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ARTICLE

Fine-tuning the efficiency of para-hydrogen-
induced hyperpolarization by rational
N-heterocyclic carbene design
Peter J. Rayner 1, Philip Norcott 1, Kate M. Appleby1, Wissam Iali 1, Richard O. John1, Sam J. Hart1,

Adrian C. Whitwood 1 & Simon B. Duckett 1

Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced

hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This pro-

cess transfers the latent magnetism of para-hydrogen into a substrate, without changing its

chemical identity, to dramatically improve its nuclear magnetic resonance (NMR)

detectability. By synthesizing and examining over 30 NHC containing complexes, here we

rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate

catalyst-substrate combinations to quantify the substrate’s NMR detectability. These opti-

mizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C

nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high

detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine

1.5 T clinical MRI system. As signal strength scales with the square of the number of

observations, these low cost innovations offer remarkable improvements in detectability

threshold that offer routes to significantly reduce measurement time.
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H
yperpolarization methods that increase the signal strength
of magnetic resonance imaging (MRI) are making the
in vivo observation of molecular metabolism a clinical

reality1. This innovation has opened the door to alternative
pathways for medical diagnosis. Hence, there is a proven need to
broaden the range of materials that can be hyperpolarized whilst
simultaneously reducing the cost and complexity of sample
delivery2. Signal amplification by reversible exchange (SABRE) is
a fast growing hyperpolarization process used to overcome the
inherent insensitivity of NMR and MRI3–5. It derives the asso-
ciated non-Boltzmann distribution of spin energies from para-
hydrogen (p-H2) via its reversible binding to a metal catalyst
(Fig. 1). Many reported studies use iridium N-heterocyclic car-
bene (NHC) catalysts and polarization is transferred through the
resulting scalar coupling network to a ligated substrate molecule6.
Subsequent ligand dissociation delivers the free substrate where
its modified magnetic properties improve detection without
changing chemical identity. The binding of fresh p-H2 and loss of
H2 complete the cycle. The hyperpolarization of nuclei such as
1H, 13C, 15N has been reported7–11. The interest in this method is
derived from its relative simplicity and low cost when compared
to other techniques12. To date [IrCl(COD)(IMes)] (1) (IMes=
1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidine, COD= cis,cis-
1,5-cyclooctadiene) is one of the most effective catalyst precursors
in nonaqueous situations13–15. A number of theoretical descrip-
tions of SABRE have been reported16–18 and key spin−spin
couplings responsible for polarization transfer quantified19.

The choice of iridium NHC catalysts reflect their increased
efficiency when compared to phosphine systems3,4,15,20,21. The
ligand identity controls the rate of substrate dissociation and
promotes H2/p-H2 exchange, essential steps for hyperpolarized
substrate formation14. These processes have been studied by
Exchange Spectroscopy (EXSY) and a pathway involving the
intermediate, [Ir(H)2(η

2-H2)(IMes)(sub)2]Cl of Fig. 1, is
accepted15.

Previous studies have shown increasing the steric bulk of the
NHC ligand leads to faster substrate dissociation, thus reducing
the lifetime of the active catalyst. Hence, SABRE activity is

modified13,14. The steric bulk of the substrate can also have an
effect on the SABRE activity due to inhibited binding22,23.
Additionally, it has been reported that the rate of magnetic
relaxation of the substrate increases in the presence of the SABRE
catalyst, with the result that the substrate hyperpolarization
decays faster than otherwise expected. This can be mitigated by
deuteration of the NHC ligand which increases bound T1
relaxation times such that higher hyperpolarization can be
achieved24–28. Alternative methods to reduce relaxation include
the conversion of SABRE-derived hyperpolarization into longer-
lived singlet states and quenching the catalyst by addition of a
suitable chelate29–32.

Previous studies have shown that aromatic NHC ligands are
effective mediators of the SABRE process, whereas alkyl NHC’s
perform poorly13,14. This effect could indicate beneficial π-face
interactions33,34 within the active species15. Fully understanding
the correlation between electronic and steric NHC properties with
SABRE efficacy is therefore essential. This exposes the complexity
of the polarization transfer mechanism, where relaxation, scalar
coupling and catalyst lifetime all play a role5,17,18. More recently,
a relationship between the π-accepting ability parameter (PAAP)
and pyridine exchange rates in such complexes was described35.

A number of analytical NMR methods have now been devel-
oped that use SABRE to detect low-concentration analytes and
probe diffusion times36–41. If the SABRE technology is to become
more widely used in industrial and clinical settings, though, it is
essential that robust, efficient and predictable indicators of cata-
lytic activity are established. Here we prepare and examine a suite
of SABRE catalysts, where their steric and electronic properties
are varied systematically. This is achieved by changing the ortho,
meta and para substituents on the aryl arms of the NHC ligand
and the functionality of the imidazole backbone to access
22 structurally related complexes of the type [IrCl(COD)(NHC)]
(1−22) (see Fig. 2). We determine buried volume (%Vbur)

42–44

and Tolman Electronic Parameter (TEP)42,45 in conjunction with
X-ray crystallography. The SABRE efficacy of these catalysts are
quantified for methyl 4,6-d2-nicotinate (A, Fig. 1)26. Isotopic
labelling of a subset of these NHC ligands results in significantly
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Fig. 1 Schematic representation of the SABRE catalytic cycle. The reversible binding of substrate (sub) and p-H2 leads to the buildup of hyperpolarized

substrate in solution which can be detected by NMR or MRI methods
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improved performance. Consequently, we identify optimal
SABRE catalyst characteristics that deliver 250% increases in 1H
polarization levels when compared to those with 1. Finally, we
report on 13C and 15N heteronuclear polarization to broaden the
scope of the method. For context, hyperpolarization levels
achieved reflect over 20,000 (63%), 30,000 (25%) and 125,000-
fold (43%) improvements for 1H, 13C and 15N respectively over
the Boltzmann controlled polarizations seen at 9.4 T (400MHz).

Results
Design and synthesis of an N-heterocyclic carbene library. The
initial library of 22 iridium NHC catalysts of general formula
[IrCl(COD)(NHC)] (1−22) were synthesized to encompass a
range of substituents in the ortho, meta and para positions of
their aryl arms and imidazole backbones. Such variation has
previously been shown to lead to increased activity in other
catalytic reactions (e.g. transfer hydrogenation46, borylation47

and cross-coupling48). The catalysts used here are depicted in
Fig. 2. Full synthetic procedures and associated characterization
data can be found in the Supplementary Methods. In order to
define how changing the ligand’s functionality in these positions
affects their electronic and steric properties, we determined their
TEP and %Vbur according to standard methods42,44,45, in addi-
tion to determining the X-ray crystal structure for a subset of the
precatalysts.

Electronic effects. The electron donating properties of the asso-
ciated NHC ligands were determined as their TEP value, via the
corresponding [IrCl(CO)2(NHC)] complexes’ IR carbonyl vibra-
tional frequencies42. This involved bubbling CO gas through
dichloromethane solutions of the corresponding [IrCl(COD)
(NHC)] complexes and recrystallization from hexane. The

identity of the carbonyl complexes was confirmed by 1H and 13C
NMR spectroscopy as detailed in the Supplementary Methods.
Figure 3a reports these TEP values and these data are colour
coded to differentiate substituent position effects.

Varying the ortho-position substituent from H →Me → Et → iPr
(2 → 3 → 4 → 5) has little influence on the TEP in accordance with
a small inductive change. Similarly, introduction of methyl
groups (6 and 7) into the meta-position results in a minor change
in the electron-donating capabilities of the NHC ligand. More
substantial electronic effects are evident when the para-
substituent is varied. Now introduction of electron withdrawing
groups, such as halogens (8−11), ester (12), triflate (13) or
acetate (14) leads to an increase in TEP when compared to 1.
When a phenyl ring (15) was located in the para position, a small
increase in TEP to 2050.3 cm−1 is observed. Furthermore,
introduction of electron-donating groups such as tert-butyl
(16), methoxy (17) or N,N-dimethylamino (18) all decrease the
TEP value. In contrast, changing the substituents on the
imidazole backbone significantly influences the electron-
donating properties of the carbene ligand. Consequently, when
methyl (19) or ethyl groups (20) are present the carbene becomes
significantly more electron donating with TEP values of 2047.2
and 2047.8 cm−1 respectively. Chloro (21) and bromo (22)
substituents have the opposite effect, reducing the electron-
donating capabilities of the NHC ligand such that their TEP
values increase to 2052.8 and 2052.4 cm−1 respectively.

Determining electronic effects from X-ray crystallography. X-
ray crystal structures of nine of the [IrCl(COD)(NHC)] catalysts
were solved and their Ir−C1 (where C1 is the carbene carbon)
bond lengths analysed to further quantify this effect. All struc-
tures are available from the Cambridge Crystallography Data
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imidazole (green) positions give access to a diverse range of electronic and steric properties
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Centre with full details available in the Supplementary Methods.
Interestingly, we found a linear correlation between the Ir−C1

bond length and the TEP with an R2 value of 0.88 (Fig. 3b).
Electron-deficient catalysts, such as 21, exhibit significantly
shorter bond lengths than electron-rich variants such as 19.

Steric effects. The steric properties of the NHC were further
determined by calculation of their %Vbur using the SambVca
Application44. Details of the DFT methods employed are avail-
able in the Supplementary Methods. Figure 3c shows that the
major influence in this steric property results from variation of
the ortho substituent. When a hydrogen atom is located in the
ortho-position (2) the %Vbur reduces to 30.5% when compared to
IMes (1) or methyl variant (3) which both have a value of 31.6%.
A slight further increase in steric bulk is achieved by introduction
of ethyl substituents (4) but this effect is not as significant as that
of isopropyl group (5, 32.6%). No change in %Vbur was observed
through the introduction of methyl groups into the meta position.
Similarly, changes in %Vbur caused by modifications to the para-
substituent are also minimal. Finally, changing the imidazole
functionality has a subtle effect on the steric properties of the
NHC ligands. For example, a small increase in %Vbur is observed
through the replacement of protons (1) by bromine (22).

Reaction of the NHC catalysts with H2. A typical active SABRE
catalyst has the form [Ir(H)2(IMes)(sub)3]Cl of Fig. 1

24,49. We
therefore screened this catalyst library using the model substrate
methyl 4,6-d2-nicotinate

26 (A) for this reaction. Hence, a series of
samples containing [IrCl(COD)(NHC)] (1−22, 5 mM) and
methyl 4,6-d2-nicotinate (A, 4 eq.) in methanol-d4 were exposed
to H2 (3 bar). Analysis by NMR spectroscopy confirmed the
formation of [Ir(H)2(NHC)(A)3]Cl as the dominant species in the

majority of cases. Exceptions result for 2, 6 and 7, where the ortho
ring substituent is a proton. For example, 2 led to a new hydride
containing complex that yields a δH −12.13 resonance and does
not undergo p-H2 addition. This is attributed to the formation of
a C−H bond activation product based on the reactivity of related
phenyl substituted NHC derivatives50–52. Furthermore, pre-
catalyst 22, which bears bromine substituents on the imidazole
backbone, does not form a SABRE active catalyst and instead
decomposes to a black precipitate on exposure to H2. Therefore,
catalysts 2, 6, 7 and 22, which did not form active SABRE cata-
lysts, were removed from the study at this point.

Rate of substrate dissociation. The SABRE catalytic activity
relates to the rate of loss of Aequ in [Ir(H)2(NHC)(A)3]Cl and
therefore this parameter was quantified (Fig. 3d)17. This behaviour
is a consequence of the fact that an optimum complex lifetime is
associated with the magnitude of the hydride-hydride and hydride-
substrate spin−spin coupling constants it possesses17. It can be seen
that increasing steric interactions at the ortho position significantly
increases the rate of substrate dissociation trans to the hydride
ligand. For instance, the rate constant increases from 6 to 32 s−1 by
replacing the ortho methyl groups (3) by isopropyl (5). It should be
noted that as there are two Aequ ligands in [Ir(H)2(NHC)(A)3]Cl,
the net rate of Aequ loss is twice that reported. The influence of the
para substituent is less pronounced, with electronic factors out-
weighing steric effects. Now the plot of TEP versus rate shows a
linear trend with an R2 value of 0.90, with the exception of tert-
butyl catalyst 16 (see Supplementary Figure 42). Catalysts that
contain more strongly electron-donating groups than methyl, such
as 16−18, were found to exhibit a higher rate of dissociation than 1.
This can be rationalized by the associated increase in electron
density on the metal centre which stabilizes the intermediate
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complex and leads to faster iridium−substrate dissociation. Chan-
ging the imidazole ring substituent exhibits similar electronic per-
turbations with electron-poor 21 undergoing slower dissociation
(2.7 s−1) than electron-rich 19 and 20 (9.6 and 12.9 s−1 respec-
tively). Hence, if SABRE performance is based only upon ligand
dissociation kinetics 1, 17 and 19 should exhibit comparable
polarization levels.

T1 relaxation and SABRE activity. However, recent experimental
and theoretical studies suggest relaxation is also important in
controlling catalyst efficiency17,18,26. The relaxivity and SABRE
activity of the catalyst formed when 1 and A combine, which
yields 9.8% net polarization in methanol-d4 solution under 3 bar
p-H2, has been reported26. Similar samples containing a 5 mM
concentration of the precatalyst (1−21) and a 20mM con-
centration of A in 0.6 mL of methanol-d4 are used here to
rationalize behaviour. This involved forming [Ir(H)2(NHC)(A)3]
Cl under 3 bar p-H2 and examining the effect of a 10 s polar-
ization transfer time whilst it was located in the 65 G fringe field
of the NMR spectrometer. Single-scan 1H NMR measurements
were then made at 9.4 T to assess the associated signal gains for A
and further measurements conducted to determine the T1

relaxation times via inversion recovery at 9.4 T. The resulting
polarization levels, from a minimum of a five observation average,
and observed 1H relaxation times for the two resonances of free A
are detailed in Fig. 4. As free A is in equilibrium with bound A,
the observed T1 values reflect the ligand exchange rate, and the
free and bound relaxation times of A17,26. In all cases, the con-
centration and relative excess of A was kept constant. The cor-
responding T1 values at 9.4 T for bound A were also determined
at 243 K where there is no observable ligand exchange and are
presented in Supplementary Fig. 46.

The effect of changing the ortho-substituent on both the
observed polarization level and the observed T1 values is
dramatic. Increasing the steric bulk from Me → Et → iPr (3 → 4 →
5) reduces polarization transfer efficiency whilst simultaneously
reducing the H-2 T1 relaxation time. As predicted, the overall
signal gain decreases by ca. 70% across this series and is
proportional to the dissociation rate divided by the relaxation
time17. Catalyst 5 has the fastest rate of dissociation of A and
smallest observed polarization levels of just 3.6 and 3.3% for H-2
and H-5 respectively. It is therefore clear from these results that a
combination of these two effects is important, although the
corresponding catalyst T1 values, determined at 243 K, show little
difference. It must therefore be remembered that the free
substrate T1 values at 298 K reflect a weighted average of those

of the bound and free substrate and is thus dependent on the
ligand exchange rate.

There is also a ca. 40% variation in observed T1 value and
polarization level within the series associated with para-
substituent changes (blue). The introduction of an electron
withdrawing halogen increases the polarization level, with fluoro-
and chloro-derived catalysts 8 and 9 giving 13.9 and 14.0% net
polarization levels respectively relative to 1. They retain good
relaxation times for free A because of their slow ligand loss rates.
Collectively this change in behaviour delivers an ∼40% increase
in SABRE efficiency relative to 1.

Other catalysts containing an electron withdrawing group,
triflate (13) and acetate (14), also showed improvements in
SABRE performance relative to 1. However, while methoxycar-
bonyl substituted 12 also yields increased net polarization
(13.7%), a significant reduction in T1 values of A is now seen.
In this case, there is also a reduction in the bound H-5 proton T1
value of Ir-A at 243 K which would suggest that poor SABRE
performance is expected. The observed improvement in SABRE
performance by 12 therefore suggests it must actually undergo
more efficient polarization transfer than the other materials. This
is linked to the magnitude of the 4JHH scalar coupling through
which polarization transfer occurs and has previously been
suggested to be insensitive to the identity of the NHC19, albeit for
a small range of related examples.

A series of selective 1D-COSY measurements were therefore
undertaken at high field to probe this effect through quantifica-
tion of the corresponding oscillation frequency as detailed in the
Supplementary Methods. Compared to 1, the corresponding
value observed for 12 is 10% higher, with a 20% variation being
evident across the whole catalyst series. Hence, there is a simple
explanation for this behaviour which suggests that rigorous
evaluation of this variable is also needed.

Phenyl- (15) and tert-butyl (16)-derived catalysts were also
found to reduce the relaxation times of free A when compared to
1. In addition, their [Ir(H)2(NHC)(A)3]Cl complexes exhibit fast
ligand exchange, similarly large transfer frequencies and short
bound T1 ligand values. It is the combination of these effects that
results in their poor SABRE performance. Other electron-rich
groups, however, perform well with methoxy (17) and N,N-
dimethylamino (18) giving 12.3 and 13.7% polarization respec-
tively which are due to their high catalyst T1 values.

The introduction of two methyl groups (19) onto the imidazole
ring also improves polarization transfer, to give an average
polarization level of 13.2% for the two sites of A whilst the ethyl
derivative (20) yields just 4.9% despite extended relaxation times
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of 8.2 and 28.0 s for H-2 and H-5 of A at 298 K. Pleasingly,
catalyst 21, where chloro substituents are introduced on the
imidazole ring, results in a 78% increase in net polarization to
17.4% when compared to 1. There is also a significant increase in
the H-2 relaxation time which we suggest is caused by the
reduced spin−spin coupling network within the active catalyst.
We therefore conclude that these catalyst substituent effects
reflect an important but highly complex variable that controls
SABRE efficiency. As predicted, it is clear that relaxation within
the catalyst itself plays a dominant role in most of these
examples17,26.

Synthesis and evaluation of deuterated NHC isotopologues.
Deuteration of the carbene ligand can cause an increase in
observable SABRE polarization through relaxation time extension
of the bound substrate protons whilst simultaneously reducing
spin dilution effects24,26. Therefore, we synthesized the fully
deuterated isotopologues of a subset of the most efficient of these
catalysts (Fig. 5). The synthetic procedures are provided in the
Supplementary Methods. We measured the associated TEP and %
Vbur of each of these and found that deuteration had no quan-
tifiable effect on the electronic or steric properties when com-
pared to their protio counterparts. Subsequently, each of the
deuterated catalysts were examined and found to improve both
the T1 relaxation times and polarization transfer efficiency to A
when compared to that shown by their protio analogues.

Indeed, d18-3 now achieves 25.5% polarization for H-2 under
3 bar p-H2 in methanol-d4 solution. This is over double the level

of its protio counterpart 3. As predicted, the observed T1 values at
9.4 T for A increase from 6.4 and 14.5 s, to 8.7 and 23.3 s, for H-2
and H-5 respectively. A similar effect is observed with d16-9 that
now delivers an average polarization of 22.9%. This is 63% larger
than that achieved with protio 9 and a 133% increase on 1. Good
levels of polarization transfer are also observed with d16-10
(22.5%) and d18-3 (22.0%) whilst d22-12 and d28-18 deliver less
effective increases when compared to their protio variants.
Furthermore, when the imidazole ring is functionalized by
methyl groups (d22-19) improved polarization levels compared
to 19 result, although the T1 value of H-2 remains just 6.5 s. This
suggests that spin−spin interactions between the hydride, bound
substrate and methyl group of the imidazole backbone in [Ir
(H)2(NHC)(A)3]Cl are not innocent. Attempts to reduce this
effect by introducing CD3 groups in the imidazole ring proved
synthetically unsuccessful due to low levels of isotope retention.
However, chloro derivative d22-21 was readily prepared and
yielded the largest polarization level for both H-2 (26.9%) and H-
5 (21.8%) in conjunction with the longest free A proton T1
relaxation times, which are 13.8 and 31.7 s for H-2 and H-5
respectively.

The most effective catalysts for the hyperpolarization of A for
this series of mono-substituent variations have chloro groups on
the imidazole ring or para-chloro aryl substituents. When these
modifications are combined to create d16-23 the revised ligand’s
TEP value is 2054.9 cm−1 and its %Vbur is 31.8% (Fig. 5). It is
therefore the most electron deficient of these NHCs and the
observed dissociation rate constant for A is just 1.4 s−1 in the
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corresponding catalyst at 298 K. This process exemplifies the
route to second-generation highly optimized catalysts for SABRE.

A sample containing precatalyst d16-23 (5 mM) and A (4 eq.)
in methanol-d4 was exposed to 3 bar p-H2 and polarization
transfer undertaken at 65 G. Under these conditions, polariza-
tions of 36.1 and 30.6% for H-2 and H-5 respectively were
achieved in conjunction with a 140% extension in the T1

relaxation time of H-2 to 14.0 s over that seen with 1. When a
5 bar pressure of p-H2 was employed, the H-2 polarization level
increased to 40.7%26. In a final modification, when 3 eq. of the
fully deuterated cosubstrate, methyl 2,4,5,6-d4-nicotinate

26, is
introduced in combination with A (1 eq.), 63% polarization for
H-2 is achieved. Thus, d16-23 is the most effective in this series of
catalysts for the hyperpolarization of A. For context, this
polarization value would be expected to result in a 130,000-fold
gain in signal strength if A were now to be observed at the
common clinical MRI field of 1.5 T. It is clear from these data that
utilization of a 2H-labelled catalyst changes the dominant effect
that T1 relaxation plays on SABRE performance, that is seen with
their 1H-labelled counterparts, so that catalyst lifetime must now
match the 4JHH coupling or polarization transfer frequency17,18.

Expanding the substrate range. Having optimized SABRE for
methyl 4,6-d2-nicotinate (A), a wider set of substrates were tested
to probe the importance of such variations more generally. This
involved screening a subset of these catalysts against the sub-
strates shown in Fig. 6. These substrates encompass electron-poor
(3-nitropyridine (B), 3-trifluoromethylpyridine (C)) and
electron-rich heteroaromatic (3-picoline (D), 3-methoxypyridine
(E), 3-(N,N-dimethylamino)pyridine (F)) examples. Figure 6
reveals the best performing catalyst, and that of its 2H-labelled
counterpart for each substrate, in addition to the performance of
1 for comparison purposes. The quoted polarization levels are the
average value that result across the four proton sites of the spe-
cified substrate, a full breakdown of these polarization data and
associated effective relaxation times can be found in Supple-
mentary Tables 4-13.

It can be seen that the best performing catalyst for 3-
nitropyridine (B) is the para-dimethylamino substituted derivative
18. It achieves 3.8% polarization of B, compared to 1.8% using 1.
Further improvements were gained by using d28-18 which gave
5.1% average polarization. For 3-trifluoromethylpyidine (C)
catalyst 21, with chloro substituents on the imidazole ring, gave

the highest average polarization level of 2.7% which reflects a 67%
increase in performance over 1. Its deuterated derivative, d22-21
delivers 8.1% polarization. A fourfold improvement in average
polarization level of 3-picoline (D) was observed with ester
derived 12 and its isotopologue d22-12, when compared to 1 as
average polarization levels of 5.4 and 5.8% respectively are
achieved. For both 3-methoxypyridine (E) and 3-(N,N-dimethy-
lamino)pyridine (F), para-chloro containing 9 was optimal,
leading to 5.6 and 3.6% polarization levels respectively. Now
d16-9 gave substantial further improvements reaching 10.8 and
8.1% values respectively. These values are now limited by the
substrate T1 values and it might be expected their 2H-labelling or
employment of higher p-H2 pressures would again result in higher
polarization levels26. These data therefore confirm the importance
of such systematic studies in conjunction with 2H-labelling if
SABRE is to be used to optimally detect a given substrate.

Application to 15N and 13C nuclei. Our final aim is to demon-
strate that the same approach can be used to give improvements in
heteronuclear signal detection. Theis et al. have previously shown
that direct polarization transfer to pyridine-15N can be achieved in
microtesla fields through SABRE-SHEATH (SABRE in SHield
Enables Alignment Transfer to Heteronuclei)11,29,53. A series of
samples containing pyridine-15N (25mM) and [IrCl(COD)
(NHC)] (2.5 mM) were therefore examined in methanol-d4 under
3 bar p-H2 after polarization transfer in a µ-metal shield (ca. 350-
fold shielding, see Supplementary Methods). Catalyst 1 yielded
7.1% 15N-polarization under these conditions as quantified by
comparison to a single-scan, thermally equilibrated 5.0 M solution
of 15NH4Cl according to standard methods54 (Fig. 7). Screening
revealed that the optimum catalyst was 21, with chloro imidazole
ring substituents, which improved this to 11.0%. To rationalize
these results, we quantified the rate of pyridine loss as 4.8 s−1 and
is significantly slower than that of [Ir(H)2(IMes)(Py)3]Cl which is
11.2 s−1 14. The enhancement could be improved by use of the
deuterated isotopologue, d22-21 to 15.5%. This change is reflected
in the ~20% extension in magnetic state lifetime at 9.4 T which is
now 28.7 s rather than 24.2 s for systems based on d22-21 and 1
respectively. The polarization of pyridine-15N can be improved
further to 42.3% when d22-21 (2.5 mM) is employed with pyr-
idine-15N (6.25mM) and pyridine-d5 (18.75mM) in methanol-d4
under 5 bar p-H2. The pyridine-d5 co-ligand achieves this effect by
reducing spin dilution whilst extending further the lifetime of the
hyperpolarized state to 38.0 s.

We also improve the SABRE polarization of the 13C nuclei in
doubly labelled 13C2-diphenylpyridazine (G), that has been
shown to sustain a singlet state with a lifetime of ca. 2 min32,
though other substrates have been shown to be amenable to 13C
SABRE25,55–57. Polarization transfer using 1 (5 mM) and G
(20 mM) in methanol-d4 at ~0.5 G resulted in a 2.6% polarization
level (Fig. 7). This improved to 5.6% with tert-butyl-substituted
catalyst 16. We attribute this change to the increased rate of
substrate dissociation in the corresponding SABRE catalysts
which are 0.20 and 0.46 s−1 for 1 and 16 respectively. A change in
the rate of haptotropic shift is also observed49 and full details can
be found in Supplementary Table 17. Deuterated isotopologue
d34-16 improved the observed polarization level to 8.2% under
analogous conditions. By reducing the concentration of d34-16 to
2.5 mM and utilizing a 1:3 ratio of G and its fully deuterated
isotopologue, 4,5-di(phenyl-d5)-3,6-d2-pyridazine, a 25.0% polar-
ization level was achieved with 5 bar p-H2. This level of
hyperpolarization is commensurate with that created by hyper-
polarization techniques that have already been successfully used
for in vivo biomedical imaging58–62.
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Discussion
In summary, we have improved the levels of SABRE hyperpo-
larization that can be created in the 1H, 13C and 15N nuclei of a
range of substrates by utilization of an optimized catalyst. This
involved establishing that SABRE efficiency was linked to the
identity of the NHC in the catalyst while detailing how it influ-
ences magnetic relaxation, the rate of substrate dissociation and
the size of the 4JHH coupling within the catalyst5. This required
the preparation of a series of SABRE catalysts whose NHC ligands
were specifically synthesized to encompass a wide range of steric
and electronic properties. Collectively, these data illustrate a
robust route to improve final polarization levels across a wide
range of substrates and nuclei. In particular, modifying the ortho,
meta and para functionality of a series of aryl-substituted NHC
ligands, in conjunction with changing the substituents present on
the imidazole ring is found to have a substantial effect on active
catalyst lifetime, delivered polarization level and T1 relaxation
time.

The results show how changes in steric bulk at the ortho
position can be used to dramatically increase the rates of substrate
dissociation and work to improve SABRE polarization levels for
strong-binding substrates. The associated ortho substituent effects
on the electronic properties of these ligands are small because
they induce only small inductive changes. Additionally, we found
that when the ortho position substituent is a proton, SABRE is
quenched due to catalyst instability.

Modifications at the para-position led to significant electronic
differences which change the substrate dissociation rate and can
be used to improve SABRE performance. The most substantial
electronic perturbations were caused by changes to the imidazole
ring, where the introduction of chloro substituents significantly

slowed ligand dissociation whereas methyl group addition had the
opposite effect.

2H-isotopic labelling of the NHC ligand lead to improved
SABRE efficacy as a result of extending the bound substrates’
polarization lifetimes in all cases. Fine-tuning of these properties
yielded polarization levels that were up to six times larger than
those achieved by the reference precatalyst [IrCl(COD)(IMes)]
(1) in conjunction with the test substrate methyl 4,6-d2-nicotinate
(A) and the tetrachloro substituted catalyst d16-23. This catalyst
proved to be the most electron deficient of those studied and this
slowed the rate of dissociation of A. Slower exchange maintains
the spin−spin network responsible for transfer of the p-H2-
derived polarization for a time period which is commensurate
with the small couplings implicated18. The optimum rate of
substrate dissociation has previously been predicted to be lower
than those commonly observed17 and is confirmed by these data.
Hence, the effects of magnetic relaxation during the lifetime of
the active catalyst are important because it is destructive to the
SABRE process17,18,26. This effect is decreased here by use of 2H-
labelling in the NHC ligand and accounts for the superior per-
formance of d16-23. We have demonstrated that the spin−spin
couplings vary within these catalysts. However, as the final level
of polarization is also associated with the rate of substrate dis-
sociation and spin relaxation18, optimization will be needed for
each substrate.

A range of substrates that encompass both electron-rich and
deficient heteroaromatics were also screened. SABRE-delivered
polarization levels vary according to the steric and electronic
properties of the substrate and catalyst. When they are matched,
an optimum catalyst is identified as detailed in Fig. 6. Similar
behaviour was observed when 15N or 13C polarization levels were
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investigated. As such, 42.3% 15N polarization (>125,000-fold
signal gain) was achieved for pyridine-15N when using d22-21 as
the precatalyst in conjunction with pyridine-d5 and 5 bar p-H2.
Additionally, 13C polarization levels of up to 25.0% were achieved
for a 13C2-diphenylpyridazine (G) with d34-16. Catalyst selection
is therefore a critical factor in delivering optimal nuclear polar-
ization levels in all of these substrates. Thus, we predict that
substrates such as the well-studied metronidazole, which has
already yielded excellent 15N polarization levels of >34% using 1,
could be amenable to further improvement using the catalysts
reported here63,64. As this is an antibiotic and hypoxia probe,
improved catalyst selection could expedite its use in in vivo
monitoring. Additionally, whilst the highest levels of polarization
reported in this study are obtained at low substrate concentration,
this is not necessarily a limit for biomedical applications of
SABRE as improved access of the active catalyst to p-H2 may lead
to improved polarization at higher concentrations and even neat
liquids22.

We believe therefore that the suite of catalysts and the trends
illustrated here will contribute to the goal of employing hyper-
polarized contrast agents in vivo via SABRE. Ultimately, a bolus
may be created in a biocompatible solvent mixture by polariza-
tion directly in aqueous media65–67 whilst utilizing a catalyst
sequestering technique64,68,69, or via biphasic70 or heterogeneous
catalysis71,72. Additionally, we expect these developments to be
directly applicable to in-high-field methods, such as LIGHT-
SABRE73, and they will also influence the polarization outcome of
SABRE-RELAY74. As NHC ligands are widely used in catalytic
transformations, we expect these data also to impact on other
reaction outcomes75–77.

Methods
Materials. All compounds and solvents were purchased from Sigma-Aldrich,
Fluorochem or Alfa-Aesar and used as supplied unless otherwise stated. For
detailed synthetic procedures and characterization data for the compounds syn-
thesized in this manuscript, see Supplementary Methods. For 1H, 13C NMR spectra
of the compounds synthesized in this manuscript, see Supplementary Figures.

Sample preparation and SABRE method. A 5 mm J. Young’s tap NMR tube
containing a 5 mM (unless otherwise stated) solution of [IrCl(COD)(NHC)] and
substrate (4 eq.) in methanol-d4 (0.6 mL) was degassed prior to the introduction of
p-H2 (3 bar unless otherwise stated). Samples were then shaken for 10 s in the
specified polarization transfer field before being rapidly transported into the
magnet for subsequent interrogation by NMR spectroscopy. For 1H, the typical
polarization transfer field was 65 G, for 13C it was 0.5 G and for 15N the sample was
shaken inside a μ-metal shield with ca. 350-fold shielding.

Determination of Tolman Electronic Parameters. CO(g) was bubbled through a
solution of [IrCl(COD)(NHC)] in CH2Cl2 for 2 min. The resulting solution was
concentrated under reduced pressure. The resulting crude solid was triturated with
hexane to give the desired [IrCl(CO)2(NHC)] complex and characterized by 1H
and 13C NMR data which is detailed in full in the Supplementary Methods. The
carbonyl frequencies of the [IrCl(CO)2(NHC)] complexes were measured in a
CH2Cl2 solution using a Bruker Tensor 37 FTIR spectrometer. Full IR data can be
found in Supplementary Table 1. The Tolman Electronic Parameter was then
calculated from the average carbonyl frequencies using the following equation:

TEP cm�1
� �

¼ 0:847 νCO averageð Þ½ � þ 336:

Determination of buried volume. All density function calculations were under-
taken at the GGA level with the Gaussian09 set of programs. The BP86 functional
was used for the optimizations and were carried out in the gas phase. The basis sets
with polarization functions (TZVP keyword in Gaussian09) were used for H, C, N,
Cl, O, F and S atoms. For the Ir atom, the SDD basis set and associated ECP was
used. The geometries obtained were then used to obtain the % buried volume
parameters with the SambVca 2.0 website (https://www.molnac.unisa.it/OMtools/
sambvca2.0/index.html). The calculations performed here are at the same level of
theory used in the creation of this web tool. Further details are available in the
Supplementary Methods and full Cartesian coordinates are available from the York
Data Catalogue.

Data availability
For the experimental procedures and NMR analysis of the compounds in this article, see

Supplementary Methods and Supplementary Figures in the Supplementary Information

File. All data created during this research are available by request from the York Research

Database (https://pure.york.ac.uk/portal/en/datasets/search.html). The X-ray

crystallographic coordinates for the structures reported in this article have been

deposited at the Cambridge Crystallographic Data Centre (CCDC) and can be obtained

free of charge via www.ccdc.cam.ac.uk/data_request/cif (accession numbers 1820372-

1820380 and 1823650).
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