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Abstract

We consider the local order estimation of nonlinear autoregressive systems with exogenous inputs (NARX), which may have
different local dimensions at different points. By minimizing the kernel-based local information criterion introduced in the
paper, the strongly consistent estimates for the local orders of the NARX system at points of interest are obtained. The
modification of the criterion and a simple procedure of searching the minimum of the criterion, are also discussed. The
theoretical results derived here are tested by simulation examples.

Key words: Nonlinear ARX system, recursive local linear estimator, order estimation, strong consistency.

1 Introduction

Consider a single-input single-output (SISO) nonlinear
autoregressive system with exogenous input (NARX),

yk+1=f(yk,· · · ,yk+1−M , uk,· · · ,uk+1−M )+εk+1, (1)

where uk and yk are the system input and output, re-
spectively, εk is the driven noise, M is the known upper
bound of the true system order and f(·) is the unknown
function representing the system dynamics.

In recent years identification of system (1) has been an
active research topic, estimating not only the nonlinear
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function f(·) itself ([3], [5], [16], [21], [23], [26], [27]) but
also the system orders ([2], [4], [12], [13], [19], [20]). As
far as the estimation of the nonlinear function f(·) is of
concern, the approaches can roughly be divided into t-
wo categories, the parametric approach ([16], [23], [24],
[25], [28], [29]) and the nonparametric approach ([3], [5],
[21], [26], [27]), according to the description of f(·). In
the former, it is usually assumed that f(·) = f(·, θ) with
a known structure of f(·) and an unknown parameter θ,
and consequently identification of f(·) is transformed in-
to a parametric optimization problem for θ. While in the
latter approach, it is often to estimate the values of f(·)
at the points of interest referred to as Model on Demand
in the literature (see, e.g., [3][5][10][16][21][26]). The di-
rect weight optimization [21], the local linear estimator
[3] and its recursive version [27], the stochastic approxi-
mation algorithm [26] all belong to this class. Notice that
most of the nonparametric identification algorithms are
the weighted local average algorithms in a certain sense,
and in order to derive the reliable estimates it requires
to obtain the adequate measurements around the giv-
en points. In some applications, a global description of
an unknown nonlinear system is too complicated both
in structure and in dimension. This makes identification
unreliable and the obtained model practically useless.
Typical examples can be easily found in the fields of bi-
ology, atmospherics, geophysics, economy, engineering,
communication, etc. An efficient and practical way is to



split the task into a number of manageable pieces either
in structure/dimension or in both. This is the idea of lo-
cal modeling including local polynomial modeling, a hot
topic in statistics. This paper studies the problem of the
order of the local modeling.

Over the last a few decades considerable progress has
been made on the order estimation as well as variable
selection of linear stochastic systems. For example, the
Akaike’s information criterion (AIC) [1], Bayesian infor-
mation criterion (BIC) and their generalizations [8], the
recursive algorithms [9], the so-called LASSO [30], are a
few among many others. But these approaches are not
applicable to system (1) due to its nonparametric and
nonlinear description. The order estimation for nonlin-
ear systems has also been studied in recent years, e.g.,
[2], [6], [12], [14], [15], [17], [19], [20]. In [2] an approach to
estimating the orders of the linearized nonlinear system
is introduced. The so-called Lipschitz number approach
and false nearest neighbors approach are proposed in
[12] and [14], respectively, and successive research ap-
peared in [6], [18], [19], etc. These two approaches do
not identify the nonlinearity f(·) itself, while estimat-
ing the orders. The methods in [2], [12], and [14] are
however sensitive to the system noises, and, to the au-
thors’ knowledge, their convergence and consistency are
unclear. The stepwise approach and the analysis of vari-
ance (ANOVA) approach are suggested in [17] and [20]
based on hypothesis tests for the parameterized nonlin-
ear systems. For these approaches a review is given in
[13]. Note that the order estimation in the above papers
is in a global sense, i.e., the true order is unique over the
whole function domain. In contrast to this, sometimes
the true orders of a nonlinear system are not unique and
may vary from point to point. To this end, let us consid-
er examples given below.

Example (i): A piecewise linear system is defined by

yk+1=f1(yk,· · · ,yk+1−M , uk,· · · ,uk+1−M )+εk+1, (2)

with

f1(yk, · · · , yk+1−M , uk, · · · , uk+1−M )

=





a
(1)
1 yk + · · ·+ a

(1)
p1

yk+1−p1
+ b

(1)
1 uk + · · ·+ b

(1)
q1 uk+1−q1 ,

if [yk, · · · , yk+1−M , uk, · · · , uk+1−M ]T ∈ X1,
...

a
(s)
1 yk + · · ·+ a

(s)
ps yk+1−ps

+ b
(s)
1 uk + · · ·+ b

(s)
qs uk+1−qs ,

if [yk, · · · , yk+1−M , uk, · · · , uk+1−M ]T ∈ Xs,

where Xi, i = 1, · · · , s is a partition of R2M .

Example (ii):The finite impulse response system is given
by

yk+1 = f2(uk, uk−1, uk−2) + εk+1, (3)

where f2(uk, uk−1, uk−2) = ukuk−1uk−2, if uk > 1; =
ukuk−1, if − 1 ≤ uk ≤ 1; and = uk, if uk < −1.

These two examples demonstrate a need for the local
order estimation at points of interest. To the authors’
knowledge, there has not much been done on this top-
ic, though in [4] a forward/backward approach was pro-
posed. The numerical simulations seem to suggest that
the forward/backward approach works well in terms of
variable selection, but determination of the system order
and its theoretical study remain open.

The contribution of the paper is as follows. First, a
kernel-based local information criterion, for simplicity
of reference, named as the local information criterion
(LIC), is proposed for the local order estimation of sys-
tem (1). Under moderate conditions, the estimates gen-
erated from LIC converge almost surely to the true local
orders of system (1) at the points of interest. Second, a
modification of LIC and a simple procedure of search-
ing the minimum of LIC are suggested, and the strong
consistency of the estimates is established as well.

The rest of the paper is arranged as follows. The LIC
and the strong consistency of the estimates are given in
Section II. A modification of LIC is discussed in Section
III. Two simulation examples are given in Section IV
and some concluding remarks are addressed in Section
V. Some technical proofs are placed in Appendix.

Notations. Let (Ω,F ,P) be the basic probability space.
Let Bm denote the Borel σ-algebra on R

m. For a vector
x(m) = [x1 · · ·xm]T ∈ R

m, denote its Euclidean norm

by ∥x(m)∥ and its sub-vector by x(i : j) , [xi · · ·xj ]
T ∈

R
j−i+1. Denote by ∥ν(·)∥var the total variation norm

of a signed measure ν(·). For two positive sequences
{aN}N≥1 and {bN}N≥1, by aN ∼ bN it means that
c1bN ≤ aN ≤ c2bN , ∀ N ≥ 1, for some positive con-
stants c1 and c2. Denote by ▽f(·) the gradient of the
function f(·) if it exists.

2 Local Order Estimation

2.1 Local Information Criterion for Order Estimation

We further introduce the following notations. Notice
that the nonlinear function f(·) in (1) is defined on R

2M .
The regressor and the point of interest in R

2M are de-
noted by φk(M,M) and x∗(2M), respectively,

φk(M,M) = [yk · · · yk+1−M uk · · ·uk+1−M ]T , (4)

x∗(2M) = [x∗
1, · · · , x

∗
2M ]T . (5)

Similar to (4), for any fixed 1 ≤ p ≤ M and 1 ≤ q ≤ M
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let us define

φk(p, q) = [yk · · · yk+1−p uk · · ·uk+1−q]
T , (6)

x∗(p, q) = [x∗
1, · · · , x

∗
p, x

∗
M+1, · · · , x

∗
M+q]

T . (7)

From the examples given in Introduction, it is seen that
the orders of nonlinear systems may be varying from
point to point. This is a different picture from linear sys-
tems. The question is how to define and estimate the lo-
cal order of f(·) at the given x∗(2M) based on the obser-
vations {yk, uk}k≥1. A direct approach is to define the
local order of f(·) at x∗(2M) as the number of variables
that contribute to the function value f(x∗(2M)). How-
ever, if the system order is defined in such a manner, it
is difficult to choose the quantitative information based
on which the algorithms estimating the local order can
be designed, since f(·) is nonlinear and nonparametric.
On the other hand, it is clear that the function f(x) can
be well approximated by a local linear model if x is close
to x∗(2M), i.e.,

f(x(2M)) = f(x∗(2M)) + ▽f(x∗(2M))T

· (x(2M)− x∗(2M)) +O
(
∥x(2M)− x∗(2M)∥

2
)

(8)

∀ ∥x(2M)− x∗(2M)∥ ≤ ε for small enough ε > 0. De-

note the gradient of f(·) at x∗(2M) by ▽f(x∗(2M)) ,[
∂f
∂x∗

1

· · · ∂f
∂x∗

M

∂f
∂x∗

M+1

· · · ∂f
∂x∗

2M

]T
∈ R

2M if it exists. It

is clear that if f(x∗(2M)) depends only on (p0+q0) vari-
ables, i.e.,

f(x∗(2M)) = f(x∗
1, · · · , x

∗
2M )

=f(x∗
1, · · · , x

∗
p0
,xT (M − p0),

x∗
M+1, · · · , x

∗
M+q0

,xT (M − q0)) (9)

∀ x(M − p0) ∈ R
M−p0 and ∀ x(M − q0) ∈ R

M−q0 , then
∂f
∂x∗

i

= 0 for i = p0 +1, · · · ,M and M + q0 +1, · · · , 2M ,

i.e.,

▽f(x∗(2M)) =


 ∂f

∂x∗
1

· · ·
∂f

∂x∗
p0

0 · · · 0︸ ︷︷ ︸
M−p0

∂f

∂x∗
M+1

· · ·
∂f

∂x∗
M+q0

0 · · · 0︸ ︷︷ ︸
M−q0



T

. (10)

From (8) and (10) it is seen that if we can find a local
linear model of f(·) at x∗(2M), then we can estimate
the local order by determining the biggest p and q such
that ∂f/∂x∗

p ̸= 0, 1 ≤ p ≤ M and ∂f/∂x∗
M+q ̸= 0, 1 ≤

q ≤ M .

To this end, we further impose the following assump-
tions.

A1) The finite upper bound M for orders (p, q) is known;
A2) |f(x)| ≤ c1∥x∥

r + c2, x ∈ R
2M for some positive

constants c1, c2, and r and f(·) is twice differentiable
at x∗(2M). Further, ∂f/∂x∗

p ̸= 0 and ∂f/∂x∗
M+q ̸= 0

for some p = 1, · · · ,M and q = 1, · · · ,M .

Definition 1 The local order of f(·) at x∗(2M) is de-
fined as (s0, t0), where

s0 , max

{
p = 1, · · · ,M

∣∣ ∂f

∂x∗
p

̸= 0

}

t0 , max

{
q = 1, · · · ,M

∣∣ ∂f

∂x∗
M+q

̸= 0

}
.

It is natural to ask why (s0, t0) rather than (p0, q0) giv-
en in (9) is defined as the local order of f(·) at x∗(2M)?
Do we need to take the second order derivatives into
consideration? By the Taylor expansion, we know that
a local linear estimator approximates f(·) at x∗(2M)
well if x(2M) ∈ R

2M is close to x∗(2M) and the second
order terms can be neglected. In this regard, it is rea-
sonable to find the local order of f(·) at x∗(2M) from
its local linear approximates. On the other hand, it is
clear that if ∂f/∂x∗

p0
̸= 0 and ∂f/∂x∗

M+q0
̸= 0, then

(s0, t0) = (p0, q0). But sometimes, the local order given
by Definition 1 is smaller than (p0, q0). Next we provide
two examples to illustrate Definition 1.

Example (iii): For the linear system yk+1 = a1yk +
· · · + ap0

yk+1−p0
+ b1uk + · · · + bq0uk+1−q0 + εk+1

with ap0
̸= 0, bq0 ̸= 0 we have f(x∗(2M)) =

a1x
∗
1 + · · · + ap0

x∗
p0

+ b1x
∗
M+1 + · · · + bq0x

∗
M+q0

. It

is clear that ∂f/∂x∗
p0

̸= 0, ∂f/∂x∗
M+q0

̸= 0, and

∂f/∂x∗
i = 0, i = p0 + 1, · · · ,M,M + q0 + 1, · · · , 2M .

Thus for this example the system order (s0, t0) derived
by Definition 1 equals (p0, q0), which is consistent with
the linear system theory.

Example (iv): For the nonlinear system yk+1 =
aykyk−1 + bukuk−1 + εk+1 with a ̸= 0, b ̸= 0, we have
f(x(4)) = f(x1, x2, x3, x4) = ax1x2 + bx3x4. At the
fixed point x∗(4) = [0 1 0 1]T ∈ R

4, it is clear that
▽f(x∗(4)) = [a 0 b 0]T , and by the Taylor expansion

f(x(4)) = f(x∗(4))+ a ∂f
∂x∗

1

(x1 −x∗
1)+ b ∂f

∂x∗

3

(x3 −x∗
3) for

all x(4) close to x∗(4). This implies that the local order
at the given point should be (s0, t0) = (1, 1).

Based on the above discussion the key step of our ap-
proach to estimating the local order is to find the lo-
cal linear model of f(·) at x∗(2M). In [3] and [27], the
kernel function-based local linear estimator (LLE) and
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its recursive version (RLLE) are considered, which esti-
mate the values of the nonlinear function at fixed points
together with their gradients. Let us first reformulate
the RLLE introduced in [27], which the order estima-
tion algorithm is essentially based on. Notice that the
RLLE in [27] is with known system orders, but here
the orders (p, q) in the algorithm may vary in the set
{(p, q) : 1 ≤ p ≤ M, 1 ≤ q ≤ M}.

With the given order (p, q) andmeasurements {uk, yk+1}
N
k=1

the RLLE estimate of f(·) at time N + 1 is given by

θN+1(p, q) =
[
θ0,N+1(p, q) θT1,N+1(p, q)

]T

, argmin
θ0(p,q)∈R

θ1(p,q)∈R
p+q

N∑

k=1

wk(x
∗(2M))

(
yk+1 − θ0(p, q)

− θ1(p, q)
T (φk(p, q)− x∗(p, q))

)2
, (11)

where the kernel function wk(x
∗(2M)) is given by

wk(x
∗(2M))=

1

b2Mk
w

(
1

bk
(φk(M,M)−x∗(2M))

)
.

(12)

Notice that θN+1(p, q) =
[
θ0,N+1(p, q) θT1,N+1(p, q)

]T
.

With the given order (p, q), θ0,N+1(p, q) serves as
the estimate for f(x∗(M,M)) while θ1,N+1(p, q) for
▽f(x∗(M,M)).

Set

Xk(p, q) ,

[
1

φk(p, q)− x∗(p, q)

]
. (13)

By some simple manipulations, RLLE in (11) can be
expressed by

θN+1(p, q) =

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)Xk(p, q)

T

)−1

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)yk+1

)
, (14)

if thematrices
∑N

k=1 wk(x
∗(2M))Xk(p, q)Xk(p, q)

T , N ≥
1 are nonsingular. Notice that by the matrix inverse
lemma, θN+1(p, q) given by (14) can be computed in a
recursive way.

Remark 1 A widely used kernel is the Gaussian pdf,

and in this case we have

wk(x
∗(2M)) =

1

(2π)M
1

b2Mk
exp

{
−
1

2

M∑

i=1

(
yk+1−i − x∗

i

bk

)2

−
1

2

M∑

j=1

(
uk+1−j − x∗

M+j

bk

)2


 .

Other important kernels include the rectangle kernel, tri-
angle kernel, Epanechnikov kernel, etc.

Remark 2 From the above example we see that the ker-
nel function plays the role like a weight: The regressors
φk(M,M) close to x∗(M,M) are taken into consider-
ably higher account in comparison with those far away
from x∗(M,M), because the kernel wk(x

∗(2M)) rapid-
ly vanishes as the regressors deviates from x∗(M,M).
As for the sequence {bk}k≥1, it is usually required that
bN → 0 but b2MN N → ∞ as N → ∞. Thus, the number
of data around x∗(2M) is increasing, and the estimates
θ0,N (p, q) and θ1,N (p, q) generated by (11)–(12) are ap-
proaching to f(x∗(M,M)) and ▽f(x∗(M,M)), respec-
tively, as N → ∞, provided the orders (p, q) match the
true system orders well.

We introduce the the following assumption which is
adopted in [27] for the convergence analysis of RLLE.

A3) Select bk = 1/kδ for some δ ∈ (0, 1/(2(2M + 1)));w(·)
is chosen as a symmetric probability density function
(pdf) with w(x) = O

(
ρ∥x∥

)
for some 0 < ρ < 1 as

∥x∥ → ∞, and
∫
R2M w(x)xxTdx > 0.

For estimating the local order (s0, t0), we introduce the
following local information criterion (LIC) LN+1(p, q):

LN+1(p, q) , σN+1(p, q) + aN · (p+ q), (15)

where

σN+1(p, q),
N∑

k=1

wk(x
∗(2M))

(
yk+1−θ0,N+1(p, q)

−θ1,N+1(p, q)
T (φk(p, q)−x

∗(p, q))
)2

, (16)

{aN}N≥1 is a positive sequence tending to infinity as
N → ∞, and θ0,N+1(p, q) and θ1,N+1(p, q) are RLLE
generated by (11) with the given order (p, q).

The order estimate (pN+1, qN+1) of (s0, t0) is defined by
minimizing LN+1(p, q):

(pN+1, qN+1) , argmin
1≤p≤M
1≤q≤M

LN+1(p, q). (17)

4



Remark 3 Notice that ∂f/∂x∗
i = 0, i = s0 +

1, · · · ,M,M + t0+1, · · · , 2M . Thus if RLLE θN (p, q) =
[θ0,N (p, q) θT1,N (p, q)]T approximates the true value well,

then the function σN+1(p, q) decreases as p and q in-
crease but the performance may not change much for
p ≥ s0 and q ≥ t0. On the other hand, (p+ q) increases
as p and q increases. This indicates that (17) with appro-
priately chosen {aN}N≥1 defines a reasonable estimate
for (s0, t0).

We list some further conditions used for convergence
analysis of the order estimates. Note that (1) is an infi-
nite impulse response nonlinear system, and the second
order statistics may not contain adequate information
for its identification. So ergodicity and mixing properties
are often required, see, e.g., [10] in statistics literature.

A4) {εk}k≥0 is a sequence of independent and identically
distributed (iid) random variables with Eεk = 0, 0 <
E|εk|

2+η < ∞ for some η ∈ (0, 2]; φk(M,M) and εk+1

are mutually independent for each k ≥ 1.
A5) The sequence {φk(M,M)}k≥1 is geometrically ergod-

ic, i.e., there exists an invariant probability measure
PIV(·) on (R2M ,B2M ) and some constants c1 > 0 and
0 < ρ1 < 1 such that ∥Pk(·)−PIV(·)∥var ≤ c1ρ

k
1 , where

Pk(·) is the marginal distribution of φk(M,M). PIV(·)
is with a bounded pdf, denoted by fIV(·), which is
with a continuous second order derivative at x∗(2M).

A6) {φk(M,M)}k≥1 is an α-mixing with mixing coeffi-
cients {α(k)}k≥1 satisfying α(k) ≤ c2ρ

k
2 for some c2 >

0 and 0 < ρ2 < 1 and E∥φk(M,M)∥r < ∞ for k ≥ 1,
where the constant r is specified in assumption A2).

A7) The sequence {aN}N≥1 satisfies

N1−4δ/aN −→
N→∞

0, aN/N1−2δ −→
N→∞

0, (18)

where δ > 0 is given in A3).

The conditions A5) and A6), in fact, are on the asymp-
totical independency and stationarity of the sequence
{φk(M,M)}k≥1, and they can be guaranteed by assum-
ing stability of the system with input excited in a certain
sense as shown in [26] and [27]. The conditions given in
[26] and [27] cover a large class of systems, including the
ARX system, the Hammerstein systems, and theWiener
system, etc. So for ease of presentation, in this paper we
assume that {φk(M,M)}k≥1 is a mixing process with
an asymptotically stationary distribution.

The convergence of (17) is considered in the next section.

2.2 Strong Consistency of Estimates

For any fixed 1 ≤ p ≤ M and 1 ≤ q ≤ M , define

▽f(x∗(p, q)),
[

∂f
∂x∗

1

· · · ∂f
∂x∗

p

∂f
∂x∗

M+1

· · · ∂f
∂x∗

M+q

]T
,

(19)

and

θ1,N+1(p, q) ,


θ1,N+1(p, q)(1 : p)T 0 · · · 0︸ ︷︷ ︸

M−p

θ1,N+1(p, q)(p+ 1 : p+ q)T 0 · · · 0︸ ︷︷ ︸
M−q



T

∈ R
2M , (20)

θ̃N+1(p, q) , [f(x∗(2M))− θ0,N+1(p, q)

▽f(x∗(2M))T − θ1,N+1(p, q)
T
]T

∈ R
1+2M . (21)

Denote the maximal and minimal eigenvalues of∑N
i=1 wi(x

∗(2M))Xi(p, q)Xi(p, q)
T by λ

(p,q)
max (N) and

λ
(p,q)
min (N), respectively.

Theorem 1 Under conditions A1)-A7), the order esti-
mate (pN , qN ) given by (17) is strongly consistent,

(pN , qN ) −→
N→∞

(s0, t0) a.s. (22)

Proof: See Appendix. �

2.3 A Simple Procedure for Searching the Minimum of
LIC

To obtain estimates defined by (17) it is required to cal-
culateM2 function values of LN+1(p, q) and then to find
the minimum among them. In this section we introduce
a simple procedure for searching the minimum of (17)
for which the computational complexity is O(M).

Define

p̂N+1 , argmin
1≤p≤M

LN+1(p,M), (23)

q̂N+1 , argmin
1≤q≤M

LN+1(p̂N+1, q), (24)

where LN+1(p, q) is defined by (15).

Theorem 2 Assume A1)-A7) hold. Then

p̂N −→
N→∞

s0 a.s. (25)

q̂N −→
N→∞

t0 a.s. (26)

Proof:Here we just sketch the proof. The proof is divided
into two steps. First, the strong consistency of p̂N is
proved. This can be done by carrying out almost the
same discussion as that given in Theorem 1. Second,
based on that p̂N = s0 and hence LN+1(p̂N+1, q) =
LN+1(s0, q) for allN large enough, the convergence of q̂N
is established via a similar derivation as that for (25). �
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Remark 4 The order estimates can also be defined by

q̂N+1 , argmin
1≤q≤M

LN+1(M, q), (27)

p̂N+1 , argmin
1≤p≤M

LN+1(p, q̂N+1), (28)

which are strongly consistent under A1)-A7).

3 Modified LIC

In the last section, based on LIC the strongly consistent
estimate for the system order at a fixed point is obtained.
We now introduce a modified LIC as follows:

LN+1(p, q) , N log σN+1(p, q) + aN · (p+ q), (29)

where σN+1(p, q) is given by (16).

The estimate (pN+1, qN+1) for (s0, t0) is given by mini-

mizing LN+1(p, q), i.e.,

(pN+1, qN+1) , argmin
1≤p≤M
1≤q≤M

LN+1(p, q). (30)

Theorem 3 Under conditions A1)-A7), the order esti-
mate (pN , qN ) given by (30) is strongly consistent,

(pN , qN ) −→
N→∞

(s0, t0) a.s. (31)

Proof: See Appendix. �

Define

p̃N+1 , argmin
1≤p≤M

LN+1(p,M), (32)

q̃N+1 , argmin
1≤q≤M

LN+1(p̃N+1, q), (33)

where LN+1(p, q) is defined by (29).

Similar to Theorem 2, the following result holds.

Theorem 4 Assume A1)-A7) hold. Then

p̃N −→
N→∞

s0 a.s. (34)

q̃N −→
N→∞

t0 a.s. (35)

Remark 5 The order estimates can also be defined by

qN+1 , argmin
1≤q≤M

LN+1(M, q), (36)

pN+1 , argmin
1≤p≤M

LN+1(p, qN+1), (37)

which are strongly consistent under A1)-A7).

Remark 6 LIC and its modification considered in the
paper look similar to the well known AIC, BIC, and their
generalizations. However, AIC, BIC, and others are in
a global sense and thus they are inapplicable to the lo-
cal order estimation. While for LIC the kernel function
wk(x

∗(2M)) plays a bandwidth like role to stress those
measurements which are close to the given point and to
take their average. The sequence {aN} in AIC, BIC,
and their generalizations can be chosen as Nα for any
0 < α < 1, or log1+β N for some β ≥ 0, or even a con-
stant ([7], [8]), but here in LIC the choice of {aN} is
more delicate.

4 Discussions and Simulations

In the above sections, we have introduced two criteri-
a, i.e., LN (p, q) defined by (15) and LN (p, q) defined
by (29), respectively. Theoretically, any aN that meet-
s the requirement in assumption A7), for example,
aN = cN1−3δ for any constant c > 0, guarantees the
a.s. convergence of the estimates generated by (15) and
(29). However, from the numerical calculation point of
view, there exists some difference between LN (p, q) and
LN (p, q).

(i) Let us take aN = cN1−3δ for some constant c > 0 as
an example. As required in assumption A3), the pa-
rameter δ usually is small and thus even for the integer
N > 0 large enough it still holds that N1−3δ ≈ N . On
the other hand, since the kernel function wk(x

∗(2M))
is involved in the residual term, i.e.,

σN+1(p, q) ,

N∑

k=1

wk(x
∗(2M))

(
yk+1 − θ0,N+1(p, q)

− θ1,N+1(p, q)
T (φk(p, q)− x∗(p, q))

)2
,

it often holds that σN+1(p, q) = o(N) and thus aN (p+
q) is the dominated term in LN+1(p, q), i.e.,

LN+1(p, q) = σN+1(p, q)+aN ·(p+q) ≈ O(N ·(p+q)).

This indicates that for convergence of the estimates
generated from the criterion LN (p, q), in order to bal-
ance the penalty term aN (p+q) it usually requires the
number of data be large enough, and thus the conver-
gence rate is slow. To speed up the convergence rate,
one may choose, for example, aN = cN1−3δ for some
c > 0 small enough to reduce the effect of the penalty
term aN · (p+ q) in LN (p, q).

(ii) By noticing the first term in LN (p, q) defined by (29),
it can be found that N = o(N log σN+1(p, q)) and
thus aN · (p+ q) with aN satisfying A7) is a moderate
penalty term in LN (p, q). So the convergence rate of
estimates generated from LN (p, q) should be faster
than that of (17).
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In the following we present the numerical simulations to
verify the theoretical analysis.

Example 1. Consider an FIR system

yk+1 = f(uk, uk−1, uk−2) + εk+1, (38)

f(uk, uk−1, uk−2) =





uk + uk−1 + uk−2, if uk > 1,

uk + uk−1, if − 1 ≤ uk ≤ 1,

uk, if uk < −1,

where the inputs {uk}k≥1 and the noises {εk}k≥1 aremu-
tually independent iid Gaussian random variables with
distributions N (0, 22) and N (0, 0.12), respectively. It
is noticed that the right-hand side of (38) is free of the
system output, so x∗(2M) defined by (5) changes to

x∗(M) , [u∗
1, · · · , u

∗
M ]T , and LN+1(p, q) and σN+1(p, q)

defined by (15) and (16) correspondingly change to func-
tions LN+1(q) and σN+1(q), respectively. Assume the
upper bound M of system orders is 4. Thus, x∗(M) =
[u∗

1, · · · , u
∗
4]

T . We choose two points for test, x∗
1(M) =

[2 1 1 0]T and x∗
2(M) = [0 0 0 0]T . Note that the true

local orders are different at the two points.

More than 30 simulations have been performed. Here
we only present one of them since the performance of
others is almost the same. Tables 1 and 2 show the per-
formance of the proposed estimator with the data set
{uk, yk+1}

N
k=1 for N = 1000, 2000, 3000, 4000, and,

5000, respectively, where

LN+1(q) =σN+1(q) + 0.005N1−3δ · q, (39)

LN+1(q) =N log σN+1(q) + 0.5N1−3δ · q (40)

with δ = 0.05.

It can be found that the criteria LN+1(q) and LN+1(q)
always give the correct order estimates 3 and 2 for the
local orders of the system at x∗

1(M) and x∗
2(M), respec-

tively. It can also be found that the convergence rate
of estimates generated from LN+1(q) is faster than that
generated from LN+1(q).

Example 2. Consider a benchmark problem for nonlinear
system identification ([5], [27]):

x1(k + 1) =
(

x1(k)
1+x2

1
(k)

+ 1
)
sinx2(k),

x2(k + 1) =x2(k) cosx2(k) + x1(k) exp
(
−

x2
1(k)+x2

2(k)
8

)

+
u3
k

1 + u2
k + 0.5 cos(x1(k) + x2(k))

,

yk = x1(k)
1+0.5 sin x2(k)

+ x2(k)
1+0.5 sin x1(k)

+ εk,

where uk and yk are the system input and output, re-
spectively, εk is the system noise with Gaussian distri-
bution εk ∈ N (0, σ2), σ = 0.1, and x1(k) and x2(k) are
the unmeasured system states.

The NARX system

yk+1 = f(yk, · · · , yk−M , uk, · · · , uk−M ) + εk+1

is used to approximate the unknown system. Notice that
in existing literature [5][27], a common choice for the
order M is M = 3. Here we adopt M = 3 as the upper
bound for the system order.

First, N(= 1000) samples {uk, yk}
1000
k=1 are generated by

iid uk with Gaussian distribution uk ∈ N (0, 1). The
local orders as well as the values of the function f(·) and
its gradients ▽f(·) are estimated based on {uk, yk}

1000
k=1 .

Then the input signals uk = sin πk
5 + sin 2πk

25 , k =
N + 1, · · · , N + 100 are fed into the estimated model to
calculate the one-step predicted output. Specifically, the
intervals [−3, 3] and [−2, 2] are equally divided into 5
and 4 subintervals, respectively and the domain of inter-
est S = {(y3, y2, y1, u3, u2, u1) ∈ R

6 | y3 ∈ [−3, 3], y2 ∈
[−3, 3], y1 ∈ [−3, 3], u3 ∈ [−2, 2], u2 ∈ [−2, 2], u1 ∈
[−2, 2]} is uniformly divided into 8000 disjoint small

cubics S =
∪8000

i=1 Si and from each Si a point φ∗
i is ran-

domly chosen, i = 1, · · · , 8000. Then with δ = 0.04 and
aN = N1−3δ, the algorithms (14) and (29) are applied
to estimate the local orders denoted by (pN,i, qN,i),
and parameters denoted by fN (φ∗

i (pN,i, qN,i)) and
▽fN (φ∗

i (pN,i, qN,i)) at each φ∗
i , i = 1, · · · , 8000, where

φ∗
i (pN,i, qN,i) is a (pN,i + qN,i)-vector defined by (7).

Then the one-step predictions are given as follows,

ŷk+1 = f̂N (φ∗
i (pN,i, qN,i))

+ ▽f̂N (φ∗
i (pN,i, qN,i))

T (φ̂k(pN,i, qN,i)− φ∗
i (pN,i, qN,i)) ,

(41)

with regressor

φ̂k(pN,i, qN,i) = [ŷk, · · · , ŷk−pN,i
, uk, · · · , uk−qN,i

]T ,

if φ̂k(3, 3) ∈ Si for some i = 1, · · · , 8000 where k =
N + 1, · · · , N + 100.

Ten simulations are performed. Figures 1 and 2 shows
one of the simulations. In Figure 1 the solid lines are
the actual output yk, k = N + 1, · · · , N + 100, the dot-
ted line the predicted output generated by (41) and the
dashed line the predicted output generated by (42) with-
out order estimation, i.e.,

ŷk+1 =f̂N (φ∗
i (3, 3))

+ ▽f̂N (φ∗
i (3, 3))

T (φ̂k(3, 3)− φ∗
i (3, 3)) . (42)

Figure 2 shows the estimated orders at the 8000 given
points. Notice that the blocks at the bottom of the fig-
ure represent the 1st to the 100th points while those at
the top of the figure represent the 7901st to the 8000th
points. The estimated orders are indicated with different
depths of color.
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To test the performance of algorithm, the following qual-
ity of fit (QOF) is calculated


1−

N+100∑
k=N+1

(yk−ŷk)
2

N+100∑
k=N+1

(
yk−

1
N

N+100∑
t=N+1

yt

)2


× 100%, (43)

where ŷk is the predicted output.

Table 3 shows the average of QOF of the ten simulations
and the standard deviation. From Figures 1, 2 and Table
3 we find that the performance of algorithm (41) is simi-
lar to that of algorithm (42). However, from Figure 2 we
find that the estimated local orders are reduced at many
of the 8000 given points. Thus the benefit of algorithm
(41) is that to apply the order estimation technique the
complexity of the identified model for the benchmark
problem is reduced and therefore a more precise system
model is obtained.

5 Concluding Remarks

In the paper LIC is suggested for the local order estima-
tion of NARX systems and the consistency of the esti-
mates is established. Some important issues connected
with LIC are summarized as follows.

1. Theoretically, the order estimation algorithm requires
to compute the local order at each point of interest.
For some special systems, for example, the piecewise-
defined systems, the number of data points needed can
be significantly reduced. In this case, by implementing
the proposed algorithms, fewer local orders have to
be estimated and better models of the system can be
obtained.

2. LIC is based on the recursive locally linear estimator
introduced in [27]. We can also use its nonrecursive
version investigated in [3] to construct LIC and to
carry out corresponding convergence analysis.

3. The results in the paper can easily be extended to the
case 1 ≤ s0 ≤ M1 and 1 ≤ t0 ≤ M2 for some known
but different M1 and M2. For future research, it is of
interest to remove the upper bound assumption on the
true system orders.

4. The order estimation algorithms in the paper are non-
recursive, i.e., for each N ≥ 1 we need to calculate
the function LN+1(p, q), 1 ≤ p ≤ M, 1 ≤ q ≤ M and
then to find the minimum to serve as the estimate. It
is interesting to consider the recursive way to obtain
the order estimates.

5. The closed-loop order estimation of NARX systems
also deserves further research.

Appendix

Lemma 1 Assume that A1)-A7) hold. Then the follow-
ing estimates take place:

1

N

N∑

k=1

wk(x
∗(2M))

(
f(φk(M,M))− f(x∗(2M))

− ▽f(x∗(2M))T (φk(M,M)− x∗(2M))
)

=
1

2(1− 2δ)
b2N

∫

R2M

w(x)xT ∂2f

∂x∗(2M)2
xdx · fIV(x

∗(2M))

+ o(b2N ) + o
(
1/(N

1
2
−ϵbMN )

)
a.s. (44)

1

N

N∑

k=1

wk(x
∗(2M))(φk(M,M)− x∗(2M))

·
(
f(φk(M,M))− f(x∗(2M))

− ▽f(x∗(2M))T (φk(M,M)− x∗(2M))
)

=
1

2(1− 3δ)
b3N

∫

R2M

w(x)xxT ∂2f

∂x∗(2M)2
xdx · fIV(x

∗(2M))

+ o(b3N ) + o
(
1/(N

1
2
−ϵbM−1

N )
)

a.s. (45)

N−1∑

k=1

wk(x
∗(2M))εk+1 = O

(
N

1
2
+Mδ+ϵ

)
, a.s. (46)

N−1∑

k=1

wk(x
∗(2M))(φk(M,M)− x∗(2M))εk+1

= O
(
N

1
2
+(M−1)δ+ϵ

)
, a.s. (47)

for any ϵ > 0,

1

N

N∑

k=1

wk(x
∗(2M))g(φk(M,M))

−→
N→∞

g(x∗(2M))fIV(x
∗(2M)), a.s. (48)

for any measurable function g(x) being continuous at
x∗(2M) and |g(x)| ≤ c1∥x∥

t + c2, x ∈ R
2M for some

positive c1, c2 and t, and

Ewα
k (x

∗(2M)) = O

(
1

b
2M(α−1)
k

)
, (49)

for any fixed α > 0.

Proof: The results similar to (44)–(48) are in [27] where
the exact orders of the NARX system are not required
and only their upper bounds are assumed to be available.
Here we consider (49). By the definition of wk(x

∗(2M)),
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we have

Ewα
k (x

∗(2M))

=

∫

R2M

1

b2Mα
k

wα

(
1

bk
(x− x∗(2M))

)
Pk(dx)

=I1,k + I2,k, (50)

where

I1,k =

∫

R2M

1

b2Mα
k

wα

(
1

bk
(x− x∗(2M))

)
fIV(x)dx,

(51)

I2,k =

∫

R2M

1

b2Mα
k

wα

(
1

bk
(x− x∗(2M))

)

· (Pk(dx)− PIV(dx)). (52)

By denoting s = (x−x∗(2M))/bk and then changing co-

ordinates in (51), it follows that I1,k = O
(
1/b

2M(α−1)
k

)
.

By the geometrical ergodicity of φk(M,M), it follows
that I2,k = O

(
ρk/b2Mα

k

)
for some 0 < ρ < 1. Combin-

ing (51) and (52) leads to (49). �

Lemma 2 [27] Assume that A1)-A7) hold. Then

N∑

k=1

wk(x
∗(2M))Xk(M,M)Xk(M,M)T

= N

[
1 0

0 N−δI

]
AN

[
1 0

0 N−δI

]
, (53)

and

AN −→
N→∞

fIV(x
∗(2M))

[
1 0

0 1
1−2δ

∫
R2M w(x)xxTdx

]
> 0 a.s.

(54)

where I ∈ R
2M×2M and AN =

[
AN (1, 1) AN (1, 2)

AN (2, 1) AN (2, 2)

]

with elements AN (1, 1), AN (1, 2), AN (2, 1), and
AN (2, 2) defined as follows:

AN (1, 1) =
1

N

N∑

k=1

wk(x
∗(2M)), AN (2, 1) = AN (1, 2)T

AN (1, 2) =
1

N1−δ

N∑

k=1

wk(x
∗(2M))(φk(M,M)− x∗(2M))T ,

AN (2, 2) =
1

N1−2δ

N∑

k=1

wk(x
∗(2M))(φk(M,M)− x∗(2M))

· (φk(M,M)− x∗(2M))T .

At given x∗(2M), define

ξk+1 , f(φk(M,M))− f(x∗(2M))

− ▽f(x∗(2M))T (φk(M,M)− x∗(2M)) + εk+1.
(55)

Lemma 3 Assume A1) holds. Then the function
σN+1(p, q) defined by (16) with any 1 ≤ p ≤ M and
1 ≤ q ≤ M takes the following expression:

σN+1(p, q) = θ̃N+1(p, q)
T

·
N∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T θ̃N+1(p, q)

+ 2θ̃N+1(p, q)
T

N∑

i=1

wi(x
∗(2M))Xi(M,M)ξi+1

+
N∑

i=1

wi(x
∗(2M))ξ2i+1, (56)

where ξk+1 is defined in (55). Further, if A1)–A7) hold
and if p ≥ s0 and q ≥ t0, then

σN+1(p, q)

=−

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)ξk+1

)T

·

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)Xk(p, q)

T

)−1

·

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)ξk+1

)

+

N∑

k=1

wk(x
∗(2M))ξ2k+1. (57)

Proof: By the definition of σN+1(p, q) we have that

σN+1(p, q)

=

N∑

i=1

wi(x
∗(2M))

(
yi+1 − θ0,N+1(p, q)

− θ1,N+1(p, q)
T (φi(p, q)− x∗(p, q))

)2
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=

N∑

i=1

wi(x
∗(2M))

(
f(φi(M,M)) + εi+1 − θ0,N+1(p, q)

− θ1,N+1(p, q)
T (φi(p, q)− x∗(p, q))

)2

=
N∑

i=1

wi(x
∗(2M))

(
f(x∗(2M))

+ ▽f(x∗(2M))T (φi(M,M)− x∗(2M))

− θ0,N+1(p, q)− θ1,N+1(p, q)
T (φi(M,M)− x∗(2M))

+ f(φi(M,M))− f(x∗(2M))

− ▽f(x∗(2M))T (φi(M,M)− x∗(2M)) + εi+1

)2

=
N∑

i=1

wi(x
∗(2M))

(
θ̃N+1(p, q)

TXi(M,M) + ξi+1

)2
,

(58)

where ξi+1 is defined by (55) and θ̃N+1(p, q) is given by
(21). From (58) we then obtain (56).

We now consider the case p ≥ s0 and q ≥ t0. By Lemma

2, thematrices
∑N

k=1 wk(x
∗(2M))Xk(M,M)Xk(M,M)T

are nonsingular for all N large enough. This en-

sures
∑N

k=1 wk(x
∗(2M))Xk(p, q)Xk(p, q)

T > 0, for
1 ≤ p ≤ M, 1 ≤ q ≤ M and all N large enough
by noticing the definition of Xk(p, q). Without losing
generality, we assume that these matrices are positive
definite for N ≥ 1. Then the formula (14) takes place.
From (14) and by noticing p ≥ s0 and q ≥ t0 we have

θN+1(p, q)

=

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)Xk(p, q)

T

)−1

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)yk+1

)

=

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)Xk(p, q)

T

)−1

·

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)

(
f(x∗(2M))

+ ▽f(x∗(p, q))T (φk(p, q)− x∗(p, q))

+ f(φk(M,M))− f(x∗(2M))

− ▽f(x∗(p, q))T (φk(p, q)− x∗(p, q)) + εk+1

))
,

(59)

which, by noticing the definition of ξk+1 given by (55),
implies

[
f(x∗(2M)) ▽f(x∗(p, q))T

]T
− θN+1(p, q)

=−

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)Xk(p, q)

T

)−1

·

(
N∑

k=1

wk(x
∗(2M))Xk(p, q)ξk+1

)
. (60)

Noticing (21) we find that

([
f(x∗(2M)) ▽f(x∗(p, q))T

]T
− θN+1(p, q)

)T
Xk(p, q)

= θ̃N+1(p, q)
TXk(M,M), (61)

which combining with (56) and (60) yields (57). �

Proof of Theorem 1:

The proof is motivated by [7] for the order estimation
of linear systems. Here we present it in detail in a non-
linear and nonparametric description. By Lemma 2, we

may assume
∑N

k=1 wk(x
∗(2M))Xk(p, q)Xk(p, q)

T > 0,
for 1 ≤ p ≤ M, 1 ≤ q ≤ M and all N ≥ 1.

Because all p, q, s0, and t0 are positive integers be-
tween 1 and M , for (22) it suffices to show that any
limit point of {(pN , qN )}N≥1 coincides with (s0, t0). As-
sume that (p′, q′) is a limit point of {(pN , qN )}N≥1, i.e.,
there exists a subsequence of {(pN , qN )}N≥1 denoted
by {(pNk

, qNk
)}k≥1, such that (pNk

, qNk
)−→(p′, q′) as

k → ∞. Since {(pN , qN )}N≥1 and (p′, q′) are nonnega-
tive integers, there exists K > 0 such that

(pNk
, qNk

) = (p′, q′), ∀ k ≥ K. (62)

For (22) we need to prove the impossibility of the follow-
ing cases: (i) p′ < s0; (ii) q

′ < t0; (iii) p
′ + q′ > s0 + t0.

We first consider case (i). By Lemmas 1 and 2, it follows
that

λ(M,M)
max (N) ∼ N, λ

(M,M)
min (N) ∼ N1−2δ. (63)

Define

MNk+1 , θ̃Nk+1(p
′, q′)T

·

Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T θ̃Nk+1(p

′, q′)

+ 2θ̃Nk+1(p
′, q′)T

Nk∑

i=1

wi(x
∗(2M))Xi(M,M)ξi+1,

(64)
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and

αNk+1 ,

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)

· θ̃Nk+1(p
′, q′). (65)

From Lemma 3, for all k ≥ K it follows that

σNk+1(p
′, q′) = MNk+1 +

Nk∑

i=1

wi(x
∗(2M))ξ2i+1. (66)

By the definition of θ̃Nk+1(p
′, q′) and noticing p′ < s0,

we know that

∥θ̃Nk+1(p
′, q′)∥2 ≥

(
∂f

∂x∗
s0

)2

(67)

and the following equality takes place:

MNk+1

=αT
Nk+1

((
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1

+ 2

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)ξi+1

)

· ∥θ̃Nk+1(p
′, q′)∥−2 · θ̃Nk+1(p

′, q′)T

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1)
αNk+1.

(68)

For RLLE, we have

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)ξi+1

)

=

[
N−δ 0

0 I

][
AN (1, 1) AN (1, 2)

AN (2, 1) AN (2, 2)

]−1 [
BN (1)

BN (2)

]
, (69)

where AN (i, j), i, j = 1, 2 are defined in Lemma 2 and

BN (1) =
1

N1−δ

N∑

k=1

wk(x
∗(2M))

·
(
f(φk(M,M))−f(x∗(2M))

−▽f(x∗(2M))T (φk(M,M)−x∗(2M))+εk+1

)

BN (2) =
1

N1−2δ

N∑

k=1

wk(x
∗(2M))

· (φk(M,M)− x∗(2M))

·
(
f(φk(M,M))−f(x∗(2M))

−▽f(x∗(2M))T (φk(M,M)−x∗(2M))+εk+1

)
.

By Lemmas 1 and 2, it follows that

[
AN (1, 1) AN (1, 2)

AN (2, 1) AN (2, 2)

]
−→
N→∞

fIV(x
∗(2M))

·

[
1 0

0 1
1−2δ

∫
R2M w(x)xxTdx

]
> 0 a.s. (70)

and

[
BN (1)

BN (2)

]
−→
N→∞

[
0

0

]
a.s. (71)

Then by (69), (70), and (71), we have

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)ξi+1

)
= o(1), (72)

and by noticing (67),

MNk+1

=αT
Nk+1

(
Nk∑

i=1

wi(x
∗(2M))Xi(M,M)Xi(M,M)T

)−1

· αNk+1 · (1 + o(1))

≥
1

2
λ
(M,M)
min (Nk)∥θ̃Nk+1(p

′, q′)∥2

≥
1

2
λ
(M,M)
min (Nk)

(
∂f

∂x∗
s0

)2

, (73)
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from which and (66) we have

σNk+1(p
′, q′) ≥

1

2
λ
(M,M)
min (Nk)

(
∂f

∂x∗
s0

)2

+

Nk∑

i=1

wi(x
∗(2M))ξ2i+1. (74)

Now we consider σNk+1
(s0, t0). By Lemma 3, it holds

that

σNk+1(s0, t0)

=−

(
Nk∑

i=1

wi(x
∗(2M))Xi(s0, t0)ξi+1

)T

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(s0, t0)Xi(s0, t0)

T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(s0, t0)ξi+1

)

+

Nk∑

i=1

wi(x
∗(2M))ξ2i+1

≤

Nk∑

i=1

wi(x
∗(2M))ξ2i+1. (75)

By the definition of ξk given by (55), we have

Nk∑

i=1

wi(x
∗(2M))ξ2i+1

≤2

Nk∑

i=1

wi(x
∗(2M))

(
f(φi(M,M))− f(x∗(2M))

− ▽f(x∗(2M))T (φi(M,M)− x∗(2M))
)2

+ 2

Nk∑

i=1

wi(x
∗(2M))ε2i+1. (76)

By Lemma 1, it follows that

Nk∑

i=1

wi(x
∗(2M))

(
f(φi(M,M))− f(x∗(2M))

−▽f(x∗(2M))T (φi(M,M)−x∗(2M))
)2
=O(Nk), (77)

and

Nk∑

i=1

wi(x
∗(2M))Eε2i+1 = O(Nk). (78)

We now prove that

∞∑

k=1

1

k
wk(x

∗(2M))(ε2k+1 − Eε2k+1) < ∞, a.s. (79)

For this by noticing A4) it suffices to show that

∞∑

k=1

1

k
2+η

2

Ew
2+η

2

k (x∗(2M)) < ∞. (80)

By Lemma 1, we have

∞∑

k=1

1

k
2+η

2

Ew
2+η

2

k (x∗(2M))

=O




∞∑

k=1

1

k
2+η

2

·
1

b
2M( 2+η

2
−1)

k




=O

(
∞∑

k=1

1

k
2+η

2

·
1

bMη
k

)
= O

(
∞∑

k=1

1

k
2+η

2

· kMηδ

)

=O(1), (81)

since δ ∈
(
0, 1

2(2M+1)

]
and hence 0 < Mδ < 1/2. The

estimate (81) implies (80) and hence (79).

Combining (75), (77), (78), and (79), we have

σNk+1(s0, t0) ≤

Nk∑

i=1

wi(x
∗(2M))ξ2i+1 = O(Nk). (82)

By (63), (74), and (75) and paying attention to A7) we
have the following

0 ≥LNk+1(p
′, q′)− LNk+1(s0, t0)

=σNk+1(p
′, q′)− σNk+1(s0, t0)

+ aNk
(p′ + q′ − s0 − t0)

≥cλ
(M,M)
min (Nk) + aNk

(p′ + q′ − s0 − t0)

=λ
(M,M)
min (Nk)

(
c+

aNk

λ
(M,M)
min (Nk)

(p′ + q′ − s0 − t0)
)
−→
k→∞

∞, (83)

where c > 0 may depend on sample paths. The contra-
diction ensures that p′ ≥ s0. Similarly, we can prove that
q′ ≥ t0.

Finally, we consider the case (iii): p′+q′ > s0+ t0. Since
we have established p′ ≥ s0 and q′ ≥ t0, by Lemma 3, it
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follows that

σNk+1(p
′, q′)

=−

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)ξi+1

)T

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)Xi(p
′, q′)T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)ξi+1

)

+

Nk∑

i=1

wi(x
∗(2M))ξ2i+1. (84)

By Lemmas 1 and 2, we have

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)ξi+1

)T

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)Xi(p
′, q′)T

)−1

·

(
Nk∑

i=1

wi(x
∗(2M))Xi(p

′, q′)ξi+1

)

=O



[
N1−2δ

k N1−3δ
k 1T

](
Nk

[
1 0

0 N−δ
k I

][
1 0

0 N−δ
k I

])−1

·

[
N1−2δ

k

N1−3δ
k 1

])
= O(N1−4δ

k ), (85)

where 1 ∈ R
p′+q′ and I ∈ R

(p′+q′)×(p′+q′).

From (75), (84), and (85) we have

0 ≥LNk+1(p
′, q′)− LNk+1(s0, t0)

=σNk+1(p
′, q′)− σNk+1(s0, t0)

+ aNk
(p′ + q′ − s0 − t0)

≥− cN1−4δ
k + aNk

(p′ + q′ − s0 − t0)

=aNk

(
p′ + q′ − s0 − t0 − c

N1−4δ
k

aNk

)
−→
k→∞

∞, (86)

where the limit takes place by noticing A7) and p′+q′ >
s0+t0. The obtained contradiction indicates that p′ = s0
and q′ = t0. This completes the proof. �

Proof of Theorem 3:

We only sketch the proof.

It suffices to show that any limit point of {(pN , qN )}N≥1

coincides with (s0, t0). Assume that (p′, q′) is a limit
point of {(pN , qN )}N≥1, i.e., there exists a subsequence
of {(pN , qN )}N≥1 denoted by {(pNk

, qNk
)}k≥1, andK >

0 such that

(pNk
, qNk

) = (p′, q′), ∀ k ≥ K. (87)

For (31) we need to prove the impossibility of the follow-
ing cases: (i) p′ < s0; (ii) q

′ < t0; (iii) p
′ + q′ > s0 + t0.

We first consider the case (i). By (63), (74), and (82) we
have

0 ≥LNk+1(p
′, q′)− LNk+1(s0, t0)

=Nk log

(
1 +

σNk+1(p
′, q′)− σNk+1(s0, t0)

σNk+1(s0, t0)

)

+ aNk
(p′ + q′ − s0 − t0)

≥Nk log

(
1 +

cλ
(M,M)
min (Nk)

Nk

)

+ aNk
(p′ + q′ − s0 − t0)

=Nk ·
cλ

(M,M)
min (Nk)

Nk

+Nk · o

(
cλ

(M,M)
min (Nk)

Nk

)

+ aNk
(p′ + q′ − s0 − t0)

=λ
(M,M)
min (Nk)

(
c+ o(1)+

aNk

λ
(M,M)
min (Nk)

(p′ + q′ − s0 − t0)
)
−→
k→∞

∞, (88)

where c > 0 may depend on sample paths. The obtained
contradiction ensures that p′ ≥ s0. Similarly, we can
prove that q′ ≥ t0.

Finally, we consider the case (iii). From (82), (84), and
(85) we have

0 ≥LNk+1(p
′, q′)− LNk+1(s0, t0)

=Nk log

(
1 +

σNk+1(p
′, q′)− σNk+1(s0, t0)

σNk+1(s0, t0)

)

+ aNk
(p′ + q′ − s0 − t0)

≥Nk log

(
1− c

N1−4δ
k

Nk

)
+ aNk

(p′ + q′ − s0 − t0)

=aNk

(
p′ + q′ − s0 − t0 − c

N1−4δ
k

aNk

+ o

(
N1−4δ

k

aNk

))

−→
k→∞

∞, (89)

where c > 0 may depend on sample paths. Thus the case
p′ + q′ > s0 + t0 is impossible, which in turn guarantees
that (31) takes place. �
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