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The static position method is the most generally used method to decide the stability of
nanofluids. The static position method allows nanofluids to stand in a container for a particular
period, and the distance or colour difference in sedimentation between nanofluids was observed
by the naked eye [1-4]. However, this method cannot evaluate the true stability of the composite
suspensions. Therefore, in this study, the stability of nanofluids was determined using static
and dynamic tests. The selected samples were evaluated via eye test investigation, turbiscan
analysis, and zeta potential measurement. In the static position method, all samples remained
standing for 10 days, and the stability difference between samples was observed by the naked
eye. However, as shown in Fig S1, the differences were difficult to detect using naked eye
observation. The sedimentation behaviour was monitored every 1 h for 24 h, backscattering
intensity/transmission intensity profiles versus the height in the sample at different times were
obtained. The backscattering profiles interpretation explained the changes in the backscattering
light caused by the particle sedimentation within the sample cell. Over the period of time, the
backscattering profiles vary with the height of the sample when sedimentation occurs.
However, if the particle dispersion is stable, over the entire sample cell, no noticeable change

in the backscattering profiles is observed with time.
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Figure S1. Static position stability test for the addition of different amounts of CQDs into PAM



In this study, the case of the suspension containing 0.05, 0.2 and 0.5 wt. % CQDs, with neat
PAM sample as reference, shows a representative example of highly stable suspension (Fig.
2b). The results indicate that since there is no particle precipitation throughout the height of
the container, therefore, no sedimentation takes place in all range of CQDs concentration. This
improved stability is related to the variation of the surface charge of the particles. The state of
the surface charge with the incorporated amount of CQDs were investigated by measuring zeta
potential of PAM/CQDs composites at different temperatures, in addition to measuring the zeta
potential of neat PAM and pure CQDs. The results in Fig. 2a indicate that, compared with the
zeta potential of bare PAM and neat CQDs, the zeta potential of the composites is much

stronger, indicating that improved dispersion stabilization is achieved.
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Figure S2. XRD profiles for PAM and PAM/CQDs composites
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Figure S3. 'H-NMR for (a) PAM and (b) PAM/CQDs composites
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Figure S4. The dependence of viscosity for PAM/CQDs composite on shear rate with different
loadings of the CQDs (a) T= 85 °C (b) T= 25 °C (shear rate 100-1000 s™).
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Figure SS. Plots of the damping factor of PAM and PAM, with different concentrations of
the CQDs, as a function of angular frequency ().
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Figure S6. Plot of In(Viscosity) vs 1/T, used in modelling the flow kinetics of PAM, CQDs
and PAM/CQDs.

References for Electronic Supplementary Information:

1. Zhu, D, et al., Dispersion behavior and thermal conductivity characteristics of Al203—H>0
nanofluids. Current Applied Physics, 2009. 9(1): p. 131-139.

2. Phuoc, T.X., M. Massoudi, and R.-H. Chen, Viscosity and thermal conductivity of
nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. International
Journal of Thermal Sciences, 2011. 50(1): p. 12-18.

3. Teng, T.-P., L. Lin, and C.-C. Yu, Preparation and characterization of carbon nanofluids
by using a revised water-assisted synthesis method. Journal of Nanomaterials, 2013. 2013:
p. 133.

4. Li, X., D. Zhu, and X. Wang, Evaluation on dispersion behavior of the aqueous copper
nano-suspensions. Journal of colloid and interface science, 2007. 310(2): p. 456-463.



