

This is a repository copy of A comparison of viral microneutralization and haemagglutination inhibition assays as measures of seasonal inactivated influenza vaccine immunogenicity in the first year after reduced intensity conditioning, lymphocyte depleted allogeneic haematopoietic stem cell transplant.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/143664/

Version: Accepted Version

Article:

Miller, P.D.E., de Silva, T.I. orcid.org/0000-0002-6498-9212, Leonard, H. et al. (6 more authors) (2019) A comparison of viral microneutralization and haemagglutination inhibition assays as measures of seasonal inactivated influenza vaccine immunogenicity in the first year after reduced intensity conditioning, lymphocyte depleted allogeneic haematopoietic stem cell transplant. Vaccine, 37 (3). pp. 452-457. ISSN 0264-410X

https://doi.org/10.1016/j.vaccine.2018.11.061

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A comparison of viral microneutralization and haemagglutination inhibition assays
 as measures of seasonal inactivated influenza vaccine immunogenicity in the first
 year after reduced intensity conditioning, lymphocyte depleted allogeneic

4 haematopoietic stem cell transplant.

5 Miller PDE, de Silva TI, Leonard H, Anthias C, Hoschler K, Goddard K, Peggs K,

6 Madrigal A, Snowden JA.

7 Introduction

8 Respiratory viruses (RV) are identified in approximately 3.5% of haematopoietic stem 9 cell transplant (HSCT) recipients. Influenza A and B viruses account for 18-44% of RV 10 infections [1,2]. Patients transplanted during the influenza season are at highest risk of infection. Progression to pneumonia occurs more frequently in the early post-11 12 HSCT period and is associated with a 30-day mortality rate up to 28% [3,4]. Annual administration of a seasonal inactivated influenza vaccine (SIIV) is considered a 13 14 moderately effective strategy for prevention of infection and influenza-associated 15 hospital admission in the general population[5]; vaccine effectiveness ranging from 19-60% across all age groups has been estimated in the United States over the last 16 17 decade[6,7]. Vaccine efficacy of 65.4-80% has been reported in HSCT patients, although in small cohorts [8,9], and current guidelines for influenza vaccination of 18 19 HSCT recipients are largely based on immunogenicity studies. 20 Historically, the European Medicines Agency (EMA) Committee for Medicinal 21 Products for Human Use (CHMP) immunogenicity criteria for annual SIIV licensing 22 have focussed primarily on rates of seroconversion (defined as a fourfold increase in

23	antibody (Ab) titre from baseline) and seroprotection (an Ab titre \geq 40) detected by
24	serological haemagglutination inhibition (HAI) techniques[10]. Studies in HSCT
25	populations evaluating response to SIIV against CHMP criteria have reported minimal
26	immunogenicity when administered in the first 6 months post-HSCT and impaired
27	response up to at least 12 months post-HSCT[11–13]. So, although HSCT recipients in
28	the early post-HSCT are at high risk of influenza related morbidity and mortality,
29	especially if transplanted during the influenza season, current evidence is insufficient
30	to recommend SIIV administration before at least 4 to 6 months post-HSCT [14,15].
31	However, in practice a proportion of allogeneic HSCT centres in the United Kingdom
32	(UK) administer the influenza vaccine at earlier time points[16]. Current guidelines
33	do not recommend modification of vaccination schedules according to underlying
34	disease, conditioning intensity, graft manipulation or stem cell source.
35	A growing body of evidence argues that an HAI Ab titre \geq 40 may not be
36	seroprotective in population subgroups, and suggests that probability of protection
37	may be better considered along a continuum of titres rather than against this cut-off
38	value[17–19]. In 2016, the CHMP immunogenicity criteria were updated to reflect
39	this, and now a more diverse range of assessment methods of SIIV immune
40	responses including neutralizing Ab titres are recommended [20]. The virus
41	microneutralization (VMN) assay is a highly sensitive and specific method for
42	detecting influenza strain-specific, functional antibodies that inhibit virus entry or
43	block virus replication[21]. The VMN has higher sensitivity than HAI for the
44	detection of low-titre seroconversion particularly to influenza B[22,23] and 2009
45	pandemic H1N1 virus[24]. Ab titres detectable by VMN assay may confer clinical

46	protection against influenza virus, although titres have not yet been correlated with
47	clinical efficacy. To our knowledge, the VMN has not previously been used to
48	determine SIIV response in HSCT recipients.
49	The primary aim of this study was to assess, by HAI and VMN techniques, the
50	immunogenicity of SIIV administered within the first 12 months in a homogenous
51	cohort of reduced intensity conditioning (RIC) peripheral blood stem cell (PBSC) HSCT
52	recipients. The secondary aim was to determine whether in patients vaccinated at
53	less than 3 months, a response is detectable by VMN.
54	
55	
56	Materials and Methods
57	Participants
58	Participants were screened for study eligibility during routine outpatient clinic
59	appointments between October 2015 and February 2016. Eligible participants were
60	aged 16 or over, and recipients of reduced intensity conditioning (RIC) peripheral
61	blood stem cell (PBSC) alloHSCT within 0 and 12 months of transplant. All
62	participants were vaccinated in accordance with standards of care at their transplant
63	centre and were deemed suitable to receive the SIIV by their lead transplant
64	physician. Standard of care at one study centre was to vaccinate from 3 months
65	post-HSCT, while at the other, vaccination was offered at the beginning of the
66	influenza season regardless of time-point post-HSCT. All patients gave written

67	informed consent. The study was approved by the Health Research Authority
68	National Research Ethics Committee of the UK (Reference 15/YH/0394).
69	
70	Vaccination and Blood Samples
71	Patients received in the deltoid muscle, a single injection of a split virion, trivalent
72	2015-2016 northern hemisphere SIIV (Sanofi-Pasteur, Guildford, UK), containing
73	15μg haemagglutinin (HA) of each of A/California/7/2009(H1N1)pdm09,
74	A/Switzerland/9715293/2013(H3N2) and B/Phuket/3073/2013. Blood samples were
75	collected at recruitment prior to vaccination, and at approximately four weeks post-
76	vaccination. Serum samples were stored at -20°C until analysis.
77	
78	Viruses, erythrocytes and cell culture
79	For VMN assays, live, egg-grown influenza A/California/7/2009(H1N1)pdm09,

80 influenza A/Switzerland/9715293/2013(H3N2) and influenza B/Phuket/3073/2013

81 (Public Health England, London, UK) were used. HAI assays used the same live, egg-

82 grown influenza A viruses, but ether-treated influenza B virus (Public Health

83 England). A 0.5% solution of turkey erythrocytes in phosphate buffered saline (PBS)

84 (Gibco, Hemel Hempstead, UK) for A(H1N1)pmd09 and B(Phuket), or guinea-pig

85 erythrocytes, for A(H3N2), were used in HAI assays. All VMN assays used Madin-

86 Darby canine kidney (MDCK)(Public Health England, London, UK) cells cultured in

87 Earle's Minimum Essential Medium (MEM) with 4-(2-hydroxyethyl)-1-

88 piperazineethanesulfonic acid (HEPES) and L-Glutamine (Gibco), and supplemented

with 0.5mg/ml gentamycin, non-essential amino acids solution (Gibco) and 10% fetal
calf serum (FCS) (Gibco).

91

92 Haemagglutination Inhibition (HAI) and Viral Miconeutralisation (VMN) Assays

93 All assays were performed in the Public Health England (PHE) respiratory virus 94 reference laboratory. For each of A(H1N1)pdm09, A(H3N2) and B(Phuket), an HAI as previously described [25], and a 3-day VMN assay with modified cytopathic effect 95 96 (CPE) endpoint, were performed on paired pre- and post-vaccination serum samples. 97 In addition, for A(H1N1)pdm09 a 2-day VMN enzyme-linked immunosorbent (ELISA) 98 assay was performed. In brief, for the CPE-VMN, serum samples heat treated at 56°C for 30 minutes were diluted to 1:10 with PBS followed by serial doubling dilutions 99 across a 96-well u-bottom plate to a dilution of 1:5120. Live egg-grown virus solution 100 101 (Public Health England, London, UK) standardized to 100x50% tissue culture infective 102 dose/ml (TCID50) was added to each well containing serum, and incubated at 37°C in 5% humidified CO₂ atmosphere for 60 minutes. After incubation, confluent MDCK 103 cells in a 96-well culture plate were inoculated with serum-virus mixture, and viral 104 105 growth medium (VGM) consisting of serum-free, modified Eagle Medium (SF-106 MEM)(Gibco, Hemel Hempstead, UK), and 1µg/ml Tosyl-phenylalanyl-chloromethyl-107 ketone(TPCK) treated Trypsin(Sigma, Gillingham, UK) was added. Inoculated cell culture plates were incubated for either 2 hours (influenza A viruses) or 3 hours 108 (influenza B virus) at 37°C in 5% humidified CO₂ atmosphere. Virus-serum inoculum 109 was then aspirated, and each well rinsed twice with 200µl SF-MEM. one-hundred 110 111 and fifty microlitres VGM (1.0µg/ml for influenza A viruses, 1.5µg/ml for influenza B

112 virus) was added to wells inoculated with virus, and plates were incubated at 37C°C in 5% humidified CO₂ atmosphere (70 hours for influenza A viruses, 46 hours for 113 influenza B virus). Fifty microlitres of cell supernatant was transferred to 114 115 corresponding wells of a 96 well v-bottom plate and tested for influenza virus by HA 116 assay. Ab titres were recorded as the reciprocal of the highest dilution at which 117 agglutination was absent. For the A(H1N1)pdm09 ELISA-VMN a virus-serum mixture 118 was prepared as above and added to a 96-well culture plate. After incubation at 119 37°C in 5% humidified CO₂ atmosphere for 60 minutes, a 5x10⁵ cell/ml MDCK cell suspension was added to each well. Plates were then incubated for 16 hours at 120 121 37°C in 5% humidified CO₂ atmosphere. An ELISA was then performed as previously 122 described[26].

123

124 Statistical Analysis

125 Continuous variables are reported as median values with ranges. Categorical 126 variables are reported as frequencies and percentages. Immunological data is 127 summarised as pre- and post-vaccination geometric mean titres (GMT), and 128 geometric mean ratios (GMRs) of pre- and post-vaccination titres with 95% 129 confidence intervals. The distribution of Ab titre values was not Gaussian, so paired 130 results were compared with the Wilcoxon signed-rank test for non-parametric data. Correlation between GMT and GMRs, and continuous explanatory variables were 131 explored with Spearman's Rank Correlation; for categorical explanatory variables 132 133 Mann-Whitney test was used. Frequencies of seroconversion and HAI Ab titres \geq 40 134 are reported, and the relationship between these outcome measures and categorical explanatory variables was explored with Pearson's Chi-Square test, or Fisher's exact
test; binary logistic regression was used for continuous explanatory variables. The
relationship between log10 transformed HAI and VMN titres was explored using a
linear regression model. Analysis was performed with IBM SPSS version 24.

- 139
- 140
- 141

142 Results

143 Study Population

Twenty-eight alloHSCT recipients with a median age of 57.8 (range 38.0-72.1) years 144 145 were recruited for the study (Table 1). Participants were vaccinated at a median time-point of 78.5 (range 24-363) days after HSCT, and all 28 gave post-vaccination 146 147 blood samples at a median of 28 days (range 21-50). All but 1/28 patients provided their sample within the 21 – 28 day window. Donor type was volunteer unrelated 148 donor (VUD) in 71.4% of HSCTs, and sibling in 28.6%. All conditioning regimens 149 150 included in-vivo lymphocyte depletion with alemtuzumab (89.3%) or antithymocyte 151 globulin (ATG) (10.7%). Graft-versus-host disease (GvHD) was presnt in 28.6% of participants, which was limited to stage 1 acute skin GVHD(17.9%) or mild chronic 152 153 skin GVHD (10.7%) in all cases. A minority of of participants had been treated with 154 rituximab (10.7%) or intravenous immunoglobulin (7.1%) in the last 12 months.

155

156 SIIV Immunogenicity

157 Geometric mean titres (GMT) and geometric mean ratios (GMR)

158	GMTs and GMRs of pre- and post-vaccination titres of A(H1N1)pdm09, A(H3N2) and
159	B(Phuket) Ab are shown in Table 2. The GMTs of A(H1N1)pdm09 and A(H3N2) Ab
160	were higher by CPE-VMN than HAI, and A(H1N1) GMTs were higher by ELISA-VMN
161	than CPE-VMN, at both pre- and post-vaccination timepoints. However, none of the
162	three assays detected a significant change in Ab titre following vaccination, as
163	reflected in GMRs of pre- and post-vaccination Ab titres close to 1. In contrast,
164	B(Phuket) GMTs were higher by HAI than CPE-VMN at both pre- and post-vaccination
165	timepoints. Despite vaccination, there was a statistically significant decline in
166	B(Phuket)-specific Ab titres from pre- to post- vaccination by both HAI (15.17 v
167	11.89, p=0.017) and CPE-VMN (6.98 v 6.25, p=0.018) with similar GMRs of 0.78 (95%
168	CI 0.62-0.94) and 0.89 (0.82-0.96) by both assays.
169	

170 Frequency of detectable Ab titres and frequency of seroconversions

Considering both pre- and post-vaccination values, 25/56 (44.6%) serum samples had
detectable Ab against H1N1(pdm09) by HAI compared with 31 (55.4%) by CPE-VMN
and 38 (67.9%) by ELISA-VMN. For H3N2, 32 (57.1%) serum samples had detectable
Ab by HAI versus 54 (96.4%) by VMN, while for B(Phuket) equivalent values are 27
(48.2%) by HAI versus 12 (21.4%) by VMN. No seroconversions to any vaccine
component were detected by HAI assay or CPE-VMN. A single seroconversion was
detected by ELISA-VMN in a patient vaccinated at 9 weeks post-HSCT.

179 HAI titres ≥ 40

The frequency of patients with HAI Ab titres \geq 40 are displayed by vaccination timepoint in Table 3. Pre-vaccination, 50% of participants had HAI Ab titres \geq 40 against any single vaccine component. Frequency of HAI Ab titre \geq 40 was highest in those vaccinated at 0-3 months (60.0%) and lowest at 6-12 months (28.6%) although this trend was not statistically significant (p=0.39). As seroprotective titres for CPE and ELISA-VMN have not been defined, equivalent data are not presented for these assays.

187

188 Relationship between HAI and VMN titres

- 189 Statistically significant correlation was observed between HAI and VMN titres for all
- 190 3 strains (p<0.001). From the linear regression equation, CPE-VMN titres equivalent
- to an HAI titre of 40 were estimated as 65.18 (95%CI 42.33-100.36) for
- 192 A(H1N1)pdm09, 366.77 (95% CI 105.41-1276.12) for A(H3N2), and 10.17 (95% CI
- 193 7.74-13.36) for B(Phuket). For A(H1N1)pdm09, the ELISA-VMN titre equivalent to an
- 194 HAI titre of 40 was 164.10 (95% CI 86.37-311.78).

195

196 Discussion

- 197 In this study, the immunogenicity of the 2015-2016 SIIV was evaluated in HSCT
- 198 recipients using the HAI and VMN assays. This is the first study to report VMN data

in this patient group. A limitation of this study is that it did not include a comparatorarm of immunocompetent participants.

201 GMTs for A(H1N1)pdm09 and A(H3N2) determined by VMN were statistically significantly higher than by HAI, suggesting VMN may provide a more sensitive assay 202 203 to detect influenza-specific antibody titres in this population. The estimated VMN 204 equivalent of an HAI titre of 40 was 65.18 (95% CI 42.33-100.36) for CPE endpoint and 164.10 for ELISA endpoint . Previous studies of H1N1(A/Brisbane/59/2007) in a 205 206 paediatric population, and A(H1N1)pdm09 in a healthy adult population using an 207 ELISA-based VMN, estimated that titres of 200 and 211 respectively were equivalent to an HAI titre of 40[27,28]. The same paediatric study estimated that VMN titre of 208 209 140 was equivalent to HAI titre of 40 for H3N2(A/Brisbane/10/2007). In a small study of patients infected by H3N2(A/SouthAfrica/114/95/7), GMTs by HAI and 210 ELISA-based VMN were 29.19 and 362.98 respectively[29]. The comparative 211 A(H3N2) HAI and VMN titres in this present study are similar to these previous 212 213 findings, while for A(H1N1)pdm09 our estimate is lower. For A(H1N1)pdm09, an 214 ELISA-based VMN appears to offer greater sensitivity than a CPE-VMN for detection 215 of strain-specific Ab. A(H3N2) viruses have been the dominant circulating strains and 216 a component of the SIIV since at least 1998[30], while the A(H1N1)pdm09 virus is by 217 definition antigenically dissimilar to H1N1 strains preceding 2009. The presence of cross-reacting neutralizing Ab to A(H3N2) from previous exposure may explain why 218 the titres by VMN were markedly higher than for the more recent A(H1N1)pdm09 219 220 virus.

221	For B(Phuket) the VMN assay GMT was statistically significantly lower than the HAI
222	titre. The estimated equivalent VMN titre of HAI 40 was 10.17 (95% CI 7.74-13.36). A
223	previous study comparing HAI and VMN reported increased rates of seroconversion
224	by VMN compared with HAI but equivalent GMTs were not reported[23]. Several
225	previous studies have documented low sensitivity of the HAI assay when using
226	influenza B virus, which can partially be overcome by ether-treatment of the
227	antigen[31–33]. Ether treatment cleaves the virion and increases Ab binding
228	sites[32,34] however the virion is rendered unable to replicate and therefore
229	unsuitable for use in VMN assay. We used the same egg-grown B(Phuket) virus
230	batch in both HAI and VMN assays to improve comparability of the data, and applied
231	antigen modification with ether treatment to the part of the virus batch to be used
232	in the HAI to optimise assay sensitivity. This may account for the relative
233	insensitivity of VMN compared with the HAI in our study.
234	In this study population, seroconversion by HAI was completely absent for all 3
235	
	vaccine components, while the more sensitive ELISA-VMN detected a single
236	seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et
236 237	seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months
236 237 238	vaccine components, while the more sensitive ELISA-VMIN detected a single seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months post-HSCT of 31% for A(H1N1), 9% for A(H3N2), and 20% for influenza B.
236 237 238 239	vaccine components, while the more sensitive ELISA-VMIN detected a single seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months post-HSCT of 31% for A(H1N1), 9% for A(H3N2), and 20% for influenza B. Conditioning intensity, HSC source and use of lymphocyte depletion were not
236 237 238 239 240	vaccine components, while the more sensitive ELISA-VMIN detected a single seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months post-HSCT of 31% for A(H1N1), 9% for A(H3N2), and 20% for influenza B. Conditioning intensity, HSC source and use of lymphocyte depletion were not reported[12]. Karras et al reported low seroconversion rates of 0% to A(H3N2), 6%
236 237 238 239 240 241	vaccine components, while the more sensitive ELISA-VMIN detected a single seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months post-HSCT of 31% for A(H1N1), 9% for A(H3N2), and 20% for influenza B. Conditioning intensity, HSC source and use of lymphocyte depletion were not reported[12]. Karras et al reported low seroconversion rates of 0% to A(H3N2), 6% for A(H1N1) and 8% for Influenza B[13]. In this study 44.6% of patients received RIC
236 237 238 239 240 241 242	vaccine components, while the more sensitive ELISA-VMIN detected a single seroconversion in a patient vaccinated within the first 3 months of HSCT. Pauksen et al. observed seroconversion rates by HAI to SIIV administered within 12 months post-HSCT of 31% for A(H1N1), 9% for A(H3N2), and 20% for influenza B. Conditioning intensity, HSC source and use of lymphocyte depletion were not reported[12]. Karras et al reported low seroconversion rates of 0% to A(H3N2), 6% for A(H1N1) and 8% for Influenza B[13]. In this study 44.6% of patients received RIC and the remainder myeloablative conditioning (MAC) and none received lymphocyte

lymphocyte deplete grafts, no seroconversions were reported in the first 6 month 244 245 post-HSCT[11]. In our present study, universal in-vivo lymphocyte depletion may 246 have impacted on vaccine immunogenicity. Both alemtuzumab and ATG are broadly 247 immunosuppressive with activity beyond the target T-cell compartment[35], and In 248 vivo lymphocyte depletion with these agents may contribute to delayed immune 249 reconstitution and an increased risk of viral infection [36,37]. In the solid organ 250 transplant setting, a trend towards poorer response to SIIV in patients vaccinated 251 within a year of receiving ATG has been reported[38]. The median age in our study was 57.8, compared with 21-40.8 [11,13] in the studies above. Older age is 252 253 associated with poorer influenza vaccine immunogenicity in the general population 254 and this may have been a contributing factor to the poor response in this study 255 population[39].

256 Despite vaccination, rates of titre \geq 40 by HAI were stable from pre- to post-257 vaccination for A(H3N2) and fell for A(H1N1) and B(Phuket). Baseline seroprotection 258 rates were 28.6% for A(H1N1)pdm09, 14.3% for A(H3N2), 32.1% for B(Phuket) and 259 50% to any 1 or more strain. In an immunogenicity study of the monovalent 260 A(H1N1)pdm09 vaccine, Issa and colleagues reported seroresponse rates to the 261 study vaccine, but also HAI titres \geq 40 to the seasonal influenza strains. These ranged from 20.7% for Influenza B to 57.4% for A(H3N2). However, these patients 262 were evaluated at 2.5 to 92.7 months post-HSCT, and some had received the 263 264 seasonal IIV in previous post-HSCT influenza seasons. In contrast, patients in this 265 current study were all seasonal IIV naïve following HSCT. Other studies have 266 reported baseline seroprotection rates to Influenza A and B of 12-16%[12] and 0-

267	29%[40]. Pre-vaccination rates of HAI titre \ge 40 fell with time from HSCT (60% at 0-3
268	months, 50% at 3-6 months, 28.6% at 6-12 months) and this is consistent with
269	previous studies that have reported a waning of disease specific Ab within the first-
270	year post-HSCT. Although we did not compare pre- with post-HSCT titres, our
271	findings suggest that pre-HSCT vaccination may be an approach to protecting
272	recipients during the first few months post-HSCT when they are most vulnerable. A
273	study investigating this approach has shown seroresponse rates of 22.9% (H1N1)
274	and 25% (H3 and B Ag) when recipients were vaccinatd 10 days pre-HSCT[41].
275	None of the evaluated patient characteristics correlated with seroresponse
276	measures or with GMT or GMRs (data not shown). Neither active GvHD nor
277	concomitant IST correlated with post-vaccination HAI titre \geq 40. An association
278	between IST, GvHD and response to influenza vaccination has not been identified
279	consistently. Our findings are in agreement with previous studies reporting low
280	response by HAI in the first 12 months. While Karras and colleagues suggest that
281	equivalent seroconversion rates to 1 or more strains at 2-6 and 6-12 months (12 $\%$ v
282	30% p=0.43)[13] may justify early vaccination, our findings of almost entirely absent
283	humoral response throughout the first year would argue against this strategy in RIC
284	PBSC lymphocyte deplete alloHSCT recipients.

286 Conlusions

287 In conclusion, this is the first study to use the VMN assay to assess the

288 immunogenicity of seasonal IIV in HSCT recipients. The CPE and ELISA VMN detected

Ab in more serum samples than HAI, and GMTs were statistically significantly higher 289 290 by VMN than HAI for A(H1N1)pdm09 and A(H3N2). However, for influenza B, GMTs were lower by VMN than an ether-modified HAI. The ELISA-VMN detected a single 291 seroconversion to A(H1N1)pdm09. This limited seroresponse to trivalent SIIV 292 293 administered in the first-year post-HSCT in a cohort of RIC PBSC alloHSCT recipients 294 who underwent in-vivo lymphocyte depletion suggests that a more tailored 295 approach to vaccination may be desirable, although future studies to define clinical 296 and immunological predictors of response to vaccine are required. Furthermore, there is a clear need for novel immunogenic vaccination schedules and vaccine 297 formulations in this patient group. Early phase studies of high-dose seasonal 298 299 influenza vaccines have shown promising results[42]. In line with CHMP 300 recommendations, consideration should be given to using the VMN assay to assess 301 immunological response to SIIV in such future studies, and combining this with 302 clinical efficacy data may define seroprotective VMN titres. The VMN assay may 303 provide useful data in other immunocompromised patient groups such as recipients of chemo- or immunotherapies and future studies are warranted. 304

305

306 [1] Ljungman P, Ward KN, Crooks BN a, Parker A, Martino R, Shaw PJ, et al.

307 Respiratory virus infections after stem cell transplantation : a prospective

308 study from the Infectious Diseases Working Party of the European Group for

309 Blood and Marrow Transplantation Summary : Bone Marrow Transplant

310 2001;28:479–84. doi:http://dx.doi.org/10.1038/sj.bmt.1703139.

311 [2] Hassan I a, Chopra R, Swindell R, Mutton KJ. Respiratory viral infections after

- bone marrow/peripheral stem-cell transplantation: the Christie hospital
- 313 experience. Bone Marrow Transplant 2003;32:73–7.
- doi:10.1038/sj.bmt.1704048.
- 315 [3] Nichols WG, Guthrie K a, Corey L, Boeckh M. Influenza infections after
- 316 hematopoietic stem cell transplantation: risk factors, mortality, and the effect
- of antiviral therapy. Clin Infect Dis 2004;39:1300–6. doi:10.1086/425004.
- 318 [4] Whimbey E, Elting LS, Couch RB, Lo W, Williams L, Champlin RE, et al.
- 319 Influenza A virus infections among hospitalized adult bone marrow transplant
- 320 recipients. Bone Marrow Transplant 1994;13:437–40.
- 321 [5] Osterholm MT, Kelley NS, Sommer A, Belongia E a. Efficacy and effectiveness
- of influenza vaccines: A systematic review and meta-analysis. Lancet Infect Dis
 2012;12:36–44. doi:10.1016/S1473-3099(11)70295-X.
- 324 [6] Zimmerman RK, Nowalk MP, Chung J, Jackson ML, Jackson LA, Petrie JG, et al.
- 325 2014–2015 Influenza Vaccine Effectiveness in the United States by Vaccine
- 326 Type. Clin Infect Dis 2016;63:1564–73. doi:10.1093/cid/ciw635.
- 327 [7] Treanor JJ, Talbot HK, Ohmit SE, Coleman LA, Thompson MG, Cheng P-Y, et al.
- 328 Effectiveness of Seasonal Influenza Vaccines in the United States During a
- 329 Season With Circulation of All Three Vaccine Strains. Clin Infect Dis
- 330 2012;55:951–9. doi:10.1093/cid/cis574.
- 331 [8] Ambati A, Boas LS V, Ljungman P, Testa L, De Oliveira JF, Aoun M, et al.
- 332 Evaluation of pretransplant influenza vaccination in hematopoietic SCT: A
- randomized prospective study. Bone Marrow Transplant 2015;50:858–64.

doi:10.1038/bmt.2015.47.

335	[9]	Machado CM, Cardoso MR a, da Rocha IF, Boas LS V, Dulley FL, Pannuti CS.
336		The benefit of influenza vaccination after bone marrow transplantation. Bone
337		Marrow Transplant 2005;36:897–900. doi:10.1038/sj.bmt.1705159.
338	[10]	European Medicines Agency. Note for guidance on harmonisation of
339		requirements for influenza vaccines. 1997.
340	[11]	Engelhard D, Nagler A, Hardan I, Morag A, Aker M, Baciu H, et al. Antibody
341		response to a two-dose regimen of influenza vaccine in allogeneic T cell-
342		depleted and autologous BMT recipients. Bone Marrow Transplant 1993;11:1-
343		5.
344	[12]	Pauksen K, Linde a, Hammarström V, Sjölin J, Carneskog J, Jonsson G, et al.
345		Granulocyte-macrophage colony-stimulating factor as immunomodulating
346		factor together with influenza vaccination in stem cell transplant patients. Clin
347		Infect Dis 2000;30:342–8. doi:10.1086/313663.
348	[13]	Karras N a., Weeres M, Sessions W, Xu X, DeFor TE, Young J-AAH, et al. A
349		Randomized Trial of One versus Two Doses of Influenza Vaccine after
350		Allogeneic Transplantation. Biol Blood Marrow Transplant 2013;19:109–16.
351		doi:10.1016/j.bbmt.2012.08.015.
352	[14]	Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al.
353		Guidelines for preventing infectious complications among hematopoietic cell
354		transplantation recipients: a global perspective. Preface. Bone Marrow
355		Transplant 2009;15:1143–238. doi:10.1038/bmt.2009.254.

356	[15]	Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013
357		IDSA clinical practice guideline for vaccination of the immunocompromised
358		host. Clin Infect Dis 2014;58:e44-100. doi:10.1093/cid/cit684.
359	[16]	Miller PDE, de Silva TI, Skinner R, Gilleece MH, Peniket A, Hamblin A, et al.
360		Routine Vaccination Programme (RVP) Practice after Adult and Paediatric
361		Allogeneic Haematopoietic Stem Cell Transplant (HSCT): A British Society of
362		Blood and Marrow Transplantation (BSBMT) Survey of UK NHS-Based
363		Programmes. Bone Marrow Transplant 2016;51:S400.
364	[17]	Coudeville L, Bailleux F, Riche B, Megas F, Andre P, Ecochard R. Relationship
365		between haemagglutination-inhibiting antibody titres and clinical protection
366		against influenza: development and application of a bayesian random-effects
367		model. BMC Med Res Methodol 2010;10:18. doi:10.1186/1471-2288-10-18.
368	[18]	Barrett PN, Berezuk G, Fritsch S, Aichinger G, Hart MK, El-Amin W, et al.
369		Efficacy, safety, and immunogenicity of a Vero-cell-culture-derived trivalent
370		influenza vaccine: a multicentre, double-blind, randomised, placebo-
371		controlled trial. Lancet (London, England) 2011;377:751–9.
372		doi:10.1016/S0140-6736(10)62228-3.
373	[19]	Black S, Nicolay U, Vesikari T, Knuf M, Del Giudice G, Della Cioppa G, et al.
374		Hemagglutination Inhibition Antibody Titers as a Correlate of Protection for
375		Inactivated Influenza Vaccines in Children. Pediatr Infect Dis J 2011;30:1081–5.
376		doi:10.1097/INF.0b013e3182531f47.

377 [20] European Medicines Agency. Guideline on Influenza Vaccines. vol. 44. 2014.

378	[21]	Katz JM, Hancock K, Xu X. Serologic assays for influenza surveillance, diagnosis
379		and vaccine evaluation. Expert Rev Anti Infect Ther 2011;9:669–83.
380		doi:10.1586/eri.11.51.
381	[22]	Kendal a. P, Cate TR. Increased sensitivity and reduced specificity of
382		hemagglutination inhibition tests with ether-treated influenza
383		B/Singapore/222/79. J Clin Microbiol 1983;18:930–4.
384	[23]	Frank a. L, Puck J, Hughes BJ, Cate TR. Microneutralization test for influenza A
385		and B and parainfluenza 1 and 2 viruses that uses continuous cell lines and
386		fresh serum enhancement. J Clin Microbiol 1980;12:426–32.
387	[24]	Veguilla V, Hancock K, Schiffer J, Gargiullo P, Lu X, Aranio D, et al. Sensitivity
388		and specificity of serologic assays for detection of human infection with 2009
389		pandemic H1N1 virus in U.S. populations. J Clin Microbiol 2011;49:2210–5.
390		doi:10.1128/JCM.00229-11.

- ·
- 391 [25] World Health Organization. Manual for the laboratory diagnosis and
- 392 virological surveillance of influenza. World Heal Organ 2011 2011:153.
- Who. Manual for the laboratory diagnosis and virological surveillance of
 influenza. World Heal Organ 2011 2011:153.
- 395 [27] Verschoor CP, Singh P, Russell ML, Bowdish DME, Brewer A, Cyr L, et al.
- 396 Microneutralization Assay Titres Correlate with Protection against Seasonal
- 397 Influenza H1N1 and H3N2 in Children. PLoS One 2015;10:e0131531.

doi:10.1371/journal.pone.0131531.

399	[28]	Babor F, Grund S, Siepermann M, Oommen PT, Kuhlen M, Schuster FR, et al.
400		Epidemiology and clinical characteristics of pandemic (H1N1) 2009 influenza
401		infection in pediatric hemato-oncology and hematopoietic stem cell
402		transplantation patients. Transpl Infect Dis 2012;14:589–94.
403		doi:10.1111/tid.12013.
404	[29]	Rowe T, Abernathy R a, Hu-Primmer J, Thompson WW, Lu X, Lim W, et al.
405		Detection of antibody to avian influenza A (H5N1) virus in human serum by
406		using a combination of serologic assays. J Clin Microbiol 1999;37:937–43.
407	[30]	World Health Organization. Recommendations for Influenza Vaccine
408		Composition 1998.
409		http://www.who.int/influenza/vaccines/vaccinerecommendations1/en/index
410		23.html.
411	[31]	Mancini G, Donatelli I, Arangio-Ruiz G, Rozera C, Macchia T. Comparison of
412		haemagglutination-inhibition and single radial haemolysis techniques for
413		detecting antibodies to influenza A and B viruses. J Hyg (Lond) 1983;91:157–
414		62.
415	[32]	Pyhala R, Kleemola M, Viakorpi R. The HI Test Modified by Ether Treatment in
416		the Sero-Epidemiological Surveillance of Influenza B. J Hyg (Lond)
417		1985;94:341–8.
418	[33]	Monto AS, Maassab HF. Ether treatment of type B influenza virus antigen for
419		the hemagglutination inhibition test. J Clin Microbiol 1981;13:54–7.
420	[34]	Monto AS, Kendal AP. Effect of neuraminidase antibody on Hong Kong

421		influenza. Lancet (London, England) 1973;1:623–5.
422	[35]	Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion
423		and beyond. Leukemia 2007;21:1387–94. doi:10.1038/sj.leu.2404683.
424	[36]	Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, O'Gorman P, et
425		al. High incidence of cytomegalovirus infection after nonmyeloablative stem
426		cell transplantation: potential role of Campath-1H in delaying immune
427		reconstitution. Blood 2002;99.
428	[37]	Barge RMY, Starrenburg CWJ, Falkenburg JHF, Fibbe WE, Marijt EW, Willemze
429		R. Long-term follow-up of myeloablative allogeneic stem cell transplantation
430		using Campath ?in the bag? as T-cell depletion: the Leiden experience. Bone
431		Marrow Transplant 2006;37:1129–34. doi:10.1038/sj.bmt.1705385.
432	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of
432 433	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in
432 433 434	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6.
432 433 434 435	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82.
432 433 434 435 436	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82.
432 433 434 435 436 437	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006;24:1159–69.
432 433 434 435 436 437 438	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006;24:1159–69. doi:10.1016/j.vaccine.2005.08.105.
432 433 434 435 436 437 438 439	[38]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006;24:1159–69. doi:10.1016/j.vaccine.2005.08.105.
432 433 434 435 436 437 438 439 440	[38] [39]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006;24:1159–69. doi:10.1016/j.vaccine.2005.08.105. Avetisyan G, Aschan J, Hassan M, Ljungman P. Evaluation of immune responses to seasonal influenza vaccination in healthy volunteers and in
432 433 434 435 436 437 438 439 440 441	[38] [39]	Orcurto A, Pascual M, Hoschler K, Aubert V, Meylan P, Manuel O. Impact of Anti–T-Cell Therapy in the Immunogenicity of Seasonal Influenza Vaccine in Kidney Transplant Recipients. Transplant J 2012;94:630–6. doi:10.1097/TP.0b013e31825f7f82. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006;24:1159–69. doi:10.1016/j.vaccine.2005.08.105. Avetisyan G, Aschan J, Hassan M, Ljungman P. Evaluation of immune responses to seasonal influenza vaccination in healthy volunteers and in patients after stem cell transplantation. Transplantation 2008;86:257–63.

443	[41]	Harris AE, Styczynski J, Bodge M, Mohty M, Savani BN, Ljungman P.
444		Pretransplant vaccinations in allogeneic stem cell transplantation donors and
445		recipients: an often-missed opportunity for immunoprotection? Bone Marrow
446		Transplant 2015;50:899–903. doi:10.1038/bmt.2015.49.
447	[42]	Halasa NB, Savani BN, Asokan I, Kassim A, Simons R, Summers C, et al.
448		Randomized Double-Blind Study of the Safety and Immunogenicity of
449		Standard-Dose Trivalent Inactivated Influenza Vaccine versus High-Dose
450		Trivalent Inactivated Influenza Vaccine in Adult Hematopoietic Stem Cell
451		Transplantation Patients. Biol Blood Marrow Transplant 2016;22:528–35.
452		doi:10.1016/j.bbmt.2015.12.003.
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		

Table 1. Characteristics of n=28 Study Participants

Characteristic (n=28)	Value		
Age at HSCT, median (range), (IQR)	57.8 (38.0-72.1), (12.7)		
Gender male, n(%)	15 (53.6)		
Diagnosis, n (%)			
Acute lymphoblastic leukaemia (ALL)	3 (10.7)		
Acute myeloid leukaemia (AML)	14 (50.0)		
Chronic lymphocytic leukaemia (CLL)	1 (3.6)		
Chronic myelomonocytic leukaemia (CMML)	1 (3.6)		
Myelodysplastic syndrome (MDS)	4 (14.3)		
Myelofibrosis (MF)	2(7.1)		
Multiple myeloma (MM)	1 (3.6)		
Non-Hodgkin Lymphoma (NHL)	2 (7.1)		
Donor type, n (%)			
Sibling donor	8 (28.6)		
Volunteer unrelated donor (VUD)	20 (71.4)		
Stem cell source, n (%)			
Peripheral blood stem cell (PBSC)	28 (100)		

Conditioning Intensity, n (%)

Reduced intensity	28 (100)
Lymphocyte depletion, n (%)	
Alemtuzumab	25 (89.3)
Antithymocyte globulin (ATG)	3 (10.7)
Days from HSCT to vaccination, median (range), (IQR)	78.5 (24-363), (136)
Months from HSCT to vaccination, n (%)	
0-3	15(53.6)
>3-6	6 (21.4)
>6-12	7 (25)
Lymphocyte count (x10^9) at vaccination, median (range), (IQR)	0.57 (0.02-2.98),(0.63)
Graft versus host disease at vaccination, n(%)	8 (28.6)
Acute (stage 1, skin)	5 (17.9)
Chronic (mild, skin)	3 (10.7)
Immunosuppressive therapy (IST) at vaccination, n(%)	
Any IST	18 (64.3)
Single agent	13 (46.4)
Dual agent	4 (14.3)
Triple agent	1 (3.6)
Intravenous Immunoglobulin (IVIg) in last 12 months, n(%)	2 (7.1)
Rituximab in last 12 months, n(%)	3 (10.7)

Table 2. Geometric Mean Titres (GMT), Geometric Mean Ratios (GMR), percentage of seroconversions and percentage of titres ≥40 of A(H1N1)pdm09, A(H3N2) and B(Phuket) antibodies by Haemagglutination (HAI) and Virus Microneutralisation (VMN) assays. Value (95% Confidence interval).

	Vaccine Component		
	A(H1N1)pdm09	A(H3N2)	B(Phuket)
HAI			
GMT pre-vaccination	12.65 (7.94-21.67)	11.46 (7.76-18.05)	15.17 (9.31-35.41)
GMT post-vaccination	11.45 (7.44-19.06)	11.60 (8.07-17.89)	11.89 (7.54-20.50)
GMR	0.91 (0.78-1.03)	1.01 (0.93-1.11)	0.78(0.62-0.94)
% seroconversion	0	0	0
% Pre-vaccination HAI ≥40	28.6 (8)	14.3 (4)	32.1 (9)
% Post Vacc HAI ≥40	25.0 (7)	14.3 (4)	25.0 (7)
CPE-VMN			
GMT pre-vaccination	16.82 (9.26-33.22)	129.64(70.62-241.87)	6.98 (5.54-9.14)
GMT post-vaccination	16.41 (9.76-30.55)	118.88 (67.68-212.68)	6.25 (5.20-7.69)
GMR	0.98 (0.82-1.17)	0.92 (0.74-1.11)	0.89 (0.82-0.96)
% seroconversion	0	0	0
ELISA-VMN			
GMT pre-vaccination	34.43 (16-85-75.68)		
GMT post-vaccination	32.87 (16.80-68.49)		
GMR	0.95 (0.74-1.11)		
% seroconversion	3.6 (1)		

Vaccine Component	Vaccination timepoint, months	Pre-Vaccination titres ≥40,n (%)	Post-Vaccination, ≥40,n (%)
A(H1N1)pdm09	<3 (n=15)	5 (33.3)	4 (26.7)
	3-6 (n=6)	2 (33.3)	2 (33.3)
	6-12 (n=7)	1 (14.3)	1 (14.3)
	Total	8 (28.6)	7 (25.0)
A(H3N2)	<3 (n=15)	2 (13.3)	2 (13.3)
	3-6 (n=6)	1 (16.7)	1 (16.7)
	6-12 (n=7)	1 (14.3)	1 (14.3)
	Total	4 (14.3)	4 (14.3)
B(Phuket)	<3 (n=15)	6 (40.0)	4 (26.7)
	3-6 (n=6)	1 (16.7)	1 (16.7)
	6-12 (n=7)	2 (28.6)	2 (28.6)
	Total	9 (32.1)	7(25.0)

Table 3. Proportion of patients with pre and post-vaccination haemagglutination inhibition (HAI) antibody (Ab) titres ≥ 40

	Total	14 (50)	14 (50.0)
	6-12 (n=7)	2 (28.6)	2 (28.6)
	3-6 (n=6)	3 (50.0)	3 (50.0)
≥ any one vaccine component	<3 (n=15)	9 (60.0)	9 (60.0)