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Abstract: A novel nonlinear current-limiting controller for three-phase grid-tied droop-controlled

inverters that is capable of offering voltage support during balanced and unbalanced grid voltage

drops is proposed in this paper. The proposed controller introduces a unified structure under

both normal and abnormal grid conditions operating as a droop controller or following the recent

fault-ride-through requirement to provide voltage support. In the case of unbalanced faults,

the inverter can further inject or absorb the required negative sequence real and reactive power

to eliminate the negative sequence voltage at the point of common coupling (PCC) whilst ensuring at

all times boundedness for the grid current. To accomplish this task, a novel and easily implementable

method for dividing the available current into the two sequences (positive and negative) is proposed,

suitably adapting the proposed controller parameters. Furthermore, nonlinear input-to-state stability

theory is used to guarantee that the total grid current remains limited below its given maximum value

under both normal and abnormal grid conditions. Asymptotic stability for any equilibrium point

of the closed-loop system in the bounded operating range is also analytically proven for first time

using interconnected-systems stability analysis irrespective of the system parameters. The proposed

control concept is verified using an OPAL-RT real-time digital simulation system for a three-phase

inverter connected to the grid.

Keywords: nonlinear control; droop control; voltage support concept; three-phase inverter;

current-limiting control; grid faults; stability analysis

1. Introduction

In the recent years, the smart inverter concept has attracted a lot of attention since its adaptability

and plug and play properties enable the seamless integration of distributed energy resources (DERs)

into the next generation smart grid [1]. In order to implement these features whilst ensuring a stable

and reliable power system, the design of advanced control techniques for the inverter-interfaced DERs

is of major significance.

Among the various control approaches for the inverter-interfaced DERs connected to the main

grid, “droop control” represents the most widely used method since it provides support of the grid

voltage and frequency and can be also used to achieve power sharing between several DERs [2].

However, the droop control approach introduces nonlinear dynamics due to the real and reactive

power calculation and thus closed-loop system stability becomes a challenging task. To improve

the stability of the system, a virtual impedance or resistance is usually considered in the control

design [3,4] while small-signal modeling combined with root-locus analysis is usually employed to

obtain theoretical stability results for the closed-loop system [5]. Nevertheless, the closed-loop system
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stability analysis of droop-controlled inverters without assuming knowledge of the grid and inverter

parameters still represents a challenging problem for control and power system researchers.

Droop control and system stability are often analyzed in the literature under normal grid

conditions. When sudden grid voltage drops occur, the raised overcurrents may harm the DERs or

lead to instant tripping of the inverters. However, the tripping scenario is against the recent fault-ride-

through (FRT) requirement that demands from the DERs to support the faulty grids [5–8]. Hence,

current-limiting techniques should be embedded in the control design of every inverter-interfaced

DER to allow maximum power injection and avoid undesired tripping [9–11]. In voltage-controlled

inverters, saturated integrators in the inner control loops are usually employed to accomplish the

desired current limitation; however these units may suffer from integrator wind-up and eventually

lead to instability [10,12]. Other control techniques consider a switching to a different current-limiting

controller under abnormal grid conditions. Nevertheless, such a switching operation can still result in

integrator wind-up or force the controller to latch-up [13]. Since the virtual impedance or resistance

concept offers a promising solution to overcome these instability issues and achieve a current limitation

property [12,14], in [15,16] a current-limiting droop controller has been presented for single-phase and

three-phase inverters, respectively, where no switching actions or saturated integrators are used for

the current limitation.

Under balanced fault conditions, the limitation of the total current and the maximum power

injection for supporting the grid are the two main tasks of the inverter. However, when unbalanced

faults appear at the grid, the selection of the appropriate strategy to optimally provide grid support is

a complicated problem [17,18]. Significant amount of research has addressed the inverter response

through current controllers that inject both positive and negative sequence currents, in order to

provide voltage support in terms of positive sequence voltage support and negative sequence

voltage elimination [19,20]. The voltage support concept is thoroughly presented in [20], where

current-controlled inverters are reviewed to employ symmetric sequence components and reduce

the voltage unbalance factor (VUF). The way current limitation is achieved under unbalanced

grid conditions still represents a challenging task, especially when droop controlled inverters are

considered, since their task is to regulate the grid voltage and frequency. The authors in [6,21] have

implemented controllers that ensure a balanced current provision under voltage sags. As explained

in [6], this enhances the fault-ride-through capability in terms of injecting only positive sequence

powers/current that comply with the FRT requirement, while current limitation at the steady-state

is achieved through the controller reference powers. However these approaches do not deal with

negative sequence voltage mitigation. In [5], a negative sequence droop controller is presented which

manages to mitigate the voltage unbalance at the point of common coupling (PCC) under voltage

drops. Nevertheless, current limitation is not considered in this control design; instead, saturation

units are used in the negative sequence reference power generation unit. A current-limiting scheme

in both sequences for voltage controllers is presented in [22,23] for microgrid and grid-connected

applications respectively, where the novel theory from [24] is introduced and employed. However,

the current limitation is performed through saturation units that can lead to instability, while the droop

control concept is not considered in the control design.

In this paper, a novel current-limiting controller for three-phase grid-tied droop-controlled

inverters is proposed. The main novelty of this paper is that a unified control structure is proposed

that achieves: (i) voltage and frequency support (droop control) under normal grid conditions and

compliance with the “voltage support concept” for balanced and unbalanced faulty grid conditions,

with an inherent current limitation; (ii) a non-dynamic function for dividing the total current into the

two sequences according to the grid conditions, during unbalanced grid faults and (iii) a rigorous

stability analysis for the closed-loop system, regardless of the system parameters. According to the

authors knowledge, this is the first time that the above properties are guaranteed in a unified control

structure without switching to a different control scheme under faults. Compared to the current

controllers that limit the inverter current on both sequences by limiting their reference values [11,18],
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or to the methods employing saturation units which can lead to instability under faults or power step

changes, as showcased in [10,12,13], here a droop controller is proposed and grid current boundedness

is guaranteed from the input-to-state stability (ISS) property of the closed-loop system. Furthermore,

instead of using root-locus analysis to test the closed-loop system stability [5], asymptotic stability of

any equilibrium point of the closed-loop system in the bounded operating range is proven without

assuming knowledge of the system parameters. Extended real-time simulation results are provided in

order to validate the performance of the proposed control approach.

2. System Modeling and Problem Formulation

2.1. Power System under Consideration

The system under consideration consists of a three-phase inverter connected to the grid through

an LCL filter and a line, as depicted in Figure 1. The capacitors of the filter are denoted as C, while

the inductors are denoted as L and Lg with their parasitic resistances being r and rg, respectively.

The line-to-line inverter voltage between phases a and b is given as viab, while via represents the

phase voltage of the inverter. The capacitor voltage is denoted as vca while the PCC voltage is va

with va =
√

2V cos ωgt, where V is the RMS PCC voltage and ωg is the angular PCC frequency.

The grid voltage is denoted as vga and is considered as unknown in this paper. The inverter and grid

side currents are ia and iga, respectively. When considering a balanced system, the above voltage

and current quantities match with the positive sequence components. However, in the presence of

unbalanced grid conditions, both positive and negative sequence components appear, while zero

sequence components can be neglected when considering a three-phase three-wire system. In order to

obtain the dynamic model of the system in both sequences, the widely used synchronous reference

framework (SRF) theory is considered together with the delay signal cancellation (DSC) sequence

extraction method [25,26], as explained in the analysis that follows.

+
-

Lr
 Inverter

+

-
vca

Lgrg iga

C

r

r

L

L

rg

rg
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Lg

ia

dcV
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Figure 1. Three-phase inverter connected to the grid through an LCL filter.

2.2. Dynamic Modeling in the SRF Using DSC Method

In this paper the clockwise SRF transformation is considered. In order to align phase a to the α

axis, θa can be selected as 0◦ in the generic αβ transformation presented in [27]

Tαβ =
2

3




cosθa cos(θa − 120) cos(θa + 120)

sinθa sin(θa − 120) sin(θa + 120)

0.5 0.5 0.5


 .
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Following to the Tαβ transformation, the sequential transformation for the clockwise SRF

takes the form:

T+− =
1

2




1 0 0 0 1 0

0 1 0 −1 0 0

0 0 1 0 0 0

1 0 0 0 −1 0

0 1 0 1 0 0

0 0 0 0 0 1




.

The matrix T+− occurs from the DSC method which is preferred in this paper because it

is faster compared to the methods using low-pass filters [5]. Note that this matrix is different

when anti-clockwise SRF is employed while for details on obtaining this matrix and a comparison

with the low pass filtering method, the reader is referred to [28]. T+− is then followed by the

rotating transformation

T+−
dq =




cosθ+−
g −sinθ+−

g 0

sinθ+−
g cosθ+−

g 0

0 0 1


 ,

where θ+g = ωgt for the positive sequence and θ−g = −ωgt for the negative sequence. Hence,

considering T(t) = T̃dqT+−T̃αβ with T̃αβ =

[
Tαβ 03x3

03x3 Tαβ

]
and T̃dq =

[
T+

dq 03x3

03x3 T−
dq

]
, then the

complete transformation can be described for a cosinusoidal three-phase voltage variable vabc

from the equation




v+d
v+q
v+0
v−d
v−q
v−0




= T(t)




va(t)

vb(t)

vc(t)

va(t − T)

vb(t − T)

vc(t − T)




=




√
2

3 (Va + Vb + Vc)

0
1
6 (va (t) + vb (t) + vc (t))√

2
3 (Va − 0.5Vb − 0.5Vc)

1√
6
(Vb − Vc)

1
6 (va (t − T) + vb (t − T) + vc (t − T))




, (1)

where T = 1
4 f and f =

ωg

2π . By applying the above transformation to the three-phase current and

voltage quantities of the system, the SRF-based dynamic equations of the three-phase grid-tied inverter

are obtained as

L
di+−

d

dt
= v+−

id − v+−
cd − ri+−

d ∓ ωgLi+−
q (2)

L
di+−

q

dt
= v+−

iq − v+−
cq − ri+−

q ± ωgLi+−
d (3)

Lg

di+−
gd

dt
= v+−

cd − v+−
d − rgi+−

gd ∓ ωgLgi+−
gq (4)

Lg

di+−
gq

dt
= v+−

cq − v+−
q − rgi+−

gq ± ωgLgi+−
gd (5)

C
dv+−

cd

dt
= i+−

d − i+−
gd ∓ ωgCv+−

cq (6)

C
dv+−

cq

dt
= i+−

q − i+−
gq ± ωgCv+−

cd , (7)

where v+−
id and v+−

iq are the positive and negative sequence dq-axis components of the inverter voltage

and represent the control inputs of the system. For the ± and ∓ signs that appear in the coupling

terms in Equations (2)–(7), the top operator corresponds to the positive sequence and the bottom
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one to the negative sequence. The instantaneous real and reactive power injected to the grid can be

calculated from

p = P+ + P− + p̃, q = Q+ + Q− + q̃,

where

P+ =
3

2
v+d i+gd, P− =

3

2
(v−d i−gd + v−q i−gq) (8)

Q+ =
3

2
v+d i+gq, Q− =

3

2
(v−d i−gq − v−q i−gd) (9)

since v+q is always zero from Equation (1) while p̃, q̃ are oscillation terms with zero average value [5,6,9].

The VUF can be defined now at the PCC as

VUF =
V−

V+
=

√
v−2

d + v−2
q

√
v+2

d + v+2
q

while VUFgrid is equivalently derived for the grid side [29,30].

2.3. Problem Formulation

The main goal in this paper is to design a controller that provides support to the grid, under

both normal conditions (droop control concept) and faulty conditions (voltage support concept) while

boundedness should be proven for the grid current at all times, even during transients. A novel

control concept was recently proposed in [15], where droop control is considered in order to mimic the

dynamic response of synchronous generators and support the grid voltage and frequency regulation.

Furthermore, an inherent current limitation is achieved at all times without using any saturation

units but based on the ISS property of the closed-loop system. However, apart from the desired

current limitation, according to the voltage support concept, a grid-connected inverter should have

support capability when faults occur at the grid in terms of positive sequence voltage increase and

negative sequence voltage elimination, aiming to restore the voltage to its pre-fault conditions [18,20].

Since controlling the negative sequence powers is inevitable to mitigate the negative sequence voltage

at the PCC under unbalanced faults, a current limitation should be also applied at the negative

sequence current while a more sophisticated algorithm is required to optimally allocate the maximum

current of each sequence. To address the stated problem, a new droop control structure for three-phase

inverters is proposed in the sequel to guarantee a limit for the total grid current and closed-loop

asymptotic stability while maximizing the voltage support under both balanced and unbalanced faults.

3. The Proposed Controller

The proposed controller consists of two inner-loop controllers, i.e. current and voltage control,

designed in the αβ frame and two novel outer-loop controllers in the SRF (in the positive and

negative sequence), which include the droop control concept and inherently limit the grid current

in both sequences.

3.1. Inner-Loop Controllers

The current controller of the inner control loop takes the form

viα = vcα +

(
kPCC + kRCC

s

s2 + ω2
g

)
(i

re f
α − iα) (10)

viβ = vcβ +

(
kPCC + kRCC

s

s2 + ω2
g

)
(i

re f
β − iβ) (11)
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where PR controllers are applied to regulate iα to i
re f
α and iβ to i

re f
β . Similarly, the voltage controller,

from which i
re f
α and i

re f
β are obtained, is described through the equations

i
re f
α = igα +

(
kPVC + kRVC

s

s2 + ω2
g

)
(v

re f
cα − vcα) (12)

i
re f
β = igβ +

(
kPVC + kRVC

s

s2 + ω2
g

)
(v

re f
cβ − vcβ) (13)

where the reference values v
re f
cα and v

re f
cβ are defined from the values v

re f+
cd , v

re f−
cd and v

re f+
cq , v

re f−
cq

(generated by the positive and negative sequence outer-loop controllers) transformed to αβ . Note that

as in typical multi-loop controller applications, the PR controller gains can be suitably selected such

that the current controller settles much faster than the voltage controller which settles much faster

than the outer-loop controllers. Thus, for the outer-loop controllers design, which operate in a slower

time scale, it is reasonable to assume that vcα and vcβ quickly track v
re f
cα and v

re f
cβ . This is a common

assumption for the inner-loop controllers used in DERs applications and further analysis can be

found in [26].

3.2. Positive Sequence Current-Limiting Droop Control

The positive sequence outer-loop controller consists of a droop-based power controller to support

the grid. Since apart from the droop operation, a grid current limitation should be embedded through

the power controller, inspired by [15], a virtual resistance should be introduced through the control

design. Furthermore, to realize current limitation, the controller states should be bounded in a range

set by the operator. In order to avoid the possible instability issues that may occur when using

saturation units, for the boundedness of the controller states, the BIC structure from [31] is adopted

here. Following the introduction of the inner-loop controller in the previous subsection, the power

controller will be directly applied to the capacitor voltage of the LCL filter through controlling the

reference capacitor voltage values v
re f+
cd and v

re f+
cq . The proposed controller is described by the

following equations

v
re f+
cd = v+d + E+

d − r+v i+gd + ωgLgi+gq (14)

v
re f+
cq = v+q + E+

q − r+v i+gq − ωgLgi+gd (15)

where r+v is a constant virtual resistance and E+
d , E+

q are virtual voltages applied to each axis which

change according to the expressions

Ė+
d = cpd f (P+)

(
E+

dq

)2
− kwe

( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
− 1

)
E+

d (16)

Ė+
dq = −

cpdE+
d E+

dq
(
E+

max

)2
f (P+) − kwe

( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
− 1

)
E+

dq

Ė+
q = cpqg(Q+)

(
E+

qq

)2
− kwe




(
E+

q

)2

(
E+

max

)2
+
(

E+
qq

)2
− 1


 E+

q (17)

Ė+
qq = −

cpqE+
q E+

qq
(
E+

max

)2
g(Q+) − kwe




(
E+

q

)2

(
E+

max

)2
+
(

E+
qq

)2
− 1


 E+

qq
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where cpd, cpq, kwe, E+
max are positive constants and

f (P+) = n(P+
set −P+) + E+

rms − V+ (18)

g(Q+) = m(Q+
set −Q+)− ω∗ + ωg (19)

where E+
rms is the RMS nominal voltage in the positive sequence, n, m are the droop coefficients,

while the powers are being measured from P+ =
3v+d E+

d

2r+v
and Q+ =

3v+d E+
q

2r+v
by using the steady-state

current values (this will be further explained in Section 3.4). Hence, at the steady-state P+ = P+

and Q+ = Q+, thus achieving the desired droop control operation, while the expressions of P+ and

Q+ are used to facilitate the stability analysis, as explained in the sequel. The positive sequence

reference real and reactive power are denoted as P+
set and Q+

set respectively. It should be highlighted

that due to the virtual resistance r+v introduced by the proposed controller, the P ∼ V and Q ∼ −ω

droop expressions are adopted here. Through the functions (18) and (19), the PQ-set and PQ-droop

control modes are inherited in the control system. In these two control modes, the inverter either

regulates the real and reactive power to their reference values P+
set, Q+

set, when the terms E+
rms − V+ and

−ω∗ + ωg are removed from (18) and (19), respectively, or supports the grid voltage and frequency

regulation through droop control. For the dynamics of the virtual voltages E+
d and E+

q in Equations (14)

and (15), the bounded integral controller (BIC), proposed in [31], is adopted in order to guarantee

the boundedness of E+
d and E+

q without using any saturated integrators that could drive the system

to instability. It is noteworthy that in this paper the terms −kwe

(
(E+

d )
2

(E+
max)

2 +
(

E+
dq

)2
− 1

)
E+

d and

−kwe

(
(E+

q )
2

(E+
max)

2 +
(

E+
qq

)2
− 1

)
E+

q have been added in (16) and (17) to guarantee attractiveness of the

controller states to a desired ellipse on the phase plane. To further explain this, consider the lower

bounded function

W =
1

4

( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
− 1

)2

for the system in Equation (16). The time derivative of W takes the form

Ẇ =
1

2

( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
− 1

)
 2E+

d Ė+
d(

E+
max

)2 + 2E+
dqĖ+

dq




which by substituting Ė+
d and Ė+

dq from Equation (16), becomes

Ẇ = −kwe

( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
− 1

)2( (
E+

d

)2

(
E+

max

)2
+
(

E+
dq

)2
)

≤ 0. (20)

Furthermore, one can easily show that Ẅ is bounded. Hence, according to the

“Lyapunov-Like Lemma” (Lemma 4.3 in [32]), Ẇ → 0 as t → ∞. It is clear from (20) that Ẇ = 0

holds at the set E =

{
E+

d , E+
dq ∈ R :

(E+
d )

2

(E+
max)

2 +
(

E+
dq

)2
= 1

}
and at the origin. However, regarding the

origin, where E+
d = 0 and E+

dq = 0, it can be easily proven that it is an unstable equilibrium point, from

Theorem 4.4 in [32], by considering the continuously differentiable function W̄ =
(E+

d )
2

(E+
max)

2 +
(

E+
dq

)2
.

Thus, starting from any initial conditions E+
d0 and E+

dq0 inside or on the ellipse E, except from the

origin, the states E+
d and E+

dq will be quickly attracted on E and remain on the curve thereafter ensuring

that E+
d ∈ [−E+

max, E+
max] , ∀t ≥ 0. Note that the positive parameter E+

max represents the horizontal

radius of the ellipse E and when it varies, it becomes clear from (20), that E+
d and E+

dq will quickly



Energies 2019, 12, 997 8 of 20

converge to a new ellipse. The larger the kwe, the faster the convergence. This enables an adaptation

of the upper and lower bounds of E+
d . A similar analysis holds for E+

q and E+
qq guaranteeing that

E+
q ∈ [−E+

max, E+
max] , ∀t ≥ 0.

3.3. Negative Sequence Current-Limiting Control

The proposed current-limiting controller in the negative sequence is designed in a similar form

and aims at regulating the negative sequence grid current. Hence it can be obtained as follows

v
re f−
cd = v−d + E−

d − r−v i−gd − ωgLgi−gq (21)

v
re f−
cq = v−q + E−

q − r−v i−gq + ωgLgi−gd (22)

where similarly to the positive sequence controller, r−v is a constant virtual resistance and E−
d , E−

q are

virtual voltages applied to each axis which change according to the expressions

Ė−
d = cnd

(
i
re f−
gd −

E−
d

r−v

)(
E−

dq

)2
− kwe

( (
E−

d

)2

(
E−

max

)2
+
(

E−
dq

)2
− 1

)
E−

d (23)

Ė−
dq = −

cndE−
d E−

dq
(
E−

max

)2

(
i
re f−
gd −

E−
d

r−v

)
− kwe

( (
E−

d

)2

(
E−

max

)2
+
(

E−
dq

)2
− 1

)
E−

dq

Ė−
q = cnq

(
i
re f−
gq −

E−
q

r−v

)(
E−

qq

)2
−kwe




(
E−

q

)2

(
E−

max

)2
+
(

E−
qq

)2
− 1


E−

q (24)

Ė−
qq = −

cnqE−
q E−

qq
(
E−

max

)2

(
i
re f−
gq −

E−
q

r−v

)
− kwe




(
E−

q

)2

(
E−

max

)2
+
(

E−
qq

)2
− 1


 E−

qq

where i
re f−
gd =

2(P−
setv

−
d −Q−

setv
−
q )

3(v−2
d +v−2

q )
and i

re f−
gq =

2(P−
setv

−
q +Q−

setv
−
d )

3(v−2
d +v−2

q )
are the current reference values which,

can be realized by equating the P− and Q− formulas from Equations (8) and (9) with their reference

values P−
set and Q−

set, while cnd, cnq, E−
max are positive constants. As one can see, through the proposed

controller, the expressions
E−

d

r−v
and

E−
q

r−v
, which represent a good approximation of the steady-state

negative sequence current values (see Section 3.4) can be regulated to the reference values i
re f−
gd

and i
re f−
gq . Through this control structure, P− and Q− can track their reference values which can be

computed to optimally eliminate the negative sequence voltage. Following a similar analysis to the

positive sequence controller, it can be proven that E−
d , E−

q ∈ [−E−
max, E−

max], ∀t ≥ 0, which facilitates

the desired current limitation. The methodology for generating P−
set and Q−

set and the current-limiting

property are explained in the sequel.

3.4. Current-Limiting Property

By substituting the proposed controller (14), (15), (21) and (22) into the system dynamics (4)

and (5), the closed-loop system takes the form

Lg

di+−
gd

dt
= E+−

d −
(
r+−

v + rg

)
i+−
gd (25)

Lg

di+−
gq

dt
= E+−

q −
(
r+−

v + rg

)
i+−
gq . (26)

The Equations (25) and (26) are the derived dynamics of the grid current in both sequences. From

(25) and (26) the steady-state value of the grid currents can be approximated from i+−
gde ≈ E+−

d /r+−
v
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and i+−
gqe ≈ E+−

q /r+−
v considering that r+−

v ≫ rg, which can be achieved by appropriately selecting the

virtual resistances r+−
v , which represent controller parameters. This is why the previous expressions are

used in Equations (18), (19), (23) and (24). Taking into account that E+−
d , E+−

q ∈ [−E+−
max, E+−

max], ∀t ≥ 0,

let us consider the continuous differentiable function

V =
1

2
Lgi+−2

gd

for the system in Equation (25).

The time derivative of V becomes

V̇ = −
(
rg + r+−

v

) (
i+−
gd

)2
+ i+−

gd E+−
d ≤ −

(
rg + r+−

v

) (
i+−
gd

)2
+
∣∣∣i+−

gd

∣∣∣
∣∣E+−

d

∣∣ .

Thus,

V̇ ≤ −rg

(
i+−
gd

)2
, ∀
∣∣∣i+−

gd

∣∣∣ ≥
∣∣E+−

d

∣∣
r+−

v

which proves that system (25) is input-to-state stable (ISS) by considering E+−
d as the input. Since

it is proven that
∣∣E+−

d

∣∣ ≤ E+−
max, ∀t ≥ 0, then i+−

gd will be bounded for all t ≥ 0. More precisely,

it will hold that ∣∣∣i+−
gd

∣∣∣ ≤ E+−
max

r+−
v

, ∀t ≥ 0,

with the condition that initially
∣∣∣i+−

gd (0)
∣∣∣ ≤ E+−

max

r+−
v

. This holds true because the set

Ω =
{

i+−
gd ∈ R,

∣∣∣i+−
gd

∣∣∣ ≤ E+−
max

r+−
v

}
is invariant. Hence, if E+

max and E−
max are selected as E+

max =
√

2r+v Imax+
grms

and E−
max = r−v Imax−

grms , then
∣∣∣i+gd

∣∣∣ ≤
√

2Imax+
grms and

∣∣∣i−gd

∣∣∣ ≤ Imax−
grms . Since the same analysis and same result

holds for the q axis current as well, it is concluded that

I+grms =

√(
i+gd

)2
+(i+gq)

2

√
2

≤
√

2Imax+
grms

I−grms =

√(
i−gd

)2
+(i−gq)

2

√
2

≤ Imax−
grms .

The reason
√

2 is used in E+
max and the way Imax+

grms and Imax−
grms are selected online, are further

explained in Section 4.2.

4. Voltage Support Concept-Based Operation under Grid Faults

4.1. Fault-Ride-Through Operation

Fault-ride-through guidelines have been recently proposed in order to standardize the way

DERs should provide support under grid faults. In particular, during grid voltage drops, DERs

should provide voltage support through reactive power injection instead of getting disconnected

due to tripping of the inverter. In a wider manner, the most common support technique is the

“voltage support concept” where maximum available power is injected to the grid in order to increase

the voltage level at the PCC [20]. To understand this, consider the voltage difference between the

PCC and the grid ∆V+ = V+ − V+
g and assuming a resistive-inductive line with resistance rl and

inductance Ll , let us use the approximation of this voltage difference as it is commonly presented

in the literature [33,34]

∆V+ =
P+rl + Q+xLl

3V+
. (27)

Interested readers can obtain this approximation by using the equations that relate the magnitudes of

the PCC and grid voltages according to the current real and reactive components, as shown in [18,35,36].
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Since power lines are most of the times considered as predominantly inductive, it can be

understood from Equation (27) that reactive power affects more drastically the PCC voltage and

thus, by injecting reactive power we can increase the PCC voltage level compared to the faulty grid

voltage. In case only resistive or only inductive impedance is considered between the PCC and the grid,

the relations between the amplitudes are simplified as presented in [20], thus requiring the injection of

only real or reactive power respectively to support PCC by increasing ∆V+. The most commonly used

FRT guidelines are those from the German grid code [7] which take the form:

I+grmsQ =





0, V+ ≥ 0.9E+
rms(

1 − V+

E+
rms

)
kImax+

grms , 0.5E+
rms < V+

< 0.9E+
rms

Imax+
grms , V+ ≤ 0.5E+

rms

(28)

where I+grmsQ is the reactive component of the positive sequence grid current and k is the

FRT gain (k ≥ 2) with
(

1 − V+

E+
rms

)
k ≤ 1. According to Equation (28), it is concluded that

P+
set =

√(
S+

max

)2 −
(
Q+

set

)2
and Q+

set =
(

1 − V+

E+
rms

)
kS+

max, where S+
max represents the amount

of apparent power assigned to the positive sequence controller during faults, in the case where

0.5E+
rms < V+

< 0.9E+
rms.

Regarding the negative sequence voltage (which is a crucial part of the voltage support concept

as well), according to the literature, it can be eliminated by increasing the negative sequence reactive

power and decreasing the negative sequence real power. This can be understood either from [18],

where equations that involve the magnitude of the PCC voltage are shown to explain the negative

sequence voltage elimination concept or from the phasor analysis in [5]. For the calculation of the

negative sequence reference powers during unbalanced grid faults, in this paper, a PI controller is

applied to generate Q−
set, i.e.,

Q−
set =

(
kPVU +

kIVU

s

) (
V− − E−

rms

)
(29)

while

P−
set = − rl

ωgLl
Q−

set, (30)

where E−
rms is a constant and kPVU , kIVU are the proportional and integral gains of the PI controller.

Note that Equation (30) represents a decoupling solution based on the line impedance parameters [5,37].

However, accurate knowledge of rl and Ll is not essential since an estimation of the term rl
Ll

is enough.

Through Equations (29) and (30), the required negative sequence reference powers to eliminate the

PCC negative sequence voltage are acquired. As it is obvious from (29) and (30), considering initially

a balanced system, as long as there is no negative sequence voltage at the PCC (balanced system),

Q−
set = P−

set = 0 and thus the inverter injects only positive sequence power. Note that a superiority of

the proposed controller compared to existing approaches, is that when the capacity is not enough to

track P−
set and Q−

set, priority is given to the current limitation property proven in Section 3.4, without

switching to different control dynamics or suffering from integrator wind-up issues.

It should be highlighted that methodologies that take into account the line impedance have been

also applied for positive sequence voltage support, see for example [18,36]. In this case, decoupling

based on the line impedance parameters is achieved in the positive sequence as well and thus,

Equation (27) does not represent an assumption since it expresses accurately the voltage difference.

However, since the FRT is an essential standard in most of the grid codes nowadays, it is adopted for

the positive sequence voltage support in this paper, as in [5]. Note though that if required, P+
set and Q+

set

formulas can be easily modified and be determined according to rl and Ll instead of the FRT guidelines.
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4.2. Online Adaptation of Imax+
grms and Imax−

grms

In this paper, the grid current limitation is inherently applied through the outer-loop controllers

and not through saturated integrators in the inner loop. Thus, a proper selection of the maximum

available current in each sequence needs to take place by proposing an algorithm that defines the

values Imax+
grms and Imax−

grms . To realize the current allocation, priority is given to the positive sequence

voltage regulation by means of supporting the positive sequene capacitor voltage V+
c so that when

V+
< 0.9E+

rms, we can achieve V+
c ≥ 0.9E+

rms or V+
c −V+ ≥ 0.9E+

rms −V+ which through Equation (27)

can be written as
P+rg + Q+xLg

3V+
c

≥ 0.9E+
rms − V+, (31)

if the voltage difference is selected as V+
c −V+. This methodology is employed since in contrary to [24],

the aim here is to provide a non dynamic method of adjusting the positive and negative sequence

maximum currents and furthermore, V+
g is considered unknown. Otherwise the positive sequence

voltage support could be applied at the PCC voltage. By recalling the P+
set and Q+

set formulas derived

from (28), expression (31) results to

Imax+
grms ≥ E+

rms (ρ − 0.1)√
1 − k2ρ2rg + kρωgLg

.

Thus, we can select

Imax+
grms =

E+
rms (ρ − 0.1)√

1 − k2ρ2rg + kρωgLg

(32)

where ρ is the p.u. voltage drop of the RMS voltage at the PCC. Note that Equation (32) is valid only

when 0.5 ≥ ρ ≥ 0.1 (from Equation (28)) and V−
> E−

rms since in the absence of negative sequence

voltage, all the available current is assigned to the positive sequence. Imax+
grms is then passed through

a saturator that ensures that Imax+
grms ∈

[
0, Imax

grms

]
. Opposed to conventional current-limiting control

schemes that apply a saturator on the current dynamics, here the function being saturated is not

dynamic and thus does not suffer from integrator wind-up. Then, according to the theory presented

in [22,23], which shows that the total current of any phase has a maximum value Imax
grms ≤ I+grms + I−grms

even if unbalanced current is injected to the grid, Imax−
grms can be set as

Imax−
grms = Imax

grms − Imax+
grms . (33)

When current allocation has taken place, the value S+
max can be easily selected as 3V+ Imax+

grms and the

positive sequence reference powers can be calculated according to the FRT guidelines in Equation (28),

while when Imax+
grms = Imax

grms from Equation (32) or due to the saturator, then S+
max = Smax and Imax−

grms = 0.

Since the maximum current for each sequence is now defined according to the voltage drop, the

proposed controller dynamics in (16), (17), (23) and (24) can be adapted online through the expressions

E+
max =

√
2r+v Imax+

grms , E−
max = r−v Imax−

grms . Opposed to the work presented in [15,38], here the proposed

design enables the adaptation of the controller parameters E+
max and E−

max, and the controller states

are attracted on any ellipse E with varying horizontal radius (E+
max or E−

max) as analytically proven in

Section 3.2. The positive sequence maximum current is set as the amplitude and not the RMS value

in order to allow P, Q ∈ [0, S+
max] for the FRT. However, since it holds that P+

set =
√(

S+
max

)2 −
(
Q+

set

)2
,

the maximum RMS current will never be violated at the steady-state, while during transients, through

the input-to-state stability property of the closed-loop current dynamics, it is proven that it remains

below the value
√

2Imax
grms = 1.4Imax

grms (worst-case scenario), which commercial inverters can handle [39].

Finally, during normal grid conditions, Imax+
grms can be simply selected as Imax

grms/
√

2 to ensure current

limitation under the value Imax
grms at all times. The implementation of the proposed control approach is
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depicted in Figure 2, where the control part generating the positive and negative sequence reference

powers and the maximum currents is denoted as the FRT block, which is shown in Figure 3.

Q~-Ȧ 
droop 

ref
cqv 

ref
cdv P~V 

droop 
RMS

ĂɴͬĂďĐ
Θ

PWM 
ŐĞŶĞƌĂƚŝŽŶ

ref
cqv 

ref
cdv 

V 

max
grmsI 

max
grmsI 

-1

ref
cv 

refi

+
E+

q, E+
qq dynamics

q q v gq g g gdv E r i L i      

+
E+

d, E+
dq dynamics

d d v gd g g gqv E r i L i      

+
E-

q, E-
qq dynamics

q q v gq g g gdv E r i L i      

+
E-

d, E-
dq dynamics

d d v gd g g gqv E r i L i      

abcV

ref
gdi 

ref
gqi 

,dq gdqv i 

 
 2 2

2

3
set q set d

d q

P v Q v

v v

   

 





 
 2 2

2
3

set d set q

d q

P v Q v

v v

   

 





setP

setQ

setP

setQ


setP
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Figure 2. Implementation diagram of the proposed controller.

Eq. (32)

V 
FRT (Eq. (28))

rmsV E  PI 
setQ

setP

setQ

max
grmsI 

setP

1
rms

V
E





max max
grms grmsI I  max

grmsI 

max
grmsI

0


Eq. (30)

Figure 3. Fault-ride-through (FRT) Block.

5. Stability Analysis

After applying the proposed controller into the three-phase inverter system, the closed-loop

dynamics are given by (16), (17), (23)–(26). The state vector of the closed-loop system, for

both sequences, takes the form x+− =
[(

x+−
1

)T (
x+−

2

)T
]T

, where x+−
1 =

[
i+−
gd i+−

gq

]T
,

x+−
2 =

[
E+−

d E+−
dq E+−

q E+−
qq

]T
. Consider now any steady-state equilibrium point x+−

e =
[(

x+−
1e

)T (
x+−

2e

)T
]T

=
[
i+−
gde i+−

gqe E+−
de E+−

dqe E+−
qe E+−

qqe

]T
with E+−

de , E+−
qe ∈ (−E+−

max, E+−
max) , i.e.,

E+−
dqe , E+−

qqe ∈ (0, 1] , where the voltage and frequency at the PCC are assumed constant (not necessarily

equal to their rated values). By defining x̃+−
1 = x+−

1 − x+−
1e and x̃+−

2 = x+−
2 − x+−

2e , then the

closed-loop dynamics (16), (17), (23)–(26) can be written in the following interconnected system form

˙̃x+−
1 = f1

(
x̃+−

1 , x̃+−
2

)
(34)

˙̃x+−
2 = f2

(
x̃+−

2

)
, (35)

where the equilibrium has been shifted at the origin. According to Lemma 5.6 in [40], if the system (34)

with the x̃+−
2 as input, is locally input-to-state stable and the origin of the system (35) is asymptotically

stable, then the origin of the interconnected systems (34) and (35) is asymptotically stable.
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System (34) is linear and can be written from (25) and (26) as

[
˙̃i+−
gd
˙̃i+−
gq

]
=


 − rg+r+−

v
Lg

0

0 − rg+r+−
v

Lg



[

ĩ+−
gd

ĩ+−
gq

]
+




Ẽ+−
d
Lg

Ẽ+−
q

Lg


 .

Since the characteristic matrix of the grid current dynamics is diagonal with all elements being

negative, then the system (34) is bounded-input bounded state stable with respect to the input[
Ẽ+−

d
Lg

Ẽ+−
q

Lg

]T

, which means that (34) is ISS. Then, for the dynamics of the control systems (16), (17), (23)

and (24), the Jacobian matrix of (35) becomes

A+− =

[
A+−

1 02x2

02x2 A+−
2

]
,

where

A+−
1 =




−α+−
(

E+−
dqe

)2
− 2kwe

(E+−
de )

2

(E+−
max)

2 − 2kweE+−
dqe E+−

de

α+−E+−
de E+−

dqe −2kweE+−
de E+−

dqe

(E+−
max)

2 − 2kwe

(
E+−

dqe

)2




A+−
2 =




−β+−
(

E+−
qqe

)2
− 2kwe

(E+−
qe )

2

(E+−
max)

2 − 2kweE+−
qqe E+−

qe

β+−E+−
qe E+−

qqe −2kweE+−
qe E+−

qqe

(E+−
max)

2 − 2kwe

(
E+−

qqe

)2




with α+ =
cpd3nv+d

2r+v
, β+ =

cpq3mv+d
2r+v

, α− = cnd

r−v
and β− =

cnq

r−v
. Since A+− is a block diagonal matrix,

we can investigate the system matrices A+−
1 and A+−

2 independently. The characteristic polynomials

of these two matrices take the form

λ2 +

(
2kwe + α+−

(
E+−

dqe

)2
)

λ + 2kwe

(
E+−

dqe

)4
α+− +

2kwe

(
E+−

de

)2
(

E+−
dqe

)2
α+−

(
E+−

max

)2
= 0

λ2 +

(
2kwe + β+−

(
E+−

qqe

)2
)

λ + 2kwe

(
E+−

qqe

)4
β+− +

2kwe

(
E+−

qe

)2 (
E+−

qqe

)2
β+−

(
E+−

max

)2
= 0.

Hence, the condition to guarantee asymptotic stability for any equilibrium point x+−
e of the

closed-loop system in the bounded operating range E+−
de , E+−

qe ∈ (−E+−
max, E+−

max) , is

α+, α−, β+, β−
> 0,

which is always true regardless of the voltage level. Opposed to the majority of the conventional

approaches that use root locus analysis and guarantee stability of a given equilibrium point under the

specific parameters of the inverter and the grid, here the proposed controller guarantees asymptotic

stability of any equilibrium point x+−
e in the bounded operating range. In addition, an inherent

current-limiting property and an enhanced operation under grid faults is achieved in a unified control

structure, which highlights the novelty of the proposed control scheme.

6. Validation through Real-Time Results

In order to validate the proposed control approach, a three-phase inverter connected to the grid,

as shown in Figure 1, and equipped with the controller proposed in this paper, is tested using an
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OPAL-RT OP4500 real-time digital simulator. The parameters of the controller and the power system

are given in Table 1. In the next subsections, the performance of the proposed controller will be

showcased under various normal and abnormal grid conditions.

Table 1. System and controller parameters.

Parameter Value Parameter Value

L, Lg 2.2 mH Zl 0.9 + 1.256j Ω

r, rg 0.5 Ω Vdc 400 V
C 1 µF Smax 3.3 KVA

E+
rms 110 V Imax

grms 10 A

E−
rms 0 V ω∗ 314.15 rad/s

ωg 314.03 rad/s kwe 1000
n 0.00333 m 0.0019
r+v 30 Ω r−v 10 Ω

cpd 780 cpq 3415

cnd 250 cnq 125
kPVU 2 kIVU 20
kPCC 0.2 kRCC 2
kPVC 1.5 kRVC 15

6.1. Balanced Operation

Firstly, the operation of the grid-connected inverter equipped with the proposed controller will

be tested under balanced grid conditions. The switch between the LCL filter and the PCC is initially

open, and then closes at t = 0.1 s, while at the same time the controller is enabled with the reference

values P+
set and Q+

set having the values of 600 W and 0 Var, respectively. The controller operates initially

in the PQ-set mode and regulates P+ and Q+ to their desired values, as shown in Figure 4. In the same

figure, V+
c and I+grms can be observed as well. At t = 1 s, Q+

set is changed to 50 Var and the reactive

power injection is accordingly modified while at t = 2 s, P+
set is set as 800 W. Since the PQ-set operation

is now verified, at t = 4 s and t = 5 s, the real and reactive power droop control modes are enabled

respectively. One can see that both the real and the reactive power drop since at that time, the grid

operates with a slightly higher value of RMS grid voltage compared to the nominal (110.4 V) and

a slightly lower than the nominal grid frequency (49.98 Hz). At t = 6 s, a balanced grid voltage drop of

0.4 p.u. is applied in order to test the operation under faulty grid conditions. At the initial transient,

it can be observed in Figure 4, that I+grms reaches the value of 11 A while it never violates the ultimate

bound of
√

2Imax
grms = 14 A.  

 

 

 

Igrms
+: [5 A/div] 

Vc
+: [50 V/div] 

Q+: [500 Var/div] 

P+: [500 Watt/div] 

Figure 4. Operation under balanced conditions with a 0.4 p.u. balanced voltage drop at 6 s.
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Following to the transient, the RMS value of the grid current is regulated to its maximum value of

10 A, as it has been analytically proven in this paper, while P+ and Q+are regulated according to the

FRT, thus achieving grid support and inverter protection simultaneously. When the fault is self-cleared

at t = 8 s, P+ and Q+ return smoothly to their original values according to the droop control.

6.2. Operation under Single-Phase Voltage Sag

In order to test the operation of the proposed controller under unbalanced faults, a single-phase

voltage sag is applied on vga, with its RMS value dropping by 0.65 p.u. which leads to V+
g ≈ 0.78 p.u.,

while the inverter is operating with droop control. As it can be observed in Figure 5, the current

allocation algorithm leads the RMS currents to the values I+grms = 6.75 A and I−grms = 3.15 A. It should

be noted that according to the proposed controller operation, the components I+grms and I−grms are

tracking their maximum values from Equations (32) and (33) during voltage drops (unless the desired

V− = E−
rms regulation has been achieved with less than the maximum negative sequence current).

Hence, the total current is regulated close to its maximum value Imax
grms but without exceeding it.

The primary objective of the proposed controller is achieved since as it is depicted in Figure 5, V+
c

is regulated to 0.9E+
rms. This verifies the proper selection of the value Imax+

grms which further leads to

the S+
max calculation, while the rest of the available inverter capacity is assigned to negative sequence

current controller so that V−, shown in Figure 5, is eliminated as much as possible. The real and

reactive power components injected to the grid according to Equation (28) and Equations (29) and (30)

are depicted in Figure 6 while, even if the proposed controller does not deal directly with the VUF but

aims to increase the positive sequence voltage and eliminate the negative sequence voltage, in this

certain scenario, it can be seen in Figure 7 that VUF at the PCC is eliminated by 7% when compared to

VUFgrid. At the steady-state, P−
set and Q−

set are not tracked since priority is given to the current-limiting

property. However, if greater capacity was available, such that V− = E−
rms, P− and Q− would be

regulated to their reference values. After 1.5 s, the fault is self-cleared and the positive sequence

components are driven to their initial values according to droop control while the negative sequence

components are driven to 0.

Note that during the clearing transient, the value I+grms + I−grms reaches the value 12 A for 10 ms,

however, it never exceeds its ultimate bound during transients set at 14 A, as proven in the theoretic

analysis presented in this paper.
 

 

 

 

Vc
+: [50 V/div] 

V-: [25 V/div] 

Igrms
+: [5 A/div] Igrms

-: [5 A/div] 

0.9Erms
+ 

Figure 5. Operation under single-phase voltage drop (Vga = 0.35 p.u.): Positive and negative sequence

RMS voltages and currents.
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P+: [1000 Watt/div] 

Q+: [1000 Var/div] 

P-: [100 Watt/div] 

Q-: [100 Var/div] 

Figure 6. Operation under single-phase voltage drop (Vga = 0.35 p.u.): Injected powers.

 

 

 

 

VUFgrid: [10% /div] 

VUF: [10% /div] 

Figure 7. Operation under single-phase voltage drop (Vga = 0.35 p.u.): Voltage unbalance factors.

6.3. Operation under Two-Phase Voltage Sag

To further demonstrate the operation of the proposed controller under unbalanced faults,

a two-phase voltage sag is now applied, with the RMS values of vga and vgc dropping so that

Vga = 0.73 p.u. and Vgc = 0.65 p.u. leading to V+
g ≈ 0.8 p.u., while the inverter is operated in

the droop control mode. As mentioned before, the maximum current assigned to the positive sequence

controller is tracked by the controller leading to I+grms = 6.1 A in order to optimize the support

operation and thus, V+
c is regulated to 0.9E+

rms, as shown in Figure 8. The the rest of the available

current, is assigned to the negative sequence current controller which leads to I−grms = 3.7 A thus,

managing to eliminate the negative sequence voltage, shown in Figure 8. Hence, the total current

never violates its maximum value Imax
grms = 10 A. The powers injected to the grid in both sequences

can be observed in Figure 9 while the VUF is eliminated by 7% compared to the VUFgrid, as depicted

in Figure 10. After 1.5 s, the fault is self-cleared and the positive sequence components are driven to

their initial values according to droop control while the negative sequence components are driven to

0. It is underlined that during the clearing transient, the addition I+grms + I−grms, reaches the value of

11.5 A for less than 10 ms without ever violating the ultimate bound for transient currents, set at 14 A.
 

 

 

 

Vc
+: [50 V/div] 

V-: [25 V/div] 

Igrms
+: [5 A/div] Igrms

-: [5 A/div] 

0.9Erms
+ 

Figure 8. Operation under two-phase voltage drop (Vga = 0.73 p.u. and Vgc = 0.65 p.u.): Positive and

negative sequence RMS voltages and currents.
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P+: [1000 Watt/div] 

Q+: [1000 Var/div] 

P-: [100 Watt/div] 

Q-: [100 Var/div] 

Figure 9. Operation under two-phase voltage drop (Vga = 0.73 p.u. and Vgc = 0.65 p.u.):

Injected powers.
 

 

 

 

VUFgrid: [5% /div] 

VUF: [5% /div] 

Figure 10. Operation under two-phase voltage drop (Vga = 0.73 p.u. and Vgc = 0.65 p.u.): Voltage

unbalance factors.

7. Conclusions

In this paper, a new control concept that offers an inherent current limitation at all times is

proposed for three-phase grid-tied droop-controlled inverters. The proposed controller complies with

the latest grid code requirements and apart from droop control, voltage support through maximum

power injection is achieved under both balanced and unbalanced grid faults. To accomplish this, two

novel outer-loop controllers are applied to both positive and negative sequence while boundedness

of the grid current is achieved during transients without the need of saturation units. A new way of

dividing the available current into the positive and negative sequence is proposed so that positive

sequence voltage is increased and the negative sequence voltage is eliminated. Asymptotic stability

of any equilibrium point of the closed-loop system within the bounded operating range is proven

without assuming knowledge of the system parameters. The proposed control approach is verified

through extensive real-time simulation results.

Future research will focus on the experimental validation of the proposed control approach and

the comparison with other techniques that aim to implement the voltage support concept under

balanced and unbalanced grid faults.
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Nomenclature

Tαβ abc to αβ transformation

T+− Sequential transformation

T+−
dq Rotating transformation for each sequence

ωg Angular PCC frequency

ω∗ Rated angular frequency

P+,Q+ Positive sequence real and reactive power

P−,Q− Negative sequence real and reactive power

V+ Positive sequene RMS PCC voltage

V− Negative sequence RMS PCC voltage

E+
rms Positive sequence rated RMS voltage

E−
rms Negative sequence rated RMS voltage

P+
set,Q

+
set Positive sequence real and reactive power reference values

P−
set,Q

−
set Negative sequence real and reactive power reference values

n, m Real and reactive power droop coefficients

Imax+
grms Positive sequence maximum RMS grid current

Imax−
grms Negative sequence maximum RMS grid current

rl Line resistance

xLl
Line reactance

ρ Grid voltage drop in p.u.

k FRT gain
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