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In-situ Biofilm Formation in Hyper Alkaline Environments  

Abstract 

Lime manufacture in the UK has resulted in the generation of a number of alkaline sites (>pH 

11.0) with complex indigenous microbial populations. Within the present study, retrievable 

cotton samples were used to investigate the fate of cellulose, the primary carbon source, within 

three sites aged from ≈25 to 140 years.  Following three months incubation in situ, biofilms 

had formed on all cotton samples in these extreme pH conditions; with matrices comprised of 

carbohydrates, proteins, lipids and eDNA. Biofilms from the older sites contained greater 

amounts of eDNA, a structural component that aids the production of a denser biofilm. The 

age of the sites correlated with a shift from polysaccharides composed of ȕ 1,4 and ȕ 1,3 linked 

sugars to those composed of pyranosyl sugars within the older sites. These changes were 

reflected in the active biofilm communities which shifted from being Clostridiales dominated 

in the youngest site to Proteobacteria dominated in the older sites. The study demonstrates that 

the microbial communities resident in anthropogenic alkaline sites are able to form biofilms at 

pH values >pH 11.0 and that these biofilms evolve towards Proteobacteria dominated 

communities employing eDNA and pyranosyl sugar based polysaccharides to build the biofilm 

matrix.   
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Introduction  

The UK has a long and rich industrial heritage which has generated a wide range of terrestrial 

environments which pose significant challenges to their indigenous microbial populations. 

Amongst these are a range of anthropogenic alkaline environments (Gomes et al., 2016), which 

in the UK are commonly linked to the waste disposal practices of historic lime manufacture 

(Milodowski et al., 2013). Lime manufacture in the UK dates back to the Roman period 

(Williams, 2004) with a range of historical sites in northern England originating from the 17th 

to the 20th century (Johnson, 2008, White, 2006, Milodowski et al., 2013).  

One such site in Derbyshire, UK has waste disposals dating back ca. 140 years (Milodowski et 

al., 2013) which have generated an alkaline plume where pH values of greater than pH 12.0 

are common. Despite this harsh geochemical environment, the site supports an extensive and 

diverse bacterial (Williamson et al., 2013, Bassil et al., 2014, Burke et al., 2012) and archaeal 

(methanogenic) populations (Rout et al., 2015, Charles et al., 2015) capable of a wide range of 

metabolic and energy generating processes (Bassil et al., 2014, Rout et al., 2015). The alkaline 

conditions generated by these wastes result in the in-situ chemical hydrolysis (Knill and 

Kennedy, 2003) of cellulosic materials, i.e. plant matter, demonstrated by the detection of iso-

saccharinic acids (ISA) in these sediments (Rout et al., 2015).  

Biofilm formation is recognized as a key microbial adaption strategy against extreme 

environmental conditions (Davey and O'toole, 2000), and biofilm matrix materials have been 

shown to provide protection against extreme pH values (Charles et al., 2017).  The work 

reported here investigates the ability of microbial populations in three temporal and 

geographically distinct lime kiln waste sites to colonize and form cellulose associated biofilms 

at pH values >pH 11.0. These sites have been subject to lime contamination from ≈25 to 145 
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years allowing for a comparative analysis of the biofilm forming capabilities of the indigenous 

microbial populations.   

Methods  

Site Descriptions  

Three geographically distinct UK lime kiln waste sites were chosen for this investigation. The 

first sites is the previously described Buxton site (Site B, Figure 1A) which began operation in 

1872 and operated up until 1944 (Milodowski et al., 2013). The other two sites are located in 

North Yorkshire, Site H has a hyper alkaline lagoon formed when lime kiln wastes were 

disposed of in the 1940’s (Figure 1B). The third site (Site T) is also adjacent to a limestone 

quarry and features a drainage basin which manages an alkaline leachate generated by rain 

water percolation through historical waste deposits. All three sites have an interface area where 

the alkaline waters inundate a vegetated marginal area (Figure 1C).  

[Figure 1 near here] 

Site Investigation  

At the interface between the alkaline leachate and the surrounding land a series of 2.2 cm Ø 

boreholes were emplaced to an approximate depth of 0.5 m at all three sites.  These boreholes 

were encased with plastic liners that were perforated for the bottom 5 cm. Nylon mesh bags 

containing approximately 1 g of sterile, de-waxed, cotton (Charles et al., 2015) were then 

placed at the bottom of each borehole. A total of 6 boreholes were placed into Site H and 5 

boreholes into Site T. For Site B, the 4 boreholes previously described by Charles et al. (2015) 

and Rout et al. (2015) were used. Pore water and sediment samples were collected prior to the 

emplacement of the cotton and were analyzed for a range of parameters as previously described 

in Rout et al. (2015).The pH of the pore water was recorded in-situ before and after 
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emplacement via a handheld portable pH meter with calibrated electrodes (Mettler Toledo, 

UK).  

After 3 months the cotton and samples of the local pore waters were collected and sealed in 

airtight containers along with anaerobic gas packs (Anaerogen, Oxoid, UK) for transport. Pore 

waters were then analyzed for VFA and ISA content and small portions of the cotton were used 

for ISA content determination. VFA and ISA concentrations were analyzed via gas and anion 

exclusion chromatography as described by Rout et al. (2015). Cotton not for immediate use 

was fixed overnight using 4% paraformaldehyde in phosphate-buffered saline (PBS) and stored 

at  -20°C in a TRIS-HCl ethanol based solution described in Charles et al. (2015).  

Microscopy  

The EPS composition and biofilm morphology was determined via confocal laser scanning 

microscopy (CLSM) at the Bio imaging center of Leeds University using a Zeiss LSM880 

inverted confocal microscope with image analysis performed using Zen 2.1 (Zeiss 

Microscopy). Small sections of fixed cotton were stained using the following compounds in 

accordance with methods outlined in Chen et al. (2007): Calcofluor white for the visualization 

of ȕ-1,4 and ȕ-1,3 polysaccharides (Sigma, UK), Nile red (Fisher, UK) for lipids and 

hydrophobic sites, Concanavalin A, Tetramethylrhodamine Conjugate (Fisher, UK) for Į-

Mannopyranosyl, Į-glucopyranosyl sugars, FITc (Fisher, UK) for protein and Syto 63 (Fisher, 

UK) for total cells and extracellular DNA. Biofilms were further investigated using scanning 

electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) via a Quanta 

FEG 250 scanning electron microscope. Fixed samples were dehydrated using a serial ethanol 

dilution of 25, 50, 75 and 100% for 2 minutes per step and sputter coated via a gold palladium 

plasma (CA7625 Polaron, Quorum Technologies Ltd, UK) before visualization. 
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RNA Extraction and Community Analysis 

In order to focus on the active microbial population and to avoid potential contamination from 

bacterial spores, 16S rRNA, rather than 16S rDNA community analysis was carried out. Cotton 

samples were washed with pH 4 and then pH 7 PBS under an inert nitrogen atmosphere to 

remove any transient microorganisms and to neutralize the cotton samples. Samples were then 

cut into small sections using sterile scissors and placed in a 15ml Falcon tube with metal beads 

provided in the RNA Powersoil kit (Mo-BIO, Carlsbad). DNA and RNA was then co-extracted 

using methods outlined in Griffiths et al. (2000). Briefly; 2.5ml phenol-chloroform-isoamyl 

alcohol (25:24:1) (pH 8.0) (Sigma, UK) and 2.5ml CTAB extraction buffer with 0.5ml ȕ-

marcaptoethanol (Fisher, UK) were added to the bead tube and beaten for 20 minutes. Samples 

were centrifuged and the aqueous phase extracted and mixed with an equal volume of 

chloroform-isoamyl alcohol (24:1) (Sigma, UK). Samples were centrifuged again and the 

aqueous phase was extracted and the DNA/RNA precipitated using ethanol. RNA was isolated 

by digesting the extracted nucleic acid mix via the DNase 1 kit (Sigma-Aldrich, UK) and 

purifying the RNA using an RNeasy mini elute clean up kit (Qiagen, UK). After elution RNA 

from related samples was pooled to increase the yield and concentrated using ethanol 

precipitation. cDNA was generated from the pooled RNA for each site using a Tetro cDNA 

synthesis kit with random hexamer primers (Bioline, UK). The V4 region of the 16S rRNA 

gene was amplified using duel primers 519F (5’CAGCMGCCGCGGTAA’3) and 785R 

(5’TACNVGGGTATCTAATCC’3) (Klindworth et al., 2013, Jung et al., 2011) with the 

following overhangs 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG’3 and 5’ 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG’3, respectively. PCR products were 

purified using a Qiaquick PCR purification kit (Qiagen, UK) and 16S microbial Community 

analysis was carried out via a MiSeq platform (Illumina, USA) at 250bp paired ends with 

chimera detection and removal performed via the UNCHIME algorithm in the MOTHUR suite 
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(Schloss et al., 2009) (Chunlab, South Korea). Assignment of OTU’s was performed using a 

CD-HIT clustering method with a 95% cut-off value and specific OTU analysis was carried 

using Taxon XOR analysis in the CLcommunity software suite  (Chunlab, South Korea) with 

taxonomic assignment performed against the EZtaxon database  (Kim et al., 2012).  

Accession numbers  

16s rRNA sequence data was uploaded to the NCBI sequence read archive under the accession 

number SRP073428. 

Results 

In all three cases the pore water pH associated with the cotton samples, post incubation was ≥ 

pH 11.9 (Table 1). The alkaline nature of the environments was confirmed by the presence of 

both the alpha and beta stereoisomers of ISA; compounds only generated by the alkaline 

hydrolysis of cellulose under anoxic conditions.  This ISA was accompanied at all sites by 

acetic acid indicating an actively fermenting microbial populations.  

[Table 1 near here] 

Microbial consortia colonized the emplaced cotton at all three sites with the associated biofilms 

punctuated with mineral deposits predominantly composed of carbon, calcium and oxygen 

(Figure S1) as would be expected in a calcium dominated environment. The colonization of 

the cotton showed a progression with the youngest site (H) having shallower (13µm) less dense 

biofilms, these increased in depth in site H (28µm), and both depth and density at site B (23µm) 

(Figure 2). All three biofilms possessed complex matrix components comprised of proteins, 

carbohydrates, cells, extracellular DNA (eDNA) and lipids (Figure 2), however there were key 

differences in the matrix compositions. For example, eDNA was less abundant at site T, 

concentrated at the cotton surface in Site B and present throughout the biofilm at site B. 

Pyranosyl and ȕ 1,4 and 1,3 linked polysaccharides were present at all sites, however  the site 
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B biofilm was dominated by pyranosyl sugars whilst the site T biofilm relied more heavily 

upon ȕ 1,4 and 1,3 linked residues with site H having both polysaccharides in equal abundance. 

This reflects the position of Site H as an intermediate between the older and younger sites.  

[Figure 2 near here] 

In line with the differences in the biofilm matrix components, analysis of the active microbial 

communities at each site, indicated that the Site B and Site H consortia were more similar to 

each other than to the Site T consortia (Figure 3). Reads associated with the Protobacteria 

comprised the greatest proportion of both the Site B (62.0%) and Site H (67.4%) communities, 

compared to 20.1% of the Site T community. Despite this similarity, within the site B 

community, 29.4% of the community was comprised of taxa of the Burkholderiales, with a 

further 20.6% being within the Rhizobiales. Despite these two Orders being present within the 

Site H community, comprising 11.2% and 9.4% respectively, taxa of the Enterobacteriales 

(16.2%) and the Pseudomonadales (23.4%) represented the dominant Proteobacteria of this 

community. Taxa of the Enterobacteriales were the most prevalent Proteobacteria within the 

Site T community (8.7%). 

[Figure 3 near here] 

Taxa of the Firmicutes were the most prevalent of the Site T community, with taxa of the 

Clostridiales comprising 35.8% of the community. Firmicutes were also present within the Site 

B (7.9%) and Site H (10.1%) communities. Taxa of the Actinobacteria were present in all three 

communities, but comprised a much larger component of the Site H community (14.0%), 

within this phylum taxa were identified as being from the Corynebacteriales (5.6%) and 

Micrococcales (6.8%). In a similar manner, taxa associated with the Acidobacteria were more 

prevalent in the Site B community (13.0%) than that of Site T (7.6%) or Site H (1.4%) 

communities. Within the Site B community, 10.4% of the total reads were associated with the 
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Order designation EU686603. Planctomycetales (4.8%) and Verrumicrobiales (3.0%) were 

also more prevalent in the site B community than in the biofilms of the other two sites. The 

biofilm community of Site T comprised a number of taxa of the Bacteroidales (5.4%), 

AF544207 (2.1%), FR720650 (2.3%) and Fibrobacteriales (3.3%), which were all in a greater 

abundance than those of the other two sites.  

Discussion   

Our understanding of anthropogenic alkaline environments has gained traction in recent years 

(Burke et al., 2012, Milodowski et al., 2013) primarily driven by their potential as analogues 

for aspects radioactive waste disposal practices (Rout et al., 2015). However, the harsh 

geochemical environments these sites create provide an insight into the ability of microbial life 

to flourish at environmental extremes.  

Within this present study we have identified the biofilm forming potential of the micro-

organisms from three of these alkaline environments varying in age from 25-140 years. The 

biofilms existed on the surface of cotton cellulose emplaced in situ, where the cotton clearly 

acts as a surface for biofilm formation. The carbon source used by these biofilms is likely to 

be a combination of the cellulose and the products of its anoxic, alkaline hydrolysis since there 

was limited evidence of the pits and grooves associated with microbial anaerobic cellulose 

degradation at circumneutral conditions (McDonald et al., 2012). Fibrobacter sp, cellulolytic 

organisms (Ransom-Jones et al., 2012, McDonald et al., 2012) were detected in all three 

biofilm communities and ISA could be extracted from the cotton indicating that that they were 

available as a carbon source for the biofilm communities. In addition recently isolated strictly 

anaerobic, ISA degrading bacteria also contain cellulosomes which would enable cellulose 

degradation (Rout et al., 2017). There was, however, no evidence of the acidification observed 
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in some in-vitro studies (Bassil et al., 2015) indicating that the buffering capacity of all three 

sites was sufficient to counter act any acidification associated with fermentation processes.  

Extracellular DNA was a key matrix component at all three sites and is likely to provide 

structural support by anchoring the biofilm to the cellulose surfaces (Charles et al., 2017). This 

stabilizing influence of eDNA is enhanced via thermodynamically favorable interactions with 

Ca2+ ions (Das et al., 2014). Sequestration of Ca2+ may also impact on pH buffering by the 

partial prevention of CaCO3 precipitation (Arp et al., 1999), although the formation of 

carbonate deposits was observed in all three biofilms. The degree of eDNA present within the 

biofilm appeared to be less within the youngest site (T), which coincided with fewer 

Proteobacteria; in particular Burkholderiales and Rhizobiales. The structural role of eDNA in 

the formation of Pseudomonas biofilms has been reported by a number of authors (Wang et 

al., 2015, Ma et al., 2009), our findings suggest that this may be a characteristic of a number 

of taxa within this Phylum.  

The community of site H also had taxa of the Enterobacteriales and Pseudomonadales of the 

Proteobacteria which may suggest that the geochemistry, or age of this site is influencing the 

components of the community. This was further suggested by the high abundance of 

Corynebacteriales within the biofilm represented by Corynebacterium sp at the genus level. 

Corynebacterium are largely described based on their lipophilic properties (Kosaric, 2001), 

which coincides with a diminished lipid content within the site H biofilm compared to that of 

B and T. The increased lipid content in these biofilms correlated with the increased detection 

of Acidobacteria, however many of the species within this phylum remain uncharacterized 

(Kielak et al., 2016) and consequently this link remains to be verified.  The production of lipids 

within the biofilm will increase hydrophobicity and reduce wetting (Epstein et al., 2011) which 

will in turn reduce the impact of the alkaline pore waters. Lipids may also maintain the pH 

buffering capacity of the biofilm matrix if the acidic phospholipids reported in the membranes 
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of alkaliphilic bacteria (Enomoto and Koyama, 1999) have been employed in matrix 

construction.  

Carbohydrates were also a key component of all three biofilms, however there was a shift from 

ȕ1,4 and ȕ 1,3 polysaccharides in the youngest site to pyranosyl sugars in the oldest site. 

Interestingly the biofilm of site H contained similar amounts of each type. Whether this is a 

true indicator of the time of exposure to alkaline conditions or a result in the slight differences 

in community composition is unclear. Proteins were present within all three biofilms. In the 

younger site biofilms, the proteins were concentrated in bottom 50% of the matrix, where as 

they were distributed all the way through the matrix from the oldest site (B). Recent findings 

suggest that proteins are prevalent in both single (Liu et al., 2015) and multiple organisms 

biofilms (Charles et al., 2015), where they play a number of key roles including the sorption of 

inorganic and organic ions, enzymatic reactions and protection from environmental conditions 

(Flemming and Wingender, 2010).  

This investigation demonstrates that in situ biofilm formation is not only possible but common 

despite the extreme alkaline conditions (>pH 11.0) generated by the disposal of lime kiln 

wastes. The thickness and density of the biofilms observed suggests that the microbial 

communities in the older sites (>100 years) are better adapted to this harsh environment. 

Despite the age of the site, eDNA plays a key structural function in all the biofilms formed and 

its prevalence correlates with the presence of taxa of the Burkholderiales, Rhizobiales, 

Enterobacteriales and Pseudomonadales and a reduction in Clostridiales. This suggests that 

the presence of these taxa is essential for the formation of stable biofilms in these 

geochemically aggressive environments.  
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Site  
Approximate 

Age pH 
µM (mg (g dry wt)-1 

Acetic Acid Į-ISA ȕ-ISA 
B 140 11.9* 208.9* 2.34* 0.85* 
H 50 13.5-13.6 828.0±757.3 1.06 ± 0.42 1.15 ± 0.47 
T 25 12.4-13.1 313.7±202.6 1.69 ± 0.12 1.43 ± 0.17 

*Previously reported in Charles et al (2015). Mean±SE    
      

Table 1: pH and ISA content of the porewaters associated with the cotton samples.  

  



17 
 

 

Figure 1: Terrain of site B (A), Site H (B) and Site T (C). 
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Figure 2: Biofilms from all three sites were composed or a range of complex polymeric 

components. CLSM imaging showed that the biofilms were a complex mixture of proteins, 

carbohydrates, cells, extracellular DNA and lipids.  
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Figure 3: Community analyses of the three biofilm communities indicated that the site B and 

site H communities showed greatest homology, dominated by taxanomic Orders of the 

Proteobacteria Phylum. Although also comprising these Orders, the Site T community had a 

greater abundance of Clostridiales of the Firmicutes phylum. 
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