
Studying human behavior with virtual reality: The Unity
Experiment Framework

Jack Brookes1 & Matthew Warburton1
& Mshari Alghadier1 & Mark Mon-Williams1,2 & Faisal Mushtaq1,2

Published online: 22 April 2019
The Author(s) 2019

Abstract
Virtual reality (VR) systems offer a powerful tool for human behavior research. The ability to create three-dimensional visual scenes
and to measure responses to the visual stimuli enables the behavioral researcher to test hypotheses in a manner and scale that were
previously unfeasible. For example, a researcher wanting to understand interceptive timing behavior might wish to violate
Newtonian mechanics so that objects can move in novel 3-D trajectories. The same researcher might wish to collect such data
with hundreds of participants outside the laboratory, and the use of a VR headset makes this a realistic proposition. The difficulty
facing the researcher is that sophisticated 3-D graphics engines (e.g., Unity) have been created for game designers rather than
behavioral scientists. To overcome this barrier, we have created a set of tools and programming syntaxes that allow logical encoding
of the common experimental features required by the behavioral scientist. The Unity Experiment Framework (UXF) allows
researchers to readily implement several forms of data collection and provides them with the ability to easily modify independent
variables. UXF does not offer any stimulus presentation features, so the full power of the Unity game engine can be exploited. We
use a case study experiment, measuring postural sway in response to an oscillating virtual room, to show that UXF can replicate and
advance upon behavioral research paradigms. We show that UXF can simplify and speed up the development of VR experiments
created in commercial gaming software and facilitate the efficient acquisition of large quantities of behavioral research data.

Keywords Virtual reality . Unity . Software . Experiment . Behavior . Toolkit

Virtual reality (VR) systems are opening up new opportunities
for behavioral research, because they allow visual (and audi-
tory) stimuli to be displayed in 3-D computer-generated envi-
ronments that can correspond to the participant’s normal ex-
ternal Cartesian space, but that do not need to adhere to the
rules of Newtonian mechanics (Wann & Mon-Williams,
1996). Moreover, VR systems support naturalistic interactions
with virtual objects and can provide precise measures of the
kinematics of the movements made by adults and children in
response to displayed visual stimuli. In addition, the relatively

low cost and portability of these systems lowers the barriers to
performing research in nonlaboratory settings.

The potential advantages of VR in behavioral research
have been recognized for at least two decades (e.g., Loomis,
Blascovich, & Beall, 1999), but recent advantages in technol-
ogy and the availability of hardware and software are making
VR a feasible tool for all behavioral researchers (rather than
for a limited number of specialist VR labs). For example,
researchers can now access powerful software engines that
allow the creation of rich 3-D environments. One such popular
software engine is Unity (alternatively called Unity3D; Unity
Technologies, 2018). Unity is a widely used 3-D game engine
for developing video games, animations, and other 3-D appli-
cations, and it is growing in ubiquity. It is increasingly being
used in research settings as a powerful way of creating 3-D
environments for a range of applications (e.g., psychology
experiments, surgical simulation, or rehabilitation systems).
The recent popularity of VR head-mounted displays
(HMDs) has meant that Unity has become widely used by
game developers for the purpose of crating commercial VR
content. Unity has well-developed systems in place for rich

* Jack Brookes
jbrookes187@gmail.com

* Faisal Mushtaq
f.mushtaq@leeds.ac.uk

1 School of Psychology, University of Leeds, Leeds, West Yorkshire,
UK

2 Centre for Immersive Technologies, University of Leeds,
Leeds, West Yorkshire, UK

Behavior Research Methods (2020) 52:455–463
https://doi.org/10.3758/s13428-019-01242-0

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01242-0&domain=pdf
mailto:jbrookes187@gmail.com
mailto:f.mushtaq@leeds.ac.uk

graphics, realistic physics simulation, particles, animations,
and more. Nevertheless, it does not contain any features spe-
cifically designed for the needs of human behavior re-
searchers. We set out to produce an open-source software
resource that would empower researchers to exploit the power
of Unity for behavioral studies.

A literature search of human behavioral experiments re-
veals that experiments are often defined by a common model,
one that more easily allows researchers to exercise the scien-
tific method. Experiments are often composed of trials, which
can be defined as an instance of a scenario. Trials are usually
composed of a stimulus and a human response and are a basic
unit of behavioral experiments. They can be repeated many
times for a single participant, increasing the signal-to-noise
ratio of measurements or allowing for the study of human
behavior over time (e.g., adaptation and learning). Blocks
can be defined as a grouping of trials that share something in
common; comparing measures between blocks allows for the
examination of how substantial changes to the scenario affect
the response. A session is a single iteration of the task with a
participant. Defining an experiment in such a session–block–
trial model (Fig. 1) allows for the definition and communica-
tion of an experimental design without ambiguity.

The use of this session–block–trial model in computer-based
experiments affords a certain type of system design structure
that mirrors themodel itself. Typically, the code produced for an
experimental task consists of a loop, in which the process of
presenting a stimulus and measuring a response is repeated
many times, sometimes changing the parameters between loop
iterations. The popularity of this experimental architecture
means that researchers have attempted to provide tools that
allow for the development of tasks without the need to
Breinvent the wheel.^ Relatedly, development of the stimuli
for software experiments is often difficult without knowledge
of low-level computer processes and hardware. Thus, several

software packages have been released that aim to make the
stimuli themselves easier to specify in code. There is some
crossover between these two types of packages; some packages
focus only on stimuli, whereas others also provide high-level
ways to define the trials and blocks of the experiment. We
briefly consider some of the most commonly used tools next.

PsychToolbox (Brainard, 1997) is a software package for
MATLAB that allows researchers to program stimuli for vi-
sion experiments, providing the capability to perform low-
level graphics operations but retaining the simplicity of the
high-level interpreted MATLAB language. PsychoPy
(Peirce, 2007) is an experimental control system that provides
a means of using the Python programming language to sys-
tematically display stimuli to a user with precise timing. It
consists of a set of common stimulus types, built-in functions
for the collection and storage of user responses/behavior, and
means of implementing various experimental design tech-
niques (such as parameter staircases). PsychoPy also attempts
to make research accessible for nonprogrammers with its
Bbuilder,^ a graphical user interface (GUI) that allows the
development of experiments with few to no computer pro-
gramming requirements.

The graphics processes for immersive technologies are sig-
nificantly more complex than those required for two-
dimensional displays. In VR, it is difficult to think of stimuli
in terms of a series of colored pixels. The additional complexity
includes a need for stimuli to be displayed in apparent 3-D in
order to simulate the naturalistic way objects appear to scale,
move, and warp according to head position. Unity and other
game engines have the capacity to implement the complex
render pipeline that can accurately display stimuli in a virtual
environment; however, current academic-focused visual dis-
play projects may not have the resources to keep up with the
evolving demands of immersive technology software. Vizard
(WorldViz, 2018), Unreal Engine (Epic Games, 2018), and
open-source 3-D game engines such as Godot (Godot, 2018)
and Xenko (Xenko, 2018) are also feasible alternatives to
Unity, but Unity may still be a primary choice for researchers,
because of its ease of use, maturity, and widespread popularity.

The Unity Experiment Framework

To provide behavioral researchers with the power of Unity and
the convenience of programs such as PsychoPy, we created the
Unity Experiment Framework (UXF). UXF is a software
framework for the development of human behavior experi-
ments with Unity and the main programming language it uses,
C#. UXF takes common programming concepts and features
that are widely used and are often reimplemented for each ex-
periment, and implements them in a generic fashion (Table 1).
This gives researchers the tools to create their experimental
software without the need to redevelop this common set of

Fig. 1 Structure of typical human behavior experiments, in the session–
block–trial model. Many experiments comprise multiple repetitions of
trials. Between trials, only minor changes are made. A substantial
change of content in the trial is often described as creating a new block.
A single iteration of a task by a participant is called a session.

Behav Res (2020) 52:455–463456

features. UXF aims specifically to solve this problem, and it
deliberately excludes any kind of stimulus presentation system,
with the view that Unity (and its large asset-developing com-
munity) can provide all the necessary means to implement any
kind of stimulus or interaction system for an experiment. In
summary, UXF provides the Bnuts and bolts^ that work behind
the scenes of an experiment developed within Unity.

Experiment structure

UXF provides a set of high-level objects that directly map
onto how we describe experiments. The goal is to make the
experiment code more readable and avoid the temptation for
inelegant if–else statements in the code as complexity in-
creases. Sessions, blocks, and trials are the Bobjects^ that
can be represented within our code. The creation of a session,
block, or trial automatically generates the properties we would
expect them to have—for example, each block has a block
number, and each trial has a trial number. These numbers are
automatically generated as positive integers based on the order
in which objects were created. Trials contain functionality
such as Bbegin^ and Bend,^ which will perform useful tasks
implicitly in the background, such as recording the timestamp
when the trial began or ended. Trials and blocks can be created
programmatically, meaning that UXF can support any type of
experiment structure, including staircase or adaptive
procedures.

Measuring dependent variables

While the trial is ongoing, at any point researchers can add any
observations to the results of the trial, which will be added to the

behavioral .CSV output data file at the end of the session.
Additionally, a variable can be continuously logged over time
at the same rate as the display refresh frequency (90 Hz in most
currently available commercial VR HMDs). The main use case
will be the position and rotation of any object in Unity, which can
be automatically recorded on a per-trial basis, saving a single
.CSV file for each trial of the session. This allows for easy
cross-referencing with behavioral data. All data files (behavioral
and continuous) are stored in a directory structure organized by
experiment > participant > session number.

Setting independent variables

Settings can be used to attach the values of an independent
variable to an experiment, session, block, or trial. Settings have
a cascading effect, whereby one can apply a setting to the
whole session, a block, or a single trial. When attempting to
access a setting, if the setting has not been assigned in the trial,
UXF will attempt to access the setting in the block. If the
setting has not been assigned in the block, UXF will search
in the session (Fig. 2). This allows users to very easily imple-
ment features common to experiments, such as B10% of trials
contain a different stimulus.^ In this case, one could assign a
Bstimulus^ setting for the whole session, but then assign 10%
of the trials to have a different value for a Bstimulus^ setting.

Settings are also a useful feature to allow for changing
experimental parameters without modifying the source code.
A simple text file (.JSON format) can be placed in the exper-
iment directory that will be read at the start of a session, and its
settings will be applied to that session. This system speeds up
the iteration time during the process of designing the experi-
ment; the experimenter can change settings from this file and

Table 1 Common experiment concepts and features that are represented in UXF

Concept Description

Trial The base unit of experiments. A trial is usually a singular attempt at a task by a participant after/during the presentation of a
stimulus.

Block A set of trials—often used to group consecutive trials that share something in common.

Session A session encapsulates a full Brun^ of the experiment. Sessions are usually separated by a significant amount of time and could be
within subjects (for the collection of data from a singular participant over several sessions) and/or between subjects (for the
collection of data from several participants each carrying out a single session).

Settings Settings are the parameters or variables for an experiment, block, or trial, usually predetermined, that quantitatively define the
experiment. Settings are useful for defining the experimental manipulation (i.e., the independent variables).

Behavioral data We perform an experiment to measure the effect of an independent variable on a dependent variable. Behavioral data collection
allows for the collection of measured values of dependent variables on a trial-by-trial basis. For example, we maywish to collect
the response to a multiple-choice question or the distance that a user throws a virtual ball.

Continuous data Within a trial, we may want to measure a value of one or more parameters over time. Most commonly, we want to record the
position and rotation of an object within each trial. This could be an object that is mapped to a real-world object (e.g., participant
head, hands) or a fully virtual object (virtual ball in a throwing experiment). Tracking the position and rotation of an object is the
main use case, but UXF supports the measurement of any parameter over time (e.g., pressure applied to a pressure pad).

Participant
information

There may be other variables that we cannot control within the software, which we may wish to measure in order to record to
examine a variable’s relationship to the result—for example, the age or gender of the participant.

Behav Res (2020) 52:455–463 457

see their immediate effect, without changing any of the code
itself. The system also allows multiple versions of the same
experiment (e.g., different experimental manipulations) to be
maintained within a single codebase using multiple settings
files. One of these settings profiles can be selected by the
experimenter on launching the experiment task.

Experimenter user interface

UXF includes an (optional) experimenter user interface (UI;
Fig. 3) to allow selection of a settings profile and inputting of
additional participant information, such as demographics. The
information the experimenter wishes to collect is fully cus-
tomizable. The UI includes support for a Bparticipant list^
system, whereby participant demographic information is
stored in its own .CSV file. As new participants perform the
experiment, their demographic information is stored in the list.
This allows participant information to be more easily shared
between sessions, or even separate experiments—instead of
having to input the information each time, the experimenter
can easily select any existing participant found in the partici-
pant list via a drop-down menu.

Example

Below is an example of the C# code used to generate a simple
two-block, ten-trial experiment in which the participant is pre-
sented with a number x and must input the doubled value (2x).

Elsewhere in our project, we must define what happens
whenwe begin the trial (such asmaking the value of xx appear
for the participant) and mechanisms to retrieve the partici-
pant’s response for the trial (i.e., the participant’s calculated
value of 2x). These mechanisms are to be created with stan-
dard Unity features for making objects appear in the scene,
collecting user response via keyboard input, and so forth. The
resulting .CSV behavioral data file would be automatically
generated and saved (Table 2). A typical structure of a task
developed with UXF is shown in Fig. 4.

Multithreading file input/output (I/O)

Continuous measurement of variables requires that large
amounts of data be collected over the course of the experi-
ment. When using a VR HMD, it is essential to maintain a
high frame rate and keep stutters to a minimum in order to
minimize the risk of inducing sickness or discomfort in the
participant. Handling of tasks such as reading and writing to a
file may take several milliseconds or more, depending on the
operating system’s backgroundwork. Constant data collection
(particularly when tracking the movement of many objects in

Fig. 3 Screenshot of the experimenter user interface.

Fig. 2 The UXF settings system. Independent variables that are changed
as a means to iterate the design of an experiment, or to specify the
experimental manipulation itself, can be written in a human-readable
.json file. Settings can also be programmatically accessed or created at
the trial, block, or session level.When a setting has not been specified, the
request cascades up, so that the next level above is searched. This allows
for both Bgross^ (e.g., to a whole session) and Bfine^ (e.g., to a single
trial) storage of parameters within the same system.

Behav Res (2020) 52:455–463458

the scene) and writing these data to file therefore poses a risk
of dropping the frame rate below acceptable levels. The

solution is to create a multithreaded application that allows
the virtual environment to continue to be updated while data

Table 2 Example behavioral data
output trial_num block_num start_time end_time manipulation x response

1 1 0.000 1.153 FALSE 8 16

2 1 1.153 2.112 FALSE 3 6

3 1 2.112 2.950 FALSE 4 8

4 1 2.950 3.921 FALSE 7 14

5 1 3.921 4.727 FALSE 4 8

6 2 4.727 5.826 TRUE 9 18

7 2 5.826 6.863 TRUE 5 10

8 2 6.863 7.693 TRUE 10 20

9 2 7.693 8.839 TRUE 6 12

10 2 8.839 9.992 TRUE 3 6

Columns not shown include participant ID, session number, and experiment name.

Fig. 4 Structure of a typical task developed with UXF. The left panel
shows the functionality present in UXF, with the functionality a
researcher is expected to implement shown in the right panel. The
framework features several Bevents^ (shown in red), which are invoked

at different stages during the experiment; these allow developers to easily
add behaviors that occur at specific times—for example, presenting a
stimulus at the start of a trial.

Behav Res (2020) 52:455–463 459

are being written to files simultaneously in a separate thread.
Designing a stable multithreaded application imparts addition-
al technical requirements on the researcher. UXF abstracts file
I/O away from the developer, performing these tasks automat-
ically, with a multithreaded architecture working behind the
scenes. Additionally, the architecture contains a queuing sys-
tem, where UXF queues up all data tasks and writes the files
one by one, even halting the closing of the program in order to
finish emptying the queue, if necessary.

Cloud-based experiments

UXF is a standalone, generic project, so it does not put any
large design constraints on developers using it. This means
that UXF does not have to be used in a traditional lab-based
setting, with researchers interacting directly with participants;
it can also be used for data collection opportunities outside the
lab, by embedding experiments within games or apps that a
user can partake in at their discretion. Data are then sent to a
web server, from which they can later be downloaded and

analyzed by researchers (Fig. 5). Recently these cloud-based
experiments have become a viable method of performing ex-
periments on a large scale.

UXF can be used in cloud-based experiments (Fig. 5) using
two independent pieces of software that accompany UXF:

1. UXF S3 Uploader allows all files that are saved by UXF
(behavioral data, continuous data, and logs) to be addi-
tionally uploaded to a location in Amazon’s Simple
Storage Service, as set up by a researcher. This utilizes
the existing UXF functionality of setting up actions to be
executed after a file has been written, so a developer could
potentially implement uploading the files to any other
storage service.

2. UXF Web Settings replaces the default UXF functionality
of selecting experiment settings via a user interface,
allowing settings instead to be accessed automatically
from a web URL by the software itself. This allows a
deployed experiment (e.g., via an app store, or simply
by transferring an executable file) to be remotely altered
by the researcher, without any modification to the source
code. Settings files are stored in .json format and would
usually be of very small file size, so they can be hosted
online cheaply and easily.

A developer can implement neither, either, or both of
these extras, depending on the needs of the research. For
lab-based experiments, neither is required. For experi-
ments without any need to modify settings afterward,
but with the requirement of securely backing up data in
the cloud, the first option can be used. If a researcher
wants to remotely modify settings but has physical access
to the devices to retrieve data, the second option can be
used. For a fully cloud-based experiment without direct
researcher contact with the participant, both optional func-
tionalities can be used. This has been successfully tried
and tested, in the context of a museum exhibition in
which visitors could take part in VR experiments, with
the recorded data being uploaded to the internet. Both
UXF S3 Uploader and UXF Web Settings are available
as open-source Unity packages.

Case study

One classic question in human behavioral research is related
to the information used by adults and children when maintain-
ing posture (Edwards, 1946; Thomas & Whitney, 1959). To
investigate the contributions of kinesthetic and vision
information when both are available, four decades ago Lee
and Aronson (1974) used a physical Bswinging^ room to per-
turb the visual information provided by the walls and ceiling
while leaving the kinesthetic information unaffected (only the

Fig. 5 Experiment in the cloud. A piece of software developed with UXF
can be deployed to an internet-connected device. Researchers can modify
the experiment settings to test different experimental manipulations over
time, which are downloaded from the web by the client device upon
running a UXF experiment. As the participant partakes in the experiment,
stimuli are presented, and the participant’s movements are recorded in the
form of behaviors/responses or continuous measurement of such param-
eters as hand position. The results are automatically and securely
streamed to a server on the internet, from which the researcher can peri-
odically retrieve the data.

Behav Res (2020) 52:455–463460

walls and ceiling swung; the floor did not move). This exper-
iment demonstrated the influence of vision on posture, but the
scale of the apparatus meant that it could only ever be imple-
mented in a laboratory setting. The approach was also subject
to both measurement errors and researcher bias (Wann, Mon-
Williams, & Rushton 1998). More recently, conventional
computer displays have been used to explore the impact of
vision on posture (e.g., Villard, Flanagan, Albanese, &
Stoffregen, 2008), and this method has addressed issues of
measurement error and researcher bias, but still it remains
confined to the laboratory.

The ability to create a virtual swinging room in a VR
environment provides a test case for the use of UXF to
support behavioral research and provides a proof-of-
concept demonstration of how large laboratory experi-
ments can be placed within a nonlaboratory setting.
Here, we used the head-tracking function as a proxy mea-
sure of postural stability (since decreased stability would
be associated with more head sway; Flatters et al., 2014).
To test the UXF software, we constructed a simple exper-
iment with both a within-participant component (whether
the virtual room was stationary or oscillating) and a
between-participant factor (adults vs. children). We then
deployed the experiment in a museum with a trained dem-
onstrator and remotely collected data from 100
participants.

The task was developed in the Unity game engine, with
UXF handling several aspects of the experiment, including
participant information collection, settings, behavioral data,
and continuous data.

& Participant information collection: The UXF built-in user
interface was used to collect a unique participant ID as
well as the participant’s age and gender. This information
was stored in a .CSV participant list file. This list was
subsequently updated with participant height and arm
span as they were collected in the task.

& Settings: A settings file accompanied the task, which
allowed modification of the assessment duration as well
as the oscillation amplitude and period without modifying
the code. The settings for each trial were used to construct
the environment in order to facilitate the requested trial
condition.

& Behavioral data: Although no dependent variables were
directly measured on each trial, the UXF behavioral data
collection system output a list of all trials that were run in
that session, as well as the vision condition for each trial.

& Continuous data: UXF was configured to automatically
log the HMD position over time within each trial, which
was then used offline for the stability measure calculation.
UXF split the files, with one file per trial, which was
designed to make it easy to match each file with the trial
condition under which the file was collected.

Method

Fifty children (all under 16 years of age; mean age = 9.6 years,
SD = 2.0 years) and 50 adults (mean age = 27.5 years, SD =
13.2 years) took part in the study. The participants either were
recruited from the University of Leeds participant pool
(adults) or were attendees at the Eureka! Science Museum
(children and adults) and provided full consent. A gaming-
grade laptop (Intel Core i5-7300HQ, Nvidia GTX 1060), a
VR HMD (Oculus Rift CV1), and the SteamVR application
program interface (API), a freely available package indepen-
dent of UXF (Valve Corp., 2018), were used to present the
stimuli and collect data. The HMD was first calibrated using
the built-in procedure, which set the virtual floor level to
match the physical floor.

After explaining the task requirements, the demonstrator put
the HMD on the participant’s head (over glasses, if necessary)
and adjusted it until the participant reported that it was com-
fortable and they could see clearly. Participants were then
placed in the center of a simple virtual room (height 3 m, width
6 m, depth 6 m) with textured walls and floors (Fig. 6). Height
was measured as vertical distance from the floor to the Bcenter
eye^ of the participant (as reported by the SteamVR API), and
this value was used to place a fixation cross on the wall at the
participant’s height.

The task comprised two 10-s trials performed in a random
order. The normal condition asked participants to stand still and
look at a fixation cross placed on the wall. In the oscillating
condition, participants were given the same instructions, but the
virtual room oscillated in a sinusoidal fashion (rotating around
the x-axis) with an amplitude of 5° and a frequency of 0.25 Hz.
The oscillation was performed about the point on the floor at the
center of the room, in effect keeping the participant’s feet fixed in
place. Participants were not explicitly informed about the room
oscillation. The position of the HMD inside the virtual roomwas
logged at a rate of 90 Hz during each of the two trials. The path
length of the head was used as a proxy measure of postural
stability (sum of all point-to-point distances over a trial).

Fig. 6 Screenshot from inside the virtual room. Arrows indicate the three
axes as well as the origin. The red fixation cross is shown on the wall.

Behav Res (2020) 52:455–463 461

Results

No participants reported any feelings of sickness or discom-
fort during or after taking part in the task. A mixed-model
design analysis of variance (ANOVA; 2 [Age: adult vs. chil-
dren] × 2 Vision Condition [normal vs. oscillating]) revealed
no interaction, F(2, 98) = 0.34, p = .562, η2G = .001, but it did
reveal main effects of vision, F(2, 98) = 7.35, p = .008, η2G =
.016, and age, F(1, 98) = 9.26, p = .003, η2G = .068, thus
replicating previous work on the contribution of visual infor-
mation to postural stability (Flatters et al., 2014) (see Fig. 7).

Summary

We have created an open-source resource that enables re-
searchers to use the powerful gaming engine Unity when de-
signing experiments. We tested the usefulness of UXF by
designing an experiment that could be deployed within a mu-
seum setting. We found that UXF simplified the development
of the experiment and produced measures, in the form of data
files that were in a format that made subsequent data analysis
straightforward. The data collected were consistent with the
equivalent laboratory-based measures (reported over many
decades of research), whereby children showed less postural
stability than did adults, and whereby both adults and children
showed greater sway when the visual information was
perturbed. There are likely to be differences in the postural
responses of both adults and children within a virtual environ-
ment relative to a laboratory setting, and we do not suggest

that the data are quantitatively similar between these settings.
Nonetheless, these data do show that remotely deployed VR
systems can capture age differences and detect the outcomes
of an experimental manipulation.

Our planned work includes maintaining the software for
compatibility with future versions of Unity and refactoring
UXF so that it works on a wider range of platforms (e.g.,
mobile devices, web browsers, augmented-reality devices,
and standalone VR headsets). Features may be added or mod-
ified if a clear need arises. The project is open-source, thus
allowing researchers in the field to implement and share such
additions.

Availability UXF is freely available to download via GitHub
as a Unity package (github.com/immersivecognition/unity-
experiment-framework) and currently can be integrated into
Unity tasks built for Windows PCs. Documentation and
support is available on the GitHub wiki (github.com/
immersivecognition/unity-experiment-framework/wiki). The
package is open-source under the MIT license. The related
packages UXF S3 Uploader and UXFWeb Settings are avail-
able via the same GitHub link.

Author note The authors thank Almanzo McConkey and
Andrea Loriedo for their feedback on earlier versions of the
software. Authors F.M. and M.M.-W. hold Fellowships from
the Alan Turing Institute. M.W., F.M., and M.M.-W. are sup-
ported by a Research Grant from the EPSRC (Grant EP/
R031193/1).

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,
433–436. doi:https://doi.org/10.1163/156856897X00357

Edwards, A. S. (1946). Body sway and vision. Journal of Experimental
Psychology, 36, 526–535. doi:https://doi.org/10.1037/h0059909

Epic Games. (2018). Unreal Engine 4. Retrieved December 21, 2018,
from https://www.unrealengine.com/

Flatters, I., Mushtaq, F., Hill, L. J. B., Rossiter, A., Jarrett-Peet, K.,
Culmer, P., . . . Mon-Williams, M. (2014). Children’s head move-
ments and postural stability as a function of task. Experimental
Brain Research, 232, 1953–1970. doi:https://doi.org/10.1007/
s00221-014-3886-0

Godot. (2018). Godot Engine—Free and open source 2D and 3D game
engine. Retrieved December 21, 2018, from https://godotengine.
org/

Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of stand-
ing in human infants. Perception & Psychophysics, 15, 529–532.
doi:https://doi.org/10.3758/BF03199297

Fig. 7 Head path length (where higher values indicate worse postural
stability) as a function of vision condition. The two conditions were
Bnormal^ (static virtual room) and Boscillating^ (oscillating virtual
room). Postural stability was indexed by the path length of head
movement, in meters (measured over a 10-s period). Adults showed a
significantly different path length overall, as compared to children
(shorter, indicating greater stability). Error bars represent ± 1 SEM.

Behav Res (2020) 52:455–463462

http://github.com/immersivecognition/unity-experiment-framework
http://github.com/immersivecognition/unity-experiment-framework
http://github.com/immersivecognition/unity-experiment-framework/wiki
http://github.com/immersivecognition/unity-experiment-framework/wiki
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1037/h0059909
https://www.unrealengine.com/
https://doi.org/10.1007/s00221-014-3886-0
https://doi.org/10.1007/s00221-014-3886-0
https://godotengine.org/
https://godotengine.org/
https://doi.org/10.3758/BF03199297

Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive virtual
environment technology as a basic research tool in psychology.
Behavior Research Methods, Instruments, & Computers, 31, 557–
564. doi:https://doi.org/10.3758/BF03200735

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python.
Journal of Neuroscience Methods, 162, 8–13. doi:https://doi.org/
10.1016/j.jneumeth.2006.11.017

Thomas, D. P., & Whitney, R. J. (1959). Postural movements during
normal standing in man. Journal of Anatomy, 93, 524–539.

Unity Technologies. (2018). Unity. Retrieved from https://unity3d.com/
Valve Corp. (2018). SteamVR. Retrieved December 13, 2018, from

https://steamcommunity.com/steamvr
Villard, S. J., Flanagan, M. B., Albanese, G. M., & Stoffregen, T. A.

(2008). Postural instability and motion sickness in a virtual moving
room. Human Factors, 50, 332–345. doi:https://doi.org/10.1518/
001872008X250728

Wann, J., & Mon-Williams, M. (1996). What does virtual reality NEED?
Human factors issues in the design of three-dimensional computer

environments. International Journal of Human–Computer Studies,
44, 829–847. doi:https://doi.org/10.1006/ijhc.1996.0035

Wann, J. P., Mon-Williams, M., & Rushton, K. (1998). Postural control
and co-ordination disorders: The swinging room revisited. Human
Movement Science, 17, 491–513. doi:https://doi.org/10.1016/
S0167-9457(98)00011-6

WorldViz. (2018). Vizard. Retrieved December 21, 2018, from https://
www.worldviz.com/vizard

Xenko. (2018). Xenko Game Engine. Retrieved December 21, 2018,
from http://xenko.com/

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Behav Res (2020) 52:455–463 463

https://doi.org/10.3758/BF03200735
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://unity3d.com/
https://steamcommunity.com/steamvr
https://doi.org/10.1518/001872008X250728
https://doi.org/10.1518/001872008X250728
https://doi.org/10.1006/ijhc.1996.0035
https://doi.org/10.1016/S0167-9457(98)00011-6
https://doi.org/10.1016/S0167-9457(98)00011-6
https://www.worldviz.com/vizard
https://www.worldviz.com/vizard
http://xenko.com/

	Studying human behavior with virtual reality: The Unity Experiment Framework
	Abstract
	The Unity Experiment Framework
	Experiment structure
	Measuring dependent variables
	Setting independent variables
	Experimenter user interface
	Example
	Multithreading file input/output (I/�O)
	Cloud-based experiments

	Case study
	Method
	Results

	Summary
	References

