
This is a repository copy of Backdoors to planning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/143875/

Version: Accepted Version

Article:

Kronegger, M., Ordyniak, S. orcid.org/0000-0003-1935-651X and Pfandler, A. (2019)
Backdoors to planning. Artificial Intelligence, 269. pp. 49-75. ISSN 0004-3702

https://doi.org/10.1016/j.artint.2018.10.002

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Backdoors to PlanningI

Martin Kroneggera,∗, Sebastian Ordyniakb,∗, Andreas Pfandlerb,c,∗

aJohannes Kepler University Linz, Austria
bTU Wien, Austria

cUniversity of Siegen, Germany

Abstract

Backdoors measure the distance to tractable fragments and have become an important tool to find fixed-pa-
rameter tractable (fpt) algorithms for hard problems in AI and beyond. Despite their success, backdoors
have not been used for planning, a central problem in AI that has a high computational complexity. In this
work, we introduce two notions of backdoors building upon the causal graph. We analyze the complexity of
finding a small backdoor (detection) and using the backdoor to solve the problem (evaluation) in the light
of planning with (un)bounded plan length/domain of the variables. For each setting we present either an
fpt-result or rule out the existence thereof by showing parameterized intractability. For several interesting
cases we achieve the most desirable outcome: detection and evaluation are fpt. In addition, we explore the
power of polynomial preprocessing for all fpt-results, i.e., we investigate whether polynomial kernels exist.
We show that for the detection problems, polynomial kernels exist whereas we rule out the existence of
polynomial kernels for the evaluation problems.

Keywords: Planning, Backdoors, Causal graph, Fixed-parameter tractable algorithms, (Parameterized)
complexity

1. Introduction

Planning is one of the central formalisms in AI. Unfortunately, the expressive power of planning comes
at the cost of high computational complexity. In general, already propositional STRIPS planning is
PSPACE-complete for unbounded plan length. In order to cope with this high complexity, several fragments of
planning have been considered where planning becomes tractable. For propositional STRIPS a comprehensive
complexity analysis was performed by Bylander [14]. Later, Bäckström and Nebel [8] presented a similar
analysis for the SAS+ formalism, where the state variables range over multi-valued domains.

A more fine-grained understanding of the hardness and tractability of a problem can be obtained from
the viewpoint of parameterized complexity theory [21]. Here one is interested in identifying one or multiple
features of the instance – the so-called parameters – which capture the combinatorial explosion. More formally,
the time needed to solve an instance of the problem is not only measured in terms of the input size n, but
also depends on the parameter (or combination of parameters) k. The class of efficiently solvable problems
is FPT (fixed-parameter tractable), i.e., the problem can be solved by an fpt-algorithm in time f(k) · nO(1),
where f(k) is a computable function depending only on the parameter k but not on n. The exponential time
complexity is thus confined to the parameter, i.e., the function f(k). Therefore, an fpt-algorithm can be
considered efficient as long as the parameter values of an instance are sufficiently low. Furthermore notice

IThe paper is a thoroughly revised and largely extended version of [55] containing novel and constructive algorithms for
backdoor detection, kernelization lower bounds for backdoor evaluation, examples for the applicability of our approach to
problems in AI and beyond, as well as enhanced versions of our tractability results for planning.

∗Corresponding authors
URL: martin.kronegger@jku.at (Martin Kronegger), sordyniak@gmail.com (Sebastian Ordyniak),

pfandler@dbai.tuwien.ac.at (Andreas Pfandler)

Preprint submitted to Artificial Intelligence March 19, 2019

that an fpt-result immediately yields tractability of the problem if parameter k is bounded by a constant.
Techniques from parameterized complexity have been successfully used to tackle hard problems, e.g., in
Knowledge Representation & Reasoning (for a survey we refer to Gottlob and Szeider [44]). But parameterized
complexity is not limited to this field. In the last years these techniques have lead to notable progress in
many areas such as QBF [2, 25], ILP [33], SAT and CSP [34, 36], Computational Social Choice [9, 13, 26],
and Belief change [64]. For planning, a parameterized complexity analysis was initiated by Downey et al.
[23]. In recent works [1, 3, 4, 7, 55–57], several fpt-results have been obtained for SAS+ and propositional
STRIPS. Despite this success the desire for additional fpt-algorithms prevails.

A powerful tool to obtain fpt-algorithms are so-called backdoors (for a survey see Gaspers and Szeider
[39]). Backdoors were originally introduced by Crama et al. [16] and Williams et al. [69] to explain the
behavior of SAT and CSP solvers on practical instances. The basic idea is that the size of a backdoor set
measures the distance to a tractable fragment of the problem. In the past, the backdoor approach has
been used to obtain fpt-results for SAT [39] and CSP [34, 36–38, 59, 61], QBFs [25, 68], ASP [27], and
Argumentation [24]. Furthermore, several experiments regarding the size of the backdoors of SAT and ASP
instances were performed [28, 45, 53]. Interestingly, some of the instances were obtained through SAT-
and ASP-encodings of planning instances. Also quite recently backdoors have also been used to construct
parameterized reductions to SAT for problems harder than NP such as ASP [29] and Abduction [63]. However,
backdoors for planning have not been considered yet.

In our approach to backdoors for planning we build upon the so-called causal graph. The causal graph
models the dependencies between variables in a planning instance and based on the structure of the causal
graph various tractable fragments of planning have been identified [6, 10, 15, 20, 40–42, 48–50, 52]. In this
work we consider backdoor sets into the polynomial-time tractable fragment of planning instances whose
causal graph consists merely of small components, which has been introduced in [15]. Informally, in this way
our backdoor sets capture the distance to planning instances that are the disjoint union of small independent
planning instances. In comparison to the classical backdoors for SAT our backdoors for planning exhibit
quite a few notable and interesting differences. Whereas solving SAT given a backdoor is easy this task
becomes more involved for planning, which, in fact, turned out to be the main challenge for our approach.
Intuitively, one reason for this complication is that for planning is about finding a sequence of states rather
than a single assignment to the variables as is the case for SAT. Also in contrast to classical backdoors for
SAT that are defined by syntactical restrictions of the formula, e.g., Horn formulas, we focus on a tractable
fragment defined via structural restrictions of the instance and consider two different distance measures
towards this tractable fragment.

As a by-product of our analysis of the parameterized complexity of backdoors to planning we obtain a
methodology that is applicable to AI problems far beyond planning. We show how the underlying graph
structure can be used to define sensible notions of backdoors that can also handle problems dealing with
states (or similar concepts). Furthermore, we show how prominent techniques from kernelization can be
combined with the former approach for an additional gain in efficiency. There is hope that this approach can
be used in many other AI settings to develop efficient algorithms that scale well with the distance of a given
instance to the tractable fragment.
Main contributions

In this work, we introduce two natural notions of backdoors for planning, which are based on the underlying
causal graph of the planning instance. For both of the new notions of backdoors, we perform a comprehensive
parameterized complexity analysis (see Table 1 for an overview). In more detail, we analyze the complexity
of the two phases of the backdoor approach: (i) finding a small backdoor (detection phase), and (ii) using
the additional information given in the backdoor to solve the planning instance (evaluation phase). In
the evaluation phase, we additionally consider a bound on the plan length and/or on the domain of the
variables as additional restrictions. For each of the above settings we present either an fpt-result, or show
parameterized intractability. Furthermore, we strengthen all fpt-results by an investigation of the power of
polynomial preprocessing, more precisely, of the existence of polynomial kernels. It turns out that polynomial
kernels exist for the detection problems, whereas we rule out the existence of polynomial kernels for the
evaluation problems (under the usual complexity theoretic assumptions). This gives us a complete picture of
the parameterized complexity of the backdoor approach with respect to the considered notions of backdoors.

2

Among our fpt-results is the first fpt-algorithm for planning with unbounded plan length that neither
limits the number of variables nor the number of actions in the planning instance.

Another contribution of this work is to present and illustrate the methodology of the backdoor approach in
the planning setting, where it is less immediate how backdoors can be used. We believe that this methodology
pursued in this work can be generalized to other hard problems in AI and beyond, so that other areas can
benefit from the backdoor approach.

2. Preliminaries

We assume the reader to be familiar with the basics of graph theory [18], complexity theory [62], and
planning [66]. We use the following notation. For n ∈ N, we use [n] to denote the set {1, . . . , n}. For two
sequences s1 and s2 of elements from an arbitrary set, we denote by s1s2 the concatenation of s1 and s2. We
will use standard notation from graph theory that can, e.g., be found in [18]. Namely, for an undirected
graph G = (V,E) and a subset V ′ of its vertices, we denote by G \ V ′ the graph obtained from G after
removing all vertices (together with all edges incident to a vertex in V ′) from G. The set of vertices of a
graph G is denoted by V (G). Moreover, we denote by G[V ′] the graph G \ (V \ V ′) and by G \E′ the graph
obtained from G after removing all edges in E′ ⊆ E.

Parameterized Complexity. Parameterized algorithmics (cf. Downey and Fellows [21, 22], Flum and
Grohe [31], Niedermeier [58], Cygan et al. [17]) is a promising approach to obtain efficient algorithms for
fragments of intractable problems. In a parameterized complexity analysis the runtime of an algorithm
is studied with respect to a parameter k ∈ N and input size n. The basic idea is to find a parameter
that describes the structure of the instance such that the combinatorial explosion can be confined to this
parameter. The most favorable class is FPT (fixed-parameter tractable) which contains all problems that can
be decided by an algorithm running in time f(k) · nO(1), where f is a computable function. We call such an
algorithm fixed-parameter tractable (fpt).

Formally, a parameterized problem is a subset of Σ∗ × N, where Σ is the input alphabet. Problem
reductions now also have to take the parameter into account. Let L1 and L2 be parameterized problems,
with L1 ⊆ Σ∗

1 × N and L2 ⊆ Σ∗
2 × N. A parameterized reduction (or fpt-reduction) from L1 to L2 is a

mapping P : Σ∗
1 × N → Σ∗

2 × N such that (i) (x, k) ∈ L1 iff P (x, k) ∈ L2; (ii) the mapping can be computed
by an fpt-algorithm w.r.t. parameter k; (iii) there is a computable function g such that k′ ≤ g(k), where
(x′, k′) = P (x, k).

Next, we will define the classes capturing fixed-parameter intractability needed in this work. For further
details we refer to the literature on parameterized complexity theory.

The class W[1] contains all problems that are fpt-reducible to Independent Set when parameterized
by the size of the solution, i.e., the size of the independent set [22]. The class paraNP [30] is defined
as the class of problems that are solvable by a non-deterministic Turing-machine in fpt-time. In our
paraNP-hardness proofs, we will make use of the following characterization of paraNP-hardness given by Flum
and Grohe [31], Theorem 2.14: any parameterized problem that remains NP-hard when the parameter is set
to some constant is paraNP-hard. The following relations between the parameterized complexity classes hold:
FPT ⊆ W[1] ⊆ paraNP. Showing W[1]-hardness for a problem rules out the existence of a fixed-parameter
algorithm under the usual complexity theoretic assumption FPT 6= W[1].

Closely related to the search for fpt-algorithms is the search for efficient preprocessing techniques. The
goal here is to find an equivalent instance (the so-called kernel) in polynomial time whose size can be bounded
by a function of the parameter. A kernelization algorithm transforms in polynomial time a problem instance
(x, k) of a parameterized problem L into an instance (x′, k′) of L such that (i) (x, k) ∈ L iff (x′, k′) ∈ L,
(ii) k′ ≤ f(k), and (iii) the size of x′ can be bounded above by g(k), for functions f and g depending only on
k. It is easy to show that a parameterized problem is in FPT if and only if there is kernelization algorithm.
A polynomial kernel is a kernel, whose size can be bounded by a polynomial in the parameter.

A polynomial parameter transformation (PPT) from a parameterized problem P to a parameterized
problem Q is a parameterized reduction from P to Q that maps instances 〈I, k〉 of P to instances 〈I′, k′〉 of
Q with the additional property that

3

1. 〈I′, k′〉 can be computed in time that is polynomial in |I|+ k, and

2. k′ is bounded by some polynomial p of k.

Proposition 1 ([7, Proposition 1]). Let P and Q be two parameterized problems such that there is a
PPT-reduction from P to Q. Then, if Q has a polynomial kernel also P has a polynomial kernel.

Planning. Let V = {v1, . . . , vn} be a finite set of variables over a finite domain D. Implicitly define
D+ = D ∪ {u}, where u is a special “undefined” value not present in D. Then Dn is the set of total states
and (D+)n is the set of partial states for n variables over V and D. Clearly, Dn ⊆ (D+)n. The value of a
variable v in a state s ∈ (D+)n is denoted by s[v]. A SAS+ instance is a tuple P = 〈V,D,A, I,G〉 where
V is a set of variables, D is a domain, A is a set of actions, I ∈ Dn is the initial state and G ∈ (D+)n is
the (partial) goal state. Each action a ∈ A has a precondition pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n.
We will frequently use the convention that a variable has value u in a precondition/effect unless a value is
explicitly specified. Let a ∈ A and let s ∈ Dn. Then a is valid in s if for all v ∈ V , either pre(a)[v] = s[v] or
pre(a)[v] = u. Furthermore, the result of a in s, denoted by res(s, a), is the state t ∈ Dn defined such that
for all v ∈ V , t[v] = eff(a)[v] if eff(a)[v] 6= u and t[v] = s[v] otherwise.

Let s0, sℓ ∈ Dn and let ω = 〈a1, . . . , aℓ〉 be a sequence of actions (of length ℓ). Then ω is a plan from
s0 to sℓ if either (i) ω = 〈〉 and ℓ = 0, or (ii) there are states s1, . . . , sℓ−1 ∈ Dn such that for all 1 ≤ i ≤ ℓ,
ai is valid in si−1 and si is the result of ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V , either
G[v] = s[v] or G[v] = u. An action sequence ω is a plan for a SAS+ instance P if ω is a plan from I to some
goal state. We will study the following problems:

SAS+ Planning
Instance: A SAS+ instance P.
Question: Does P have a plan?

Bounded SAS+ Planning
Instance: A SAS+ instance P and a positive integer k.

Parameter: k
Question: Does P have a plan of length at most k?

Notice that the propositional version of the well-known Strips planning language is a special case of
SAS+.

Let P = 〈V,D,A, I,G〉 be an SAS+ instance, V ′ ⊆ V , and A′ ⊆ A. We sometimes use V (P), A(P),
D(P), I(P), G(P) to refer to V , A, D, I, and G, respectively. We denote by P[V ′] the SAS+ instance
〈V ′, Dr, Ar, Ir, Gr〉, where Dr is the restriction of D to the domains of the variables in V ′, Ar are the actions
in A whose preconditions and effects are restricted to the variables in V ′, and Ir and Gr are the restriction
of I and G to the variables in V ′. We write P \ V ′ for the instance P[V \ V ′]. Similarly, we denote by P[A′]
the SAS+ instance 〈V,D,A′, I, G〉 and by P \ A′ the SAS+ instance P[A \ A′]. We denote by P(V ′) the
SAS+ instance obtained from P[V ′] after deleting all actions that have at least one precondition or effect on
V (P) \ V ′. If ω is a sequence of actions in A and A′ ⊆ A, we denote by ω[A′], the sequence obtained from ω
after removing all occurrences of actions in A \A′.

Finally, we consider the following simple variant of cost-optimal planning. A SAS+C instance P is a tuple
〈V,D,A, γ, I,G〉, where 〈V,D,A, I,G〉 is a SAS+ instance and γ : A → N is a cost-function assigning a cost
in terms of a natural number to every action in A. All notions and definitions for SAS+ planning also carry
over to SAS+C planning in the natural way. Additionally, we define the cost of a sequence ω = 〈a1, . . . , al〉 of

actions, denoted by γ(ω), as the sum of the costs of all action occurrences in ω, i.e., γ(ω) =
∑l

i=1 γ(ai).

3. Using the Causal Graph for Backdoors

In this work we will introduce two new types of backdoors. Before we start with the presentation of the
details, we give a high-level introduction to the backdoor approach.

4

Detection Evaluation
Setting Domain (un)bounded plan len. bounded plan length unbounded plan length

variable-deletion (un)bounded
in FPT (Thm. 5)

W[1]-hard (Thm. 7) W[1]-hard (Thm. 7)
and pk (Thm. 6)

action-deletion
bounded in FPT (Thm. 9)

and pk (Thm. 10)
in FPT (Cor. 14)
and npk (Thm. 17)

in FPT (Cor. 12)
and npk (Thm. 17)

unbounded paraNP-hard (Thm. 15)

Table 1: Complexity map of backdoors to planning. We use pk to denote that the problem admits a polynomial kernel and npk

to denote that the problem does not admit a polynomial kernel (unless coNP ⊆ NP/poly).

The backdoor approach can be separated into two phases. In the first phase (detection) one searches for a
set, i.e., the backdoor, whose size measures the distance of the given instance to a tractable base class. In the
second phase (evaluation) one makes use of the information of the backdoor to solve the problem. Usually,
the size of the backdoor is considered as parameter in the detection and evaluation problem. Hence, if both
problems are fpt, these problems and in consequence also the planning problem can be solved efficiently as
long as the backdoor is of moderate size.

For instance, for the SAT problem, one searches for a small set of variables of size k such that the given
formula can be reduced to 2k formulas that belong to the desired tractable base class (e.g., Horn or Krom).
For planning, however, it is not immediately clear how to break a hard instance into multiple easy instances
by using a backdoor set since the states have to be taken into account.

The basic idea of this work is to use the underlying structure of the planning instance, namely the causal
graph, instead of the planning instance itself to define the backdoor. Therefore, we first need to recapitulate
the concept of the causal graph [6, 11, 15, 54].

The labeled causal graph, denoted by GL-Causal(P) of a SAS+ instance P = 〈V,D,A, I,G〉 is the edge-
labeled directed graph with vertex set V and edge-labeling function λ : E(GL-Causal(P)) → A that for every
action a ∈ A and every pair of distinct variables v and v′ such that either v appears in the precondition of a
and v′ appears in the effect of a or v and v′ appear together in the effect of a has an arc from v to v′ with
label a. Moreover, we also define the causal graph of an SAS+ instance P, denoted by GCausal(P), as the
directed graph obtained from the labeled causal graph after omitting the labels on the edges and deleting
multiple arcs between the same pair of vertices. If C is a set of vertices of a subgraph of GL-Causal(P) (or
GCausal(P)) we denote by P[C] and P(C) the SAS+ instance P[V ′] and P(V ′), respectively, where V ′ ⊆ V
are all variables that correspond to vertices of C. For a directed graph D = (V,A) we denote by D its
underlying undirected graph, i.e., the graph with vertex set V and edge set { {u, v} | (u, v) ∈ A }. We denote
by cc-size(H) the size of the largest connected component of H if H is an undirected graph and if H is
a directed graph then cc-size(H) denotes the size of its largest weakly connected component. Note that
for a directed graph H it holds that cc-size(H) = cc-size(H). If it is clear from the context, we will write
“components” instead of “weakly connected components of the causal graph GCausal(P)”.

Consider the following example. Let Pexample = 〈V,D,A, I,G〉 be a planning instance which is given by
the variables V = {v1, v2, v3, v4}, the domain D = {0, 1}, the actions A = {a1, a2, a3} where pre(a1)[v1] =
0, eff(a1)[v1] = 1, eff(a1)[v2] = 1, pre(a2)[v2] = 1, eff(a2)[v1] = 0, eff(a2)[v3] = 1, pre(a3)[v1] = pre(a3)[v2] =
pre(a3)[v3] = 1, eff(a3)[v4] = 1, the initial state I = 04, and the goal G where G[v4] = 1, and G[v1] = G[v2] =
G[v3] = u. The different versions of the causal graph as defined above are shown in Figure 1 for the planning
instance Pexample.

In order to be able to define the backdoors, we need to find a suitable, tractable base class. From the
literature it is known that SAS+ Planning is solvable in polynomial time if the maximum component size
of the underlying causal graph can be bounded by a constant c, i.e., cc-size(GCausal(P)) ≤ c.

Proposition 2 (Chen and Giménez [15]). Let c be a constant. Then SAS+ Planning can be solved in
polynomial time for instances where cc-size(GCausal(P)) ≤ c.

For the setting with bounded plan length it is easy to obtain a similar result. It suffices to construct the
state transition graph (of size O(|D|c)) for each component and compute the shortest path to the partial

5

v1 v2

v3 v4

a1
a1
a2

a2
a2a2

a3
a3

a3

(a) GL-Causal(Pexample)

v1 v2

v3 v4

(b) GCausal(Pexample)

v1 v2

v3 v4

(c) GCausal(Pexample)

Figure 1: Three different versions of the causal graph of the planning instance Pexample as defined Section 3.

Figure 2: A planning instance P with cc-size(GCausal(P)) ≤ 3.

goal. If these shortest paths exist, an arbitrary combination of the shortest plans for each component gives a
solution.

Proposition 3. Let c be a constant. Then c-Bounded SAS+ Planning can be solved in polynomial time
for instances where cc-size(GCausal(P)) ≤ c.

For both settings, notice that each planning instance where cc-size(GCausal(P)) is bounded by a constant
models (multiple) independent planning instances of constant size. An example of such a situation is depicted
in Figure 2. This property, however, is very fragile: a single variable or a single action can be responsible for
the causal graph being connected. In this work, we will deal with such situations by allowing a set of variables
or actions to be responsible for the causal graph being connected, which yields more robust algorithms.

The backdoors introduced in this work measure the distance of the planning instance P to a tractable
planning instance P

′ that has bounded component size. We will consider two natural ways to decompose the
components of the causal graph. The backdoor set S either contains the variables or the actions that have
to be removed from the instance to reduce the size of the weakly connected components. Notice that from
the viewpoint of classical complexity theory the evaluation problem remains as hard as the original planning
problem, because one is free to add all variables or all actions to the backdoor set.

In this work, each backdoor type is considered in the light of four different settings of planning. We
consider the SAS+ Planning and the Bounded SAS+ Planning problem in case of an bounded or
unbounded domain of the variables. For each case we will present either an fpt-algorithm or show hardness
for the classes W[1] or paraNP. The results of this work are summarized in Table 1.

3.1. Variable-Deletion-Backdoors

In this section we consider planning instances that have a small number of variables whose removal
results in a causal graph with components of bounded size. We show that even though the detection of these
planning instances is fixed-parameter tractable (Theorem 5) this does not hold for the evaluation problem
even for planning instances with bounded domain (Theorem 7).

6

S

Figure 3: The causal graph of a planning instance where the variables in S need to be removed such that cc-size(GCausal(P\S)) ≤ 3.

We start by defining the detection problem for the setting where variables are allowed to be removed
(variable-deletion-backdoors).

c-Causal Detection[Variables]

Instance: A SAS+ instance P and a positive integer k.
Parameter: k
Question: Is there a set S of at most k variables of P such that cc-size(GCausal(P \ S)) ≤ c?

Intuitively, a variable-deletion-backdoor captures the distance (in terms of variables that need to be
removed) to an instance where all variables can be partitioned into small sets that are relevant for independent
subtasks. Observe that the property of having small components in the causal graph is very fragile: Even
if the variables form small independent components, adding a single variable that occurs in all actions in
the precondition creates a single, big component in the causal graph. Variable-deletion-backdoors can be
seen as a more robust notion. In the example above a backdoor of size one (containing the newly introduced
variable) is sufficient. Based on Figure 2, Figure 3 shows the causal graph of a planning instance where the
variables in the set S need to be removed such that cc-size(GCausal(P \ S)) ≤ 3.

Next, we build upon this backdoor and extend the problems SAS+ Planning and Bounded SAS+

Planning to make use of a previously computed backdoor S.

c-Causal Evaluation[Variables]

Instance: A SAS+ instance P and a set S of variables of P such that cc-size(GCausal(P\S)) ≤ c.
Parameter: |S|
Question: Does P have a plan?

c-Bounded Causal Evaluation[Variables]

Instance: A SAS+ instance P, a set S of variables of P such that cc-size(GCausal(P \ S)) ≤ c
and an integer k.

Parameter: |S|+ k
Question: Does P have a plan of length at most k?

We start the complexity analysis by a discussion of the complexity of the detection problem. Observe
that at its core the detection problem is a problem on the causal graph of the planning instance. Namely,
the detection problem can be equivalently stated as the following graph problem.

7

c-Vertex Deletion to Small Components
Instance: An undirected graph G and an integer k.

Parameter: k
Question: Is there a set R ⊆ V (G) of at most k vertices such that cc-size(G \R) ≤ c?

To see that both problems are equivalent consider the following polynomial-time reductions in both
directions. Given an instance I = 〈P, k〉 of c-Causal Detection[Variables], then 〈GCausal(P), k〉 is an
instance of c-Vertex Deletion to Small Components that is equivalent to I. Moreover, if I = 〈G, k〉 is
an instance of c-Vertex Deletion to Small Components, then 〈P, k〉, where P is any planning instance
such that GCausal(P) is isomorphic with G is equivalent to I. Note that such an instance P can for instance
be obtained as follows:

• for every vertex v ∈ V (G), P has one variable v with arbitrary domain,

• for every edge {u, v} ∈ E(G), P has one action that has an arbitrary effect on u and v, and

• the domain, the initial state as well as the goal state of P are defined arbitrarily.

To justify a parameterized complexity analysis, we first show NP-hardness using a reduction from the
following well-known NP-hard problem [35].

Vertex Cover
Instance: An undirected graph G and an integer k.

Parameter: k
Question: Does G have a vertex cover of size at most k, i.e., is there a set S of at most k

vertices of G such that for all edges {x, y} ∈ E(G) either x ∈ S or y ∈ S?

Theorem 4. For every c ≥ 1, c-Causal Detection[Variables] is NP-complete even for planning instances
with bounded domain.

Proof. Due to the equivalence of c-Causal Detection[Variables] and c-Vertex Deletion to Small
Components discussed above it is sufficient to show that c-Vertex Deletion to Small Components
is NP-complete. Because any solution to c-Vertex Deletion to Small Components (which is clearly
of polynomial size) can be verified in polynomial-time, it holds that c-Vertex Deletion to Small
Components is in NP. Towards showing NP-hardness of c-Vertex Deletion to Small Components we
give a polynomial-time reduction from the Vertex Cover problem. Given an instance 〈G, k〉 of Vertex
Cover, we construct the instance 〈G′, k′〉 of c-Vertex Deletion to Small Components as follows. The
graph G′ is obtained from G by replacing every vertex v ∈ V (G) with a complete graph, in the following
denoted by Cv, on c new vertices and making every vertex in Cv adjacent to every vertex in Cu for every
{u, v} ∈ E(G). Moreover, we set k′ to be equal to ck. Note that the reduction can be computed in
polynomial-time and it remains to show the equivalence between the two instances.

Towards showing the forward direction, assume that S ⊆ V (G) is a vertex cover of G of size at most
k. We claim that R =

⋃

v∈S V (Cv) is a solution for 〈G′, k′〉. Clearly, R has size at most c|S| ≤ ck ≤ k′ as
required. Moreover, because S is a vertex cover of G, it follows that every component of G′ \ R contains
vertices of at most one complete graph Cv for any vertex v ∈ V (G). Hence every component of G′ \R has
size at most c, as required.

Towards showing the reverse direction, assume that R ⊆ V (G′) is a solution for 〈G′, k′〉. We first show
that w.l.o.g. we can assume that the following property holds:

(P1) For every vertex v ∈ V (G) it holds that either V (Cv) ∩R = ∅ or V (Cv) ⊆ R.

Suppose that this is not the case, i.e., there is a vertex v ∈ V (G) with V (Cv) ∩R 6= ∅ but not V (Cv) ⊆ R.
Because Cv forms a complete subgraph of G′, it follows that all vertices in Cv \R are contained in the same
component, say C, of G′ \R. If C = Cv \R, then we can simply remove all vertices in V (Cv) ∩R from R

8

and thereby obtain a new solution R′ such that either V (Cv) ∩R′ = ∅ or V (Cv) ⊆ R′, which brings us one
step closer towards satisfying Property (P1). Hence assume that is not the case, i.e., there are two vertices
v, u ∈ V (G) such that C has a non-empty intersection with V (Cv) and V (Cu). Because R is a solution we
have that |(V (Cv) ∪ V (Cu)) \R| ≤ |V (C)| ≤ c and consequently |(V (Cv) ∪ V (Cu)) ∩R| ≥ c. It follows that
we can obtain a new solution R′ from R by replacing |V (Cv \R)| vertices in R ∩ V (Cu) with the vertices in
Cv \R. But then again either V (Cv)∩R′ = ∅ or V (Cv) ⊆ R′ holds and by iterating this procedure until it is
no longer applicable, we eventually obtain a solution R′′ satisfying Property (P1).

Now let R be a solution satisfying Property (P1). We claim that the set S containing all vertices v of G
such that V (Cv) ∩R 6= ∅ is a vertex cover of G of size at most k. Because of Property (P1), it holds that
|S| = |R|/c ≤ k′/c = k as required. Moreover, because R is a solution every component of G′ \R contains
at most c vertices, which due to Property (P1) implies that any such component is equal to Cv for some
v ∈ V (G), which in turn implies that S is a vertex cover of G.

In the next theorem we will show that the detection problem is fixed-parameter tractable.

Theorem 5. For any c ≥ 1, c-Causal Detection[Variables] can be solved in time O((c+ 1)k|E(G)|)
and is hence fixed-parameter tractable.

Proof. Because of the equivalence of c-Causal Detection[Variables] and c-Vertex Deletion to
Small Components it is sufficient to show the result for c-Vertex Deletion to Small Components.
We will show the theorem by providing a depth-bounded search tree algorithm, which given an instance
I = 〈G, k〉 of c-Vertex Deletion to Small Components either determines that the instance is a
No-instance, or outputs a solution R ⊆ V (G) of minimum size for I. The algorithm is based on the following
two observations:

O1 If G is not connected then a (minimum) solution for I can be obtained as the disjoint union of
(minimum) solutions for every component of G.

O2 If G is connected and C is any set of c+ 1 vertices of G such that G[C] is connected, then any solution
for I has to contain at least one vertex from C.

Using the above observations the algorithm first checks whether G is connected. If G is not connected the
algorithm calls itself recursively on the instance (C, k) for each component C of G. If one of these recursive
calls returns No or if the size of the union of the (minimum) solutions returned for each component exceeds
k, the algorithm returns that I is a No-instance. Note that for this step of the algorithm it is crucial that
the algorithm returns a minimum solution (instead of returning an arbitrary solution of size at most k) for
any Yes-instance (G, k). Otherwise the algorithm returns the union of the (minimum) solutions returned for
each component of G.

If G is connected and |V (G)| ≤ c, the algorithm returns the empty set as a solution. Otherwise, i.e., if
G is connected but |V (G)| > c, the algorithm first computes a set C of c+ 1 vertices of G such that G[C]
is connected. This can for instance be done by a Depth-First Search that starts at any vertex of G and
stops as soon as c + 1 vertices have been visited. The algorithm then branches on the vertices in C, i.e.,
for every v ∈ C the algorithm recursively computes a solution for the instance (G \ {v}, k − 1). It then
returns the solution of minimum size returned by any of those recursive calls, or No if none of those calls
returns a solution. This completes the description of the algorithm. The correctness of the algorithm follows
immediately from the above observations. Moreover the running time of the algorithm is easily seen to be
dominated by the maximum time required for the case that G is connected at each step of the algorithm. In
this case the running time can be obtained as the product of the number of recursive calls times the time
spent on each of those. Because at each recursive call the parameter k is decreased by one and the number
of branching choices is at most c+ 1, we obtain that there are at most (c+ 1)k recursive calls. Furthermore,
the time spend at each recursive call is dominated by the time required to check whether G is connected,
which is linear in the number of edges of G. Putting everything together, we obtain O((c+ 1)k|E(G)|) as the
total time required by the algorithm, which completes the proof of the theorem.

9

In the next theorem, we show that the backdoor detection problem additionally allows for a polynomial
kernel, which allows for efficient preprocessing rules to be applied.

Theorem 6. For any c ≥ 1, c-Causal Detection[Variables] admits a polynomial kernel of size at most
O((k + c)2kc).

Proof. We will show that c-Vertex Deletion to Small Components has a kernel with at most
(k+k(k+ c)c) vertices and at most (k+ c)(k+k(k+ c)c) edges. Using the provided reduction from c-Vertex
Deletion to Small Components to c-Causal Detection[Variables] this implies that c-Causal
Detection[Variables] has a kernel with at most (k+k(k+ c)c) variables and at most (k+ c)(k+k(k+ c)c)
actions, which implies the result of the theorem. Let 〈G, k〉 be an instance of c-Vertex Deletion to
Small Components. W.l.o.g. we can assume that G is connected, otherwise a deletion set for G can be
obtained as the union of deletion sets for every component of G. Furthermore, we can assume that the degree
of every vertex of G is at most k + c. Assume that this is not the case, i.e., there is a vertex v of G with
more than k+ c neighbors. Then v has to be contained in the deletion set, because otherwise the deletion set
would have to contain more than k of its neighbors. Consequently, the instance 〈G \ {v}, k − 1〉 is equivalent
to the instance 〈G, k〉.

We now show that if 〈G, k〉 is a Yes-instance, then G can have at most k + k(k + c)c vertices. Since we
can safely return an arbitrary trivial No-instance of small size in case G contains more than k + k(k + c)c
vertices, it follows that the problem admits a kernel with at most k + k(k + c)c vertices. Assume that 〈G, k〉
is a Yes-instance and let R be a deletion set of size at most k witnessing this. Because every vertex in R has
at most k + c neighbors and G is connected, we obtain that G \ R has at most k(k + c) components and
hence G has at most k + k(k + c)c vertices, as required. Moreover, because the maximum degree of G is at
most k + c, we obtain that G has at most (k + c)(k + k(k + c)c) edges.

In the next result we show that although finding a small backdoor is fpt, the evaluation remains hard
for this type of backdoor. This is shown by a reduction from the Partitioned Clique problem, which is
known to be W[1]-complete [65].

Partitioned Clique

Instance: An integer k, a k-partite graph G = (V,E) with partition {V1, . . . , Vk} of V into
sets of equal size.

Parameter: k
Question: Does G have a k-clique, i.e., a set C ⊆ V of k vertices such that ∀u, v ∈ C, with

u 6= v there is an edge {u, v} ∈ E, and ∀i ∈ [k] it holds that |C ∩ Vi| = 1?

Theorem 7. c-Causal Evaluation[Variables] and c-Bounded Causal Evaluation[Variables] are
W[1]-hard even for planning instances with bounded domain.

Proof. We reduce from Partitioned Clique. Let G′ = (V,E) be a k-partite graph where V = {v1, . . . , vn} is
partitioned into V1, . . . , Vk. We construct an instance 〈P, S, k′〉 of c-Bounded Causal Evaluation[Variables]
in the following way.

Let k′ := k +
(
k
2

)
and k′′ :=

(
k
2

)
+ k′. The variables V ′ are the union of three kinds of variables:

(i) the variables corresponding to the vertices V = {v1, . . . , vn} of the graph G′ (note that by slight abuse
of notation we also use the variables {v1, . . . , vn} for 〈P, S, k′〉),

(ii) pair-variables Vp of the form pi,j for 1 ≤ i < j ≤ k, and

(iii) counter-variables Vc = {c1, . . . , ck′}.

The actions A are the union of two types of actions:

• First, for each v ∈ V and l ∈ [k] we introduce an action alv with pre(alv)[cl] = 0 and eff(alv)[cl] =
eff(alv)[v] = 1. This type of actions allows to select vertices forming a clique in G′.

10

• Second, for each l and each edge {vi, vj} ∈ E such that k+1 ≤ l ≤ k′, 1 ≤ i < j ≤ n, vi ∈ Vi′ , vj ∈ Vj′ ,
and i′, j′ ∈ [k] (with i′ ≤ j′), we introduce an action ali,j with pre(ali,j)[cl] = 0, pre(ali,j)[vi] =

pre(ali,j)[vj] = 1, and eff(ali,j)[cl] = eff(ali,j)[pi′,j′] = 1.

The intuition of this type of actions is as follows. These actions allow to set a pair-variable pi′,j′ ∈ Vp

to 1 whenever there is an edge between vi ∈ Vi′ and vj ∈ Vj′ in G′ and the variables vi and vj have
been selected previously using actions of the first type.

The initial state is defined as I = 0n+k′′

. In the goal G we set the variables in Vp to 1 and all others to
undefined (u). Now, let P := 〈V ′, {0, 1}, A, I,G〉 and S := Vp ∪ Vc.

It is easy to verify that deleting the variables in S yields a causal graph where the maximum size of the
components is one. Notice that since |S| = k′′, |S| is bounded by a function of k.

The instance I of c-Causal Evaluation[Variables] is given by I := 〈P′, Vp〉 where P
′ = P \ Vc, i.e., I

is constructed by the above-mentioned reduction without using the counter-variables.
It is now straightforward to check the equivalence of the following three statements:

• 〈P′, Vp〉 is a Yes-instance (of c-Causal Evaluation[Variables])

• 〈P, S, k′〉 is a Yes-instance (of c-Bounded Causal Evaluation[Variables])

• 〈k,G′, {V1, . . . , Vk}〉 is a Yes-instance (of Partitioned Clique).

This concludes the W[1]-hardness proof for c-Causal Evaluation[Variables] and c-Bounded Causal
Evaluation[Variables].

Note that the previous construction could be simplified for c-Bounded Causal Evaluation[Variables]
by removing the counter variables.

The hardness results for c-Causal Evaluation[Variables] and c-Bounded Causal Evaluation[Variables]
indicate that we should continue and consider further types of backdoors in order to obtain the desirable
case where both detection and evaluation are fpt.

3.2. Action-Deletion-Backdoors

In this section we show our two main positive results, namely, that SAS+ Planning for planning
instances with bounded domain variables is fixed-parameter tractable parameterized by the number of
actions one needs to delete to obtain a causal graph with constant size components. The same holds true
for Bounded SAS+ Planning even for planning instances with an unbounded domain. To obtain these
results we first show that the detection problem for action-deletion-backdoors is fixed-parameter tractable
(Theorem 9). We then show that this also holds true for the evaluation problem for planning instances of
bounded domain and for instances of bounded planning in Corollary 12 and Corollary 14, respectively.

For the action-deletion-backdoors, i.e., the setting where actions are removed to obtain components
of size at most c, the problems c-Causal Detection[Actions], c-Causal Evaluation[Actions], and
c-Bounded Causal Evaluation[Actions] are defined analogously to the respective problems for variable-
deletion-backdoors. Notice that S now denotes a set of actions.

c-Causal Detection[Actions]

Instance: A SAS+ instance P and a positive integer k.
Parameter: k
Question: Is there a set S of at most k actions of P such that cc-size(GCausal(P \ S)) ≤ c.

c-Causal Evaluation[Actions]

Instance: A SAS+ instance P and a set S of actions of P such that cc-size(GCausal(P \S)) ≤ c.
Parameter: |S|
Question: Does P have a plan?

11

S

Figure 4: The causal graph of a planning instance where the actions in the set S (red dotted arcs), need to be removed such
that cc-size(GCausal(P \ S)) ≤ 3. The set S contains all actions that introduce arcs between the highlighted components.

c-Bounded Causal Evaluation[Actions]

Instance: A SAS+ instance P, a set S of variables of P such that cc-size(GCausal(P \ S)) ≤ c
and an integer k.

Parameter: |S|+ k
Question: Does P have a plan of length at most k?

The property of having small component size in the causal graph is also fragile with respect to adding
actions: For instance, consider the case where a “reset” action is added to a planning instance with small
component size. The “reset” action sets all variables to their value in the initial state. As a result the causal
graph contains only one big component. However, observe that the size of an action-deletion-backdoor for
this instance is one. Based on Figure 2, Figure 4 shows the causal graph of a planning instance where the
actions in the set S need to be removed such that cc-size(GCausal(P \ S)) ≤ 3.

To illustrate the applicability of action-backdoors, we will show how to model a wide variety of well-known
NP-complete problems in a planning instance having a small action-deletion-backdoor set (into components
of size two). Our first and simplest such problem is the well-known Shortest Common Supersequence
problem [47, 65] (SCS), which serves as a illustrative example of the types of problems that can be naturally
modeled in terms of planning instances with small action-deletion-backdoor sets. As mentioned by Jiang and
Li [47] the SCS problem and its variants have applications in a wide variety of areas in AI such as automated
manufacturing, bioinformatics, and syntactical pattern recognition.

Shortest Common Supersequence (SCS)

Instance: A set S of sequences over alphabet Σ and an integer ℓ.
Question: Is there a sequence s of length at most ℓ (over Σ) such that s′ is a subsequence of s

for every s′ ∈ S?

Note that a sequence s′ is a subsequence of s if s′ can be obtained from s by removing elements. Given
an instance S = 〈S,Σ, ℓ〉 of SCS, we will now construct a planning instance P(S) with an action-deletion-
backdoor set of size at most |Σ| into components of size two such that P(S) has a plan of length at most
ℓ+

∑

s′∈S |s′| if and only if S has a solution. For every s′ ∈ S, P(S) has two variables:

• ins′ with domain Σ ∪ {0} and

• steps′ with domain {0, . . . , |s′|+ 1}.

P(S) contains one “global action” gσ for every σ ∈ Σ such that eff(gσ)[ins′] = σ for every s′ ∈ S. Moreover,
for every s′ ∈ S and j with 1 ≤ j ≤ |s′|, P(S) has an action read

j
s′ with:

• pre(readjs′)[steps′] = j,

• pre(readjs′)[ins′] = s′[j],

12

ins′

read
j
s′

steps′

s′[j]0

j + 1j

(a)

gσ

ins′
1

ins′n

σ σ

(b)

ins1

steps1

ins2

steps2

ins3

steps3

ins4

steps4

(c)

Figure 5: (a) shows an action read
j

s′
of P(S) with s′ ∈ S and 1 ≤ j ≤ |s′| where S = 〈S,Σ, ℓ〉 is an instance of SCS; (b) shows

the “global action” gσ of P(S) where S = 〈S,Σ, ℓ〉 is an instance of SCS; (c) shows the causal graph GCausal(P(S)) where
S = 〈S,Σ, ℓ〉 is an instance of SCS with S = {s1, . . . , s4}

• eff(readjs′)[steps′] = j + 1, and

• eff(readjs′)[ins′] = 0.

The actions readjs′ and gσ as well as the causal graph GCausal(P(S)) of an instance S = 〈S,Σ, ℓ〉 of SCS with
S = {s1, . . . , s4} are depicted in Figure 5.

Initially all variables are set to 0 and for every s′ ∈ S the goal state requires the value |s′| + 1 from
variable steps′ . It is now easy to see that S has a solution if and only if P(S) has a plan of length at most
ℓ+

∑

s′∈S |s′|. Note that P(S) is a very simplistic example in the sense that it uses only a small subset of
the features available to planning instances with small action-deletion-backdoors. Namely in P(S) the global
actions do not have preconditions and the components only check very simple properties of the sequence of
global actions. Using this additional power one can easily imagine that such planning instances can model
more sophisticated variants of SCS and related problems, for instance, a straightforward adaptation would
allow to restrict the sequence of global actions to arbitrary regular expressions.

Another very natural setting in which action-deletion-backdoors can be applied is the modeling of
automated manufacturing processes, which has also already been mentioned above, more specifically modeling
robotic assembly lines [32]. Here a large number of robots (or machines) takes part in a joint manufacturing
process. Such processes are then usually synchronized by a central control unit. In this setting a single robot
can be modeled by a component of small size, whereas the central control unit synchronizes the manufacturing
process through the global actions, i.e., the actions contained in the action-deletion-backdoor set.

We start the analysis by a discussion of the complexity of the detection problem. Similar to the variable
case the detection problem for actions backdoors is a problem on the causal graph of the planning instance.
Namely, the detection problem can be equivalently stated as a problem on a undirected edge-labeled graph
as follows. Let G be an undirected edge-labeled graph with edge-labeling function λ : E(G) → L for some
set of labels L. For a set of labels L′ ⊆ L, we denote by G[L′], the subgraph of G whose vertices are all
vertices of G that are incident with an edge with label l ∈ L′ and whose edges are all edges of G with a
label l ∈ L′. We say that G is action labeled if for every l ∈ L it holds that the graph G[{l}] has a split
partition into A and B, i.e., the vertex set of G[{l}] can be partitioned into two sets A and B such that A is
an independent set in G[{l}], B is a complete graph in G[{l}], and G[{l}] contains an edge between every
pair (a, b) of vertices with a ∈ A and b ∈ B.

c-Label Deletion to Small Components
Instance: An action labeled graph G with edge-labeling function λ : E(G) → L for a set of

labels L and an integer k.
Parameter: k
Question: Is there a set R ⊆ L of at most k labels such that cc-size(G \ λ−1(R)) ≤ c?

13

To see that the problems c-Causal Detection[Actions] and c-Label Deletion to Small Compo-
nents are equivalent consider the following two polynomial-time reductions. Given an instance I = (P, k) of
c-Causal Detection[Actions], then (GL-Causal(P), k) is an instance of c-Label Deletion to Small
Components that is equivalent to I. Note that GL-Causal(P) is an action labeled graph, because every label
l of GL-Causal(P) corresponds to an action a of P and moreover the required split partition into A and B of
GL-Causal(P)[{l}] is given by defining B as the set of all variables occurring in an effect of a and A as the set
of all variables that occur in a precondition of a and are not in B. Moreover, if I = (G, λ, k) is an instance
of c-Label Deletion to Small Components, then (P, k), where P is any planning instance such that
GL-Causal(P) is isomorphic with G (including the edge-labels), is equivalent to I. Note that such an instance
P can be obtained as follows:

• for every vertex v ∈ V (G), P has one variable v with arbitrary domain,

• for every label l ∈ L such that G[{l}] has a split partition into A and B, P has one action that has an
arbitrary precondition on every variable in A and an arbitrary effect on every variable in B, and

• the domain, the initial state as well as the goal state of P are defined arbitrarily.

To justify a parameterized complexity analysis, we start as before by showing NP-hardness. To this end,
we use a reduction from the following well-known NP-complete problem [35].

3-Dimensional Matching
Instance: Three disjoint sets X,Y, Z of the same cardinality, a set of triples T ⊆ (X × Y ×Z),

and a k ∈ N.
Question: Is there a set T ′ ⊆ T with |T ′| ≥ k such that no distinct t, t′ ∈ T ′ agree on at least

one coordinate?

Theorem 8. For every c ≥ 3, c-Causal Detection[Actions] is NP-complete even for planning instances
with bounded domain.

Proof. Because of the equivalence of c-Causal Detection[Actions] and c-Label Deletion to Small
Components it is sufficient to show that c-Label Deletion to Small Components is NP-complete.
Because any solution to c-Label Deletion to Small Components can be verified in polynomial-time,
it holds that c-Label Deletion to Small Components is in NP. Towards showing NP-hardness of
c-Label Deletion to Small Components we give a polynomial-time reduction from the 3-Dimensional
Matching problem. Let 〈(X,Y, Z), T, k〉 be an instance of 3-Dimensional Matching with |X ∪ Y ∪ Z| = n
and |T | = t and let c ≥ 3. We construct an instance (G, λ, k) of c-Label Deletion to Small Components
as follows. The vertex set of G contains:

• one vertex vx for every x ∈ X ∪ Y ∪ Z and

• one vertex vit for every t ∈ T and every i with 3 < i ≤ c.

Moreover, for every triple t ∈ T with t = (x, y, z), G has edges between any pair of vertices in {vx, vy, vz, v
4
t , . . . , v

c
t}

with label lt. Notice that the vit variables are used to pad the size of the components to c if we reduce to
c-Label Deletion to Small Components for c > 3. This completes the description of the reduction. It
remains to show that the instance 〈(X,Y, Z), T, k〉 is a Yes-instance of 3-Dimensional Matching if and
only if the instance 〈G, λ, |T | − k〉 is a Yes-instance of c-Label Deletion to Small Components.

Suppose that 〈(X,Y, Z), T, k〉 is a Yes-instance of 3-Dimensional Matching and let T ′ be a set of
at least k triples witnessing this. It is straightforward to verify that the set R = { lt | t ∈ T \ T ′ } satisfies
cc-size(G \ λ−1(R)) ≤ c and hence R is a solution for 〈G, λ, |T | − k〉.

For the reverse direction suppose that 〈G, λ, |T | − k〉 is a Yes-instance of c-Label Deletion to
Small Components and let R be a set of at most |T | − k labels witnessing this. We claim that the set
T ′ = T \ { t | lt ∈ R } satisfies t ∩ t′ = ∅ for every two distinct t and t′ in T ′. Suppose for a contradiction
that there are two distinct t and t′ in T ′ with t ∩ t′ 6= ∅. It follows that the graph G \ λ−1(R) contains a

14

component that contains all vertices in t ∪ t′ plus all the 2(c− 3) vertices in { vip | p ∈ {t, t′} and 3 < i ≤ c }.
Since we can assume w.l.o.g. that t 6= t′ and thus |t ∪ t′| ≥ 4 we obtain that this component contains at
least 4 + 2(c− 3) vertices, contradicting our assumption that all components of the graph G \ λ−1(R) have
cardinality at most c.

In the next theorem we will show that the detection problem is fixed-parameter tractable.

Theorem 9. For any c ≥ 1, c-Causal Detection[Actions] can be solved in time O(ck|E(G)|) and is
hence fixed-parameter tractable.

Proof. Because of the equivalence of c-Causal Detection[Actions] and c-Label Deletion to Small
Components it is sufficient to show the result for c-Label Deletion to Small Components. We will
show the theorem by providing a depth-bounded search tree algorithm, which given an instance I = 〈G, λ, k〉
of c-Label Deletion to Small Components either determines that the instance is a No-instance or
outputs a solution R ⊆ L of minimum size for I. The algorithm is similar to the algorithm presented in the
proof of Theorem 5 and is based on the following observations.

O1 If G is not connected then a (minimum) solution for I can be obtained as the disjoint union of
(minimum) solutions for every component of G.

O2 If G is connected and C is any set of at most c labels of G such that G[C] contains a component of
size at least c+ 1, then any solution for I has to contain at least one label from C.

Using the above observations the algorithm first checks whether G is connected. If G is not connected the
algorithm calls itself recursively on the instance (C, k) for each component C of G. If one of the recursive
calls returns No or if the size of the union of the (minimum) solutions returned for each component exceeds
k, the algorithm returns that I is a No-instance. Note that for this step of the algorithm it is crucial that
the algorithm returns a minimum solution (instead of returning an arbitrary solution of size at most k) for
any Yes-instance (G, λ, k). Otherwise the algorithm returns the union of the (minimum) solutions returned
for each component of G.

If G is connected and |V (G)| ≤ c, the algorithm returns the empty set as a solution. Otherwise, i.e.,
if G is connected but |V (G)| > c, the algorithm first computes a set C of at most c labels of G such that
G[C] contains a component of size at least c + 1. This can for instance be achieved as follows. First a
Depth-First Search that starts at any vertex of G and stops as soon as c+ 1 vertices have been visited is
used to compute a set O of c+ 1 vertices that are connected in G. The desired set C of at most c labels is
then obtained from O as the set of labels used by the edges of any spanning tree of G[O]. The algorithm
then branches on the labels in C, i.e., for every l ∈ C the algorithm recursively computes a solution for the
instance (G[L \ {l}], k − 1). It then returns the solution of minimum size returned by any of those recursive
calls, or No if none of those calls returns a solution. This completes the description of the algorithm. The
correctness of the algorithm follows immediately from the above observations. Moreover the running time of
the algorithm is easily seen to be dominated by the maximum time required for the case that G is connected
at each step of the algorithm. In this case the running time can be obtained as the product of the number
of recursive calls and the time spent on each of those. Because at each recursive call the parameter k is
decreased by one and the number of recursive calls is at most c, we obtain that there are at most ck recursive
calls. Furthermore, the time at each recursive call is dominated by the time required to check whether G is
connected, which is linear in the number of edges of G. Putting everything together, we obtain O(ck|E(G)|)
as the total time required by the algorithm, which completes the proof.

Like c-Causal Detection[Variables], also Causal Detection[Actions] admits a polynomial kernel.

Theorem 10. For any c ≥ 1, c-Causal Detection[Actions] admits a polynomial kernel of size at most
O((k + c2k)2).

Proof. In view of the equivalence of c-Causal Detection[Actions] and c-Label Deletion to Small
Components, it is sufficient to show the existence of a kernel for c-Label Deletion to Small Compo-
nents. Thus let (G, λ, k) be an instance of c-Label Deletion to Small Components with label set L.

15

W.l.o.g. we can assume that G is connected, otherwise a deletion set for G can be obtained as the union of
deletion sets for every component of G. Consider a label l ∈ L. W.l.o.g. we can assume that G contains
at least one edge e ∈ E(G) with λ(e) = l, otherwise we could simply delete l from L without changing the
instance. Moreover, because G is action labeled, it follows that G[{l}] is connected. We claim that we can
assume that G[{l}] contains at most c vertices. This is because otherwise l would have to be contained in the
deletion set and we could reduce the instance to the equivalent but smaller instance 〈G \ {λ−1(l)}, k − 1〉.

We now show that if 〈G, k〉 is a Yes-instance, then G can have at most c2k vertices. Since we can safely
return an arbitrary trivial No-instance of small size in case (G, k) contains more than c2k vertices, it follows
that the problem admits a kernel with at most c2k vertices. Assume that 〈G, λ, k〉 is a Yes-instance and let
R be a deletion set of size at most k witnessing this. Because for every label l ∈ R it holds that G[{l}] has
at most c vertices and because G is connected, we obtain that G \R has at most ck components, which in
turn implies that G has at most k + c2k vertices. It follows that G has at most (k + c2k)2/2 edges, which
completes the proof of the theorem.

After these promising results for the detection problem, we turn to the evaluation problem. In case
neither the plan length nor the size of the domain of the variables is bounded, evaluation remains hard even
for action-deletion-backdoors. However, if either the domain or the plan length is bounded we can show for
each case an fpt-result for the evaluation problem.

We start by showing that c-Causal Evaluation[Actions] is fixed-parameter tractable for planning
instances with bounded domain. In fact we show a stronger result, namely, that even computing a shortest
plan is fixed-parameter tractable and moreover the result still holds for instances of unbounded domain as
long as the size of the domain is considered as an additional parameter.

Theorem 11. Let 〈P, S〉 be an instance of c-Causal Evaluation[Actions] and let k be an integer. Then
the problem of deciding whether P has a plan of length at most k is fixed-parameter tractable parameterized
by |S| and |D|.

Proof. Let 〈P, S〉 with P = 〈V,D,A, I,G〉 be an instance of c-Causal Evaluation[Actions], k an integer,
and let d = |D|.

We say that two SAS+ instances P1 = 〈V1, D1, A1, I1, G1〉 and P2 = 〈V2, D2, A2, I2, G2〉 are isomorphic if
there is a bijection α from V1 ∪D1 to V2 ∪D2 such that:

(I1) α(v) ∈ V2 for every v ∈ V1 and α(d′) ∈ D2 for every d′ ∈ D1,

(I2) for every v ∈ V1 it holds that α(I1[v]) = I2[α(v)] and α(G1[v]) = G2[α(v)].

(I3) there is a bijection β from A1 to A2 such that for every action a ∈ A1 it holds that α(pre(a)[v]) =
pre(β(a))[α(v)] and α(eff(a)[v]) = eff(β(a))[α(v)] for every variable v ∈ V1.

We call such a bijection α an isomorphism between P1 and P2. Let C1 and C2 be two weakly connected
components of the graph GCausal(P \ S). We say that C1 and C2 are globally equivalent, denoted by C1 ≡ C2,
if there is an isomorphism α between P(C1) and P(C2) such that:

(GE) for every action s ∈ S it holds that α(pre(s)[v]) = pre(s)[α(v)] and α(eff(s)[v]) = eff(s)[α(v)] for every
variable v of V (P(C1)).

Claim 1. The number of equivalence classes of the components of GCausal(P \ S), with respect to ≡, is at

most cG = c · ((d+ 1)2c)|S|+1 · 2(d+1)2c .

The claim follows from the following observations for every component C of GCausal(P \ S):

• C has at most c variables,

• there are at most dc potential initial states for P(C),

• there are at most (d+1)c potential goal states for P(C); note that together with the previous observation
it follows that there are at most dc(d+ 1)c ≤ (d+ 1)2c potential combinations of initial and goal state
for P(C),

16

• there are at most (d+ 1)2c potential combinations of preconditions and effects for any action in S on
the variables of C,

• there are at most ((d+ 1)2c)|S| potential ways in which the actions in S can interact with the instance
P(C),

• there are at most (d+ 1)2c possible distinct actions in P(C),

• there are at most 2(d+1)2c distinct sets of actions for P(C).

Informally, if two components C1 and C2 are globally equivalent then the same types of sub-plans can be
used for C1 and C2 within a plan for P. More formally the sub-plan of a plan ω for P for a component C
of GCausal(P \ S), denoted by ω[C], is the sequence ω[A(P(C))]. The following observation formalizes this
intuition.

Observation 1. Let ω be a plan for P and let C1 and C2 be two globally equivalent components of GCausal(P\S).
Then the sequence ω′ obtained from ω after removing ω[C2] from ω and replacing every occurrence of an
action a of P(C1) in ω with the sequence (a, β(a)) is also a plan for P. Here β is a bijection from A(P(C1))
to A(P(C2)) that satisfies (I3) and exists because C1 and C2 are globally equivalent.

The following claim now follows from a repeated application of the above observation.

Claim 2. Let ω be a plan for P. Then there is a plan ω′ for P with |ω′| ≤ |ω| such that |ω′[C1]| = |ω′[C2]| for
every two globally equivalent components C1 and C2 of GCausal(P \ S).

In the following let P be the unique partition of the components of GCausal(P \S) into equivalence classes
w.r.t. ≡ and for every P ∈ P let C(P) be an arbitrary component in P . Let P

′ be the SAS+ instance
P[
⋃

P∈P C(P)] and let PR be the SAS+C instance P
′, whose cost-function γR is defined by setting γR(a) = 1

if a ∈ S and γR(a) = |P | if a ∈ A(P(C(P))) for some P ∈ P.

Claim 3. P has a plan of length at most k if and only if PR has a plan of cost at most k. Moreover, a plan
for P can be obtained from a plan for PR in polynomial-time (w.r.t. the size of P).

Towards showing the forward direction, let ω be a plan for P of length at most k. Because of Claim 2 we can
assume that |ω[p1]| = |ω[p2]| for every p1, p2 ∈ P and every P ∈ P. Then ωR = ω[S ∪

⋃

P∈P A(PR(C(P)))]
is a plan for PR. Moreover

γR(ωR) = γR(ωR[S]) +
∑

P∈P

γR(ωR[C(P)])

= |ω[S]|+
∑

P∈P

|ω[C(P)]| · |P |

= |ω[S]|+
∑

p∈P∧P∈P

|ω[p]|

= |ω|

as required.
For the reverse direction, let ωR be a plan for PR and for every P ∈ P and every p ∈ P \ {C(P)} let βp

be a bijection from A(P(C(P))) to A(P(p)) that satisfies (I3); which exists because p and C(P) are globally
equivalent. Moreover let ω be the sequence of actions obtained from ωR after doing the following for every
P ∈ P with {p1, . . . , pr} = P \ C(P): replace every occurrence of an action a of P(C(P)) in ωR with the
sequence 〈a, βp1

(a), . . . , βpr
(a)〉. Then using the same ideas underlying Observation 1, we obtain that ω is a

17

plan for P. Moreover

|ω| = |ω[S]|+
∑

p∈P∧P∈P

|ω[p]|

= |ω[S]|+
∑

P∈P

|ω[C(P)]||P |

= γR(ωR[S]) +
∑

P∈P

γR(ωR[C(P)])

= γR(ωR)

as required.

Because of Claim 3, it is sufficient to decide whether PR has a plan of cost at most k, which can be
achieved using the following three steps.

1) Compute the partition P into global component types, i.e., equivalence classes w.r.t. ≡, of the components
in GCausal(P \ S).

2) Construct the SAS+C instance PR from P.

3) Compute a cost-optimal plan for PR and return Yes if and only if the cost of the plan does not exceed k.

The correctness of the algorithm follows immediately from Claim 3.
The running time of the algorithm is obtained as follows. Computing the global type of each component

(Step 1) can be achieved by checking for each pair C1 and C2 of components of GCausal(P \ S) whether they
are equivalent w.r.t. ≡. This can be done by going over all of the at most c!d! many potential isomorphisms
between C1 and C2 and checking for each whether it constitutes an isomorphism that additionally satisfies
(GE), which in turn can be done in time O((d+ 1)4cc+ |S|c) by testing whether an isomorphism α satisfies
(I1)–(I3) and (GE) as follows:

(Checking I1) Checking whether α satisfies (I1) can be done in time O(c+ d),

(Checking I2) Checking whether α satisfies (I2) can be done in time O(c),

(Checking I3) Checking whether α satisfies (I3) can be done in time O((d+ 1)4cc) as follows. First check
whether |A(P(C1))| = |A(P(C2))|, if not output No. Otherwise, check for every action a ∈ A(P(C1))
whether there is an action a′ ∈ A(P(C2)) such that α(pre(a)[v]) = pre(a′)[α(v)] and α(eff(a)[v]) =
eff(a′)[α(v)] for every variable v ∈ V1. If not output No, otherwise output Yes. Note that the above
can be achieved in time O(|A(P(C1))| · |A(P(C2))| · |V (P(C1))|), which is at most O((d+1)4cc) because
(as observed in the proof of Claim 1), P(C1) and P(C2) each contain at most (d+ 1)2c distinct actions.

(Checking GE) Checking whether α satisfies (GE) can be done in time O(|S|c).

Hence the total running time to execute Step 1 of the algorithm is at most O(c!d!((d+ 1)4cc+ |S|c)|V |2).
Step 2 can be executed in time O(|V |). Finally Step 3 can be achieved in at most O(d2(c·cG)), by using

for instance Dijkstra’s algorithm on the state-transition graph of PR, because PR has at most c · cG variables.
Hence the total running time of the algorithm is O(c!d!((d+ 1)4cc+ |S|c)|V |2 + d2(c·cG)), which shows that
deciding whether P has a plan of length at most k is fixed-parameter tractable parameterized by |S| and
|D|.

Observe that the algorithm given in the proof of Theorem 11 suggests an interesting preprocessing
procedure for planning. Namely, suppose you are given an instance of planning with only a few global actions.
Then by using an efficient procedure to identify globally equivalent components (even a heuristic procedure
would be sufficient at this point), one can reduce the size of the instance by removing all but one component

18

from each equivalence class. The resulting, potentially much smaller, planning instance can then be solved
by any suitable planner.

At a first glance one might be tempted to think that the main idea behind the proof of Theorem 11,
i.e., the categorization of components into equivalence classes, can also be employed to solve instances of
c-Bounded Causal Evaluation[Variables] with bounded domain. However, as it is shown in Theorem 7,
this is not the case. The intuitive reason why this is not possible is that in the case of a variable backdoor set,
there can still be an unbounded number of “global actions”, i.e., actions that depend on (in this case have a
precondition on variables of) arbitrary many components, which means that the number of component types
can no longer be bounded in terms of the size of the backdoor set.

As a corollary of Theorem 11, we obtain:

Corollary 12. c-Causal Evaluation[Actions] is fixed-parameter tractable for planning instances with
bounded domain.

It might be interesting to note the implications of Theorem 11 for our example instance P(S) and by
extension for the SCS problem, as introduced earlier in this section, as well as related problems. Recall that for
a given instance S = 〈S,Σ, ℓ〉 of SCS, the instance P(S) has a plan of length at most ℓ+

∑

s′∈S |s′| if and only
if S has a solution. Because of Theorem 11 deciding whether P(S) has a plan of length at most ℓ+

∑

s′∈S |s′|
is fixed-parameter tractable parameterized by |S| and |D|. Since |S| ≤ |Σ| and |D| ≤ max{|Σ|+ 1} ∪ {ℓS},
where ℓS = max{ |s′|+1 | s′ ∈ S }, it now follows that SCS is fixed-parameter tractable parameterized by |Σ|
and the maximum length ℓS of any sequence in S. In other words Theorem 11 gives an efficient algorithm
for instances of SCS (and related problems), where both the size of the alphabet as well as the maximum
length of any sequence in S is small.

We will show next that the evaluation problem is also fixed-parameter tractable for bounded planning
even without bounding the domain of the planning instances. In fact we show something much stronger,
namely, that in order to obtain tractability it is sufficient to only bound the length of the sequence of global
actions occurring in a plan; instead of the length of the whole plan.

Theorem 13. Let 〈P, S〉 be an instance of c-Causal Evaluation[Actions] and let q be an integer. Then
there is an algorithm that decides whether P has a plan ω with |ω[S]| ≤ q and if so outputs a shortest such
plan in time O((|S|+ 1)q|V |(q + 2)2|D|3c).

Proof. Let 〈P, S〉 be an instance of c-Causal Evaluation[Actions] and let C1, . . . , Cm be the components
of GCausal(P \ S). For every i with 1 ≤ i ≤ m we denote by Pi the planning instance P(Ci). We say that two
sequences ω and ω′ of actions of P are globally compatible if ω[S] = ω′[S].

Our algorithm is based on the following two observations:

O1 The number of possible sequences of global actions (actions in S) occurring in any plan ω with |ω[S]| ≤ q
for P is at most

∑

0≤l≤q

(
q
l

)
|S|l ≤ (|S|+ 1)q.

O2 For a fixed sequence ωG = 〈a1, . . . , al〉 of global actions with 0 ≤ l ≤ q, one only needs to consider
plans of the form:

ω = 〈 . . .
︸︷︷︸

ω1

, a1, . . .
︸︷︷︸

ω2

, a2, . . . , al, . . .
︸︷︷︸

ωl+1

〉

Because each of the sub-plans ωi for i with 1 ≤ i ≤ l + 1 contains no global actions, it follows that
these sub-plans can be computed independently for each sub-instance Pj for every j with 1 ≤ j ≤ m.

Based on the above observations our algorithm for c-Bounded Causal Evaluation[Actions] works as
follows. For each of the at most (|S|+1)q sequences ωG = 〈a1, . . . , al〉 of global actions from S the algorithm
computes a shortest plan ω for P that is globally compatible with ωG, i.e., ω[S] = ωG. Then a shortest plan
for P is obtained as a shortest plan obtained for any such sequence ωG. Next we show how to compute a
shortest plan for P that is globally compatible with a given sequence ωG = 〈a1, . . . , al〉 of global actions.

Claim 4. For any sequence ωG = 〈a1, . . . , al〉 of global actions, there is an algorithm that computes a shortest
plan ω for P that is globally compatible with ωG in time O(|V |(l + 2)2d3c).

19

In line with Observation O2, we will compute a shortest plan ωj that is globally compatible with ωG for
each instance Pj independently. Note that each such plan ωj has the following form:

ωj = ω1
j 〈a1〉ω

2
j 〈a2〉 · · · 〈al〉ω

l+1
j

where for every i with 1 ≤ i ≤ l+1, ωi
j is a sequence of actions from Pj . Moreover, after the plans ω1, . . . , ωm

for the subinstances P1, . . . ,Pm have been computed, the desired shortest plan ω for P that is globally
compatible with ωG is obtained by setting:

ω = ω1
1 · · ·ω

1
m〈a1〉ω

2
1 · · ·ω

2
m〈a2〉 · · ·ω

l
1 · · ·ω

l
m〈al〉ω

l+1
1 · · ·ωl+1

m

Consequently, it only remains to show how we can compute a shortest plan ωj for Pj that is globally
compatible with ωG. Towards showing this first note that because the state-transition graph of Pj has
at most dc states, where d is the maximum domain size of any variable in Pj , it is possible to compute a
shortest plan between any pair of states of Pj using for instance Dijkstra’s algorithm in time O(d3c). We
now define an auxiliary directed graph H that will allow use to compute a shortest plan ωj for Pj that is
globally compatible with ωG as follows. H is a directed graph with positive integer weights, given by the
function w : E(H) → N, on its edges. Moreover, H has the following vertices:

• the vertex vI , which will represent the initial state of Pj ,

• the vertex vsi , for every i with 1 ≤ i ≤ l and every state s of Pj that is compatible with the precondition
of the action ai,

• the vertex vsl+1, for every goal state s of Pj .

Furthermore, H has an arc with weight w from the vertex vI to a vertex vs1 (for some state s of Pj) if and
only if w is the length of a shortest plan for Pj from the initial state to the state s. Finally, H has an arc

with weight w from a vertex vsi to a vertex vs
′

i+1 (for some i with 1 ≤ i ≤ l and some states s and s′ of Pj) if
and only if the action ai is applicable in the state s and w is the length of a shortest plan for Pj from the
state res(s, ai) to the state s′. Note that H has at most 1 + (l + 1)dc vertices and at most (l + 2)d2c edges
and using our observation above can be constructed in time O((l + 2)d2c + d3c).

We claim that H has a path from vI to some vertex vsl+1 with length w if and only if Pj has a plan of
length w + l that is globally compatible with ωG. This then shows that finding a shortest plan for Pj that is
globally compatible with ωG is equivalent to finding a shortest path from vI to some vertex vsl+1, which in
turn can be achieved (e.g. by using Dijkstra’s algorithm) in time O((l + 2)2d3c). Towards showing that H
has a path from vI to some vertex vsl+1 with length w if and only if Pj has a plan of length w + l that is

globally compatible with ωG, let P be a path from vI to some vertex v
sl+1

l+1 with weight w in H. Because

of the structure of H, we obtain that P has the form (vI , v
s1
1 , vs22 , . . . , v

sl+1

l+1). Let ω0
j be the plan for Pj of

length w(vI , v
s1
1) from the initial state to the state s1 in Pj and for every i with 1 ≤ i ≤ l, let ωi

j be the

plan for Pj of length w(vsii , v
si+1

i+1) from the state res(si, ai) to the state si+1. Note that the definition of H
ensures the existence of the plans ωi

j and also ensures that for every i with 1 ≤ i ≤ l, it holds that ai is
applicable in si. Consequently,

ωj = ω0
j 〈a1〉ω

1
j 〈a2〉 · · · 〈al〉ω

l
j

is a plan for Pj whose length is w + l, as required.
Towards showing the reverse direction let ωj be a plan of Pj that is globally compatible with ωG of length

w. Because ωj is globally compatible with ωG it must have the form:

ωj = ω0
j 〈a1〉ω

1
j 〈a2〉 · · · 〈al〉ω

l
j

where for every i with 0 ≤ i ≤ l, ωi
j contains no global actions. Let si be the state of Pj that is reached after

the execution of ωj up to (not including) the occurrence of ai and let sl+1 be the state reached after the
execution of ωj . Because of the definition of H, it follows that (vI , v

s1
1) is an arc in H with weight |ω0

j | and

20

similarly for every i with 1 ≤ i ≤ l, (vsii , v
si+1

i+1) is an arc in H with weight |ωi
j |. Hence H contains the path

(vI , v
s1
1 , . . . , v

sl+1

l+1) and its length is equal to w − l, as required. This concludes the proof of the claim.
The total running time of the algorithm is now the time required to enumerate all sequences of global

actions (O((|S|+1)q)) times the time required to compute a shortest plan that is compatible with a sequence
of global actions, which due to Claim 4 is at most O(|V |(q + 2)2d3c).

Theorem 13 shows fixed-parameter tractability for c-Causal Evaluation[Actions], when considering
the number of global actions in a plan (q) as an additional parameter. Interestingly, a bound on q can also be
obtained for the seemingly unrelated setting considered in Theorem 11, i.e., when considering the maximum
domain value |D| as an additional parameter. This is because the number of global actions used by a plan ω
for P that is obtained from a plan ωR for PR, as described in the proof of Theorem 11, is the same as the
number of global actions in ωR, which is at most |D|c·cG , since PR contains at most c · cG variables. This
shows that q is at most |D|c·cG and hence bounded only in terms of the parameters considered in Theorem 11.
In other words, the underlying reason for tractability in both results is that the number of global actions
in any plan is bounded in terms of the considered parameters. Note, however, that the algorithm given in
Theorem 11 is by far more efficient, than the algorithm one would obtain from Theorem 13 by using |D|c·cG

as an upper bound for q.
The discussed relation between the two tractability results is also highly relevant for the implications

of the two results for our example instance P(S), where S = 〈S,Σ, ℓ〉. Namely, Theorem 13 shows that
we can decide whether our example instance P(S) has a plan of length at most ℓ +

∑

s′∈S |s′| in time

O((|Σ| + 1)ℓ|S|(ℓ + 2)2d6), where d = max{|Σ| + 1} ∪ {ℓS} and ℓS = max{ |s′| + 1 | s′ ∈ S }. In terms of
parameterized complexity this implies that SCS is fixed-parameter tractable parameterized by |Σ| and ℓ.
On the other hand, Theorem 11 implies that SCS is fixed-parameter tractable parameterized by |Σ| and
ℓS . Since ℓ can always be assumed to be at least ℓS , this would at a first glance indicate that Theorem 11
is more general than Theorem 13 at least as far as its implications for SCS are concerned. However, since
also ℓ ≤ |Σ|ℓS (because any sequence of length at most ℓS is contained in the supersequence that repeats all
characters of the alphabet (Σ) ℓS times) both results are actually equivalent w.r.t. to their implications for
the parameterized complexity of SCS. Moreover, when using ℓ ≤ |Σ|ℓS , the algorithm given in Theorem 13
is actually much more efficient than its counterpart given in Theorem 11. This is, however, only due to the
simplicity of SCS in comparison to the underlying planning problem and will not carry over to more complex
variants of SCS or other application areas.

Because the total length of a plan is a trivial upper bound for any contained sequence of global actions,
we obtain our tractability result for c-Bounded Causal Evaluation[Actions].

Corollary 14. c-Bounded Causal Evaluation[Actions] can be solved in time O((|S| + 1)k|V |(k +
2)2|D|3c) and is hence fixed-parameter tractable.

Corollary 12 and 14 show in combination with Theorem 9 that the backdoor approach can indeed be used
to obtain new fpt-algorithms for planning problems. This is because, under action-deletion-backdoors the
detection problem as well as two important evaluation problems are efficiently solvable – as long as the size
of the backdoor is moderate. The fpt-algorithm for planning works as follows. First we search for a small
backdoor (detection phase), which is then used in the following step to solve the given planning instance
(evaluation phase).

To complement the picture for the evaluation problem for action-deletion backdoors, we now show our
hardness result, which shows that c-Causal Evaluation[Actions] is paraNP-hard in the general case.

Theorem 15. 9-Causal Evaluation[Actions] is paraNP-hard even if the global actions (the actions in
the backdoor S) have no preconditions.

Proof. We will start by giving an informal description of the proof. The proof is via a reduction from
3-SAT. Let Φ be a 3-CNF formula with variables x1, . . . , xn. We construct an instance 〈P, S〉 of 9-Causal
Evaluation[Actions] where S contains 5 “global actions” s1, . . . , s5 and GCausal(P) \ S contains one
“local” component for each clause of Φ and one “global” component (each component contains at most 9

21

variables). The main idea is that the global component guesses an assignment α for the variables of Φ and
forces a sequence of global actions that communicates α to the components of the clauses. Note that the
communication between the global component and the local components of the clauses can only be achieved
through global actions. Moreover, since we are only allowed to use a constant number of global actions, the
only way to encode the assignment α is to employ long sequences of global actions. In particular, for every
variable xi, if α(xi) = 0, then the following sequence of global actions is forced by the global component:

〈s1, s3, . . . , s1, s3
︸ ︷︷ ︸

(i−1)-times s1,s3

, s4, s3, s1, s3, . . . , s1, s3
︸ ︷︷ ︸

(n−i)-times s1,s3

, s5〉 (1)

Otherwise, i.e., if α(xi) = 1, then the following sequence of global actions is forced by the global component:

〈s2, s3, . . . , s2, s3
︸ ︷︷ ︸

(i−1)-times s2,s3

, s4, s3, s2, s3, . . . , s2, s3
︸ ︷︷ ︸

(n−i)-times s2,s3

, s5〉 (2)

Observe that the above sequences uniquely identify the variable xi together with its assignment α(xi) for every
variable xi. The total sequence of global actions forced by the global component is then the concatenation of
the above sequences for every variable xi. The components of the clauses now ensure that every clause is
satisfied by the assignment chosen by the global component. They do so by allowing only sequences of global
actions that correspond to a satisfied literal of the respective clause to lead to their (local) goal state.

0/1

vs

av(a) 0/1

vv

0 . . . n+ 1

vx

0 . . . 2n

vc

0/1

ve(s1)

0/1

ve(s2)

0/1

ve(s3)

0/1

ve(s4)

0/1

ve(s5)

ax(i)

0

1 i

i+ 1

2n

0

1

0
0 0 0 0

1

0

a

0/1

vs(Cj)

al(Cj , v) 0/1/2/3

vl(Cj)
1

0

v

Figure 6: Left: The actions av(a) and ax(i) for every a ∈ {1, 2} and i ∈ {1, . . . , n}. Right: The actions al(Cj , v) for every
v ∈ {1, 2, 3}. Here and in the following figures squares represent actions and circles represent variables. Every variable is also
labeled with its domain and its value in the initial state is given in bold face. A labeled arc from a variable to an action indicates
a precondition, whereas a labeled arc from an action to a variable indicates an effect.

We now present the reduction in detail and then show its correctness. Let Φ be a 3-CNF formula with
variables x1, . . . , xn and clauses C1, . . . , Cm. To make the presentation easier to follow we will sometimes
refer to the i-th literal of some clause Cj . This should be understood with respect to some arbitrary but fixed
ordering of the literals of Cj . We construct in polynomial-time an instance 〈P, S〉 with P = 〈V,D,A, I,G〉
and |S| = 5 of 9-Causal Evaluation[Actions] such that Φ is satisfiable if and only if there is a plan for
P as follows. We set S = {s1, . . . , s5}, D = {0, . . . , 2n}. We start by introducing the variables and actions
belonging to the global component. The global component contains the following variables:

• A binary variable vs, whose purpose is to ensure that the assignment of a variable xi of the formula Φ
can only be made before the start of the sequence of global actions, which communicates the assignment
to the local components of the clauses.

22

0/1

ve(s1)

0/1

ve(s2)

0/1

ve(s3)

0/1

ve(s4)

0/1

ve(s5)

0/1

vs

0/1

vv

0 . . . n+ 1

vx

0 . . . 2n

vca#(i, a, c)

0 a i

c

c+ 1

0 0 0 10 0

0/1

ve(s1)

0/1

ve(s2)

0/1

ve(s3)

0/1

ve(s4)

0/1

ve(s5)

0/1

vs

0/1

vv

0 . . . n+ 1

vx

0 . . . 2n

vca#(i, a, c)

0 a i

c

c+ 1

0 0 010 0

0/1

ve(s1)

0/1

ve(s2)

0/1

ve(s3)

0/1

ve(s4)

0/1

ve(s5)

0/1

vs

0/1

vv

0 . . . n+ 1

vx

0 . . . 2n

vca#(i, a, c)

0 a i

c

c+ 1

00 01
0 0

0/1

ve(s1)

0/1

ve(s2)

0/1

ve(s3)

0/1

ve(s4)

0/1

ve(s5)

0/1

vs

0/1

vv

0 . . . n+ 1

vx

0 . . . 2n

vca#(i, a, c)

0 a i

c

c+ 1

00 010 0

Figure 7: The action a#(i, a, c) (from top left to bottom right): (a) c = 2(i− 1), (b) c 6= 2(i− 1) and c is odd, (c) c 6= 2(i− 1), c
is even and a = 0, (d) c 6= 2(i− 1), c is even and a = 1.

• A variable vx with values {0, . . . , n+ 1}, which is used to indicate the variable xi, which is currently
processed. That is a value i between 1 and n for vx means that the variable xi is currently processed.
The remaining values 0 and n+1 for vx are used to indicate the start respectively end of the processing
of the variables of Φ.

• A binary variable vv, which holds the assignment of the current variable xi.

• A variable vc with values {0, 1, . . . , 2n}, which is used (like a counter) to indicate the current position
of the global sequence of actions for the current variable xi.

• A binary variable ve(si) for every action si ∈ S. Informally, these variables are used to enforce the
sequence of global actions representing the assignment guessed by the global component. This is
achieved by (1) making the global actions the only actions that can set these variables to 1; in particular
the variable ve(si) can only be set to 1 by the global action si and (2) by employing preconditions on
these variables for actions in the global component that are responsible for increasing the value of the
counter variable vc.

23

0/1

vs(Cj)

0/1/2/3

vl(Cj)

0 . . . 2n

vc(Cj)

0/1

ve(Cj , s1)

0/1

ve(Cj , s2)

0/1

ve(Cj , s3)

0/1

ve(Cj , s4)

a#(Cj , c, v)

0
v

c

c+ 1

0 0 0 10

0/1

vs(Cj)

0/1/2/3

vl(Cj)

0 . . . 2n

vc(Cj)

0/1

ve(Cj , s1)

0/1

ve(Cj , s2)

0/1

ve(Cj , s3)

0/1

ve(Cj , s4)

a#(Cj , c, v)

0
v

c

c+ 1

0 0 010

0/1

vs(Cj)

0/1/2/3

vl(Cj)

0 . . . 2n

vc(Cj)

0/1

ve(Cj , s1)

0/1

ve(Cj , s2)

0/1

ve(Cj , s3)

0/1

ve(Cj , s4)

a#(Cj , c, v)

0
v

c

c+ 1

00 010

0/1

vs(Cj)

0/1/2/3

vl(Cj)

0 . . . 2n

vc(Cj)

0/1

ve(Cj , s1)

0/1

ve(Cj , s2)

0/1

ve(Cj , s3)

0/1

ve(Cj , s4)

a#(Cj , c, v)

0
v

c

c+ 1

00 010

Figure 8: The action a#(Cj , c, v) assuming that xi is the v-th literal of Cj (from top left to bottom right): (a) c = 2(i− 1), (b)
c 6= 2(i− 1) and c is odd, (c) c 6= 2(i− 1), c is even and xi is positively in Cj , (d) c 6= 2(i− 1), c is even, and xi is negatively in
Cj .

We are now ready to define the actions within the global component.

• For every a with a ∈ {0, 1}, P contains an action av(a) with pre(av(a))[vs] = 1, eff(av(a))[vs] = 0, and
eff(av(a))[vv] = a. The actions av(a) are illustrated in Figure 6.

Informally, the purpose of these actions is to “guess” the assignment of the current variable xi of Φ.
Note that due to their precondition and effect on the variable vs these actions can only be used once per
variable xi of Φ, which ensures that the assignment for the current variable can only be set once and
remains constant during the execution of the global sequence of actions corresponding to the current
variable.

• An action ax(0) with pre(ax(0))[vs] = 0, eff(ax(0))[vs] = 1, pre(ax(0))[vx] = 0, eff(ax(0))[vx] = 1, and
pre(ax(0))[ve(sr)] = 0 for every r with r ∈ {1, 2, 3, 4, 5}.

Informally, the action ax(0) is used to switch from the initial state to the first variable x1. The purpose
and idea behind ax(0) is very similar to the action ax(i) for i > 0 introduced below.

24

• For every i with 1 ≤ i ≤ n, P contains an action ax(i) with pre(ax(i))[vs] = 0, eff(ax(i))[vs] = 1,
pre(ax(i))[vx] = i, eff(ax(i))[vx] = i + 1, pre(ax(i))[vc] = 2n, eff(ax(i))[vc] = 0, pre(ax(i))[ve(s5)] = 1,
eff(ax(i))[ve(s5)] = 0, and pre(ax(i))[ve(sr)] = 0 for every r with r ∈ {1, 2, 3, 4}. The actions ax(i) are
illustrated in Figure 6.

Informally, the actions ax(i) are used to switch from variable xi to variable xi+1. This is achieved by
ensuring that:

– the counter variable vc has reached 2n, i.e., the end of the sequence of global actions for xi has
been reached,

– the counter variable vc is set back to 0 in preparation of the global sequence of actions for xi+1,

– the variable vs is zero, which ensures that the assignment for xi has been set previously,

– the variable vs is set to 1, which allows the actions av(a) to set the assignment for xi+1,

– the variable ve(s5) is 1 (and the variables ve(s1), . . . , ve(s4) are zero), which ensures that the
global action s5 (and no other of the global actions) has been executed to terminate the sequence
of global actions for xi,

– the variable ve(s5) is reset to 0, which allows for a new sequence of global actions to start.

• For every i with 1 ≤ i ≤ n, every a ∈ {0, 1}, and every c with 0 ≤ c < 2n, P contains an action a#(i, a, c)
with the following preconditions and effects. We set pre(a#(i, a, c))[vs] = 0, pre(a#(i, a, c))[vv] = a,
pre(a#(i, a, c))[vx] = i, pre(a#(i, a, c))[vc] = c, eff(a#(i, a, c))[vc] = c+ 1. Furthermore, we distinguish
the following cases:

– If c = 2(i−1), we set pre(a#(i, a, c))[ve(s4)] = 1, eff(a#(i, a, c))[ve(s4)] = 0, and pre(a#(i, a, c))[ve(sr)] =
0 for every r with r ∈ {1, 2, 3, 5}.

– If c 6= 2(i − 1) and c is odd, we set pre(a#(i, a, c))[ve(s3)] = 1, eff(a#(i, a, c))[ve(s3)] = 0, and
pre(a#(i, a, c))[ve(sr)] = 0 for every r with r ∈ {1, 2, 4, 5}.

– If c 6= 2(i− 1), c is even, and a = 0, we set pre(a#(i, a, c))[ve(s1)] = 1, eff(a#(i, a, c))[ve(s1)] = 0,
and pre(a#(i, a, c))[ve(sr)] = 0 for every r with r ∈ {2, 3, 4, 5}.

– If c 6= 2(i− 1), c is even, and a = 1, we set pre(a#(i, a, c))[ve(s2)] = 1, eff(a#(i, a, c))[ve(s2)] = 0,
and pre(a#(i, a, c))[ve(sr)] = 0 for every r with r ∈ {1, 3, 4, 5}.

The actions a#(i, a, c) are illustrated in Figure 7.

Informally, these actions are used to control the actions occurring in the sequence of global actions for
the current variable xi (where i is given by the current value of the variable vx). Which sequence of
global actions is enforced depends on the index i of the current variable xi as well as the assignment of
xi given by the current value of the variable vv. Note that each of these actions additionally checks
that the variable vs is set to 0, which ensures that the assignment for xi has already been set (before
the start of the sequence of global actions for xi). Moreover, each such action uses the current value of
the counter variable vc (and increases the variable by one) to keep track of the current position in the
sequence of global actions. Finally, each such actions enforces that a particular global action s ∈ S has
been executed before by checking that the variable ve(s) is 1 and prepares the execution of the next
global action by resetting the value of ve(s) to 0. The choice of the global action that is enforced by
such an action a#(i, a, c) corresponds to the sequences given in Equations 1 and 2 and depends on the
index i of the current variable xi (given by the current value of the variable vx), the assignment a of
the current variable xi (given by the current value of the variable vv), and the current position c in the
sequence of global actions for xi (given by the current value of the variable vc).

In summary the variables and actions of the global component ensure that every plan for P has to contain a
sequence of global actions either corresponding to Equation 1 or to Equation 2 for every variable xi of Φ.

We are now ready to describe the variables and actions of the local components. That is for every clause
Cj , P contains the following variables:

25

• A binary variable vs(Cj) that ensures that the choice of the satisfying literal of Cj can only be made
once.

• A variable vl(Cj) with values {0, 1, 2, 3}, which can only be set once in a plan and whose value indicates
the choice of the literal of Cj that is satisfied.

• A variable vc(Cj) with values {0, 1, . . . , 2n− 1}, which is used like a counter to indicate the current
position of the global sequence of actions.

• A binary variable ve(Cj , si) for every action si ∈ S \ {s5}. Informally, these variables allow the local
component to check whether a global action in S \ {s5} has recently been executed.

Moreover, P contains the following actions for every clause Cj :

• For every clause Cj and every v with 1 ≤ v ≤ 3, P contains an action al(Cj , v) with pre(al(Cj , v))[vs(Cj)] =
1, eff(al(Cj , v))[vs(Cj)] = 0, and eff(al(Cj , v))[vl(Cj)] = v. The actions al(Cj , v) are illustrated in
Figure 6.

Informally, these actions allow the local component of Cj to chose, which literal is used to satisfy the
clause. Because of their precondition and effect on vs(Cj) only one of these actions can be executed
and moreover the action can only be executed once.

• For every clause Cj , every 0 ≤ c < 2n and every v with 1 ≤ v ≤ 3, P contains an action a#(Cj , c, v).
The preconditions and effects of a#(Cj , c, v) are defined as follows. We set pre(a#(Cj , c, v))[vs(Cj)] = 0,
pre(a#(Cj , c, v))[vl(Cj)] = v, pre(a#(Cj , c, v))[vc(Cj)] = c, eff(a#(Cj , c, v))[vc(Cj)] = c + 1. Further-
more, if the v-th literal of the clause Cj is a literal of the variable xi for some i with 1 ≤ i ≤ n,
then

– For every c = 2(i − 1), we set pre(a#(Cj , c, v))[ve(Cj , s4)] = 1, eff(a#(Cj , c, v))[ve(Cj , s4)] = 0,
and pre(a#(Cj , c, v))[ve(Cj , sr)] = 0 for every r with r ∈ {1, 2, 3}.

– For every c 6= 2(i − 1) with c is odd, we set pre(a#(Cj , c, v))[ve(Cj , s3)] = 1,
eff(a#(Cj , c, v))[ve(Cj , s3)] = 0, and pre(a#(Cj , c, v))[ve(Cj , sr)] = 0 for every r with r ∈ {1, 2, 4}.

– For every c 6= 2(i−1) with c is even and xi is positively in Cj , we set pre(a#(Cj , c, v))[ve(Cj , s1)] = 1,
eff(a#(Cj , c, v))[ve(Cj , s1)] = 0, and pre(a#(Cj , c, v))[ve(Cj , sr)] = 0 for every r with r ∈ {2, 3, 4}.

– For every c 6= 2(i−1) with c is even and xi is negatively in Cj , we set pre(a#(Cj , c, v))[ve(Cj , s2)] =
1, eff(a#(Cj , c, v))[ve(Cj , s2)] = 0, and pre(a#(Cj , c, v))[ve(Cj , sr)] = 0 for every r with r ∈
{1, 3, 4}.

The actions a#(Cj , c, v) are illustrated in Figure 8.

Informally, these actions ensure that every plan for P has to contain a sequence of global actions that
indicates the literal chosen to be the satisfying literal for Cj (which is determined by the value of the
variable vl(Cj)) is satisfied.

The effects of the actions s1, . . . , s5 in S are defined as follows. For every 1 ≤ i ≤ 5, we set eff(si)[ve(si)] = 1
and eff(si)[vs] = 0. For every i and j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ m, we set eff(si)[ve(Cj , si)] = 1.
Furthermore, for every i and j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ m, we set eff(s5)[ve(Cj , si)] = 0.

The initial state assigns 1 to the variables vs(Cj) for every j with 1 ≤ j ≤ m and 0 to every other variable.
In the goal state we require G[vx] = n+ 1, G[ve(si)] = 0 for every i with 1 ≤ i ≤ 5, and for every j with
1 ≤ j ≤ m we require vc(Cj) = 2n. This completes the construction of P and S. One can verify that:

• the instance 〈P, S〉 can be constructed for any Φ in polynomial-time;

• the actions in S do not have preconditions;

26

• cc-size(GCausal(P \ S)) ≤ 9, i.e., the graph GCausal(P \ S) has 1 component containing the 9 variables
variables vs, vv, vx, vc, ve(s1), . . . , ve(s5) and m components containing the 7 variables vs(Cj), vl(Cj),
vc(Cj), ve(Cj , s1), . . . , ve(Cj , s4).

It remains to show that the formula Φ is satisfiable if and only if the instance P has a plan.
Suppose that the formula Φ is satisfiable and let α : {x1, . . . , xn} → {0, 1} be a satisfying assignment of

Φ. For a clause Cj with 1 ≤ j ≤ m, let α(Cj) be the variable corresponding to a literal that is satisfied by α
and let γ(Cj) be the index of this literal, i.e., α(Cj) is the variable corresponding to the γ(Cj)-th literal of
Cj . Then the concatenation of the following sequences is a plan for P:

1. 〈al(C1, γ(C1)), . . . , al(Cm, γ(Cm))〉;

2. Let ǫ(i, c) be an arbitrary ordering of the set { ac(Cj , c, γ(Cj)) | α(Cj) = xi } for every i and c with
1 ≤ i ≤ n and 0 ≤ c < 2n (i.e., the set of all actions required by clauses that are satisfied by xi at the
c-th step of the global sequence). Then for every i with 1 ≤ i ≤ n, we append the sequence:

〈ax(i− 1), av(α(xi))),

sα(xi)+1, a#(i, α(xi), 0), ǫ(i, 0), s3, a#(i, α(xi), 1), ǫ(i, 1),

. . .

sα(xi)+1, a#(i, α(xi), 2(i− 2)), ǫ(i, 2(i− 2)), s3, a#(i, α(xi), 2(i− 2) + 1), ǫ(i, 2(i− 2) + 1),

s4, a#(i, α(xi), 2(i− 1)), ǫ(i, 2(i− 1)), s3, a#(i, α(xi), 2(i− 1) + 1), ǫ(i, 2(i− 1) + 1),

sα(xi)+1, a#(i, α(xi), 2i), ǫ(i, 2i), s3, a#(i, α(xi), 2i+ 1), ǫ(i, 2i+ 1),

. . .

sα(xi)+1, a#(i, α(xi), 2(n− 1)), ǫ(i, 2(n− 1)), s3, a#(i, α(xi), 2(n− 1) + 1), ǫ(i, 2(n− 1) + 1),

s5〉

Note that the above sequence contains the required sequence of global actions given in Equation 1
and 2 for every variable xi and additionally contains all required local actions.

3. 〈ax(n)〉.

For the reverse direction suppose that ω is a plan for P. W.l.o.g. we can assume that ω is inclusion
minimal, i.e., deleting any action from ω results in a sequence of actions that is no longer a plan for P. In
particular, this implies that ω does not contain more than one consecutive occurrence of any action.

Claim 5. There is an assignment α : {x1, . . . , xn} → {0, 1} such that for every i with 1 ≤ i ≤ n, the plan ω
contains the following sequence as a (not necessarily consecutive) sub-sequence:

sα(xi)+1, s3, . . . , sα(xi)+1, s3
︸ ︷︷ ︸

(i−1)-times

, s4, s3, sα(xi)+1, s3, . . . , sα(xi)+1, s3
︸ ︷︷ ︸

(n−i)-times

, s5

Furthermore, apart from the occurrences of the actions in S contained in one of the above sequences, the
plan ω contains no other occurrences of the actions in S.

Because the initial state of vx is 0 and the goal state of vx is n + 1, the plan ω has to contain a
sequence of actions that set vx from 0 to n+ 1. Now, by construction, the only sequence that can achieve
this is 〈ax(0), . . . , ax(n)〉 and furthermore ω must contain each of the actions of this sequence exactly once.
Consequently, ω has to contain the sequence 〈ax(0), . . . , ax(n)〉 as a (not necessarily consecutive) sub-sequence
and ω contains no other occurrences of these actions.

Furthermore, for every i with 1 ≤ i ≤ n, the action ax(i − 1) sets the variable vc to 0 and the action
ax(i) expects the variable vc to be 2n. It follows that for every such i, the plan ω has to contain a sequence
of actions in between the occurrences of ax(i − 1) and ax(i) that increases vc from 0 to 2n. Again, by
construction, the only sequences that can achieve this are of the form 〈a#(i, a0, 0), . . . , a#(i, a2n−1, 2n− 1)〉
where ar ∈ {0, 1} for every r with 0 ≤ r < 2n and no other action of the form a#(i′, a′, c′), where 1 ≤ i′ ≤ n,
a ∈ {0, 1}, and 0 ≤ c′ < 2n, can be executed in between the occurrences of ax(i − 1) and ax(i) in ω. We

27

continue by showing that a0 = a1 = · · · = a2n−1. Note that an action a#(i, a, c) can only be executed if the
variable vv has the value a. Now the only actions that change vv are the actions av(a) where a ∈ {0, 1}.
However, the action av(a) can only be executed if the variable vs is 1 and after av(a) has been executed the
variable vs is 0 again. Moreover, the only actions that set vs to 1 are the actions ax(p) where 0 ≤ p ≤ n.
Because each action a#(i, a, c) can only be executed if vs is 0 it follows that after the execution of a#(i, a0, 0)
the variable vv cannot be changed until the action ax(i) occurs. Consequently, a0 = a1 = · · · = a2n−1 and
hence ω contains 〈a#(i, a, 0), . . . , a#(i, a, 2n− 1)〉 as a (not necessarily consecutive sub-sequence) in between
the occurrences of ax(i− 1) and ax(i) for some a ∈ {0, 1} and no other action of the form a#(i′, a′, c′), where
1 ≤ i′ ≤ n, a ∈ {0, 1}, and 0 ≤ c′ < 2n, can be executed in between the occurrences of ax(i− 1) and ax(i) in
ω. It now follows from the preconditions of the actions a#(i, a, 0), . . . , a#(i, a, 2n− 1) that ω contains the
sequence:

〈sa+1, s3, . . . , sa+1, s3
︸ ︷︷ ︸

(i−1)-times

, s4, s3, sa+1, s3, . . . , sa+1, s3
︸ ︷︷ ︸

(n−i)-times

〉

as a (not necessarily consecutive) sub-sequence. This concludes the proof of the first part of the claim.
It follows from the proof of the first part that ω contains 〈ax(0), . . . , ax(n)〉 as a (not necessarily

consecutive) sub-sequence and furthermore that each of the actions in this sequence appears exactly once in
ω. Moreover, we have obtained from the first part of the proof that for every 1 ≤ i ≤ n, the plan ω contains
〈a#(i, a, 0), . . . , a#(i, a, 2n− 1)〉 as a (not necessarily consecutive sub-sequence) in between the occurrences
of ax(i− 1) and ax(i) for some a ∈ {0, 1} and that no other action of the form a#(i′, a′, c′), where 1 ≤ i′ ≤ n,
a ∈ {0, 1}, and 0 ≤ c′ < 2n, can be executed in between the occurrences of ax(i− 1) and ax(i) in ω. Because
all actions of the form a#(i

′, a′, c′), where 1 ≤ i′ ≤ n, a ∈ {0, 1}, and 0 ≤ c′ < 2n require vx to be greater
than 0 and less than n + 1, it also follows that these actions do neither appear before the occurrence of
ax(0) nor after the occurrence of ax(n) in ω. On the other hand it follows from the construction that in
between two occurrences of distinct actions in S, the plan ω must contain an occurrence of an action in
{ ax(i) | 1 ≤ i ≤ n } ∪ { a#(i, a, c) | 1 ≤ i ≤ n and a ∈ {0, 1} and 0 ≤ c < 2n }. Because otherwise two
distinct variables in { ve(i) | 1 ≤ i ≤ 5 } would be set to 1 and there is no sequence of actions that sets all of
these variables to 0 again, as is required by the goal state. Moreover, because of the preconditions of ax(0)
and the fact that the variables in { ve(i) | 1 ≤ i ≤ 5 } must be 0 in the goal state, it follows that ω cannot
contain any additional occurrences of the actions in S. This concludes the proof of the claim.

It now remains to show that the assignment α implied by the above claim is a satisfying assignment for
Φ. We need the following intermediate claim.

Claim 6. For every Cj with 1 ≤ j ≤ m, there is a v ∈ {1, 2, 3} such that the plan ω contains the following
sequence as a (not necessarily consecutive) sub-sequence:

sb(Cj ,v), s3, . . . , sb(Cj ,v), s3
︸ ︷︷ ︸

(i−1)-times

, s4, s3, sb(Cj ,v), s3, . . . , sb(Cj ,v), s3
︸ ︷︷ ︸

(n−i)-times

, s5

where b(Cj , v) = 1 if the v-th literal of Cj is negative and b(Cj , v) = 2 otherwise.

Because the initial state of vc(Cj) is 0 and its goal state is 2n, the plan ω has to contain a sequence
of actions that increase vc(Cj) from 0 to 2n. By construction, this can be achieved only by sequences
of the form 〈a#(Cj , 0, v0), . . . , a#(Cj , 2n − 1, v2n−1)〉 and consequently ω has to contain such a sequence.
We first show that v0 = v1 = · · · = v2n−1. Note that every action a#(Cj , c, v) with 0 ≤ c < 2n and
1 ≤ v ≤ 3 requires that the variable vv(Cj) is v before it can be executed. Moreover, the only actions that
can change the value of vv(Cj) are the actions al(Cj , v) for every 1 ≤ v ≤ 3. However, these actions can
only be executed if the variable vs is 1 and there is no action that sets vs to 1. Because the actions in
{ a#(Cj , c, v) | 0 ≤ c < 2n and 1 ≤ v ≤ 3 } require vs to be 0 it follows that the value of vv can only be
changed before the first occurrence of one of these actions. Consequently, v0 = v1 = · · · = v2n−1 and ω
has to contain 〈a#(Cj , 0, v), . . . , a#(Cj , 2n− 1, v)〉 for some v ∈ {1, 2, 3} as a (not necessarily consecutive)
sub-sequence. The claim now follows because of the preconditions of these actions.

Putting the previous two claims together we obtain that for every Cj there is a literal that is satisfied by
the assignment α. Hence, Φ is satisfiable, as required.

28

4. Kernelization – Limits of Polynomial Preprocessing

In this section we explore the limits of polynomial preprocessing for c-Causal Evaluation[Actions]
with bounded domain as well as for c-Bounded Causal Evaluation[Actions] – recall that these are the
variants of the evaluation problem which were identified to be fixed-parameter tractable in the previous section.
In what follows, we will show our kernelization lower bounds via PPT-reductions. To prove that neither
c-Causal Evaluation[Actions] with bounded domain nor c-Bounded Causal Evaluation[Actions]
admits a polynomial kernel (unless coNP ⊆ NP/poly) we built upon the following auxiliary Lemma1. Here
we will reduce from Small Universe Hitting Set, which does not admit a polynomial kernel (unless
coNP ⊆ NP/poly) [19, Theorem 5].

Small Universe Hitting Set
Instance: A finite set E, a collection S of subsets of E, and an integer k.

Parameter: |E|
Question: Does S have a hitting set of cardinality at most k, i.e., is there a set H ⊆ E with

|H| ≤ k and H ∩ s 6= ∅ for every s ∈ S?

Lemma 16. SAS+ Planning planning with binary domain parameterized by the number of actions does
not admit a polynomial kernel unless coNP ⊆ NP/poly.

Proof. We show this result by giving a PPT-reduction from Small Universe Hitting Set to SAS+

Planning parameterized by the number of actions. Let I = (E,S, k) be an instance of Small Universe
Hitting Set. Note that k ≤ |E|, otherwise I is a trivial Yes-instance. We construct an instance
P = 〈V,D,A, I,G〉 of SAS+ Planning in polynomial-time such that I has a hitting set of size at most k
if and only if P has a plan, |A| ≤ |E|+ k ≤ 2|E|, and D = {0, 1}, which will show the lemma. The set V
contains one binary variable vs for every s ∈ S, one binary variable ci for every i with 1 ≤ i ≤ k, and one
binary variable c. The initial state I requires all variables to be 0 and the goal state G is only defined on the
variables in {vs | s ∈ S} requiring those variables to be 1. Finally, the set A contains:

• one action ae for every e ∈ E, whose precondition requires the variable c to be 1 and whose effect sets
c to 0 and for all s ∈ S sets the variable vs to 1 for which e ∈ s,

• one action ai for every i with 1 ≤ i ≤ k, whose precondition requires the variable ci to be 0 and whose
effect sets both c and ci to 1.

This completes the description of P. Note that P can be constructed in polynomial-time form I, |A| ≤
|E|+ k ≤ 2|E|, and D = {0, 1}, as required. It remains to show that I has a hitting set if and only if P has a
plan.

Towards showing the forward direction, let H = {h1, . . . , hl} be a hitting set for S of size at most k. It is
straightforward to verify that 〈a1, ah1

, . . . , al, ahl
〉 is a plan for P.

Towards showing the reverse direction, let ω be a plan for P and let H be the subset of E containing
all elements for which there is an action ae in ω. We claim that H is a hitting set for I of size at most k.
Note that H is a hitting set for S because the actions in H are the only actions in ω that set the variables
in { vs | s ∈ S } to 1. Because any action ae executed by ω sets the variable c to 0 but requires c to be
1 in order to be executed, we obtain that c has to be set to 1 before any action ae can be executed in ω.
Moreover, since the only actions in A that can set c to 1 are the actions in { ai | 1 ≤ i ≤ k } and each of
these actions ai can be executed at most once in ω (because ai sets the variable ci to 1 but requires it to be
0), we obtain that H contains at most k elements.

We are now ready to show kernelization lower bounds for all variants of the evaluation problem that we
previously identified to allow for fixed-parameter tractability.

1We remark that this result has also been obtained by using a different reduction in the manuscript of the journal version
of [57] (cf. http://www.dbai.tuwien.ac.at/staff/pfandler/).

29

Theorem 17. Neither c-Causal Evaluation[Actions] with bounded domain nor c-Bounded Causal
Evaluation[Actions] admits a polynomial kernel unless coNP ⊆ NP/poly for any c ≥ 1.

Proof. Because of Lemma 16, it suffices to show that there is a PPT-reduction from SAS+ Planning
with binary domain to c-Causal Evaluation[Actions] with bounded domain. Let P = 〈V,D,A, I,G〉 be
an instance of SAS+ Planning with binary domain. Because cc-size(GCausal(P \ A)) ≤ 1 ≤ c, we obtain
that (P, A) is an instance of c-Causal Evaluation[Actions] satisfying the requirements of a polynomial
parameter reduction. Towards showing the theorem for c-Bounded Causal Evaluation[Actions] let
P = 〈V,D,A, I,G〉 be the instance of SAS+ Planning with binary domain constructed in the proof of
Lemma 16 from an instance (E,S, k) of Small Universe Hitting Set. Recall from the proof of Lemma 16
that P has a plan if and only if P has a plan of length at most 2|E|. It follows that (P, A, 2|E|) is an
instance of c-Bounded Causal Evaluation[Actions] that has a solution if and only if (E,S, k) has
a solution, showing that Small Universe Hitting Set has a PPT-reduction to c-Bounded Causal
Evaluation[Actions].

5. Discussion

In this section we comment briefly on the potential impact to practical applications and the choice of the
tractable base class. There has recently been a growing interest in finding tractable fragments of planning
using the causal graph [1, 5, 10, 11, 15, 40, 50–52]). As pointed out in [52]:

“Such results are not purely of theoretical interest, as the causal graph is used in a variety
of practical applications from problem decomposition [11] to the derivation of non-admissible
domain-independent heuristics for planning [46].”

We believe that this applies even more to (fixed-parameter) tractable extensions of these fragments
obtained by the backdoor approach. In particular, the backdoor approach adds a novel dimension of flexibility
to the definition of these tractable classes that allows one to trade efficiency for generality to best suit the
particular application. This also allows to use the insights obtained for those tractable classes to solve
arbitrary planning instances.

Regarding the choice of the tractable base class, we want to point out that even though the class of
instances with bounded component size of the causal graph itself can be seen as rather trivial, the backdoor
approach extends its applicability to arbitrary planning instances. Moreover, as shown by [15] this class of
planning instances is in a sense as general as possible at least w.r.t. classes of planning instances that are
obtained purely via restrictions on the causal graph. Namely, let P be the class of all planning instances,
whose causal graph is a member of a given class C of directed graphs. Then (unless W[1] ⊆ nu-FPT – recall
that nu-FPT denotes the non-uniform version of FPT) P can be solved in polynomial time if and only if
there is a constant c such that the maximum size of any (weakly connected) component of every graph in C
is at most c. Clearly, their result does not consider classes that are obtained via other types of restrictions or
combinations of such restrictions with restrictions on the causal graph and it hence remains interesting to
consider further (polynomial time) tractable fragments of planning.

We note that our work is related to factored planning [12, 54, 60, 67] in the sense that both approaches
are concerned with instances that can be naturally decomposed into almost independent subinstances; usually
witnessed by a partition of the variables. However, in contrast to our approach, factored planning focuses on
obtaining approximate (or heuristic) solutions. Recently factored planning has inspired the development
of a planner that is tailored towards solving instances with a star-like topology [43], i.e., the causal graph
of a star-like planning instance can be partitioned into one center component and several leaf components
satisfying certain properties. Interestingly the center component (of a star-like topology) matches exactly
our notion of a variable-deletion-backdoor set. Their planner, which has been shown to beat state-of-the-art
planners on several planning instances, crucially exploits the observation that the leaf components are
independent given a current plan for the center component. In this way we are hopeful that also our
action-deletion-backdoor approach can inspire similar tailored-made planners.

30

6. Conclusion

In this work we have introduced the first two types of backdoor sets for planning. The distance to the
tractable fragment was expressed by the number of variables or actions that need to be removed in order
to obtain a causal graph of bounded maximum component size. For each backdoor type and each setting
of considered SAS+ planning formalisms (with bounded/unbounded plan length and bounded/unbounded
domain of the variables) we have analyzed the (parameterized) complexity of the detection and evaluation
problem. In three cases we have obtained the most desirable result where detection as well as evaluation
are fixed-parameter-tractable, namely in all settings under action-deletion-backdoors with the exception of
unbounded planning with unbounded domain of the variables. These results include the first fpt-algorithm
for planning with unbounded plan length that neither limits the number of variables nor the number of
actions in the planning instance. In the remaining cases, we have ruled out the existence of an fpt-algorithm
by showing hardness for W[1] or paraNP. For the cases, where fixed-parameter-tractability was achieved,
we have investigated the potential and limits of polynomial preprocessing, i.e., whether this setting also
admits a polynomial kernel. Such a polynomial kernel would be a very desirable result from the algorithmic
perspective. We were able to show that polynomial kernels exist for the detection problems, whereas we ruled
out the existence of polynomial kernels for the evaluation problems (under the usual complexity theoretic
assumptions).

We envisage the study of other underlying graph structures (such as the variable-action graph) to obtain
further useful notions of backdoor sets. Furthermore, we want to explore additional supporting parameters
that help to make the evaluation problem in the variable-deletion setting fixed-parameter tractable. We hope
that the methodology used in this work will inspire other researchers as it is versatile and applicable to a
variety of problems in AI and beyond.

Acknowledgments

Sebastian Ordyniak acknowledges support from the Employment of Newly Graduated Doctors of Science
for Scientific Excellence (CZ.1.07/2.3.00/30.0009). Martin Kronegger and Andreas Pfandler were supported
by the Austrian Science Fund (FWF): P25518-N23. In addition, Martin Kronegger was also supported by
the Austrian Science Fund (FWF) under grants S11408-N23 and Y698. Andreas Pfandler was also supported
by the German Research Foundation (DFG): ER 738/2-2.

References

[1] Aghighi, M., Jonsson, P., St̊ahlberg, S., 2015. Tractable cost-optimal planning over restricted polytree causal graphs. In:
Bonet, B., Koenig, S. (Eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. AAAI Press, pp. 3225–3231.

[2] Atserias, A., Oliva, S., 2014. Bounded-width QBF is pspace-complete. J. Comput. Syst. Sci. 80 (7), 1415–1429.
[3] Bäckström, C., 2014. Parameterising the complexity of planning by the number of paths in the domain-transition graphs.

In: Proc. ECAI 2014. Vol. 263 of Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 33–38.
[4] Bäckström, C., 2015. Some fixed parameter tractability results for planning with non-acyclic domain-transition graphs. In:

Proc. AAAI 2015. AAAI Press, pp. 3232–3238.
[5] Bäckström, C., 2015. Some fixed parameter tractability results for planning with non-acyclic domain-transition graphs. In:

Bonet, B., Koenig, S. (Eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. AAAI Press, pp. 3232–3238.

[6] Bäckström, C., Jonsson, P., 2013. A refined view of causal graphs and component sizes: SP-closed graph classes and beyond.
J. Artif. Intell. Res. 47, 575–611.

[7] Bäckström, C., Jonsson, P., Ordyniak, S., Szeider, S., 2015. A complete parameterized complexity analysis of bounded
planning. J. Comput. Syst. Sci. 81 (7), 1311–1332.

[8] Bäckström, C., Nebel, B., 1995. Complexity results for SAS+ planning. Comput. Intell. 11, 625–656.
[9] Bliem, B., Bredereck, R., Niedermeier, R., 2016. Complexity of efficient and envy-free resource allocation: Few agents,

resources, or utility levels. In: Proc. IJCAI 2016. IJCAI/AAAI Press, pp. 102–108.
[10] Brafman, R. I., Domshlak, C., 2003. Structure and complexity in planning with unary operators. J. Artif. Intell. Res. 18,

315–349.
[11] Brafman, R. I., Domshlak, C., 2006. Factored planning: How, when, and when not. In: Proc. AAAI 2006. AAAI Press, pp.

809–814.

31

[12] Brafman, R. I., Domshlak, C., 2013. On the complexity of planning for agent teams and its implications for single agent
planning. Artif. Intell. 198, 52–71.

[13] Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N., 2015. Elections with few candidates: Prices,
weights, and covering problems. In: Proc. ADT 2015. Vol. 9346 of LNCS. Springer, pp. 414–431.

[14] Bylander, T., 1994. The computational complexity of propositional STRIPS planning. Artif. Intell. 69 (1–2), 165–204.
[15] Chen, H., Giménez, O., 2010. Causal graphs and structurally restricted planning. J. Comput. Syst. Sci. 76 (7), 579–592.
[16] Crama, Y., Ekin, O., Hammer, P. L., 1997. Variable and term removal from Boolean formulae. Discrete Applied Mathematics

75 (3), 217–230.
[17] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S., 2015.

Parameterized Algorithms. Springer.
[18] Diestel, R., 2000. Graph Theory, 2nd Edition. Vol. 173 of Graduate Texts in Mathematics. Springer, New York.
[19] Dom, M., Lokshtanov, D., Saurabh, S., 2009. Incompressibility through colors and ids. In: Proc. ICALP 2009. Vol. 5555 of

LNCS. Springer, pp. 378–389.
[20] Domshlak, C., Dinitz, Y., 2001. Multi-entity off-line coordination: Structure and complexity. Tech. Rep. CS-01-04,

Ben-Gurion University of Negev, Israel.
[21] Downey, R. G., Fellows, M. R., 1999. Parameterized Complexity. Springer.
[22] Downey, R. G., Fellows, M. R., 2013. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer.
[23] Downey, R. G., Fellows, M. R., Stege, U., 1999. Parameterized complexity: A framework for systematically confronting

computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the
Future. Vol. 49 of DIMACS Series in Disc. Math. Theor. Comput. Sci. DIMACS, pp. 49–99.

[24] Dvorák, W., Ordyniak, S., Szeider, S., 2012. Augmenting tractable fragments of abstract argumentation. Artif. Intell. 186,
157–173.

[25] Eiben, E., Ganian, R., Ordyniak, S., 2016. Using decomposition-parameters for QBF: mind the prefix! In: Proc. AAAI
2016. AAAI Press, pp. 964–970.

[26] Erdélyi, G., Fellows, M. R., Rothe, J., Schend, L., 2015. Control complexity in bucklin and fallback voting: A theoretical
analysis. J. Comput. Syst. Sci. 81 (4), 632–660.

[27] Fichte, J. K., Szeider, S., 2011. Backdoors to tractable answer-set programming. In: Proc. IJCAI 2011. pp. 863–868.
[28] Fichte, J. K., Szeider, S., 2011. Backdoors to tractable answer-set programming. CoRR abs/1104.2788.
[29] Fichte, J. K., Szeider, S., 2013. Backdoors to normality for disjunctive logic programs. In: Proc. AAAI 2013. AAAI Press,

pp. 320–327.
[30] Flum, J., Grohe, M., 2003. Describing parameterized complexity classes. Inf. Comput. 187 (2), 291–319.
[31] Flum, J., Grohe, M., 2006. Parameterized Complexity Theory. Springer.
[32] Foulser, D. E., Li, M., Yang, Q., 1992. Theory and algorithms for plan merging. Artif. Intell. 57 (2-3), 143–181.
[33] Ganian, R., Ordyniak, S., 2016. The complexity landscape of decompositional parameters for ILP. In: Proc. AAAI 2016.

AAAI Press, pp. 710–716.
[34] Ganian, R., Ramanujan, M. S., Szeider, S., 2016. Discovering archipelagos of tractability for constraint satisfaction and

counting. In: Proc. ACM-SIAM, SODA 2016. SIAM, pp. 1670–1681.
[35] Garey, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman.
[36] Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Zivny, S., 2017. Backdoors into heterogeneous classes of SAT and CSP. J.

Comput. Syst. Sci. 85, 38–56.
[37] Gaspers, S., Ordyniak, S., Ramanujan, M. S., Saurabh, S., Szeider, S., 2016. Backdoors to q-horn. Algorithmica 74 (1),

540–557.
[38] Gaspers, S., Szeider, S., 2012. Backdoors to acyclic SAT. In: Proc. ICALP 2012. Vol. 7391 of LNCS. Springer, pp. 363–374.
[39] Gaspers, S., Szeider, S., 2012. Backdoors to satisfaction. In: Bodlaender, H. L., Downey, R., Fomin, F. V., Marx, D. (Eds.),

The Multivariate Algorithmic Revolution and Beyond. Vol. 7370 of LNCS. Springer, pp. 287–317.
[40] Giménez, O., Jonsson, A., 2008. The complexity of planning problems with simple causal graphs. J. Artif. Intell. Res. 31,

319–351.
[41] Giménez, O., Jonsson, A., 2009. Planning over chain causal graphs for variables with domains of size 5 is NP-hard. J. Artif.

Intell. Res. 34, 675–706.
[42] Giménez, O., Jonsson, A., 2012. The influence of k-dependence on the complexity of planning. Artif. Intell. 177-179, 25–45.
[43] Gnad, D., Hoffmann, J., 2018. Star-topology decoupled state space search. Artificial Intelligence 257, 24 – 60.

URL http://www.sciencedirect.com/science/article/pii/S000437021730173X

[44] Gottlob, G., Szeider, S., 2008. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database
problems. Comput. J. 51 (3), 303–325.

[45] Gregory, P., Fox, M., Long, D., 2008. A new empirical study of weak backdoors. In: Proc. CP 2008. Vol. 5202 of LNCS.
Springer, pp. 618–623.

[46] Helmert, M., 2004. A planning heuristic based on causal graph analysis. In: Proc. ICAPS 2004. AAAI, pp. 161–170.
[47] Jiang, T., Li, M., 1995. On the approximation of shortest common supersequences and longest common subsequences.

SIAM J. Comput. 24 (5), 1122–1139.
[48] Jonsson, A., Jonsson, P., Lööw, T., 2014. Limitations of acyclic causal graphs for planning. Artif. Intell. 210, 36–55.
[49] Jonsson, P., Bäckström, C., 1998. State-variable planning under structural restrictions: Algorithms and complexity. Artif.

Intell. 100 (1-2), 125–176.
[50] Katz, M., Domshlak, C., 2008. New islands of tractability of cost-optimal planning. J. Artif. Intell. Res. 32, 203–288.
[51] Katz, M., Domshlak, C., 2010. Optimal admissible composition of abstraction heuristics. Artif. Intell. 174 (12–13), 767–798.

32

[52] Katz, M., Keyder, E., 2012. Structural patterns beyond forks: Extending the complexity boundaries of classical planning.
In: Proc. AAAI 2012. AAAI Press, pp. 1779–1785.

[53] Kilby, P., Slaney, J. K., Thiébaux, S., Walsh, T., 2005. Backbones and backdoors in satisfiability. In: Proc. AAAI 2005.
AAAI Press / The MIT Press, pp. 1368–1373.

[54] Knoblock, C. A., 1994. Automatically generating abstractions for planning. Artif. Intell. 68 (2), 243–302.
[55] Kronegger, M., Ordyniak, S., Pfandler, A., 2014. Backdoors to planning. In: Proc. AAAI 2014. AAAI Press, pp. 2300–2307.
[56] Kronegger, M., Ordyniak, S., Pfandler, A., 2015. Variable-deletion backdoors to planning. In: Proc. AAAI 2015. AAAI

Press, pp. 3305–3312.
[57] Kronegger, M., Pfandler, A., Pichler, R., 2013. Parameterized complexity of optimal planning: A detailed map. In: Proc.

IJCAI 2013. AAAI Press, pp. 954–961.
[58] Niedermeier, R., 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press.
[59] Nishimura, N., Ragde, P., Szeider, S., 2004. Detecting backdoor sets with respect to Horn and binary clauses. In: Proc.

SAT 2004. pp. 96–103.
[60] Nissim, R., Brafman, R. I., 2014. Distributed heuristic forward search for multi-agent planning. J. Artif. Intell. Res. 51,

293–332.
[61] Ordyniak, S., Paulusma, D., Szeider, S., 2013. Satisfiability of acyclic and almost acyclic CNF formulas. Theor. Comput.

Sci. 481, 85–99.
[62] Papadimitriou, C. H., 1994. Computational complexity. Addison-Wesley.
[63] Pfandler, A., Rümmele, S., Szeider, S., 2013. Backdoors to abduction. In: Proc. IJCAI 2013. AAAI Press, pp. 1046–1052.
[64] Pfandler, A., Rümmele, S., Wallner, J. P., Woltran, S., 2015. On the parameterized complexity of belief revision. In: Proc.

IJCAI 2015. AAAI Press, pp. 3149–3155.
[65] Pietrzak, K., 2003. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest

common subsequence problems. J. Comput. Syst. Sci. 67 (4), 757–771.
[66] Russell, S. J., Norvig, P., 2010. Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson Education.
[67] Sacerdoti, E. D., 1974. Planning in a hierarchy of abstraction spaces. Artif. Intell. 5 (2), 115–135.
[68] Samer, M., Szeider, S., 2009. Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42 (1), 77–97.
[69] Williams, R., Gomes, C., Selman, B., 2003. Backdoors to typical case complexity. In: Proc. IJCAI 2003. Morgan Kaufmann,

pp. 1173–1178.

33

