrist muscle innervation. Indeed, it is well 

established that neurological disease may give rise to quite 

different manifestations in the electromyographic signal. 

For example, stroke is associated with muscular weakness 

affecting movement initiation and control [29], while 

cerebellar patients show a prolongation of agonist muscles 

activation and a delay of antagonist muscle activation [30]. 

As a result of neurological impairment, these patients may 

produce compensatory movements in order to minimize 

task errors. The selected compensatory strategy typically 

reflects the nature of the primary deficit and the level of 

initial impairment [31]. While basic muscle synergies are 

thought to be structured by subcortical neuronal networks 

and coordinated by descending cortical signals, altered 
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descending control due to, for example, cortical or 

cerebellar dysfunction will interfere with the formation of 

established muscle synergies [32, 33]. That is, muscles 

activation patterns in these patients can differ profoundly 

from those found on healthy subjects. Consequently, 

different synergies will be extracted by the described 

decomposition method. Thus, a comparison between the 

synergy modules generated by a neurologic patient and a 

healthy cohort can quantify the deficits in synergistic 

control and such information could be used to shape the 

robotic control signals to aid the patient. 

That is, during rehabilitation, such an EMG module 

comparison can guide the level of assistive or resistive 

forces needed and when such forces shall be applied during 

the movement. Indeed, the use of customized robot-

assisted therapy driven by EMG biofeedback has been 

explored and the results indicate an added rehabilitation 

benefit for stroke patients when compared to robotic 

assistance alone [34, 35]. Thus, our EMG decomposition 

methodology could aid the human-robot interaction by 

customizing robotic control signals to the motor control 

deficits of individual patients.  

For example, the level of mismatch between healthy and 

pathological EMG modules resulting after one training 

session, could be translated into an assistive force 

delivered during the following training session in such a 

way that muscle activation more closely resembles an 

innervation pattern of a healthy individual. In this case the 

set of modules could be extracted from a small set of 

training trials (e.g. 5 repetitions of each task condition 

would be sufficient as we showed here) and this set could 

be used as the basis functions on which the EMG signals 

of each newly recorded test trial would be projected. 

Therefore, only 𝑃 × 𝑁 = 12 parameters would have to be 

estimated. Importantly, this number does not scale with the 

number of muscles and/or number of recorded time points, 

which makes the extraction computationally inexpensive 

and time-efficient even for more complex and high-

dimensional data.  

In this scenario, the biofeedback is not presented to the 

patient visually to indicate errors in the timing or of the 

amount of muscular activation, but it is implicit and is 

incorporated into the human-robot control scheme. One 

may argue that by “hiding” the biofeedback information 
from the patient and embedding it into the assistance 

provided by the robot, the rehabilitation protocol gains the 

benefit of the use of the biofeedback without the drawback 

of user becoming frustrated by the direct observation of 

his/her atypical muscular activation patterns [36]. 

V. CONCLUSIONS 

This study mapped the muscular activation of healthy 

individuals performing wrist movements during a motor 

task constrained by a robotic device. Our data show that 

muscle activation patterns can be reduced to a subset of 

stereotypical spatial and temporal patterns of muscle 

activation. Depending on the nature of the nervous system 

damage, these modules will be different for people with 

motor disabilities.  

The reliability of the decoding and the robustness of 

modules across subjects indicate that the decomposition of 

EMG signals can be used to generate feedback signals for 

rehabilitation robots. This could potentially simplify and 

improve the motor control during training of neurologic 

patients. 

We suggest that during motor rehabilitation of 

neurological patients a comparison between their abnormal 

synergies and those established by the age-appropriate 

healthy cohort can be used as a feedback signal for the 

control of robotic device in order to provide patient-

tailored force assistance. 
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