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ABSTRACT  
Objectives: The diagnosis and management of oral cavity cancers are often complicated by the 

uncertainty of which patients will undergo malignant transformation, obligating close surveillance over 

time. However, serial biopsies are undesirable, highly invasive, and subject to inherent issues with poor 

inter-pathologist agreement and unpredictability as a surrogate for malignant transformation and 

clinical outcomes. The goal of this study was to develop and evaluate a Multivariate Analytical Risk Index 

for Oral Cancer (MARIO) with potential to provide non-invasive, sensitive, and quantitative risk 

assessments for monitoring lesion progression. 

Materials and Methods: A series of predictive models were developed and validated using previously 

recorded single-ĐĞůů ĚĂƚĂ ĨƌŽŵ ŽƌĂů ĐǇƚŽůŽŐǇ ƐĂŵƉůĞƐ ƌĞƐƵůƚŝŶŐ ŝŶ Ă ͞ĐŽŶƚŝŶƵŽƵƐ ƌŝƐŬ ƐĐŽƌĞ͘͟ MŽĚĞů 
development consisted of: (1) training base classification models for each diagnostic class pair, (2) 

pairwise coupling to obtain diagnostic class probabilities, and (3) a weighted aggregation resulting in a 

continuous MARIO. 

Results and Conclusions: Diagnostic accuracy based on optimized cut-points for the test dataset ranged 

from 76.0% for Benign, to 82.4% for Dysplastic, 89.6% for Malignant, and 97.6% for Normal controls for 

an overall MARIO accuracy of 72.8%. Furthermore, a strong positive relationship with diagnostic severity 

ǁĂƐ ĚĞŵŽŶƐƚƌĂƚĞĚ ;PĞĂƌƐŽŶ͛Ɛ ĐŽĞĨĨŝĐŝĞŶƚ с Ϭ͘ϴϬϱ ĨŽƌ ƚĞƐƚ ĚĂƚĂƐĞƚͿ ĂƐ ǁĞůů ĂƐ ƚŚĞ ĂďŝůŝƚǇ ŽĨ ƚŚĞ MARIO ƚŽ 

respond to subtle changes in cell composition. The development of a continuous MARIO for OPMD is 

presented, resulting in a sensitive, accurate, and non-invasive method with potential for enabling 

monitoring disease progression, recurrence, and the need for therapeutic intervention of these lesions.  

 

KEYWORDS  
 Oral Cancer, Risk Assessment, Multi-class classification, Cytology, Model ensembles 

HIGHLIGHTS 
 An accurate continuous Multivariate Analytical Risk Index for Oral Cancer has been developed. 

 Diagnostic accuracy based on optimized cut-points for the test dataset for the four lesion classes 

ranged from 76.0% for Benign, to 82.4% for Dysplastic, 89.6% for Malignant, and 97.6% for Normal 

controls. 

 The approach utilizes noninvasive sampling methodology allowing for dentists and physicians to 

have new tools to monitor disease progression for patients presenting with potentially malignant 

oral lesions. 
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INTRODUCTION 
While the incidence and mortality of many types of cancer have declined over the last 50 years, rates 

for oral and pharyngeal cancers (OPC), have seen remarkably little improvement during this same time. 

In the United States, the 5-year survival rate of patients diagnosed with OPC, is currently estimated at 

63%.[1] Oral cavity cancers are predominantly epithelial-derived oral squamous cell carcinomas (OSCC), 

ĂŶĚ ƚŚĞ ŵĂũŽƌŝƚǇ ĂƌĞ ƉƌĞĐĞĚĞĚ ďǇ ͞ƉƌĞĐĂŶĐĞƌŽƵƐ͟ ůĞƐŝŽŶƐ͕ ƚŚŽƵŐŚ ŽŶůǇ Ă ƌĞůĂƚŝǀĞůǇ ƐŵĂůů ƉƌŽƉŽƌƚŝŽŶ 
(approximately 5%) will undergo malignant transformation. The term ͞ŽƌĂů ƉŽƚĞŶƚŝĂůůǇ ŵĂůŝŐŶĂŶƚ 
ĚŝƐŽƌĚĞƌ͟ ;OPMDͿ describes an epithelial lesion encountered by a clinician, for which there is no obvious 

benign explanation, and which sufficiently elevates an index of suspicion to indicate biopsy to rule out 

malignancy or epithelial dysplasia. The spectrum of histopathology for OPMDs may be variable, from a 

carcinoma at one end of the spectrum, to carcinoma-in-situ (CIS), to various grades of oral epithelial 

dysplasia (OED - severe, moderate or mild), to benign diagnoses. In general, patients with OPMDs are 

referred to experienced clinicians for management in secondary care settings, such as head and neck 

surgeons, oral and maxillofacial surgeons, and oral medicine specialists.  

The uncertainty of which patients or lesions will transform obligates such clinicians to serially monitor 

patients with OPMDs [2] and to biopsy lesions that have clinically evolved during these surveillance 

intervals. However, serial biopsies are undesirable, highly invasive, and histopathology suffers from 

inherent issues with poor inter-pathologist agreement and unpredictability as a surrogate for malignant 

transformation and clinical outcomes .[3,4]  

New approaches and new diagnostic/adjunctive tools that can provide non-invasive, sensitive, and 

quantitative risk assessments for monitoring the progression of patients with a history of oral cancer 

and/or OPMDs are urgently needed. Recent breakthroughs in artificial intelligence, machine vision, and 

deep learning and their broad application to fields involving human uncertainty and decision-making 

represent a frontier in diagnostic testing. [5,6] A continuous risk score derived from non-invasive 

cytopathological measurements has the potential to aid clinicians in OPMD surveillance by providing 

objective information that could be used for a multitude of applications including monitoring disease 

progression, indicating the need for re-biopsy, lesion mapping, and evaluating a response to 

chemoprevention or other therapeutics.     

Historically, an attempt to create an index for oral dysplasia was made in 1969 by Smith and 

Pindborg by aggregating scores recorded for cellular and molecular features in histopathology slides on a 

1-10 scale resulting in a final range from 0-ϳϱ͕ ŬŶŽǁŶ ĂƐ ƚŚĞ ͞ĞƉŝƚŚĞůŝĂů ĚǇƐƉůĂƐŝĂ ŝŶĚĞǆ͟ ;EDIͿ͘[7] When 

compared to the 5-stage Brothwell categorical grading system,[8] the EDI was associated with a 47% inter-

observer agreement rate compared to 62% for the Brothwell system.[9] The failed adoption of the EDI 

demonstrates the subjectivity among pathologists in diagnosing oral epithelial dysplasia (OED)[9] and 

emphasizes the need for risk metrics that are based on quantitative measurements free from human bias. 

Using single-cell morphometric, nuclear and biomolecular measurements extracted from non-

invasively collected OPMD cytology samples, this paper explores the development of a Multivariate 

Analytical Risk Index for Oral Cancer (MARIO) that is based on gold-standard histopathology with an added 

rigorous pathology adjudication process and can provide a non-invasive assessment of OPMDs in a 

surveillance setting.  
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MATERIALS AND METHODS 
TŚĞ ĚĂƚĂ ƵƐĞĚ ŝŶ ƚŚŝƐ ƐƚƵĚǇ ǁĞƌĞ ŽďƚĂŝŶĞĚ ĨƌŽŵ Ă ůĂƌŐĞ ͞ ĐǇƚŽůŽŐǇ-on-ĐŚŝƉ͟ ĚĂƚĂďĂƐĞ ĨƌŽŵ ƉĂƚŝĞŶƚƐ 

with OPMDs paired with adjudicated gold-standard pathology diagnoses. [10] Single-cell data from a total 

of 506 patients were used to develop the MARIO, comprised of 125 Normal/Non-neoplastic, 253 Benign, 

40 mild-Dysplastic, 13 moderate-Dysplastic, 10 severe-Dysplastic, and 65 Malignant lesions, according to 

the 2005 WHO definitions. [10] Details for the construction of the cytology database along with patient 

recruitment information can be found in Abram et al., 2016. [10] Approximately 300 parameters 

describing the morphometric appearance and biomarker staining intensity profiles of each individual cell, 

recorded using the open source software, Cell Profiler,[11] were stored in a MySQL database (Amazon 

Web Services RDS). All data analysis and model development was carried out in the statistical computing 

environment, R (v 3.2.1).[12] While the original study was completed with two sets of statisticians in an 

infrastructure that supported completely blinded transfer and data analysis, the infrastructure was no 

longer available for this current study. However, in the spirit of avoiding data overfitting, the original raw 

data was randomized and a hold-out dataset was reserved using stratified random sampling to achieve 

equal class proportions between the test (25%) and the training (75%) datasets following data imputation, 

scaling, and centering to normalize the effect of different parameters.  

Due to the low number of dysplastic cases commonly observed with prospective OPMD 

ƌĞĐƌƵŝƚŵĞŶƚ͕ ͞ŵŝůĚ͕͟ ͞ŵŽĚĞƌĂƚĞ͕͟ ĂŶĚ ͞ƐĞǀĞƌĞ ĚǇƐƉůĂƐŝĂ͟ ĐĂƐĞƐ ǁĞƌĞ ŐƌŽƵƉĞĚ ŝŶƚŽ ŽŶĞ ͞DǇƐƉůĂƐƚŝĐ͟ 
category resulting in four diagnostic classes with at least 50 patients each (Normal, Benign, Dysplastic, 

Malignant). The development of the MARIO involved the following steps: (1) training multiple base 

classification models for each class pair, (2) pairwise coupling to obtain class probabilities, and (3) a 

weighted aggregation to obtain a final risk score on a continuous scale. The overall development process 

is summarized in equation form in Supplementary Figure 1. 

Due to the ability of the L1-regularized logistic regression (Lasso) methodology to prevent model 

over-fitting in high-dimensional data sets by iteratively shrinking parameter effect sizes, the Lasso 

technique was utilized in this study to build base classification models. Between the four diagnostic 

classes, a total of six base classification models were developed: Normal/Benign, Normal/Dysplastic, 

Normal/Malignant, Benign/Dysplastic, Benign/Malignant, and Dysplastic/Malignant. Overall error rate 

and mean square error (MSE) representing misclassifications for the six base classification models are 

shown in Supplementary Table 1.  

The pairwise coupling method described by Price et al. (1995) [13] was used to convert base 

classification model scores  into class probabilities for Normal, Benign, Dysplastic, and Malignant classes. 

Since probabilities calculated by this method do not necessarily sum to 1.0, the final class scores were 

normalized by dividing by eacŚ ŽďƐĞƌǀĂƚŝŽŶ͛Ɛ ƐƵŵ ŽĨ ƐĐŽƌĞƐ͘ This process resulted in a total of four 

probabilities per patient corresponding to the different class definitions (e.g. PNormal = 0.1, PBenign = 0.8, 

PDysplastic = 0.1, and PMalignant = 0.0).  

Finally, the MARIO was computed as a weighted average of the individual class probabilities. 

Class weights were implemented to account for the increase in severity in the ordered diagnoses from 

Normal through Benign, Dysplastic, and Malignant classes and were determined through an iterative 

process to maximize the performance of the MARIO. Final performance of the MARIO was evaluated 

both by its ability to correctly order cases along the diagnostic spectrum from low to high risk, and its 

ability to correctly predict diagnostic categories.  
In order to add additional context to the MARIO, the frequency of five defined cell phenotypes 

was evaluated across three ranges of the MARIO score. The selected cell phenotypes included: A) large, 

normal-appearing squamous cells; B) medium-sized cells with enlarged nuclei (higher nuclear-cytoplasmic 

ratios); C) small, highly circular cells; D) lymphocytes (reflecting the inflammatory microenvironment); and 

E) lone nuclei, a sign of high grade disease. Using a training set of these manually-identified cell 
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ƉŚĞŶŽƚǇƉĞƐ͕ ͞ƐŝŵŝůĂƌ͟ ĐĞůůƐ ǁĞƌĞ ĞǆƚƌĂĐƚĞĚ ĨƌŽŵ ƚŚĞ ĞŶƚŝƌĞ ƐŝŶŐůĞ-cell database by iteratively computing a 

similarity matrix based on the Euclidean distance between objects in the single-cell database and the 

training set (dist function in the proxy[14] package in R). The cellular features used to compute the 

similarity matrix were restricted to 42 parameters that covered cellular and nuclear morphometry and 

ƐƚĂŝŶŝŶŐ ŝŶƚĞŶƐŝƚǇ͘ A ŵĂŶƵĂů ĐƵƚŽĨĨ ĨŽƌ ƚŚĞ ͞ ƐŝŵŝůĂƌŝƚǇ ƌĂŶŐĞ͟ ǁĂƐ ƚƵŶĞĚ ƚŽ ĐŽŶĨŝƌŵ ƚŚĞ ŝŶƚĞŐƌŝƚǇ ŽĨ ƌĞƚƵƌŶĞĚ 
cells by only selecting objects with an arbitrary distance less than 50 to the target cell. Cell phenotypes 

were aggregated into frequency plots for three ranges of the MARIO covering low (0-30), medium (30-

60), and high (60-100) risk scores. 

Furthermore, the ability of the MARIO to respond to subtle changes at the single cell level was 

evaluated by simulating changes in cytology sample composition. In this simulation, 10 randomly selected 

normal patients with no clinical lesions had a percentage of archived cells from their cytology samples 

randomly exchanged with cells from a pooled set of 25 OSCC patient cytology samples, ranging from 1% 

to 90%. Median MARIO values were recorded across 10 replicates for each percentage per patient.  
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RESULTS 
Using data acquired from a ůĂƌŐĞ ͞ĐǇƚŽůŽŐǇ-on-ĐŚŝƉ͟ ĚĂƚĂďĂƐĞ͕ Ă ƐŝŵƉůĞ͕ continuous Multivariate 

Analytical Risk Index for Oral Cancer was developed. In this previous study, data was collected according 

to the following summary: Patients presenting with one or more suspicious lesions received a non-

ŝŶǀĂƐŝǀĞ ͞ďƌƵƐŚ ƐĂŵƉůĞ͟ ŽĨ ƚŚĞ ůĞƐŝŽŶ ƐƵƌĨĂĐĞ ;Figure 1.Ia); layers of cells collected from the brush were 

vortexed and processed through a microfluidic cartridge (Figure 1.Ib) containing an embedded nano-

porous membrane (Figure 1.Ic) which captured and isolated single cells for fluorescent biomarker 

labeling; single-cell data with approximately 300 cytomorphometric parameters were extracted from 

multispectral fluorescence images of the membrane surface (Figure 1.Id), after automated image 

analysis algorithms identified cellular boundaries (Figure 1.Ie) and their corresponding regions (Figure 

1.If).While this previous study focused on the parameter selection of various binary models (Figure 

1.IIa), the MARIO developed in this study exists on a continuous-scale similar to the theoretical 

diagnostic spectrum.  
Of the six base classification models, the Lasso models differentiating classes with greater 

separation along the diagnostic spectrum outperformed those discerning classes with less separation (e.g. 

Benign / Malignant MSE = 0.2049 (± 0.86), Dysplastic/ Malignant MSE = 1.8852 (± 4.75), Supplementary 

Table 1). Following pairwise coupling, within the model training dataset, the overall classification accuracy 

based on majority class probabilities was 75%. Of the 25% misclassified observations, 71% achieved the 

correct classification by their second greatest class probability. Therefore, 93% of the true classification 

labels can be explained with the information contained in the two largest class probabilities. Final 

performance values for the MARIO are shown in  

 

 

 

  



7 

 

Table 1. Performance of the continuous MARIO was evaluated by its ability to correctly rank class 

labels in order of increasing risk on the diagnostic spectrum and its ability to correctly predict diagnostic 

class categories.  

The ability of the MARIO to correctly order all observations was evaluated by “ƉĞĂƌŵĂŶ͛Ɛ ƌĂŶŬ 
correlation coefficient on a scale from -1 to 1 where 1 implies perfect ordering in a monotonic, but not 

necessarily linear, increasing relationship. “ƉĞĂƌŵĂŶ͛Ɛ coefficient value for the rank-order of class labels 

was 0.827 for the training dataset and 0.805 for the test dataset, demonstrating a strong positive 

relationship between the MARIO and position along the diagnostic spectrum. The ability of the MARIO to 

correctly predict diagnostic class categories was evaluated by discretizing the continuous score back into 

four distinct categories. Optimal cut-points were determined by minimizing class entropy by the minimum 

description length principle (MDLP). [15] The process of aggregating discrete class probabilities into a 

continuous variable was associated with a minor decrease in overall accuracy of 6.4% in the test dataset 

(from 79.2% to 72.8%). In terms of diagnostic performance, lesions at the low and high end of the disease 

spectrum were more likely to be correctly classified by the MARIO than intermediate dysplastic cases. For 

example, Normal and Malignant cases resulted in MARIO sensitivity/specificity values of 100%/96.8% and 

87.5%/89.9% in the test dataset, respectively while Benign and Dysplastic cases resulted in 

sensitivity/specificity values of 55.6%/96.8% and 73.3%/83.6% for the test dataset, respectively. 

After performance values for the training and test datasets were recorded, the MARIO model was 

applied to all patients and plotted against their gold-standard diagnoses (Figure 2). Boxplots of patient 

risk scores demonstrated a strong positive relationship against the original patient diagnoses based on 

the 2005 WHO criteria. [16] Average risk scores for confirmed normal (n=125) and OSCC (n = 65) lesions 

were significantly different from all other categories (unpaired t-test, p < 0.0001). Average scores for 

patients with benign (n = 253), mild (n = 40), moderate (n=13), and severe dysplasia (n = 10) were not 

significantly discernable from each other (unpaired t-tests, p = 0.0758 - 0.5619). At the 4-class level, where 

dysplasia cases were grouped into a single category, risk score means for each group were significantly 

different except between patients in Benign (n = 253) and Dysplastic (n = 63) classes (unpaired t-test, 306 

df, p = 0.2297). Cut-points for the MARIO on a scale from 0 to 100 were defined at positions 4, 25, and 75, 

resulting in classification intervals of 0-4 for Normal, 4-25 for Benign, 25-75 for Dysplastic, and 75-100 for 

Malignant. The large score range for the dysplastic category agrees well with conventional OED grading 

[16] given the aggregation of low, moderate, and severe/CIS dysplastic cases into a single category which 

in reality represent a range of disease severity and an accumulation of genetic alterations. 
Frequencies of different cellular phenotypes across three regions of the MARIO spectrum are 

shown in Figure 3 panel II. Progression of the MARIO from 0 to 100 was associated with a change in the 

distribution of the five cell phenotype categories. Phenotypes B (Medium-sized rounded cells with 

enlarged nuclei), C (Small, highly-circular cells), and D (lymphocytes) displayed the greatest increase in 

frequency for increasing MARIO values. Notably, the greatest increase in phenotype frequency occurred 

between the medium and high-risk score ranges, exemplified by the 4x increase in frequency of 

phenotype C and the almost 2x increase of phenotype D. Lymphocyte frequency (phenotype D) in patient 

samples for medium range risk scores was lower than both low and high range scores. While most of the 

five phenotypes increased in frequency at higher risk score values, the large, normal-appearing squamous 

cells (phenotype B) dropped in frequency approximately 30%. This ability to summarize the frequency of 

various cell phenotypes on an individual patient level has the potential to enhance molecular-level insights 

behind carcinogenesis and the malignant transformation of OPMDs. 

In addition to phenotype frequency, a simulation was conducted to evaluate the response of the 

MARIO to subtle changes at the single cell level within patient cytology samples (Figure 3, panel III). Each 

of the 10 lesion-free patients randomly selected in this exercise are represented as a line where the 

median calculated MARIO across 10 iterations is plotted against the percentage of reassigned cells. All 

patients exhibited a marked increase in MARIO ƐĐŽƌĞ ƐŚŽƌƚůǇ ĂĨƚĞƌ ŵŽƌĞ ƚŚĂŶ ŚĂůĨ ŽĨ ƚŚĞ ƉĂƚŝĞŶƚƐ͛ ĐĞůůƐ 



8 

 

were replaced with cells from pooled OSCC samples. This simulation also indicates that the calculation of 

the MARIO is sensitive enough to track changes in a cytology sample when only a small percentage of cells 

display a morphometric or biomarker expression alteration. 
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DISCUSSION 
When evaluating patients with OPMDs, pathologists face the challenge of imposing artificial 

categories on a continuous biological process which can result in potential bias and missed opportunities 

to signify cases that may not conform to a particular classification. Though these categories were required 

to train this MARIO, we hypothesize that multiple binary classification models along the diagnostic 

spectrum can be combined into a single continuous measure to enable clinicians to monitor OPMDs in 

more detail. A continuous risk score for OPMDs computed from non-invasive cellular measurements could 

be leveraged for a multitude of applications including monitoring patient response to treatment, 

determining when to refer a patient for initial biopsy or re-biopsy, mapping the oral mucosa for signs of 

recurrence, evaluating novel therapeutics and devices in clinical trials, or determining when to initiate 

more aggressive surgical intervention.  

While achieving an overall accuracy of 72.8% that rivals expert pathologist accuracy of 69% in 

classifying OPMDs, [17] the MARIO developed here demonstrated variable performance depending on 

the region of the diagnostic spectrum. As desired, the ability to accurately distinguish normal mucosa from 

reactive benign conditions and various grades of epithelial dysplasia resulted in excellent performance 

(sensitivity = 96.5%, specificity = 96.8%, test dataset). At the other end of the diagnostic spectrum, the 

MARIO was accurately able to distinguish malignant lesions from non-malignant lesions in 89.6% of the 

cases in the test dataset.  

The lower sensitivity of Benign classification compared to other categories is due in part to the 

challenge of distinguishing particular benign inflammatory and ulcerative lesions with reactive  epithelial 

atypia inflammatory conditions from chronic conditions and the tumor microenvironment seen in 

dysplastic or malignant lesions. Additionally, the subtle cellular changes that underscore the grading 

criteria for distinguishing benign lesions from mild dysplastic lesions have confounded pathologists in 

addition to computer algorithms, where lower inter-observer agreement and accuracy have been 

reported for low grade dysplastic lesions compared to high-grade disease.[18] Future studies will seek to 

enrich the recruitment of patients within the intermediate range of the dysplastic spectrum to develop 

models that can more accurately differentiate the subtle grades of mild, moderate, and severe dysplasia. 

Furthermore, additional molecular biomarkers and morphometric features may be incorporated to 

achieve finer molecular-level detail that reflects the altered genetic state of these low-grade lesions. 

As a supplement to the visual interpretation of the raw fluorescence cytology images, the 

frequency of five different cell phenotypes was automatically measured across low, medium, and high-

risk score values. The resulting cell frequency trends agree well with conventional assessment of oral 

cytology and histology across the diagnostic spectrum. The increase in frequency of small, highly circular 

cells and cells with enlarged nuclei has been observed previously in the literature and has been attributed 

to the decrease in the amount of cytoplasm and reduction in the degree of cellular cohesion that occurs 

with increased dysplasia  grade.[19] The high frequency of lymphocytes in the low risk score range is likely 

due to the presence of inflammatory conditions and ulcerative lesions among patients with benign 

conditions such as ulcerative and erosive lichen planus. By interactively selecting target cells and tuning 

ƚŚĞ ͞ƐŝŵŝůĂƌŝƚǇ ƌĂŶŐĞ͕͟ ĨƵƚƵƌĞ ƐƚƵĚŝĞƐ ĐŽƵůĚ ĞŵƉůŽǇ ƚŚŝƐ ŶŽǀĞů ĐĞůů ƋƵĞƌǇ ĂƉƉƌŽĂĐŚ ƚŽ ŝŶǀĞƐƚŝŐĂƚĞ Žƌ ůĂďĞů 
unique cell phenotypes in an effort to uncover molecular-level insights into OPMD progression. 

The ability to condense the complex biological information contained in a OPMD cytology sample 

into a single MARIO has the potential to lead to unique insights surrounding the molecular phenomena 

associated with lesion progression. While prospectively recruited OPMD samples better reflect the true 

heterogeneity of the real-world patient population, they do not offer information with regard to individual 

lesion progression over time. However, the response of the MARIO to cytology sample alterations at the 

single-cell level can be simulated by randomly exchanging cells between patients with different initial 

diagnoses.  By iterating this simulation for a sample of healthy volunteers and OSCC patients, we have 
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observed that the MARIO is capable of tracking changes in a cytology sample when only a small percentage 

of cells display a morphometric or biomarker expression alteration. 

The MARIO presented here was recently used in a retrospective study involving cytology-on-chip 

measurements from a high-risk population of patients with Fanconi Anemia (FA), a rare inherited 

chromosomal instability disorder associated with an 800-times higher risk of developing oral cancer than 

the general population. [20,21] Cytology-on-chip samples from 37 FA patients over two recruitment 

cohorts in the 2014 and 2016 Meeting for Adults with FA were used to compute their MARIO scores, 

including six patients who presented at both meetings, representing a monitoring period of two years. Of 

these six patients, MARIO scores increased significantly (+>40%) for two patients, suggesting progression; 

decreased (->40%) for two patients, suggesting non-progression or regression; and remained unchanged 

for the remaining two patients (+/- 5%), indicating non-progression or stable disease. [22] One of the first 

two patients demonstrated a 27-fold increase in their MARIO, self-reported a recent pharyngeal cancer 

diagnosis within the 2-year period, and was notified to seek additional guidance from the ƉĂƚŝĞŶƚ͛Ɛ ŚĞĂĚ 
and neck surgeon. This small pilot, proof-of concept study demonstrated that the MARIO score has 

potential to predict accurately the malignancy risk of OPMD in two patients as confirmed by follow-up 

scalpel biopsy, though significant further evaluation is needed to validate the MARIO for surveillance 

applications. 
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CONCLUSION 
We have demonstrated that a multi-class classifier can be adapted to achieve a single, continuous 

͞ƐĞǀĞƌŝƚǇ ƐĐŽƌĞ͟ while achieving high performance (72.8% overall accuracy, individual class prediction 

accuracy from 76.0% - 97.6%) to provide clinicians with a metric to track OPMD progression at the patient 

level using non-invasive sampling. While the application to oral medicine and the assessment of OPMD 

have been emphasized, this methodology could be generalized to other medical applications. Future 

efforts will focus on evaluating this MARIO for monitoring patients over time. Based on robust 

performance agreement between the model development and test datasets (±1.7% in terms of accuracy), 

these methods are anticipated to generalize well with future collected data. Further optimization of these 

models is possible with future studies involving a larger number of patients with dysplastic lesions. An 

intriguing, bold visualization of a single metric representing thousands of single-cell morphometric and 

molecular attributes has been demonstrated with potential to efficiently assess the degree of progression 

or, even regression of OPMD under surveillance. 
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FIGURES AND TABLES 
 

 
Figure 1 - RŝƐŬ ƐƚƌĂƚŝĨŝĐĂƚŝŽŶ ĚŝĂŐƌĂŵ ĂŶĚ ͞CǇƚŽůŽŐǇ-on-ĐŚŝƉ͟ ǁŽƌŬĨůŽǁ͘ Panel I: A) Suspicious lesion is sampled via 

͞ďƌƵƐŚ ƐĂŵƉůĞ͟ ƚĞĐŚŶŝƋƵĞ͕ BͬCͿ ƐŝŶŐůĞ ĐĞůůƐ ĂƌĞ ĐĂƉƚƵƌĞĚ ŽŶ Ă ŶĂŶŽ-porous membrane embedded within a 

microfluidic channel, D) multispectral fluorescence images are recorded across a raster-scan of the membrane, E) 

algorithms identify cellular boundaries based on signal contrast, and F) regions of interest (ROIs) are extracted for 

quantification. Panel II: The 7-stage diagnostic spectrum proposed by the 2005 WHO guidelines [25] displayed as a 

continuous number line. A) Binary risk assessment in the primary clinical setting scenario, where the main goal is to 

refer suspicious lesions for biopsy [10], B) Continuous score of the MARIO.  
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Table 1 - MARIO performance of the training and test datasets  

 

 Training Set (75% of data) Test Set (25% of data) 

Max Score Vote (Accuracy, %) 79.80% 79.02%  

Class Binning (Accuracy, %) 74.54% 72.80% 

VŽƚĞ OƌĚĞƌ ;“ƉĞĂƌŵĂŶ͛Ɛ ƌŚŽͿ 0.876 0.886 

CůĂƐƐ OƌĚĞƌ ;“ƉĞĂƌŵĂŶ͛Ɛ ƌŚŽͿ 0.827 0.805 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
AUC Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
AUC 

Normal 97.37 100.00 96.52 0.983 97.60 100.00 96.81 0.984 

Benign 78.74 59.47 97.91 0.787 76.00 55.56 96.78 0.762 

Dysplastic 82.68 72.92 84.01 0.785 82.40 73.33 83.64 0.785 

Malignant 90.29 85.71 90.96 0.883 89.60 87.50 89.91 0.887 
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Figure 2 - MARIO Performance. Barplots scaled to class densities (y-axis) across the MARIO (x-axis) for (A) Training 

and (B) Test datasets. Color-coding represents the true patient class according to histopathology. Vertical dashed 

lines represent optimal cut-points for discretizing the continuous score into disease class domains based on 

minimizing class entropy in the training dataset. C) Box-plot of MARIO values (y-axis) across the 6 different diagnostic 

categories (center line = median value, top/bottom box = inter-quartile range). 



15 

 

 
 

Figure 3 - Results from single-cell calibration exercise and phenotype query. Panel I) Representative images of cell 

phenotypes for frequency tables in Panel II: A) Medium-sized rounded cell with enlarged nuclei, B) Large, normal-

appearing squamous cell, C) Small, highly-circular cell, D) Leukocyte, E) lone nuclei. Panel II) Distribution of phenotype 

frequencies for patients with the identified range of risk scores (Blue: 0-25, Orange: 30-60, Red: 75-100). Left axis = 

A, B; Right axis = C, D, E. Error bars = standard deviation of phenotype frequency per patient. Panel III: Results from 

cell reassignment simulation where solid lines represent median MARIO values for each of 10 randomly selected 

healthy volunteer samples across the increasing percentage of their cells exchanged for cells from a corpus of OSCC 

patient cells (x-axis). Gray boundaries surrounding each line represents +/- standard error across 10 replicates. 
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