
This is a repository copy of When hypermutations and ageing enable artificial immune
systems to outperform evolutionary algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/143805/

Version: Accepted Version

Article:

Corus, D., Oliveto, P.S. and Yazdani, D. (2020) When hypermutations and ageing enable
artificial immune systems to outperform evolutionary algorithms. Theoretical Computer
Science, 832. pp. 166-185. ISSN 0304-3975

https://doi.org/10.1016/j.tcs.2019.03.002

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

When Hypermutations and Ageing Enable Artificial Immune

Systems to Outperform Evolutionary Algorithms∗

Dogan Corus, Pietro S. Oliveto, Donya Yazdani

Rigorous Research, Department of Computer Science, University of Sheffield

Sheffield, UK

S1 4DP

Abstract

We present a time complexity analysis of the Opt-IA artificial immune system (AIS). We first
highlight the power and limitations of its distinguishing operators (i.e., hypermutations with
mutation potential and ageing) by analysing them in isolation. Recent work has shown that
ageing combined with local mutations can help escape local optima on a dynamic optimi-
sation benchmark function. We generalise this result by rigorously proving that, compared
to evolutionary algorithms (EAs), ageing leads to impressive speed-ups on the standard
Cliffd benchmark function both when using local and global mutations. Unless the stop
at first constructive mutation (FCM) mechanism is applied, we show that hypermutations
require exponential expected runtime to optimise any function with a polynomial number
of optima. If instead FCM is used, the expected runtime is at most a linear factor larger
than the upper bound achieved for any random local search algorithm using the artificial
fitness levels method. Nevertheless, we prove that algorithms using hypermutations can be
considerably faster than EAs at escaping local optima. An analysis of the complete Opt-IA
reveals that it is efficient on the previously considered functions and highlights problems
where the use of the full algorithm is crucial. We complete the picture by presenting a class
of functions for which Opt-IA fails with overwhelming probability while standard EAs are
efficient.

Keywords: Artificial Immune Systems, Opt-IA, Runtime Analysis, Evolutionary
Algorithms, Hypermutation, Ageing

1. Introduction

Artificial immune systems (AIS) are a class of bio-inspired computing techniques that
take inspiration from the immune system of vertebrates [2]. Burnet’s clonal selection the-

∗An extended abstract of this paper has been published at the 2017 Genetic and Evolutionary Compu-
tation Conference [1].

Email addresses: d.corus@sheffield.ac.uk (Dogan Corus), p.oliveto@sheffield.ac.uk (Pietro
S. Oliveto), dyazdani1@sheffield.ac.uk (Donya Yazdani)

Preprint submitted to Journal of LATEX Templates March 18, 2019

ar
X

iv
:1

80
4.

01
31

4v
2

 [
cs

.N
E

]
 1

5
M

ar
 2

01
9

ory [3] has inspired various AIS for function optimisation. The most popular ones are
Clonalg [4], the B-Cell Algorithm [5] and Opt-IA [6].

After numerous successful applications of AIS were reported, a growing body of theo-
retical work has gradually been built to shed light on the working principles of AIS. While
initial work derived conditions that allowed to prove whether an AIS converges or not [7],
nowadays rigorous time complexity analyses of AIS are available. Initial runtime analyses
focused on studying the performance of typical AIS operators in isolation to explain when
and why they are effective. Such studies have been extensively performed for the contigu-
ous somatic hypermutation operator employed by the B-Cell algorithm [8, 9], the inversely
proportional hypermutation operator of Clonalg [10, 11] and the ageing operator used by
Opt-IA [12, 13, 14]. These studies formed a foundational basis which allowed the subsequent
analysis of the complete B-Cell algorithm as used in practice for standard combinatorial op-
timisation [15, 16].

Compared to the relatively well understood B-Cell algorithm, the theoretical under-
standing of other AIS for optimisation is particularly limited. In this paper we consider the
complete Opt-IA algorithm [17, 6]. This algorithm has been shown experimentally to be
successful at optimising instances of problems such as protein structure prediction [6], graph
colouring [18] and hitting set [19]. The main distinguishing features of Opt-IA compared to
other AIS is their use of an ageing operator and of hypermutations with mutation poten-
tials. In this work we will first analyse the characteristics of these operators respectively in
isolation and afterwards consider a simple, but complete, Opt-IA algorithm. The aim is to
highlight function characteristics for which Opt-IA and its main components are particularly
effective, hence when it may be preferable to standard Evolutionary Algorithms (EAs).

The idea behind the ageing operator is that old individuals should have a lower probabil-
ity of surviving compared to younger ones. Ageing was originally introduced as a mechanism
to maintain diversity. Theoretical analyses have strived to justify this initial motivation be-
cause the new random individuals (introduced to replace old individuals) typically have very
low fitness and die out quickly. On the other hand, it is well understood that ageing can
be used as a substitute for a standard restart strategy if the whole population dies at the
same generation [12] and to escape local optima if most of the population dies except for one
survivor that, at the same generation, moves out of the local optimum [14]. This effect was
shown for a Random Local Search (RLS) algorithm equipped with ageing on the Balance

dynamic optimisation benchmark function. An evolutionary algorithm (EA) using standard
bit mutation (SBM) [20, 21] and ageing would not be able to escape the local optima due
to their very large basin of attraction. Herein, we carefully analyse the ability of ageing
to escape local optima on the more general Cliffd benchmark function and show that us-
ing the operator with both RLS and EAs can make a difference between polynomial and
exponential runtimes.

Hypermutation operators are inspired by the high mutation rates occurring in the im-
mune system. In Opt-IA the mutation potential is linear in the problem size, and in different
algorithmic variants may be static or either increase by a factor that is proportional to the
fitness of the solution (i.e., the b-cell) undergoing the mutation or decrease by a factor that
is inversely proportional to the fitness. The theoretical understanding of hypermutations

2

with mutation potential is very limited. To the best of our knowledge the only runtime ana-
lysis available is [22], where inversely proportional hypermutations were considered, with
and without the stop at first constructive mutation (FCM) strategy2. The analysis revealed
that, without FCM, the operator requires exponential runtime to optimise the standard
OneMax function, while by using FCM the algorithm is efficient. We consider a different
hypermutation variant using static mutation potentials and argue that it is just as effective
if not superior to other variants. We first show that the use of FCM is essential by rigorously
proving that a (1+1) EA equipped with hypermutations and no FCM requires exponential
expected runtime to optimise any function with a polynomial number of optima. We then
consider the operator with FCM for any objective function that can be analysed using the
artificial fitness level (AFL) method [20, 21] and show an upper bound on its runtime that
is at most by a linear factor larger than the upper bound obtained for any RLS algorithm
using AFL. To achieve this, we present a theorem that allows to derive an upper bound
on the runtime of sophisticated hypermutation operators by analysing much simpler RLS
algorithms with an arbitrary neighbourhood. As a result, all existing results achieved via
AFL for RLS may be translated into upper bounds on the runtime of static hypermutations.
Finally, we use the standard Cliffd and Jumpk benchmark functions to show that hyper-
mutations can achieve considerable speed-ups for escaping local optima compared to well
studied EAs.

We then concentrate on the analysis of the complete Opt-IA algorithm. The standard
Opt-IA uses both hypermutations and hypermacromutation (both with FCM) mainly be-
cause preliminary experimental studies for trap functions indicated that this setting led to
the best results [17, 6]. Our analysis reveals that it is unnecessary to use both operators for
Opt-IA to be efficient on trap functions. To this end, we will consider the simple version
using only static hypermutations as in [17]. We will first consider the algorithm with the
simplification that we allow genotypic duplicates in the population, to simplify the analysis
and enhance the probabilities of ageing to create copies and escape from local optima. After-
wards we extend the analysis to the standard version using a genotype diversity mechanism.
Apart from proving that the algorithm is efficient for the previously considered functions,
we present a class of functions called HiddenPath, where it is necessary to use both ageing
and hypermutations in conjunction, hence where the use of Opt-IA in its totality is crucial.
Having shown several general settings where Opt-IA is advantageous compared to standard
EAs, we conclude the paper by pointing out limitations of the algorithm. In particular, we
present a class of functions called HyperTrap that is deceptive for Opt-IA while standard
EAs optimise it efficiently with overwhelming probability.

Compared to its conference version [1], this paper has been improved in several ways.
Firstly, we have extended our analyses of the ageing operator and Opt-IA to include the
genotype diversity mechanism as in the algorithm proposed in the literature [17, 6]. Another
addition is the introduction of a class of functions where Opt-IA fails to find the optimum

2An analysis of high mutation rates in the context of population-based evolutionary algorithms was
performed in [23]. Increasing the mutation rate above the standard 1/n value has gained interest in recent
years [24, 25, 26, 27, 28].

3

Algorithm 1 Opt-IA∗ [6]. Subroutines are described in Algorithms 2, 3, 4 and 5.

1: t = 0,
2: initialise P (t) = {x1, ..., xµ}, a population of µ b-cells uniformly at random and set

xage
i = 0 for i = {1, ...µ}.

3: while termination condition is not reached do

4: P (clo)= Cloning (P (t), dup),
5: P (hyp)= Hypermutation (P (clo), c),
6: P (macro)= Hypermacromutation (P (clo)),
7: Ageing (P (t), P (hyp) ∪ P (macro), τ, µ),
8: P (t+1) = Selection (P (t), P (hyp) ∪ P (macro), µ, 1).
9: t = t+ 1.
10: end while

Algorithm 2 Cloning (P (t), dup)

1: P (clo) = ∅.
2: for all xi ∈ P (t) do

3: copy xi dup times,
4: add the copies to P (clo).
5: end for

efficiently, allowing us to complete the picture by highlighting problem characteristics where
Opt-IA succeeds and where it does not. Finally, this paper includes some proofs which were
omitted from the conference version due to page limitations.

The rest of the paper is structured as follows. In Section 2, we introduce and define
Opt-IA and its operators. In Section 3, we present the results of our analyses of the static
hypermutation operator in a simple framework to shed light on its power and limitations
in isolation. In Section 4, we present our analyses of the ageing operator in isolation and
highlight its ability to escape from local optima. In Section 5, we present the results of
our analyses of the complete algorithm. In Section 6, we extend the analyses to include
the genotype diversity mechanism as applied in the standard Opt-IA [17, 6]. Finally, we
conclude the paper with a discussion of the results and directions for future work.

2. Preliminaries

In this section we first present the standard Opt-IA as applied in [6] (called Opt-IA∗

from now on) for the maximisation of f : {0, 1}n → R and then a slightly different version
which we will analyse.

The Opt-IA∗ pseudo-code is given in Algorithm 1. It is initialised with a population of
µ b-cells, representing candidate solutions, generated uniformly at random with age = 0 .
In each generation, the algorithm creates a new parent population consisting of dup copies
of each b-cell (i.e., Cloning) which will be the subject of variation. The pseudo-code of the
Cloning operator is given in Algorithm 2.

4

The variation stage in Opt-IA∗ uses a hypermutation operator with mutation potential
sometimes followed by hypermacromutation [6], sometimes not [17]. The Hypermacromu-
tation operator is essentially the same as the well-studied contiguous somatic mutation
operator of the B-Cell algorithm; it chooses two integers i and j at random such that
(i+1) ≤ j ≤ n, then mutates at most j− i+1 values in the range of [i, j]. If both operators
are applied, they act on the clone population (i.e., not in sequence) such that they generate
µ mutants each. The number of bits M that are flipped by the hypermutation operator is
determined by a function called mutation potential. Three different potentials have been
considered in the literature: static, where the number of bits that are flipped is linear in
the problem size and does not depend on the fitness function3, fitness proportional (i.e., a
linear number of bits are always flipped but increasing proportionally with the fitness of
the mutated b-cell) and inversely fitness proportional. The latter potential was previously
theoretically analysed in [22]. What is unclear from the literature is whether the M bits to
be flipped should be distinct or not and, when using FCM, whether a constructive mutation
is a strictly improving move or whether a solution of equal fitness suffices. In this paper
we will consider the static hypermutation operator with pseudo-code given in Algorithm 3.
In particular, the M flipped bits will always be distinct and both kinds of constructive mu-
tations will be considered. At the end of the variation stage all created individuals have
age = 0 if their fitness is higher than that of their parent cell, otherwise they inherit their
parent’s age. Then the whole population (i.e., parents and offspring) undergoes the ageing
process in which the age of each b-cell is increased by one. Additionally, the ageing operator
removes old individuals. Three methods have been proposed in the literature for such an
operator: static ageing, which deterministically removes all individuals who exceed age τ ;
stochastic ageing, which removes each individual at each generation with probability pdie;
and the recently introduced hybrid ageing [14], where individuals have a probability pdie of
dying only once they reach an age of τ . In [14] it was shown that the hybrid version allows
to escape local optima, hence we employ this version in this paper and give its pseudo-code
in Algorithm 4.

The generation ends with a selection phase for which the pseudo-code is given in Al-
gorithm 5. If the total number of b-cells that have survived the ageing operator is larger
than µ, then a standard (µ + λ) selection scheme is used with the exception that genotype
duplicates are not allowed. If the population size is less than µ, then a birth phase fills the
population up to size µ by introducing random b-cells of age = 0.

In this paper we give evidence that disallowing genotypic duplicates may be detrimental
because, as we will show, genotypic copies may help the ageing operator to escape local op-
tima more efficiently. Considering the results of the investigations made in Sections 3 and 4,
the Opt-IA we will analyse does not apply hypermacromutation and uses static hypermuta-
tion coupled with FCM as variation operator, hybrid ageing and standard (µ+ λ) selection
which allows genotypic duplicates. The pseudo-code is given in Algorithm 6 for clarity.

3In [17] the mutation potential is declared to be a constant 0 < c ≤ 1. This is obviously a typo: the
authors intended the mutation potential to be cn, where 0 < c ≤ 1.

5

Algorithm 3 Static hypermutation (P (clo), c)

1: M = cn,
2: P (hyp) = ∅.
3: for all xi ∈ P (clo) do

4: if FCM is not used then

5: create yi by flipping M distinct bits selected uniformly at random.
6: else

7: create yi by flipping at most M distinct bits selected uniformly at random one after
another until a constructive mutation happens.

8: end if

9: if f(yi) > f(xi) then
10: yagei = 0.
11: else

12: yagei = xage
i .

13: end if

14: add yi to P (hyp).
15: end for

Algorithm 4 Hybrid ageing (P (t), P (hyp), τ, µ)

1: for all xi ∈ (P (t) ∪ P (hyp)) do
2: xage

i = xage
i + 1,

3: if xage
i > τ then

4: remove xi with probability pdie = 1− 1/µ.
5: end if

6: end for

3. Static Hypermutation

The aim of this section is to highlight the power and limitations of the static hyper-
mutation operator in isolation. For this purpose we embed the operator into a minimal
AIS framework that uses a population of only one b-cell and creates exactly one clone per
generation. The resulting (1+1) IAhyp, depicted in Algorithm 7, is essentially a (1+1) EA
that applies the static hypermutation operator instead of using SBM. We will first show
that, without the use of FCM, hypermutations are inefficient variation operators for virtu-
ally any optimisation function of interest. From there on we will only consider the operator
equipped with FCM. Then we will prove that the (1+1) IAhyp has a runtime that is at
most a linear factor larger than that obtained for any RLS algorithm using the artificial
fitness levels method. If no improvement is found in the first step, then the operator will
perform at most cn useless fitness function evaluations before one hypermutation process is
concluded. We formalise this result in Theorem 2 for two cases: when FCM only accepts
strict improvements as constructive solutions (we formally call such algorithm (1+1) IAhyp

>)
and for the case when FCM also accepts points of equal fitness as constructive solutions (we

6

Algorithm 5 Selection (P (t), P (hyp), µ, div)

1: P (t+1) =
(

P (t) ∪ P (hyp)
)

.
2: if div=1 then

3: remove any offspring with the same genotype as individuals in P (t).
4: end if

5: if |P (t+1)| > µ then

6: remove the
(

|P (t+1)| − µ
)

individuals with the lowest fitness breaking ties uniformly
at random.

7: end if

8: if |P (t+1)| < µ then

9: add
(

µ− |P (t+1)|
)

individuals initialised uniformly at random.
10: end if

Algorithm 6 Opt-IA
1: t = 0,
2: initialise P (t) = {x1, ..., xµ}, a population of µ b-cells uniformly at random and set

xage
i = 0 for i = {1, ...µ}.

3: while the optimum is not found do

4: P (clo)= Cloning (P (t), dup),
5: P (hyp)= Static hypermutation (P clo, c),
6: Hybrid ageing (P (t), P (hyp), µ, τ),
7: Selection (P (t), P (hyp), µ, div),
8: t = t+ 1.
9: end while

name such algorithm (1+1) IAhyp
≥).

We prove in Theorem 2 that the (1+1) IAhyp
≥ cannot be too slow compared to the standard

RLS1 (i.e., flipping one bit per iteration). We show that the presented results are tight for
some standard benchmark functions by proving that the (1+1) IAhyp has expected runtimes
of Θ(n2 log n) for OneMax and Θ(n3) for LeadingOnes, respectively, versus the expected
Θ(n log n) and Θ(n2) fitness function evaluations required by RLS1 [20]. Nevertheless, we
conclude the section by showing for the standard benchmark functions Jumpk and Cliffd

that the (1+1) IAhyp can be particularly efficient on functions with local optima that are
generally difficult to escape from.

We start by highlighting the limitations of static hypermutation when FCM is not used.
Since M = cn distinct bits have to be flipped at once, the outcome of the hypermutation
operator is characterised by a uniform distribution over the set of all solutions which have
Hamming distance M to the parent. Since M is linear in n, the size of this set of points is
exponentially large and thus the probability of a particular outcome is exponentially small.
In the following theorem, we formalise this limitation.

Theorem 1. For any function with a polynomial number of optima, the (1+1) IAhyp without

7

Algorithm 7 (1+1) IAhyp

1: t = 0,
2: initialise a solution uniformly at random and assign it to P (0).
3: while an optimum is not found do

4: Cloning (P (t), 1),
5: Static hypermutation (P (clo), c),
6: if f(P (hyp)) ≥ f(P (t)) then
7: P (t+1) = P (hyp).
8: else

9: P (t+1) = P (t).
10: end if

11: t = t+ 1.
12: end while

FCM needs expected exponential time to find any of the optima.

Proof. We will first consider the probability that the initial solution is optimal and then the
probability of finding an optimal solution in a single step given that the current solution
is suboptimal. Note that if c = 1, sampling the complementary bit string of an optimal
solution allows the hypermutation to flip all bits in the next iteration and find an optimal
solution. However, since each optimal solution has a single complementary bit string, the
total number of solutions which are either optimal or complementary to an optimal solution
is also polynomial in n. Since the initial solution is sampled uniformly at random among 2n

possible bit strings, the probability that one of these polynomially many solutions is sampled
is poly(n)/2n = 2−Ω(n).

We now analyse the expected time of the last step before an optimal solution is found
given that the current solution is neither an optimal solution nor the complementary bit
string of an optimal solution. When c = 1 the probability of finding the optima is zero
since the hyper mutation deterministically samples the complementary bit strings of current
b-cells. For c < 1, we optimistically assume that all the optima are at Hamming distance
M = cn from the current b-cell. Otherwise, if none of the optima are at Hamming distance
M , the probability of reaching an optimum would be zero. Then, given that the number of
different points at Hamming distance cn from any point is

(

n
cn

)

and they all are reachable
with equal probability, the probability of finding this optimum in the last step, for any c 6= 1,
is p ≤ poly(n)

(n
cn)

≤ poly(n)

eΩ(n) = e−Ω(n). By a simple waiting time argument, the expected time to

reach any optimum is at least eΩ(n).

The theorem explains why poor results were achieved in previous experimental work
both on benchmark functions and real world applications such as the hard protein folding
problem [17, 6]. The authors indeed state that “With this policy, however, and for the
problems which are faced in this paper, the implemented IA did not provide good results” [6].
Theorem 1 shows that this is the case for any optimisation function of practical interest.
In [22] it had already been shown that inversely proportional hypermutations cannot optimise

8

OneMax in less than exponential time (both in expectation and w.o.p.). Although static
hypermutations are the focus of this paper, we point out that Theorem 1 can easily be
extended to both the inversely proportional hypermutations considered in [22] and to the
proportional hypermutations from the literature [17]. From now on we will only consider
hypermutations coupled with FCM. We start by showing that hypermutations cannot be
too slow compared to local search operators. We first state and prove the following helper
lemma.

Lemma 1. The probability that the static hypermutation applied to x ∈ {0, 1}n either eval-
uates a specific y ∈ {0, 1}n with Hamming distance k ≤ cn to x (i.e., event Ey), or that

it stops earlier on a constructive mutation (i.e., event Ec) is lower bounded by
(

n
k

)−1
(i.e.,

Pr{Ey ∨ Ec} ≥
(

n
k

)−1
). Moreover, if there are no constructive mutations with Hamming

distance smaller than k, then Pr{Ey} =
(

n
k

)−1
.

Proof. Since the bits to be flipped are picked without replacement, each successive bit-flip
increases the Hamming distance between the current solution and the original solution by
one. The lower bound is based on the fact that the first k bit positions to be flipped have

(

n
k

)

different and equally probable outcomes. Since the only event that can prevent the static
hypermutation to evaluate the k-th solution in the sequence is the discovery of a constructive

mutation in one of the first k − 1 evaluations, Pr{Ey ∨ Ec} is at least
(

n
k

)−1
. If no such

constructive mutation exists (i.e., Pr{Ec} = 0) then, Pr{Ey} is exactly equal to
(

n
k

)−1
.

We are ready to show that static hypermutations cannot be too slow compared to
any upper bound obtained by applying the AFL method on the expected runtime of the
(1+1) RLSk, which flips exactly k bits to produce a new solution and applies non-strict
elitist selection. AFL requires a partition of the search space X into m mutually exclusive
sets

⋃

s∈{1,...,m} As = X such that ∀i < j, x ∈ Ai ∧ y ∈ Aj =⇒ f(x) < f(y). The

expected runtime of a (1 + 1) algorithm A with variation operator HM(x) : X → X to
solve any function defined on X can be upper bounded via AFL by E(T) ≤∑m

i=1
1
pi
, where

pi = min
x∈Ai

(

Pr{HM(x) ∈
m
⋃

j=i+1

Aj}
)

[20, 21].

Theorem 2. Let E
(

TAFL
A

)

be any upper bound on the expected runtime of algorithm A estab-

lished via the artificial fitness levels method. Then, E
(

T(1+1) IA
hyp
>

)

≤ cn · E
(

TAFL
(1+1) RLSk

)

.

Additionally, for the special case of k = 1, E
(

T(1+1) IA
hyp
≥

)

≤ cn · E
(

TAFL
(1+1) RLS1

)

.

Proof. Let the function ck(x) for solution x ∈ Ai return the number of solutions which are
at Hamming distance k away from x and belong to set Aj for some j > i. The upper bound
on the expected runtime of the (1+1) RLSk to solve any function obtained by applying

the AFL method is E
(

TAFL
(1+1) RLSk

)

≤ ∑m
i=1

1
pi
, where pi = min

x∈Ai

(

ck(x)/
(

n
k

))

. Since the

hypermutation operator wastes at most cn bit mutations when it fails to improve, to prove

9

the first claim it is sufficient to show that for any current solution x ∈ Ai, the probability
that the (1+1) IAhyp

> finds an improvement is at least ck(x)/
(

n
k

)

. This follows from Lemma 1

and the definition of a constructive mutation for the (1+1) IAhyp
> , since for each one of the

ck(x) search points, the probability of either finding it or finding a constructive mutation is

lower bounded by
(

n
k

)−1
.

Note that, for the (1+1) IAhyp
≥ , the probability of improving the current solution x ∈ Ai

can be smaller than ck(x)/
(

n
k

)

since it is also necessary that the first k−1 sampled solutions
have strictly worse fitness than x to allow the hypermutation operator to flip at least k
bits before stopping. However, for the special case of k = 1, the hypermutation cannot
be prematurely stopped. The probability that static hypermutation produces a particular
Hamming neighbour of the input solution in the first mutation step is 1/n, which is equal
to the probability that the RLS1 produces the same solution. Considering the fact that
static hypermutation wastes at most cn fitness evaluations in every failure to obtain an
improvement in the first step, the second claim follows.

In the following we show that the upper bounds of the previous theorem are tight for
well-known benchmark functions.

Theorem 3. The expected runtime of the (1+1) IAhyp
> and of the (1+1) IAhyp

≥ to optimise
OneMax(x) :=

∑n
i=1 xi is Θ(n2log n).

Proof. The upper bounds for the > and ≥ FCM selection versions follow from Theorem 2
since it is easy to derive an upper bound of O(n log n) for RLS using AFL [20]. For the
lower bound of the > FCM selection version, we follow the analysis in Theorem 3 of [22] for
inversely proportional hypermutation (IPH) with FCM to optimise ZeroMin. The proof
there relies on IPH wasting cn function evaluations every time it fails to find an improvement.
This is obviously also true for static hypermutations (albeit for a different constant c), hence
the proof also applies to our algorithm. The lower bound also holds for the ≥ FCM selection
algorithm as this algorithm cannot be faster on OneMax by accepting solutions of equal
fitness (i.e., the probability of finding an improved solution does not increase).

We now turn to the LeadingOnes benchmark function, which simply returns the num-
ber of consecutive 1-bits before the first 0-bit.

Theorem 4. The expected runtime of the (1+1) IAhyp
≥ on LeadingOnes:=

∑n
i=1

∏i
j=1 xi

is Θ(n3).

Proof. The upper bound is implied by Theorem 2 because AFL gives an O(n2) runtime
of RLS for LeadingOnes [20]. Let E(fi) be the expected number of fitness function
evaluations until an improvement is made, considering that the initial solution has i leading
1-bits. The initial solutions consist of i leading 1-bits, followed by a 0-bit and n − i − 1
bits which each can be either one or zero with equal probability. Let events E1, E2 and E3

be that the first mutation step flips one of the leading ones (with probability i/n), the first
0-bit (with probability 1/n) or any of the remaining bits (with probability (n − i − 1)/n),
respectively. If E1 occurs, then the following mutation steps cannot reach any solution with

10

Figure 1: The Jumpk function for k = 10 and n = 50.

fitness value i or higher and all cn mutation steps are executed. Since no improvements have
been achieved, the remaining expected number of evaluations will be the same as the initial
expectation (i.e., E(fi|E1) = cn + E(fi)). If E2 occurs, then a new solution with higher
fitness value is acquired and the mutation process stops (i.e., E(fi|E2) = 1). However if
E3 occurs, since the number of leading 1-bits in the new solution is i, the hypermutation
operator stops without any improvement (i.e., E(fi|E3) = 1 +E(fi)). According to the law
of total expectation: E(fi) =

i
n
(cn+ E(fi))+

1
n
·1+ n−i−1

n
(1 + E(fi)). When, this equation

is solved for E(fi), we obtain, E(fi) = icn+n− i. Since the expected number of consecutive
1-bits that follow the leftmost 0-bit is less than two [29], the probability of not skipping
a level i is Ω(1). The initial solution on the other hand will have more than n/2 leading
ones with probability at most 2−n/2. Thus, we obtain a lower bound on the expectation,

(1−2−n/2)
n
∑

i=n/2

(fi) = Ω(1)
n
∑

i=n/2

(icn+n− i) = Ω(n3) by summing over fitness levels starting

from level i = n/2.

We now focus on establishing that hypermutations may produce considerable speed-ups
if local optima need to be overcome. The Jumpk function, introduced in [29], consists of a
OneMax slope with a gap of length k bits that needs to be overcome for the optimum to
be found. The function is formally defined as:

Jumpk(x) :=











k +
∑n

i=1 xi if
∑n

i=1 xi ≤ n− k

or
∑n

i=1 xi = n,

n−∑n
i=1 xi otherwise,

for n > 1 and k ∈ {1...n}. Figure 1 illustrates this function.
Mutation-based EAs require Θ(nk) expected function evaluations to optimise Jumpk

and recently a faster upper bound by a linear factor has been proved for standard crossover-
based steady-state GAs [30]. Hence, EAs require increasing runtimes as the length of the gap
increases, from superpolynomial to exponential as soon as k = ω(1). The following theorem

11

Figure 2: The Cliffd function for d = 10 and n = 50.

shows that hypermutations allow speed-ups by an exponential factor of (e/k)k, when the
jump is hard to perform. A similar result has been shown for the recently introduced fast-
GA [31].

Theorem 5. Let cn > k. Then the expected runtime of the (1+1) IAhyp to optimise Jumpk

is at most O(n
k+1·ek
kk

).

Proof. The (1+1) IAhyp reaches the fitness level n−k (i.e., local optima) in O(n2 log n) steps
according to Theorem 3. All local optima have Hamming distance k to the optimum and the
probability that static hypermutation finds the optimum is lower bounded in Lemma 1 by
(

n
k

)−1
. Hence, the total expected time to find the optimum is at most O(n2log n)+cn ·

(

n
k

)

=

O
(

nk+1·ek
kk

)

.

Obviously, hypermutations can jump over large fitness valleys also on functions with
other characteristics. For instance the Cliffd function was originally introduced to show
when non-elitist EAs may outperform elitist ones [32]. This function is formally defined as
follows:

Cliffd(x) =

{

∑n
i=1 xi if

∑n
i=1 xi ≤ n− d,

∑n
i=1 xi − d+ 1/2 otherwise.

Figure 2 shows an illustration of Cliffd. Similarly to Jumpk, this function has a One-

Max slope with a gap of length d bits that needs to be overcome for the optimum to be
found. Differently to Jumpk though, the local optimum is followed by another OneMax

slope leading to the optimum. Hence, algorithms that accept a move jumping to the bottom
of the cliff, can then optimise the following slope and reach the optimum. While elitist
mutation-based EAs obviously have a runtime of Θ(nd) (i.e., they do not accept the jump to
the bottom of the cliff), the following corollary shows how hypermutations lead to speed-ups
that increase exponentially with the distance d between the cliff and the optimum.

Corollary 1. Let cn > d. Then the expected runtime of the (1+1) IAhyp to optimise Cliffd

is O
(

nd+1·ed
dd

)

.

12

Algorithm 8 (µ+1) RLSageing
p

1: t = 0,
2: initialise P (t) = {x1, · · · , xµ}, a population of µ individuals uniformly at random and

set xage
i = 0 for i = {1, · · · , µ}.

3: while the optimum is not found do

4: select x ∈ P (t) uniformly at random,
5: with probability 1/2 < 1− p ≤ 1 create y by flipping one bit of x, otherwise y = x,
6: Hybrid ageing

(

P (t), {y}, τ, µ
)

,

7: Selection
(

P (t), {y}, µ, 0
)

,
8: t = t+ 1.
9: end while

The analysis can also be extended to show an equivalent speed-up compared to the
(1+1) EA for crossing the fitness valleys of arbitrary length and depth recently introduced
in [33]. In the next section we will prove that the ageing operator can lead to surprising
speed-ups for Cliffd and other functions with similar characteristics.

4. Ageing

It is well-understood that the ageing operator can allow algorithms to escape from local
optima. This effect was shown on the Balance function from dynamic optimisation for
an RLS algorithm embedding a hybrid ageing operator [14]. However, for that specific
function, an SBM operator would fail to escape, due to the large basin of attraction of the
local optima. In this section we highlight the capabilities of ageing in a more general setting
(i.e., the standard Cliffd benchmark function) and show that ageing may also be efficient
when coupled with SBM.

Ageing allows to escape from a local optimum if one not locally optimal b-cell is created
and survives while all the other b-cells die. For this to happen, it is necessary that all the
b-cells are old and have similar age. This is achieved on a local optimum by creating copies
of the locally optimal b-cell (the b-cells will inherit the age of their parent). Hence, the
ability of a mutation operator to create copies enhances this particular capability of the
ageing operator. To this end we first consider a modified RLS algorithm that with some
constant probability p does not flip any bit and implements the ageing operator presented
in Algorithm 4. We call this algorithm (µ+1) RLSageing

p and present its pseudo-code in
Algorithm 8. Apart from making ageing more effective, this slight modification to the
standard RLS considerably simplifies the proofs of the statements we wish to make. In
Section 6 we will generalise the result to an RLS algorithm that does not allow genotype
duplicates as in the standard Opt-IA.

The Cliffd benchmark function is generally used to highlight circumstances when non-
elitist EAs outperform elitist ones. Algorithms that accept inferior solutions can be efficient
for the function by jumping to the bottom of the cliff and then optimising the OneMax

slope. This effect was originally shown for the (1, λ) EA that can optimise the function

13

in approximately O(n25) fitness function evaluations if the population size λ is neither too
large nor too small [32]. This makes the difference between polynomial and exponential ex-
pected runtimes compared to elitist EAs (i.e., Θ(nd)) if the cliff is located far away from the
optimum. A smaller, but still exponential, speed-up was recently shown for the population-
genetics-inspired SSWM (Strong Selection Weak Mutation) algorithm with runtime of at
most nd/eΩ(d) [34]. The following theorem proves a surprising result for the considered
(µ+1) RLSageing

p for Cliffd. Not only is the algorithm very fast, but our upper bound
becomes lowest (i.e., O(n log n)) when the function is most difficult (i.e., when the cliff is
located at distance d = Θ(n) from the optimum). In this setting the algorithm is asymptot-
ically as fast as any evolutionary algorithm using SBM can be on any function with unique
optimum [35]. A similar result has recently been shown also for a hyperheuristic which
switches between elitist and non-elitist selection operators [36].

Theorem 6. For µ = O(log n), p < 1 a constant and τ = Θ(n log n), the (µ+1) RLSageing
p

optimises Cliffd in expected time O
(

µ2n3 logn
d2

)

if d < n/4−ǫn for any constant 0 < ǫ < 1/4.

Proof. We follow the proof of Theorem 10 in [14] of the (µ + 1) RLS for the Balance

function and adapt the arguments therein to the OneMax landscape and to the RLS
operator we use. Given that there are i < µ individuals with j 1-bits in the population,
the probability of creating a new individual with j 1-bits is at least (i/µ)p because the RLS
operator creates a copy with a constant probability p. Hence we follow the proof in [14]
to show that in O(µn + n log n) expected steps the population climbs up the OneMax

slope (i.e., samples a solution with n − d 1-bits) and subsequently the whole population
will be taken over by the local optimum. Given that there are already k copies of the
best individual in the population, the probability that one is selected for mutation is k/µ
and the probability that a new copy is added to the population is kp/µ. Thus in at most
∑µ

k=1 µ/kp = O(µ log µ) generations in expectation after the first local optima is sampled,
the population is taken over by the local optima. Now we can apply Lemma 5 in [14] to
show that in expected O(µ3) steps the whole population will have the same age. As a result,
after another at most τ = Θ(n log n) generations the whole population will reach age τ
simultaneously because no improvements may occur unless the optimum is found. Overall,
the total expected time until the population consists only of local optima with age τ is at
most O(µn+n log n+µ log µ+µ3+ τ) = O(µn+n log n). Now we calculate the probability
that in the next step one individual jumps to the bottom of the cliff and the rest die in
the same generation. The first event happens with probability (1− p)(d/n) = Ω (d/n) (i.e.,
an offspring solution with n − d + 1 1-bits is created by flipping one of the d 0-bits in the
parent solution). The probability that the rest of the population dies is 1/µ · (1−1/µ)µ. We
now require that the survivor creates an offspring with higher fitness (i.e., with age = 0) by
flipping one of its 0-bits (i.e., it climbs one step up the second slope). This event happens

with probability at least (1 − p)(d − 1)/(µn) = Ω
(

d
µn

)

and in the same generation with

probability (1 − 1/µ) = Ω(1) the parent of age τ + 1 dies due to ageing. Finally, the
new solution (i.e., the safe individual) takes over the population in O(µ log µ) expected
generations by standard arguments. It takes at least Ω(n) generations before any of the new

14

random individuals has ǫn more 0-bits than it had after initialisation since FCM terminates
after each improvement. Using Markov’s inequality, we can show that the probability that
the takeover happens after more than Ω(n) steps is at most O((µ log µ)/n).

Hence, the overall probability of this series of consecutive events is Ω
(

d
n

)

· 1
µ

(

1− 1
µ

)µ

·
Ω
(

d
µn

)

· (1− 1
µ
) ·
(

1−O
(

µ log µ
n

))

= Ω
(

d2

n2µ2

)

and the expected number of trials (i.e., climb-

ups and restarts) until we get a survivor which is safe at the bottom of the cliff is O
(

n2µ2

d2

)

.

Every time the set of events fails to happen, we wait for another O(µn + n log n) fitness
evaluations until the population reaches a configuration where all individuals are locally
optimal and have age τ . Once a safe individual has taken over the population, the expected
time to find the global optimum will be at most O(µn+n log n). Overall, the total expected
time to optimise Cliffd conditional on the best individual never dying when climbing up

the slopes is E(Ttotal) ≤ O(µn + n log n) · O
(

n2µ2

d2

)

+ O (µn+ n log n) = O
(

µ2n3 logn
d2

)

.

Finally, we consider the probability that the best individual in the population never dies
when climbing up the slopes due to ageing. After any higher fitness level is discovered, it
takes O(µ log µ) generations in expectation and at most n1/2 generations with overwhelming
probability (w.o.p.4) until the whole population takes over the level. For the first n− log n
levels, the probability of improving a solution is at least Ω(log n/n) and the probability that
this improvement does not happen in τ − n1/2 = Ω(n log n) generations is at most (1 −
Ω(log n/n))Ω(n logn) = e−Ω(log2 n) = n−Ω(logn). For the remaining fitness levels, the probability
of reaching age τ before improving is similarly (1−Ω(1/n))Ω(n logn) = e−Ω(logn) = n−Ω(1). By
the union bound over all levels, the probability that the best solution is never lost due to
ageing is at least 1−o(1). We pessimistically assume that the whole optimisation process has
to restart if the best individual reaches age τ . However, since at most 1/(1− o(1)) = O(1)
restarts are necessary in expectation, our bound on the expected runtime holds.

We conclude the section by considering the (µ+1) EAageing which differs from the
(µ+1) RLSageing

p by using SBM with mutation rate 1/n instead of flipping exactly one bit.
SBM allows copying individuals but, since it is a global operator, it can jump back to the
local optima from anywhere in the search space with non-zero probability. Nevertheless,
the following theorem shows that, for not too large populations, the algorithm is still very
efficient when the cliff is at linear distance from the optimum. Its proof follows similar
arguments to those of Theorem 6. The main difference in the analysis is that it has to be
shown that once the solutions have jumped to the bottom of the cliff, they have a good
probability of reaching the optimum before jumping back to the top of the cliff.

Theorem 7. The (µ+1) EAageing optimises Cliffd in expected O(n1+ǫ) time if d = (1/4)(1−
c)n for some constant 0 < c < 1, τ = Θ(n log n) and µ = Θ(1), where ǫ is an arbitrarily
small positive constant.

4In the rest of the paper we consider events to occur “with overwhelming probability” (w.o.p.) meaning
that they occur with probability at least 1− 2−Ω(n).

15

Proof. The probability that the SBM operator increases the number of 1-bits in a parent
solution with Ω(n) 0-bits is at least Ω(n)/(ne) = Ω(1). Following the same arguments
as in the proof of Theorem 6 while considering n/4 > d = Θ(n) and µ = O(1) we can
show that with constant probability and in expected O(n log n) time the algorithm reaches
a configuration where there is a single individual at the bottom of the cliff with n − d + 2
1-bits and age zero while the rest of the population consists of solutions which have been
randomly sampled in the previous iteration.

We will now show that the newly generated individuals have worse fitness than the
solution at the bottom of the cliff when they are initialised. Since d = (1/4)(1 − c)n, the
fitness value of the solutions with more than n − d 1-bits is at least n − (1/4)(1 − c)n −
(1/4)(1 − c)n = (n/2)(1 + c). Due to Chernoff bounds, the newly created individuals have
less than (n/2)(1 + (c/2)) < (n/2)(1 + c) 1-bits with overwhelming probability.

Next we prove that for any constant ǫ, there exist some positive constant c∗, such that the
best solution at the bottom of the cliff (the leading solution) will be improved consecutively
for c∗ log n iterations with probability at least n−ǫ. The leading solution with i 0-bits is
selected for mutation and SBM flips a single 0-bit with probability pi = (1/µ) · (i/n)(1 −
n−1)n−1. With probability

∏n−d+1+c∗ logn
i=n−d+2 pi, c

∗ log n consecutive improvements occur. We
can bound this probability from below by the final improvement probability pf raised to
the power of c∗ log n since the improvement probability is inversely proportional to the
number of 0-bits. Considering that pf ≥ (n − d + 1 + c∗ log n)/(nµe) = Ω(1), we can

set c∗ := −ǫ logpf 2 = Ω(1), which yields pc
∗ logn
f = n−ǫ. Here, we note that immediately

after c∗ log n consecutive improvements, all the individuals in the population have at least
n− d + 1 + c∗ log n− µ 1-bits. More precisely there will be one and only one individual in
the population with j bits for all j in [n−d+1+ c∗ log n−µ, n−d+2+ c∗ log n]. Since µ is
constant and SBM flips at least k bits with probability n−k

(

n
k

)

, the probability that a single
operation of SBM decreases the number of 1-bits in any individual below n− d+1 is in the
order of O(1/(log n)!). Since this probability is not polynomially bounded, with probability
at least 1 − O(1/n) it will not happen in any polynomial number of iterations. After the
consecutive improvements occur, it takes O(n log n) until the second slope is climbed and
the optimum is found.

The asymptotic bound on the runtime is obtained by considering that algorithm will
reach the local optimum nǫ times in expectation before the consecutive improvements are
observed. Since the time to restart after reaching the local optimum is in the order of
O(n log n), the expected time is O(n1+ǫ log n). Since ǫ is an arbitrarily small constant, the
order O(n1+ǫ log n) is equivalent to the order O(n1+ǫ).

5. Opt-IA

After having analysed the operators separately, in this section we consider the complete
Opt-IA. The considered Opt-IA, shown in Algorithm 6, uses static hypermutation coupled
with FCM as variation operator, hybrid ageing and an standard (µ+λ) selection which allows
genotype duplicates. Also, a mutation is considered constructive if it results in creating an
equally fit solution or a better one.

16

In this section we first show that Opt-IA is efficient for all the functions considered previ-
ously in the paper. Then, in Subsection 5.1 we present a problem where the use of the whole
Opt-IA is crucial. In Subsection 5.2 we show limitations of Opt-IA by presenting a class
of functions where standard EAs are efficient while Opt-IA is not w.o.p. We conclude the
section with Subsection 5.3 where we present an analysis for trap functions which disproves
previous claims in the literature about Opt-IA’s behaviour on this class of problems.

The following theorem proves that Opt-IA can optimise any benchmark function con-
sidered previously in this paper. The theorem uses that the ageing parameter τ is set large
enough such that no individuals die with high probability before the optima are found.

Theorem 8. Let τ be large enough. Then the following upper bounds on the expected runtime
of Opt-IA hold:
E(TOneMax) = O (µ · dup · n2 log n) for τ = Ω(n2),
E(TLeadingOnes) = O (µ · dup · n3) for τ = Ω(n2),

E(TJumpk
) = O

(

µ · dup · nk+1·ek
kk

)

for τ = Ω(nk+1),

and E(TCliffd
) = O

(

µ · dup · nd+1·ed
dd

)

for τ = Ω(nd+1) .

Proof. The claims use that if τ is large enough (i.e., Ω(n2) forOneMax and LeadingOnes,
Ω(nk+1) for Jumpk and Ω(nd+1) for Cliffd), then with probability 1−o(1) the current best
solution will never reach age τ and die due to ageing before an improvement is found. For
the Opt-IA to lose the current best solution due to ageing, it is necessary that the best
solution is not improved for τ generations consecutively. If the improvement probability
for any non-optimal solution is at least pmin and if the age τ is set to be p−1

minn, then the
probability that a solution will reach age τ before creating an offspring with higher fitness
is at most (1− pmin)

τ ≤ e−n. By the union bound it is also exponentially unlikely that this
occurs in a polynomial number of fitness levels that need to be traversed before reaching the
optimum. Since the suggested τ for each function is larger than the corresponding p−1

minn,
the upper bounds of the (1+1) IAhyp (which does not implement ageing) for OneMax,
LeadingOnes, Jumpk and Cliffd are valid for Opt-IA when multiplied by µ · dup to take
into account the population and clones.

Theorem 10 shows that the presented upper bound for OneMax is tight for sub-
logarithmic population and clone sizes (i.e., µ = o(log n) and dup = o(log n)). Before
stating this theorem, we state the following helper theorem which was already used in [22]
to prove lower bounds on the expected runtime of inversely proportional hypermutations.

Theorem 9 (Ballot Theorem [37]). “Suppose that, in a ballot, candidate P scores p votes
and candidate Q scores q votes, where p > q. The probability that throughout the counting
there are always more votes for P than for Q equals (p− q)/(p+ q)”.

This theorem allows us to derive an upper bound on the probability that at some point
of the hypermutation we have picked more 0-bits than 1-bits, which implies an improvement
by hypermutation for OneMax.

17

Theorem 10. Opt-IA needs at least cn2(log(n/3)
2

− µ·dup
3

) expected fitness function evaluations
for any mutation potential c to optimise OneMax.

Proof. By Chernoff bounds, the initial individuals have at least i = n/3 0-bits with over-
whelming probability. To calculate the probability of an improvement (i.e., flipping equal
or more 0-bits than 1-bits during one mutation operation), we use the Ballot theorem
(i.e., Theorem 9) in a similar way to [22]. Considering the number of 0-bits as i = q
and the number of 1-bits as n − i = p, the probability of an improvement is at most
1 − (p − q)/(p + q) = 1 − (n − 2i)/n = 2i/n according to the Ballot theorem5. Hence,
the probability that at least one out of dup · µ individuals succeeds is P ≤ dup · µ2i/n by
the union bound. We optimistically assume that the rest of the individuals also improve
their fitness after such event happens. Recall that the mutation operator wastes cn fitness
function evaluations every time it does not improve the fitness. Therefore, the expected

time to see an improvement is E(Timprove) ≥
(

n
dup·2µi − 1

)

· µcn · dup. Since the mutation

operator stops at the first constructive mutation (i.e., when the number of 1-bits is increased
by one), it is necessary to improve at least n/3 times. So the total expected time to optimise

OneMax is E(Ttotal) ≥
∑n/3

i=1 E(Timprove) = cn2(logn/3
2

− µ·dup
3

).
If individuals were to be removed because of ageing, then the new randomly generated

individuals that replace them will have to improve at least n/3 times all over again w.o.p.
Hence, the runtime may only increase in such an event.

5.1. Opt-IA Can Be More Efficient

In this section, we present the function HiddenPath to illustrate a problem where
the use of static hypermutation and ageing together is crucial. When either of these two
characteristic operators of Opt-IA is not used, we will prove that the expected runtime
is at least superpolynomial. HiddenPath : {0, 1}n → R can be described by a series of
modifications to the well-know ZeroMax function. The distinguishing solutions are those
with five 0-bits and those with n−1 0-bits, along with log n−3 solutions of the form 1n−k0k

for 5 ≤ k ≤ log n+1 (called Sp points). The solutions with exactly n−1 0-bits constitute the
local optima of HiddenPath (called LocalOpt), and the solutions with exactly five 0-bits
form a gradient with fitness increasing with more 0-bits in the rightmost five bit positions.
Given that |x|0 and |x|1 respectively denote the number of 0-bits and 1-bits in a bit string x,
HiddenPath is formally defined as in Definition 1. HiddenPath is illustrated in Figure 3
where Opt shows the global optimum.

Definition 1. Given the definitions of Sp and LocalOpt as above, for any positive con-
stant ǫ < 1, the HiddenPath function is defined for all x ∈ {0, 1}n by

5Like in [22] we consider that using cn < n mutations, the probability can only be lower than the result
stated in the Ballot theorem.

18

Figure 3: The HiddenPath function (Definition 1). The set Si corresponds to the set of solutions with
i 0-bits while the set Sp refers to the set of solutions in the form 1n−k0k for 5 ≤ k ≤ log n + 1. Fitness
increases with darker shades of gray.

HiddenPath(x) =































n− ǫ+
∑n

i=n−4(1−xi)

n
if |x|0 = 5 and x 6= 1n−505,

0 if |x|0 < 5 or |x|0 = n,

n− ǫ+ ǫk/ log n if x ∈ Sp := {x | x = 1n−k0k and 5 ≤ k ≤ log n+ 1},
n if x ∈ LocalOpt := {x | |x|0 = n− 1},
|x|0 otherwise.

Since the all 0-bits string returns fitness value zero, there is a drift towards solutions
with n − 1 0-bits while the global optimum (Opt) is the 1n−logn−10logn+1 bit string. The
solutions with exactly five 0-bits work as a net that stops any static hypermutation that
has an input solution with less than five 0-bits. The path to the global optimum consists of
log n− 3 Hamming neighbours and the first solution on this path has five 0-bits.

Theorem 11. For c = 1, dup = 1, µ = O(log n) and τ = Ω(n2 log n), Opt-IA needs expected
O(τµn+ µn7/2) fitness function evaluations to optimise HiddenPath.

Proof. For convenience we will call any solution with i 0-bits (expect the Sp solutions) an
Si solution. After O(n log n) generations in expectation, an Sn−1 solution is found by opti-
mising ZeroMax. Assuming the global optimum is not found first, consider the generation
when an Sn−1 solution is found for the first time. Another Sn−1 solution is created and
accepted by Opt-IA with probability at least 1/n since it is sufficient to flip the single 1-bit
in the first mutation step and any 0-bit in the second step will be flipped next with prob-
ability 1. Thus, Sn−1 solutions take over the population in expected O(nµ) generations.
Since, apart from the optimum, no other solution has higher fitness than Sn−1 solutions,

19

the population consists only of Sn−1 solutions after the takeover occurs. A solution reaches
age τ before the takeover only with probability 2Ω(

√
n), due to Markov’s inequality applied

iteratively for Ω(
√
n) consecutive phases of length Θ(nµ). We now bound the expected time

until the entire population has the same age. Considering that the probability of creating
another Sn−1 solution is Θ(1/n), the probability of creating two copies in one single gene-

ration is
(

µ
2

)

O
(

1
n2

)

= O
(

log2 n
n2

)

. With constant probability this event does not happen in

o(n2/ log2 n) generations. Conditional on that at most one additional Sn−1 solution is created
in every generation, we can follow a similar argument as in the proof of Theorem 6. Hence,
we can show that in expected O(µ3n) iterations after the takeover, the whole population
reaches the same age. When the population of Sn−1 solutions with the same age reaches age
τ , with probability 1/µ · (1− (1/µ))2µ−1 = Θ(1/µ) a single new clone survives while the rest
of the population dies. With probability 1−O(1/n) the survived clone has hypermutated all
n bits (i.e., the survived clone is an S1 solution). In the following generation, the population
consists of an S1 solution and µ− 1 randomly sampled solutions. With probability 1, the S1

solution produces an S5 solution via hypermutation. On the other hand, with overwhelm-
ing probability the randomly sampled solutions still have fitness value n/2±O(

√
n), hence

the S1 solution is removed from the population while the S5 b-cell is kept. Overall, after
Θ(µ) + o(1) expected restarts an S5 solution will be found in a total expected runtime of
O(µ · (n log n+ µn+ µ3n+ τ + 1)) = O(µτ) generations. We momentarily ignore the event
that the S5 solution reaches an Sn−1 point via hypermutation.

Now, the population consists of a single S5 solution and µ − 1 solutions with at most
n/2 + O(

√
n) 0-bits. We want to bound the expected time until S5 solutions take over

the population conditional on no Sn−1 solutions being created. Clones of any S5 solutions
are also S5 solutions after hypermutation if one of the first two bits to be flipped is a 0
and the other is a 1, which happens with O(1/n) probability. Moreover, if the outcome of
hypermutation is neither an S5, an Sp nor an Sn−1 solution, then it is an Sn−5 solution since
all n bit-flips will have been executed. Since Sn−5 solutions have higher fitness value than the
randomly sampled solutions, they stay in the population. In the subsequent generation, if
hypermutation does not improve an Sn−5 solution (which happens with probability O(1/n)),
it executes n bit-flips to create yet another S5 solution unless the Sp path is found.

This feedback causes the number of Sn−5 and S5 solutions to double in each generation
with constant probability until they collectively take over the population in O(log µ) gene-
rations in expectation. Then, with constant probability all the Sn−5 solutions produce an
S5 solution via hypermutation and consequently the population consists only of S5 solu-
tions. Since the takeover happens in expected O(log µ) generations, the probability that it
fails to complete in O(log µ) generations for consecutive Ω(

√
n) times is exponentially small.

Hence, in O(
√
n log µ) generations w.o.p. (by applying Markov’s inequality iteratively [20])

the entire population are S5 solutions conditional on Sn−4 solutions not being created before.
Since the probability that the static hypermutation creates an Sn−4 solution from an Sn−5

solution is less than (4/n) ·µ, and the probability that it happens in O(
√
n log µ) generations

is less than (4/n) · µ · O(
√
n log µ) = o(1), the takeover occurs with high probability, i.e.,

1− o(1).

20

After the whole population consists of only S5 solutions, except for the global optimum
and the local optima, only other points on the gradient would have higher fitness. The
probability of improving on the gradient is at least 1/n2 which is the probability of choosing
two specific bits to be flipped (a 0-bit and a 1-bit) leading towards the b-cell with the best
fitness on the gradient. Considering that the total number of improvements on the gradient
is at most 5, in O(n2 · 5) = O(n2) generations in expectation the first point of Sp will
be found. Now we consider the probability of jumping back to the local optima from the
gradient, which is Θ(1)/

(

n
n−4

)

= O(n−4), before finding the first point of the Sp. Due to

the Markov’s inequality applied iteratively over Ω(
√
n) consecutive phases of length Θ(n2)

with an appropriate constant, the probability that the time to find the first point of Sp

is more than Ω(n5/2) is less than 2−Ω(
√
n). The probability of jumping to a local optimum

in O(n5/2) steps is at most n(−4)O(n5/2) = O(n−3/2) by the union bound. Therefore, Sp
is found before any local optima in at most O(n5/2) generations with probability 1 − o(1).
Hence, the previously excluded event has now been taken into account.

After 1n−505 is added to the population, the best solution on the path is improved with
probability Ω(1/n) by hypermutation and in expected O(n log n) generations the global
optimum is found. Since all Sp and S5 solutions have a Hamming distance smaller than
n − 4 and larger than n/2 to any Sn−1 solution, the probability that a local optimum is

found before the global optimum is at most O(n log n) ·µn
(

n
4

)−1
= o(1) by the union bound.

Thus with probability 1− o(1) the time to find the optimum is O(n log n) generations. We
pessimistically assume that we start over when this event does not occur, which implies that
the whole process until that point should be repeated 1/(1 − o(1)) times in expectation.
Overall the dominating term in the runtime is O(τ + n5/2) generations. By multiplying this
time with the maximum possible wasted fitness evaluations per generation (µcn), the upper
bound is proven.

In the following two theorems we show that hypermutations and ageing used in conjunc-
tion are essential.

Theorem 12. Opt-IA without ageing (i.e., τ = ∞) with µ = O(log n) and dup = O(1)
cannot optimise HiddenPath in less than nΩ(logn) expected fitness function evaluations.

Proof. The only points with higher fitness than solutions with more than n/2 0-bits are Sp

points and S5 points. If all solutions in the population have less than n− c1 log n 0-bits or
less than n−c1 log n 1-bits for some c1 > 1, then the Hamming distance of any solution in the
population to any Sp solution or an S5 solution is at least Ω(log n). Since there are no other
improving solution, the probability that an Sp or an S5 solution will be discovered in a single
hypermutation operation is exponentially small according to the last statement of Lemma 1.
As a result, conditional on not seeing these points, the algorithm will find a solution with
n−c1 log n 0-bits in O(µ ·dup ·n2 log n) fitness function evaluations by optimising ZeroMax

(i.e., Theorem 8). In the rest of the proof we will calculate the probability of reaching an
Sn−1 solution before finding either an Sp point or S5 point, or a complementary solution
of an Sp point. The latter solutions, if accepted, with high probability would hypermutate
into Sp points. We call an event bad where any of the mentioned points are discovered.

21

Any solution in the search space can have at most two Hamming neighbours on Sp

or at most two Hamming neighbours that their complementary bit strings are on Sp. The
probability of sampling any of these neighbours is in the order of O(1/n) since it is necessary
to flip a specific bit position. Hamming distance to the remaining Sp points and their
complementary bit strings are at least two. The probability of reaching a particular solution

with Hamming distance at least two is at most
(

n
2

)−1
= O(1/n2), since two particular

bits need to be flipped. Excluding the two Hamming neighbours (which are sampled with
probability O(1/n)), the probability of reaching any other Sp point is O(1/n2) ·O(log n) =
O(log n/n2) by the union bound. Now, taking the Hamming neighbours into consideration,
the probability that any of the log n − 3 Sp points (or their complementary bit strings)
are discovered is O(1/n) + O(1/n2) · O(log n) = O(1/n). For any initial solution with
less than n − 10 0-bits, the probability of finding a solution with five 0-bits is at most
(

n
6

)−1(n
5

)

= O(1/n). Since the probability of reaching an S5 point from solutions with more
than n − 10 0-bits may be much larger, we first calculate the probability of finding n − 11
0-bits before a bad event occurs.

The probability of finding a solution which improves the ZeroMax value is at least
Θ(1/n) (even when we exclude the potential improvements whose complementary bit strings
are on Sp). Since at every static hypermutation, the probabilities of finding an S5 solution,
an Sp solution or its complementary bit string are all in the order of O(1/n) (up to n−10 0-
bits), the conditional probability that a solution which improves the current best ZeroMax

value is found before any other improvement is in the order of Θ(1/n)/(Θ(1/n) + O(dup ·
µ/n)) = Ω(1/(dup · µ)). The probability that it happens c1 log n times immediately after
the first solution with more than n − c1 log n 0-bits is added to the population is at least
Ω(dup · µ)−c1(logn) = (dup · µ)−O(logn). This sequence of c1 log n improvements implies that a
solution with n−11 0-bits is added to the population. We now consider the probability that
one individual finds the local optimum (i.e., an Sn−1 solution) by improving its ZeroMax

value in 10 consecutive generations and that none of the other individuals improve in these
generations. The probability that the current best individual improves in the next step
is at least 1/n and the probability that the other individuals do not improve is at least
(1 − c/n)µ ≥ 1/e. Hence, the probability that this happens consecutively in the next 10
steps is at least (1/ne)10 = Ω(n−10).

Once a locally optimal solution is found, with high probability it takes over the pop-
ulation before the optimum is found and the expected runtime conditional on the current

population consisting only of solutions with n − 1 0-bits is at least
(

n
logn

)

≥ (n−logn)logn

(logn)logn .
By the law of total expectation, the unconditional expected runtime is lower bounded by

E(T) ≥ (1− o (1))n−10(dup ·µ)−O(logn) (n−logn)logn

(logn)logn . This expression is in the order of nΩ(logn)

for any µ = O(log n) and dup = O(1).

Theorem 13. With Probability at least 1 − e−Ω(n), Opt-IA using SBM and ageing cannot
optimise HiddenPath in less than nΩ(n) fitness function evaluations.

Proof. Since the number of 1-bits in an initial solution is binomially distributed with expec-
tation n/2 the probability that an initial solution has less than n/3 1-bits is bounded above

22

by e−Ω(n) using Chernoff bounds. Hence, w.o.p., the population has a Hamming distance at
least n/3− log n− 1 > n/4 from any solution on the path and any solution with five 0-bits
(Sp ∪ S5) by the union bound. Therefore, the probability of finding either any of the log n
points on Sp or one of the

(

n
5

)

points on S5 is
(

log n+
(

n
5

))

· 1/nn/4(1− 1/n)n−n/4 ≤ n−Ω(n).
Since accepting any improvements, except for the Sp∪S5 solutions, increases the distance

to the Sp∪S5 solutions, the probability of jumping to an Sp∪S5 solution further decreases
throughout the search process.

5.2. When Opt-IA is detrimental

In this section we present a function class for which Opt-IA is inefficient. The class of
functions, which we call HyperTrapγ, is defined formally in Definition 2. HyperTrapγ is
inspired by the Sp-Target function introduced in [38] and used in [22] as an example where
hypermutations outperform SBM. Compared to Sp-Target, HyperTrapγ has local and
global optima inverted with the purpose of trapping hypermutations. Also there are some
other necessary modifications to prevent the algorithm from finding the global optimum via
large mutations. The parameter γ defines the distance between the local optima and the
path to the global optimum.

In HyperTrapγ, the solutions with |x|1 < n/2 are evaluated by OneMax. Solutions
of the form 1i0n−i with n/2 ≤ i ≤ n, shape a short path which is called Sp. The last point
of Sp, i.e., 1n is the global optimum (Opt). Local optima of HyperTrapγ (LocalOpt)
are formed by the points with |x|1 ≥ 3n/4 which have a Hamming distance of at least γn
to all points in Sp. Also, the points with |x|1 = n/2 are ranked among each other such
that bit strings with more 1-bits in the beginning have higher fitness. This ranking forms a
gradient from 0n/21n/2, which has the lowest fitness, to 1n/2−10n/2+1, which has the highest
fitness. Finally, the fitness of points which do not belong to any of the mentioned sub-spaces
is evaluated by ZeroMax (i.e., the fitness is |x|0).

Definition 2. Given the definitions of Sp, Opt and LocalOpt as above and H(x,Sp)
showing the minimum Hamming distance of the individual x to all Sp points, the HyperTrapγ

function with 0 < γ ≤ 1/8 is defined for all x ∈ {0, 1}n by

HyperTrapγ(x) :=






































|x|1 if |x|1 < n/2,

n/2 +
∑n

i=1(n−i)·(xi)

n
if |x|1 = n/2,

n2 · |x|1 if x ∈ Sp := {x | x = 1i0n−i and n/2 ≤ i < n},
n3 if x ∈ LocalOpt := {x | |x|1 ≥ 3n/4 and H(x,Sp) ≥ γn},
n4 if x = 1n = Opt,

|x|0 if |x|1 > n/2 and x /∈ (Sp ∪ LocalOpt ∪Opt).

This function is depicted in Figure 4. We will show that there exists a HyperTrapγ

such that Opt-IA with mutation potential cn gets trapped in the local optima.

23

Figure 4: HyperTrapγ (Definition 2). Sp corresponds to the points in the form of 1i0n−i with n/2 ≤ i ≤ n.
LocalOpt shows the locally optimal points which have |x|1 ≥ 3n/4 and Hamming distance of at least γn to
all points in Sp. Fitness increases with darker shades of gray.

Theorem 14. With probability 1− 2−Ω(
√
n), Opt-IA with mutation potential cn cannot op-

timise HyperTrapc/8 in less than exponential time.

Proof. We will show that the population will first follow the ZeroMax (or OneMax)
gradient until it samples a solution with n/2 0-bits and then the gradient of

∑n
i=1(n−i) ·(xi)

until it samples an Sp point with approximately n/2 0-bits. Afterwards, we will prove that
large jumps on Sp are unlikely. Finally, we will show that with overwhelming probability a
locally optimal solution is sampled before a linear number of Sp points are traversed. We
optimistically assume that τ is large enough such that individuals do not die before finding
the optimum.

With overwhelmingly high probability, all randomly initialised individuals have (1/2±ǫ)n
0-bits for any arbitrarily small ǫ = θ(1). Starting with such points, the probability of jumping
to the global optimum is exponentially small according to Lemma 1. Being optimistic, we
assume that the algorithm does not sample a locally optimal point for now. Hence, until
an Sp point is found, the current best fitness can only be improved if a point with either a
higher ZeroMax (or OneMax) or a higher

∑n
i=1(n− i) · (xi) value than the current best

individual is sampled. Since there are less than n2 different values of
∑n

i=1(n− i) · (xi), and
less than n different values of ZeroMax (or OneMax), the current best individual cannot
be improved more than n2 + n times after initialisation without sampling an Sp point.

Let Splower denote the Sp points with less than (1/2 + 2ǫ)n 1-bits, and Spupper denote
Sp \ Splower. We will now show that with overwhelmingly high probability an Splower point
will be sampled before an Spupper point. The search points between (1/2± ǫ)n 1-bits have at
least a distance of ǫn to the Spupper points. Using Lemma 1, we can bound the probability

of sampling an Spupper by
(

n
ǫn

)−1
from any input solution with (1/2± ǫ)n 1-bits. Excluding

Sp points, a solution with (1/2± ǫ)n 1-bits has an improvement probability of at least 1/n2

24

(i.e., min{1/n2,Θ(1)} = 1/n2 with the second term being the probability of improving the
ZeroMax or OneMax value and the first term the probability of improving when the
solution has exactly n/2 0-bits). Thus, the conditional probability that the best solution
is improved before any search point in the population is mutated into an Spupper point is

(n−2)/(n−2 + dup · µ ·
(

n
ǫn

)−1
) = 1 − 2−Ω(n). This implies that an Splower point is sampled

before an Spupper point with overwhelmingly high probability. Indeed, by the union bound,
this event happens n2 + n times consecutively after initialisation with probability at least
1 − (n2 + n) · 2−Ω(n) = 1 − 2−Ω(n), thus a point in Splower is sampled before an Spupper

point with overwhelmingly high probability. Each point of Sp has at least n/2 1-bits at the
beginning of its bit string. In order to improve by any value in one mutation operation,
1-bits should never be touched before the mutation operator stops. Hence, the probability
of improving by X on Sp is p(X) < (1/2)X . This yields that the probability of improving by√
n in one generation is at most dup ·µ ·(1/2)

√
n, as there are µ individuals in the population.

We have now shown that it is exponentially unlikely that even an arbitrarily small fraction
of the path points are avoided by jumping directly to path points with more 1-bits.

Let t be the first iteration when the current Sp solution has at least 99n/100 1-bits for
the first time. We will first lower bound the probability of improving in order to upper
bound the conditional probability that more than

√
n new 1-bits are added given that an

improving path point is sampled. An improvement is achieved if the 0-bit adjacent to
the last 1-bit is flipped in the first mutation step, which happens with probability 1/n.
Thus, the conditional probability of improving more than Ω(

√
n) points on Sp is at most

2−Ω(
√
n)/(1/n) = 2−Ω(

√
n). Therefore, in generation t, the current best individual cannot have

more than (99n/100)+Ω(
√
n) 1-bits with probability 1−dup·µ·2−Ω(

√
n) by the union bound.

Similarly, the probability that no jump of size Ω(
√
n) happens in poly(n) generations is at

least 1−dup ·µ ·2−Ω(
√
n). So, we can conclude that the number of generations to add another

n/200 1-bits to the prefix of the current best solution is at least (n/200)/O(
√
n) = Ω(

√
n)

with the same probability.
Now, we show that during this number of generations, the algorithm gets trapped in the

local optima with overwhelming probability with the optimistic assumption that only the
best b-cell in the population can be mutated into a locally optimal solution. Considering
the best current individual, in each generation a 1-bit is flipped with probability at least
99/100 in the first mutation step. Thus, the probability of not touching a 1-bit in Ω(

√
n)

generations is less than (1/100)Ω(
√
n). Considering that µ and dup are both poly(n), the

probability of flipping a 1-bit from the prefix in this number of generations and of not
locating the optimum in the same amount of time is

P ≥
(

1−
(

1

100

)Ω(
√
n)
)

·
(

1−
√
n

200
· dup · µ · 2−Ω(

√
n)

)

≥ 1− 2−Ω(
√
n).

After flipping a 1-bit, the mutation operator mutates at most cn bits until it finds an
improvement. All sampled solutions in the first n/4− n/100 mutation steps will have more
than 3n/4 1-bits and thus satisfy the first condition of the local optima. If the Hamming

25

distance between one of the first n/4 − n/100 sampled solutions and all Sp points is at
least γn, then the algorithm is in the trap. We only consider the Sp points with a prefix
containing more than 3n/4− γn 1-bits since Sp points with less than 3n/4− γn 1-bits have
already Hamming distance more than γn to the local optima.

Similarly to the analysis done in [22], we consider the kth mutation step for k := 4γn(1+
1/5)/(3 − 4γ) = 6cn

30−5c
≤ cn where the last expression is due to γ = c/8. After k steps, the

expected number of bits flipped in the prefix of length n(3/4 − γ) is at least k(3/4 − γ) =
(1 + 1/5)γn. For any mutation potential 0 < c ≤ 1, 6cn

30−5c
≤ n/4 − n/100. Using Chernoff

bounds, we can show that the probability of having less than γn 0-bits in the prefix is
P (X ≤ (1− 0.2)E(X)) ≤ e

−γn·6
1000 = e−Ω(n).

Altogether, with probability (1 − e−Ω(γn)) · (1 − 2−Ω(
√
n)) = 1 − e−Ω(

√
n) a point in the

local optima is sampled. In O(log µ) = O(log n) generations this individual takes over the
population. Once in the local optima, the algorithm needs at least dup · µ · 1/

(

n
γn

)

time to
find the global optimum according to Lemma 1.

In the following theorem we see how the (1+1) EA using SBM optimises HyperTrapγ

in polynomial time.

Theorem 15. The (1+1) EA optimises HyperTrapγ in O(n3+ǫ) steps w.o.p. 1− e−Ω(nǫ)

for ǫ > 0.

Proof. With overwhelming probability, the algorithm is initialised within n/2± n/10 1-bits
by Chernoff bounds. Since the distance to any trap point is linear and the probability
that SBM flips at least

√
n bits in a single iteration (

(

n√
n

)

n−√
n = 2−Ω(

√
n)) is exponentially

small, so is the probability of mutating into a trap point. As the algorithm approaches
the bit string with n/2 1-bits, the distance to the trap remains linear. Conditional on not
entering the trap, by standard AFL arguments it takes the (1+1) EA at most O(

√
n) steps in

expectation to find a point with n/2 1-bits, i.e., on the gradient. After finding such a point,
the (1+1) EA improves on the gradient with probability at least 1/n2 ·(1−1/n)n−2 ≥ 1/(en2)
which is the probability of flipping the rightmost 1-bit and the leftmost 0-bit while leaving
the rest of the bits untouched. To reach the first point of Sp, there are a linear number
of 1-bits that need to be shifted to the beginning of the bit string. It therefore takes
O(n3) steps in expectation to find Sp. The (1+1) EA improves on Sp with probability
at least 1/n · (1 − 1/n)n−1 ≥ 1/en, which is the probability of flipping the leftmost 0-
bit and not touching the other bits. Hence, the global optimum is found in O(n2) steps in
expectation giving a total expected runtime of O(n3) conditional on not falling into the trap.
By applying Markov’s inequality iteratively over Ω(nǫ) consecutive phases of length Θ(n3)
with an appropriate constant, the probability that the optimum is not found within O(n3+ǫ)
steps is less than e−nǫ

with ǫ being an arbitrarily small constant. Since the probability of
finding a local optimum from the gradient points or Sp points is n−Ω(n) in each step, the
probability of not falling into the trap in n3+ǫ steps is less than (n3+ǫ · n−c′n) by the union
bound. Overall, the total probability of finding the optimum within O(n3+ǫ) steps is bigger
than (1− e−nǫ

) · (1− n3+ǫ · n−c′n) = 1− e−Ω(nǫ).

26

5.3. On Trap Functions

In [17], where Opt-IA was originally introduced, the effectiveness of the algorithm was
tested for optimising the following simple trap function:

Simple Trap(x) :=

{

a
z
(z − |x|1) if |x|1 ≤ z,
b

n−z
(|x|1 − z) otherwise,

where z ≈ n/4, b = n− z − 1, 3b/2 ≤ a ≤ 2b and the optimal solution is the 0n bit string.
The reported experimental results were averaged over 100 independent runs each with a

termination criterion of reaching 5× 105 fitness function evaluations. For all of the results,
the population size (i.e., µ) was 10 and dup = 1. In these experiments, Opt-IA using either
hypermutations or hypermacromutation never find the optimum of Simple Trap already
for problem sizes n > 50. However, the following theorem shows that Opt-IA∗ indeed
optimises Simple Trap efficiently.

Theorem 16. Opt-IA needs O(µn2 log n) expected fitness function evaluations to optimise
Simple Trap with τ = Ω(n2) for c = 1 and dup = 1.

Proof. Given that the number of 1-bits in the best solution is i, the probability of improving
is at least (n − i)/n if the best solution has more than z 1-bits and i/n otherwise. By
following the proof of Theorem 3, at least one individual will reach 1n or 0n in O(µn2 log n)
fitness function evaluations in expectation as long as no individual dies due to ageing.

The age of an individual reaches n2 only if the improvement fails to happen in n2 gene-
rations which happens with probability at most (1− 1/n)n

2
= 2−Ω(n) since the improvement

probability is at least 1/n. This implies that the expected number of restarts by ageing is
exponentially small.

Given that Opt-IA was tested in [17] also with the parameters suggested by Theorem
16 (i.e., c = 1, dup = 1, τ = ∞), we speculate that either FCM was mistakingly not used
or the stopping criterion (i.e., the total number of allowed fitness evaluations, i.e., 5× 105)
was too small. We point out that, for large enough τ also using hypermacromutation as
mutation operator would lead to an expected runtime of O(µn2 log n) for Trap functions [8],
with or without FCM. In any case, it is not necessary to apply both hypermutations and
hypermacromutation together to efficiently optimise Trap functions as reported in [17].
On the other hand, the inversely proportional hypermutation operator considered in [22]
would fail to optimise this function efficiently because it cannot flip n bits when on the local
optimum.

6. Not Allowing Genotype Duplicates

None of the algorithms considered in the previous sections use the genotype diversity
mechanism. In this section, we do not allow genotype redundancies in the population as
proposed in the original algorithm [17, 6]. This change potentially affects the behaviour of
the algorithm. In the following, we will first consider the ageing operator in isolation with

27

Algorithm 9 (µ+1) RLSageing with genotype diversity (i.e., div = 1).

1: t = 0,
2: initialise P (t) = {x1, ..., xµ}, a population of µ individuals uniformly at random and set

xage
i = 0 for i = {1, ...µ}.

3: while the optimum is not found do

4: select x ∈ P (t) uniformly at random,
5: create y by flipping one bit of x,
6: Hybrid ageing (P (t), {y}, τ, µ),
7: Selection (P (t), {y}, µ, 1),
8: t = t+ 1.
9: end while

genotype diversity (i.e., no genotypic duplicates are allowed in the population). Afterwards
we will analyse the complete Opt-IA algorithm with the same diversity mechanism (as
originally introduced in the literature).

6.1. (µ+1) RLSageing with genotype diversity

In this subsection, we analyse (µ+1) RLSageing (Algorithm 9) with genotype diversity
for optimising Cliffd for which (µ+1) RLSageing

p without genotype diversity was previously
analysed in Section 4. The main difference compared to the analysis there is that taking
over the population on the local optima is now harder since identical individuals are not
allowed. The proof of the following theorem shows that the algorithm can still take over and
use ageing to escape from the local optima as long as the population size is not too large.

Theorem 17. For constant µ and τ = Θ(n), the (µ+1) RLSageing with genotype diversity
optimises Cliffd in expected O(n log n) fitness function evaluations for any linear d ≤
n/4− ǫ.

Proof. By Chernoff bounds, with overwhelming probability the initial individuals are sam-
pled with n(1/2 ± ǫ) 1-bits for any arbitrarily small 0 < ǫ = Θ(1). Since the population
size is constant and there is a constant probability of improving in the first mutation step, a
local optimum is found in at most O(n) steps by picking the best individual and improving
it O(n) times.

If there is a single locally optimal solution in the population, then with probability 1/µ
this individual is selected as parent and produces an offspring with fitness n−d−1 (i.e., one
bit away) with probability (n− d− i)/n ≤ (n− d− µ)/n = Θ(1) where i is the number of
individuals already with fitness n− d− 1. In the next generation, with probability (i+1)/µ
one of the individuals on the local optimum or one step away from it is selected as parent
and produces an offspring on either the local optimum or one bit away with probability at
least (n − d − µ)/n = Θ(1). Hence, in expected time µ · Θ(1) = Θ(µ) all µ individuals are
on the local optimum.

When the last inferior solution is replaced by an individual on the local optimum, the
other individuals have ages in the order of O(µ). Thus, the probability that the rest

28

of the population does not die until the youngest individual reaches age τ , is at least
(1/µ)(µ−1)·O(µ) = Θ(1), the probability that µ − 1 individuals above age τ survive O(µ)
consecutive generations.

In the first generation when the last individual reaches age τ , with probability d/n an
offspring is created at the bottom of the cliff (i.e., with a fitness value of n−d+1) and with
probability 1/µ · (1−1/µ)µ = Θ(1) all the parents die together at that step and the offspring
survives. The rest of the proof follows the same arguments as the proof of Theorem 6.

Overall, the total expected time to optimise Cliffd is dominated by the time to climb
the second OneMax slope which takes O(n log n) steps in expectation.

6.2. Opt-IA with genotype diversity

In this subsection, we analyse Opt-IA (Algorithm 6) with genotype diversity to optimise
all the functions for which Opt-IA without genotype diversity was analysed in Section 5. The
following are straightforward corollaries of Theorem 8 and Theorem 16. Since the ageing
mechanism never triggers here and the proofs of those theorems do not depend on creating
genotype copies, the arguments are still valid for Opt-IA with genotype diversity.

Corollary 2. The upper bounds on the expected runtime of Opt-IA with genotype diversity
and ageing parameter τ large enough for OneMax, LeadingOnes, Jumpk and Cliffd

are as follows:
E(TOneMax) = O (µ · dup · n2 log n) ,
E(TLeadingOnes) = O (µ · dup · n3) ,

E(TJumpk
) = O

(

µ · dup · nk+1·ek
kk

)

,

and E(TCliffd
) = O

(

µ · dup · nd+1·ed
dd

)

.

Corollary 3. Opt-IA with genotype diversity needs O (µn2 log n) expected fitness function
evaluations to optimise Simple Trap with τ = Ω(µn1+ǫ), c = 1 and dup = 1.

The following theorem shows the same expected runtime for Opt-IA with genotype di-
versity for HiddenPath as that of the Opt-IA without genotype diversity proven in Theo-
rem 11. However, we reduce the population size to be constant. The proof follows the main
arguments of the proof of Theorem 11. Here we only discuss the probability of events which
should be handled differently considering that genotype duplicates are not allowed.

Theorem 18. For c = 1, dup = 1, µ = Θ(1) and τ = Ω(n2 log n), Opt-IA with genotype
diversity needs O(τµn + µn7/2) expected fitness function evaluations to optimise Hidden-

Path.

Proof. We follow the analysis of the proof of Theorem 11 for Opt-IA without genotype
diversity. Although the analysis did not benefit from genotype duplicates, not allowing
them potentially affects the runtime of the events where the population takes over. The
potentially affected events are:

29

• For Sn−1 solutions to take over the population, the probabilities are different here since
a new Sn−1 solution will not be accepted if it is identical to any current Sn−1 solutions.
Here, after finding the first Sn−1 solution, the rest are created and accepted by Opt-IA
with probability at least Ω(1/n · (n− µ)/(n− 1)) = Ω(1/n). Therefore, the argument
made in the proof of Theorem 11 does not change the runtime asymptotically.

• The arguments about the expected time needed for Sn−1 solutions to reach the same
age after the takeover are the same as in the proof of Theorem 11; without geno-
type duplicates, the probability of creating another Sn−1 is still Ω(1/n). Hence, the
probability of creating two copies in the same generation is still unlikely and we can
adapt the arguments made in the proof of Theorem 11. Therefore, in expected O(µ3n)
generations after the takeover of Sn−1, the population reaches the same age.

• In the proof of Theorem 11, the expected time for S5 solutions to take over the pop-
ulation of recently initialised individuals is bounded relying on having multiple copies
of one S5 and one Sn−5 solution. This proof strategy cannot be applied with the
genotypic diversity mechanism which only allows unique solutions in the population.

In order to create a unique S5 solution from another S5 solution, it is sufficient that
the first bit position to be flipped has value 1 in the parent bit string and the second
position to be flipped has value 0 in all S5 solutions currently in the population,
including the parent. Such a mutation occurs with probability at least (5

n
· n−5−µ

n−1
) ≥

4/n = Ω(1/n). This lower bound in the probability implies that the number of S5

individuals in the population is increased by a factor of 1+Ω(1/n) at every generation
in expectation. For any constant c, the exponent t that satisfies 1 · (1 + c/n)t = µ
is in the order of O(n log µ). Thus, in at most O(n log µ) generations in expectation
the S5 solutions take over the population if no solutions with higher fitness have been
added to the population before the takeover. Due to the assumption that µ = Θ(1),
the expected number of generations reduces to O(n). By Markov’s inequality, the
probability that the expected time is in the order of O(n) is Ω(1).

Only the solutions on Sp and Sn−1 solutions have better fitness than S5 solutions.
The rest of the proof of Theorem 11 can still be applied if the only remaining non S5

solutions in the population are Sp solutions. So, we will only show that it is unlikely
that an Sn−1 solution will be sampled before the population consists only of S5 and
Sp solutions. The number of 0-bits in randomly initialised solutions is in the interval
of [n/2 − n2/3, n/2 + n2/3] with probability 1 − 2Ω(n1/3) due to Chernoff bounds. We
can then follow the strategy from Theorem 10 to show that the expectation of T ∗, the
time until an Sn−1 solution descending from a randomly created solution is sampled,
is in the order of Ω(n log n). In order to bound the probability that this event will not
happen in O(n), we will bound the variance of this runtime. Since FCM stops after
a solution with more 0-bits is sampled, we can pessimistically divide the runtime into
phases of length Ti, i ∈ {2, . . . , n/2 + n2/3}, where the best among the newly created
solutions has i 1-bits. The length of phase Ti is distributed according to a geometric
distribution with success probability at most µ · 2i/n due to the Ballot theorem (i.e.,

30

Theorem 9) and the union bound summed up over µ candidate solutions which can be
improved at every generation. Being geometrically distributed, the variance of Ti is at
most (1− (d · i/n))/(d · i/n)2 for some constant d > 2µ. Summing up over all phases
of independently distributed lengths, we obtain the variance of T ∗ as:

V ar(T ∗) ≤
n/2+n2/3
∑

i=2

1− (d · i/n)
(d · i/n)2 ≤ n2

d2

n/2+n2/3
∑

i=2

1

i2
=

n2

d2
π2

6
= Θ(n2).

Due to Chebyshev’s Inequality, the probability that such an event happens in O(n)
generations instead of its expectation, which is in the order of Ω(n log n), is at most
O(1/ log n). Conversely, the probability that such a failure does not occur is 1 −
O(1/ log n).

The path solutions have between 5 to log n + 1 1-bits, thus the probability that the
hypermutation operator yields an Sn−1 solution as output given an Sp or S5 solution

as input is at most
(

n
n−4

)−1
= O(n−4). The probability that such a mutation occurs in

O(n) generations is at most O(n−3) by the union bound. Considering all the possible
failure events, the takeover happens in O(n) generations with Ω(1) probability before
any Sn−1 individual is added to the population.

The rest of the proof of Theorem 11 is not affected by genotype diversity.

7. Conclusion

We have presented an analysis of the standard Opt-IA artificial immune system. We
first highlighted how both the ageing and hypermutation operators may allow to efficiently
escape local optima that are particularly hard for standard evolutionary algorithms. Con-
cerning hypermutations, we proved that FCM is essential to the operator and suggested
considering a mutation constructive if the produced fitness is at least as good as the pre-
vious one. The reason is that far away points of equal fitness should be attractive for the
sake of increasing exploration capabilities. Our analysis on the Jumpk function suggests
that hypermutation with FCM is generally preferable to the SBM operator when escaping
the local optima requires a jump of size k such that (k/e)k ≥ n. This advantage is least
pronounced when there is a single solution with better fitness than the local optima as in
the case of Jumpk and the performance difference with the SBM in terms of expected escape
time scales multiplicatively with the number of acceptable solutions at distance k. Hence,
the Jumpk function may be considered as a worst-case scenario concerning the advantages
of hypermutations over SBM for escaping local optima.

Concerning ageing, we showed for the first time that the operator can be very efficient
when coupled with SBM and hypermutations. To the best of our knowledge, the operator
allows the best known expected runtime (i.e., O(n log n)) for hard Cliffd functions (this
expected runtime has recently been matched by a simple hyperheuristic [36]). Afterwards, we
presented a class of functions where both the characteristics of ageing and hypermutation are
crucial, hence Opt-IA is efficient while standard evolutionary algorithms are inefficient even

31

if coupled with one extra AIS operator (either cloning, ageing, hypermutation or contiguous
somatic mutation). Finally, we proved that all the positive results presented for the Opt-IA
algorithm without genotype diversity also hold for Opt-IA with genotype diversity as used
in the original algorithm. However, small population sizes may be required if ageing has to
be triggered to escape from local optima with genotype diversity. To complete the picture
we presented a class of problems where the use of hypermutations and ageing is detrimental
while standard evolutionary algorithms are efficient.

Our analysis shows that for easy problems for which local search strategies are efficient,
using hypermutations and ageing may be detrimental. We have shown this effect for the sim-
ple OneMax and LeadingOnes functions for which we have proven a linear slow-down in
the expected runtime compared to local search strategies and simple evolutionary algorithms.
While such a slow-down may be considered an acceptable expense in exchange for being ef-
ficient on more complicated optimisation problems, we have shown for HyperTrapc/8 that
the consequences may be more drastic, by making the difference between polynomial and
exponential runtimes. Indeed, the function is easy for local search algorithms with neigh-
bourhoods of size greater than 1 and for simple EAs. However, hypermutations make Opt-IA
fail with overwhelming probability and ageing does not help the algorithm to escape from
the trap permanently. We point out that recently Fast Hypermutation operators have been
presented that allow to hillclimb efficiently while still keeping the efficiency at escaping local
optima [39]. However, such Fast AIS still suffer on HyperTrapc/8.

On the other hand, for more complicated multimodal functions, with closer characteris-
tics to the optimisation problems that occur in practice, we have shown several advantages
of hypermutations and ageing to escape from local optima (i.e., Jumpk and Cliffd). Fur-
thermore, the combination of hypermutation and ageing may be advantageous to locate
new promising basins of attraction that are hard to find via more traditional optimisation
techniques such as local search or EAs using SBM. We have illustrated such effect in the
analysis of HiddenPath, where the combination of hypermutations and ageing allow Opt-
IA to locate a new basin of attraction that initially has lower fitness than the easy-to-find
local optima. However, in the long run, having identified this new basin of attraction allows
the algorithm to find the global optimum.

Overall, we believe this work is a significant contribution towards the understanding
of which kind of problems it is advantageous to use artificial immune systems on rather
than evolutionary algorithms and for which it is detrimental. Future work should focus
on providing such advantages and disadvantages for classical combinatorial optimisation
problems, in similar fashion to the recently presented results for the NP-hard Partition

problem that have been achieved by building upon the present work [40].

Acknowledgement: The research leading to these results has received funding from
the EPSRC under grant agreement no EP/M004252/1.

32

References

References

[1] D. Corus, P. S. Oliveto, D. Yazdani, On the runtime analysis of the Opt-IA artificial immune system,
in: Proc. of GECCO 2017, 2017, pp. 83–90.

[2] L. N. de Castro, J. Timmis, Artificial Immune Systems: A New Computational Intelligence Paradigm,
Springer-Verlag, Secaucus, NJ, USA, 2002.

[3] F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, Cambridge University Press, 1959.
[4] L. N. de Castro, F. J. V. Zuben, Learning and optimization using the clonal selection principle, IEEE

Transaction on Evolutionary Computation 6 (2002) 239–251.
[5] J. Kelsey, J. Timmis, Immune inspired somatic contiguous hypermutation for function optimisation,

in: Proc. of GECCO 2003, 2003, pp. 207–218.
[6] V. Cutello, M. Pavone, J. Timmis, An immune algorithm for protein structure prediction on lattice

models, IEEE Transactions on Evolutionary Computation 10 (2006) 844–861.
[7] V. Cutello, G. Nicosia, M. Romeo, P. S. Oliveto, On the convergence of immune algorithms, in: Proc.

of FOCI 2007, 2007, pp. 409–415.
[8] T. Jansen, C. Zarges, Analyzing different variants of immune inspired somatic contiguous hypermuta-

tions, Theoretical Computer Science 412 (2011) 517–533.
[9] D. Corus, J. He, T. Jansen, P. S. Oliveto, D. Sudholt, C. Zarges, On easiest functions for mutation

operators in bio-inspired optimisation, Algorithmica (2016).
[10] C. Zarges, Rigorous runtime analysis of inversely fitness proportional mutation rates, in: Proc. of

PPSN X, 2008, pp. 112–122.
[11] C. Zarges, On the utility of the population size for inversely fitness proportional mutation rates, in:

Proc. of FOGA 2009, 2009, pp. 39–46.
[12] T. Jansen, C. Zarges, On the role of age diversity for effective aging operators, Evolutionary Intelligence

4 (2011) 99–125.
[13] C. Horoba, T. Jansen, C. Zarges, Maximal age in randomized search heuristics with aging, in: Proc.

of GECCO 2009, 2009, pp. 803–810.
[14] P. S. Oliveto, D. Sudholt, On the runtime analysis of stochastic ageing mechanisms, in: Proc. of

GECCO 2014, 2014, pp. 113–120.
[15] T. Jansen, P. S. Oliveto, C. Zarges, On the analysis of the immune-inspired B-Cell algorithm for the

vertex cover problem, in: Proc. of ICARIS 2011, 2011, pp. 117–131.
[16] T. Jansen, C. Zarges, Computing longest common subsequences with the B-Cell Algorithm, in: Proc.

of ICARIS 2012, 2012, pp. 111–124.
[17] V. Cutello, G. Nicosia, M. Pavone, Exploring the capability of immune algorithms: A characterization

of hypermutation operators, in: Proc. of ICARIS 2004, 2004, pp. 263–276.
[18] V. Cutello, G. Nicosia, M. Pavone, A hybrid immune algorithm with information gain for the graph

coloring problem, in: Proc. of GECCO 2003, 2003, pp. 171–182.
[19] V. Cutello, G. Nicosia, A clonal selection algorithm for coloring, hitting set and satisfiability problems,

Neural Nets 3931 (2006) 324–337.
[20] P. S. Oliveto, X. Yao, Runtime analysis of evolutionary algorithms for discrete optimisation, in: Theory

of Randomized Search Heuristics: Foundations and Recent Developments, World Scientific, 2011, pp.
21–52.

[21] T. Jansen, Analyzing Evolutionary Algorithms: The Computer Science Perspective, Springer, 2013.
[22] T. Jansen, C. Zarges, Variation in artificial immune systems: Hypermutations with mutation potential,

in: Proc. of ICARIS 2011, 2011, pp. 132–145.
[23] P. S. Oliveto, P. K. Lehre, F. Neumann, Theoretical analysis of rank-based mutation-combining explo-

ration and exploitation, in: Proc. of CEC 2009, 2009, pp. 1455–1462.
[24] D. Corus, P. S. Oliveto, Standard steady state genetic algorithms can hillclimb faster than mutation-

only evolutionary algorithms, IEEE Trans. Evol. Comput. 22 (2018) 720–732.

33

[25] A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the runtime analysis of generalised selection hyper-
heuristics for pseudo-boolean optimisation, in: Proc. of GECCO 2017, 2017, pp. 849–856.

[26] B. Doerr, A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the runtime analysis of selection hyper-
heuristics with adaptive learning periods, in: Proc. of GECCO 2018, 2018, pp. 1015–1022.

[27] J. Lengler, A general dichotomy of evolutionary algorithms on monotone functions, in: Proc. of PPSN
XV, 2018, pp. 3–15.

[28] T. Friedrich, A. Göbel, F. Quinzan, M. Wagner, Heavy-tailed mutation operators in single-objective
combinatorial optimization, in: Proc. of PPSN XV, 2018, pp. 134–145.

[29] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+ 1) evolutionary algorithm, Theoretical
Computer Science 276 (2002) 51–81.

[30] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S. Oliveto, D. Sudholt, A. M. Sutton,
Escaping local optima using crossover with emergent diversity, IEEE Transactions on Evolutionary
Computation 22 (2018) 484–497.

[31] B. Doerr, H. P. Le, R. Makhmara, T. D. Nguyen, Fast genetic algorithms, in: Proc. of GECCO 2017,
2017, pp. 777–784.

[32] J. Jägersküpper, T. Storch, When the plus strategy outperforms the comma strategy and when not,
in: Proc. of FOCI 2007, 2007, pp. 25–32.

[33] P. S. Oliveto, T. Paixão, J. Pérez Heredia, D. Sudholt, B. Trubenová, How to escape local op-
tima in black box optimisation: When non-elitism outperforms elitism, Algorithmica (2017). doi:
10.1007/s00453-017-0369-2.

[34] T. Paixão, J. Pérez Heredia, D. Sudholt, B. Trubenová, Towards a runtime comparison of natural and
artificial evolution, Algorithmica 78 (2017) 681–713.

[35] D. Sudholt, A new method for lower bounds on the running time of evolutionary algorithms, IEEE
Transactions on Evolutionary Computation 17 (2012) 418–435.

[36] A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the time complexity of algorithm selection hyper-
heuristics for multimodal optimisation, in: Proc. of AAAI 2019, 2019. To appear.

[37] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, 1968.
[38] F. Neumann, D. Sudholt, C. Witt, Rigorous analyses for the combination of ant colony optimization

and local search, in: Proc. of ANTS 2008, volume 5217, 2008, pp. 132–143.
[39] D. Corus, P. S. Oliveto, D. Yazdani, Fast artificial immune systems, in: Proc. of PPSN XV, 2018, pp.

67–78.
[40] D. Corus, P. S. Oliveto, D. Yazdani, Artificial immune systems can find arbitrarily good approximations

for the NP-hard partition problem, in: Proc. of PPSN XV, 2018, pp. 16–28.

34

	1 Introduction
	2 Preliminaries
	3 Static Hypermutation
	4 Ageing
	5 Opt-IA
	5.1 Opt-IA Can Be More Efficient
	5.2 When Opt-IA is detrimental
	5.3 On Trap Functions

	6 Not Allowing Genotype Duplicates
	6.1 (+1) RLSageing with genotype diversity
	6.2 Opt-IA with genotype diversity

	7 Conclusion

