
Journal of Scheduling (2019) 22:635–661
https://doi.org/10.1007/s10951-019-00607-9

Shop scheduling problems with pliable jobs

S. Knust1 · N. V. Shakhlevich2 · S. Waldherr3 · C. Weiß4

Published online: 2 April 2019
© The Author(s) 2019

Abstract
In this paper, we study a new type of flow shop and open shop models, which handle so-called “pliable” jobs: their total
processing times are given, but individual processing times of operations which make up these jobs are flexible and need to
be determined. Our analysis demonstrates that many versions of flow shop and open shop problems with pliable jobs appear
to be computationally easier than their traditional counterparts, unless the jobs have job-dependent restrictions imposed on
minimum and maximum operation lengths. In the latter case, most problems with pliability become NP-hard even in the case
of two machines.

Keywords Scheduling · Flow shop · Open shop · Identical parallel machines · Preemption

1 Introduction

In traditional flow shop and open shop models, n jobs of
the set J = {1, 2, . . . , n} are processed by m machines Mi ,
1 ≤ i ≤ m. Each job j , 1 ≤ j ≤ n, consists of m operations
Oi j , one operation on each machine Mi , with processing
times pi j , 1 ≤ i ≤ m. A job cannot be processed by two
machines at the same time and a machine cannot process
two jobs simultaneously. In the flow shop model, all jobs
have the same machine order, while in the open shop model
the machine order is not fixed and can be chosen arbitrarily
for each job. The goal is to select an order of operations on

B N. V. Shakhlevich
N.Shakhlevich@leeds.ac.uk

S. Knust
sknust@uni-osnabrueck.de

S. Waldherr
waldhers@in.tum.de

C. Weiß
christian.weiss@itwm.fraunhofer.de

1 Institute of Computer Science, University of Osnabrück,
49069 Osnabrück, Germany

2 School of Computing, University of Leeds, Leeds LS2 9JT,
UK

3 Department of Informatics, Technical University of Munich,
85748 Garching, Germany

4 Department of Optimization, Fraunhofer Institute for
Industrial Mathematics ITWM, 67663 Kaiserslautern,
Germany

each machine and for open shops additionally the order of
operations for each job, so that a given objective function f
depending on job completion times is minimized.

Bothmodels, flow shop and open shop, have a long history
of study, see, e.g., Brucker (2007), Pinedo (2016). Over the
last 60 years, the classical versions were extended to handle
additional features of practical importance. The main exten-
sions relevant for our study are processing with preemption
and processing with lot splitting or lot streaming. In pre-
emptive models, an operation can be cut into an arbitrary
number of pieces which are then processed independently.
In the models with lot splitting or lot streaming, operations
can be divided into sublots, which can then be treated as new
operations (cf. Kropp and Smunt 1990; Trietsch and Baker
1993; Chang and Chiu 2005). In the preemptive case, pieces
of the same job processed by twomachines cannot overlap in
time, while in the case of lot splitting or lot streaming over-
lapping may happen if the pieces belong to different sublots.

Other concepts related to operation splitting and reloca-
tion, which have appeared more recently, deal with flexible
operations and operation redistribution (cf. Gupta et al.
2004; Burdett and Kozan 2001, respectively). In the first
model, jobs typically consist ofmore thanm operations, some
of which are fixed and have to be processed by dedicated
machines while others are flexible and need to be assigned to
one of the appropriate machines. In the second model, oper-
ation parts can be moved to neighboring machines if those
machines are equipped to handle them.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-019-00607-9&domain=pdf
http://orcid.org/0000-0002-5225-4008

636 Journal of Scheduling (2019) 22:635–661

1.1 Pliability

In all models discussed above, processing times pi j are given
for the operations Oi j and these processing amounts have to
be completed in full even if splitting happens and/or oper-
ation parts are moved to different machines. In this paper,
we study a different way of splitting jobs, where operation
lengths are not given in advance, but have to be determined.
To distinguish our model from those studied previously, we
introduce the notion of pliability (note that the term “split-
ting” is already reserved for other models, see, e.g., Serafini
(1996), where a job can be split and then processed indepen-
dently on different machines). Formally, a pliable job j is
given by its total processing amount p j , which has to be split
among the m machines. Operation lengths xi j ∈ R≥0 have
to be determined as part of the decision making process. The
combined length of all operations of job j over all machines
has to match the given total processing requirement of job j :

m∑

i=1

xi j = p j , 1 ≤ j ≤ n.

We initiate this line of research by introducing three mod-
els with varying restrictiveness on the pliability of jobs.

(i) Unrestricted pliabilitymeans that we only have to fulfill

0 ≤ xi j ≤ p j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(ii) Restricted pliability with a common lower boundmeans
that the jobs need to be split complying with the restric-
tion on a minimum length p of any operation:

p ≤ xi j ≤ p j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that for a feasible instance wemust have p j ≥ mp
for each job 1 ≤ j ≤ n.

(iii) Restricted pliabilitymeans that the jobs need to be split
complying with individual lower and upper bounds p

i j
,

pi j given for all operations:

p
i j

≤ xi j ≤ pi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Again, to assure feasibility we must have

m∑

i=1

p
i j

≤ p j ≤
m∑

i=1

pi j for all j = 1, . . . , n.

Model (i) assumes full flexibility of the machines and
admits a low level of job granularity, accepting arbitrarily
small operations. Although infinitesimally small operations
are allowed, they are treated as zero-length operations rather

than missing operations (for these concepts cf. Hefetz and
Adiri 1982). They need to be allocated to the corresponding
machine in a non-conflict way, and in the flow shop case the
required machine order has to be respected.

Model (ii) is characterized by a limited level of job gran-
ularity defined by a common parameter p for all jobs, while
the limitations in model (iii) can be different for distinct job-
machine pairs. Clearly, model (i) is a special case of model
(ii) with p = 0, and model (ii) is a special case of model
(iii) with p

i j
= p, pi j = p j . The classical flow shop and

open shop problems are special cases of model (iii) with
p
i j

= pi j = pi j for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Extending the α|β|γ -notation, we denote flow shop and

open shop problems with unrestricted pliability of type (i) by
F |plbl|γ and O|plbl|γ . In the presence of additional restric-
tions of models (ii)–(iii), the given bounds are indicated in
the second field as plbl(p) and plbl(p

i j
, pi j), respectively.

The third field γ denotes the optimization criterion. It may
include one of the traditional scheduling functions or sim-
ply “ f ” for an arbitrary non-decreasing objective function
depending on completion times C j of the jobs j ∈ J . We
distinguish between minmax and minsum objectives:

fmax = max
j∈J

{
f j (C j)

}
, (1)

f� =
∑

j∈J
f j (C j), (2)

where f j (C j) are non-decreasing functions. The two typical
minmax examples are the makespan Cmax = max{C j | j ∈
J } and themaximum lateness Lmax = max{C j−d j | j ∈ J },
where d j is the due date of job j . Minsum examples include
the total completion time objective

∑
C j , total tardiness∑

Tj , where Tj = max
{
C j − d j , 0

}
, or the total number of

late jobs
∑

Uj , where Uj ∈ {0, 1}, depending on whether a
job is completed on time or after its due date d j . If jobs j ∈ J
have different weights w j , then the latter functions can be
extended to their weighted counterparts

∑
w jC j ,

∑
w j Tj ,∑

w jU j .

1.2 Contributions

Our main results include a study of general properties of
pliability models, formulating a general methodology for
handling them and using it to perform a thorough complexity
classification of the models. Note that all results are derived
under the assumption that the jobs are available simultane-
ously, at zero release times.

The obtained results for flow shop andopen shopproblems
with pliable jobs are summarized in Tables 1, 2 for the case
where the number of jobs is not smaller than the number of
machines, n ≥ m, and in Table 3 for the case where there are
fewer jobs than machines, n < m. For comparison, we also

123

Journal of Scheduling (2019) 22:635–661 637

Ta
bl
e
1

O
pe
n
sh
op

an
d
flo

w
sh
op

pr
ob
le
m
s
w
ith

pl
ia
bl
e
jo
bs

an
d
m
in
m
ax

ob
je
ct
iv
es
,n

≥
m

Pr
ob

le
m
s

T
ra
di
tio

na
l(
no

n-
pl
ia
bi
lit
y)

m
od

el
s

Pl
ia
bi
lit
y
m
od

el
s
(t
hi
s
pa
pe
r)

N
o
pm

tn
pm

tn
M
od
el
(i
):
pl
bl

M
od
el
(i
i)
:
pl
bl

(
p)

M
od

el
(i
ii)
:
pl
bl

(
p i

j,
p i

j)

O
2|

◦|
C
m
ax

O
(n

)
O

(n
)

O
(n

)
T
he
or
em

5
O

(n
)

T
he
or
em

11
O

(n
)

T
he
or
em

11

F
2|

◦|
C
m
ax

O
(n

lo
g
n)

O
(n

lo
g
n)

O
(n

)
T
he
or
em

5
O

(n
)

T
he
or
em

8
N
P-
h‡

T
he
or
em

10

O
m

|◦
|C

m
ax

N
P-
h‡

(m
≥

3)
O

(n
2
)

O
(n

)
T
he
or
em

5
O
pe
n

N
P-
h‡

(m
≥

3)
Se
ct
.3

.3

F
m

|◦
|C

m
ax

sN
P-
h
(m

≥
3)

sN
P-
h
(m

≥
3)

O
(n

)
T
he
or
em

5
O

(n
)

T
he
or
em

8
sN

P-
h
(m

≥
3)

Se
ct
.3
.3

O
|◦

|C
m
ax

sN
P-
h

O
(n

2
m

2
)

O
(n

)∗
T
he
or
em

5
O
pe
n

sN
P-
h

Se
ct
.3
.3

F
|◦

|C
m
ax

sN
P-
h
(m

≥
3)

sN
P-
h

O
(n

)∗
T
he
or
em

5
O

(n
)∗

T
he
or
em

8
sN

P-
h
(m

≥
3)

Se
ct
.3
.3

O
|◦

|L
m
ax

sN
P-
h
(m

≥
2)

L
in
ea
r
pr
og
ra
m
m
in
g

O
(n

lo
g
n)

∗
T
he
or
em

6
O
pe
n

sN
P-
h
(m

≥
2)

Se
ct
.3
.3

F
|◦

|L
m
ax

sN
P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

O
(n

lo
g
n

+
m
n)

T
he
or
em

6
O

(n
lo
g
n

+
m
n)

T
he
or
em

9
sN

P-
h
(m

≥
2)

Se
ct
.3
.3

sN
P-
h:

st
ro
ng
ly

N
P-
ha
rd

N
P-
h‡
:N

P-
ha
rd
;o

pe
n
w
he
th
er

st
ro
ng
ly

N
P-
ha
rd

or
ps
eu
do
po
ly
no
m
ia
lly

so
lv
ab
le

∗ W
ith

co
m
pa
ct
en
co
di
ng

of
th
e
ou
tp
ut
;a
dd
iti
on
al
te
rm

O
(n
m

)
fo
r
co
ns
tr
uc
tin

g
co
m
pl
et
e
sc
he
du
le

Ta
bl
e
2

O
pe
n
sh
op

an
d
flo

w
sh
op

pr
ob
le
m
s
w
ith

pl
ia
bl
e
jo
bs

an
d
m
in
su
m

ob
je
ct
iv
es
,n

≥
m

Pr
ob

le
m
s

T
ra
di
tio

na
l(
no

n-
pl
ia
bi
lit
y)

m
od

el
s

Pl
ia
bi
lit
y
m
od

el
s
(t
hi
s
pa
pe
r)

N
o
pm

tn
pm

tn
M
od
el
(i
):
pl
bl

M
od
el
(i
i)
:
pl
bl

(
p)

M
od

el
(i
ii)
:p
lb
l(
p i

j,
p i

j)

O
|◦

|∑
C

j
sN

P-
h
(m

≥
2)

N
P-
h‡

(m
≥

2)
O

(n
lo
g
n)

∗
T
he
or
em

13
O

(n
lo
g
n)

∗
T
he
or
em

15
sN

P-
h
(m

≥
2)

Se
ct
.3
.3

F
|◦

|∑
C

j
sN

P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

O
(n

lo
g
n)

∗
T
he
or
em

12
O

(n
lo
g
n)

∗
T
he
or
em

14
sN

P-
h
(m

≥
2)

Se
ct
.3
.3

O
m

|◦
|∑

w
jC

j
sN

P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

N
P-
h†

Se
ct
.7
.4

N
P-
h‡

Se
ct
.7
.4

sN
P-
h
(m

≥
2)

Se
ct
.3
.3

F
m

|◦
|∑

w
jC

j
sN

P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

N
P-
h†

Se
ct
.7
.4

N
P-
h‡

Se
ct
.7
.4

sN
P-
h
(m

≥
2)

Se
ct
.3
.3

O
|◦

|∑
w

jC
j

sN
P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

sN
P-
h

T
he
or
em

2
sN

P-
h

Pr
op
os
iti
on

1
sN

P-
h
(m

≥
2)

Se
ct
.3
.3

F
|◦

|∑
w

jC
j

sN
P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

sN
P-
h

T
he
or
em

2
sN

P-
h

Pr
op
os
iti
on

1
sN

P-
h
(m

≥
2)

Se
ct
.3
.3

O
m

|◦
|∑

U
j

sN
P-
h
(m

≥
2)

N
P-
h
(m

≥
2)

O
(n3

(m
−1

)
)

Se
ct
.7
.4

op
en

sN
P-
h
(m

≥
2)

Se
ct
.3
.3

F
m

|◦
|∑

U
j

sN
P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

O
(n3

(m
−1

)
)

Se
ct
.7
.4

O
(n3

(m
−1

)
)

Se
ct
.7
.4

sN
P-
h
(m

≥
2)

Se
ct
.3
.3

O
|◦

|∑
U

j
sN

P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

N
P-
h‡

T
he
or
em

2
N
P-
h‡

Pr
op
os
iti
on

1
sN

P-
h

Se
ct
.3
.3

F
|◦

|∑
U

j
sN

P-
h
(m

≥
2)

sN
P-
h
(m

≥
2)

N
P-
h‡

T
he
or
em

2
N
P-
h‡

Pr
op
os
iti
on

1
sN

P-
h

Se
ct
.3
.3

sN
P-
h:

st
ro
ng
ly

N
P-
ha
rd

N
P-
h†
:N

P-
ha
rd
;p

se
ud
op
ol
yn
om

ia
lly

so
lv
ab
le

N
P-
h‡
:N

P-
ha
rd
;o

pe
n
w
he
th
er

st
ro
ng
ly

N
P-
ha
rd

or
ps
eu
do
po
ly
no
m
ia
lly

so
lv
ab
le

∗ W
ith

co
m
pa
ct
en
co
di
ng

of
th
e
ou
tp
ut
;a
dd
iti
on
al
te
rm

O
(n
m

)
fo
r
co
ns
tr
uc
tin

g
co
m
pl
et
e
sc
he
du
le

123

638 Journal of Scheduling (2019) 22:635–661

Table 3 Open shop and flow shop problems with pliable jobs, n < m
(results from Sect. 8)

Problems Complexity

O|plbl| f , O|plbl(p)| f for any regular objective f O(1)∗

F |plbl|Cmax O(n)∗

F |plbl| f for any regular objective f O(n log n)∗

F |plbl(p)|Cmax O(n)∗

F |plbl(p)|Lmax O(n log n)∗

F |plbl(p)| ∑C j O(n log n)∗

F |plbl(p)| ∑ w jC j O(n2)∗

F |plbl(p)| ∑Uj O(n log n)∗

F |plbl(p)| ∑ Tj O(n4
∑

p j)
∗

∗With compact encoding of the output; additional term O(nm) for
constructing complete schedule

provide related results for traditional (non-pliability)models;
for references see, e.g., Brucker (2007), Pinedo (2016).

Note that the input for problems with pliability of type (i)
and (ii) consists of O(n) entries, while the output consists
of O(nm) entries if it is needed to produce a full characteri-
zation of a schedule, specifying starting/completion times of
all operations. Whenever an optimal schedule has a special
structure and it is possible to derive formulae for computing
starting/completion times of individual operations, we list
reduced time complexities in Tables 1, 2, 3, associated with
finding characteristics of a single operation and for required
auxiliary preprocessing. An additional term O(nm) has to be
added if an optimal solution should be specified in full (see
the entries in the table marked by an asterisk).

The remainder of the paper is organized as follows. In
Sect. 2 we provide an overview of related models studied in
the literature. General properties of flow shop and open shop
models with pliability are discussed in Sect. 3. Our main
focus is on the case where the number of jobs is not smaller
than the number of machines, n ≥ m: pliability models with
minmax objectives are discussed in Sects. 4, 5, and 6; results
for models with minsum objectives are presented in Sect. 7.
The situation n < m is discussed in Sect. 8. Concluding
remarks are summarized in Sect. 9.

2 Related work

The study of shop scheduling models with pliability is moti-
vated by scenarios where jobs are processed by machines
of different types in a flow shop or open shop manner, and
transition from one machine to another requires intermediate
actions, which can be performed by either of two consecutive
machines. Those actions may be related to quality control,
preprocessing, postprocessing, or setup operations. Alterna-

tively, operators specializing on serving particular machines
may be able to perform not only the main operations they
are trained for, but also additional operations on adjacent
machines, thus reducing possible delays and idle times in the
system. In manufacturing applications, not only the opera-
tors can be flexible, but machines as well if they are designed
to perform operations of different types. Various examples
of flexible machines, such as CNC machines and machines
producing printed circuit boards, are reviewed by Crama and
Gultekin (2010), and examples of flexible operations are
presented in the context of assembly line scheduling, see,
e.g., Ostolaza et al. (1990), McLain et al. (1992), Anuar and
Bukchin (2006) and Askin and Chen (2006). Note that the
nature of processing in assembly lines and in flow shops and
open shops is quite different.

For the shopmodels we consider, the most relevant results
are known in the area of flow shop scheduling, for (a) mod-
els with flexible operations and (b) models with operation
redistribution. In the models of type (a), there are fixed oper-
ations processed by dedicated machines and flexible ones
which can be processed (without preemption) by one of the
two adjacent machines. In themodels of type (b), any flexible
operation can be preempted and parts of it can be relocated
to an adjacent machine.

Comparing the pliability model with models (a) and (b),
we summarize below themain common points and the points
of difference.

• In both models (a) and (b), it is usually assumed that
machines operate in the flow shop manner. In compari-
son, the nature of the pliability model is rather general: it
is relevant for any shop model, including flow shop and
open shop, the two models considered in this paper. It
can be also generalized for the job shop model, although
this is beyond the scope of our paper.

• Allmodels, including the pliability one, dealwith flexible
allocation of operations or their parts. The level of flex-
ibility is slightly different in the three models. In model
(a), each flexible operation has to be allocated to one
machine in full. In model (b), flexible operations can be
split at any point of time (see Burdett and Kozan 2001).
Still there is a limitation on the machine choice for the
allocation: only an adjacent machine in the flow shop
chain ofmachines can be selected. Additionally, for some
operations on a given machine, it may only be allowed
to share them with one of the two neighboring machines
(either the previous or the next machine). In the pliabil-
ity model, every machine must get at least the minimum
workload associated with job j (namely, 0, p or p

i j
,

depending on the model type), with full freedom for the
distribution of the remaining workload.

123

Journal of Scheduling (2019) 22:635–661 639

• In models (a) and (b), processing times pi j are given for
all operations; for the pliabilitymodel the total job lengths
p j are given and operations’ lower and upper bounds.

The difference between the three models discussed above
becomes more apparent if the number of machines ism ≥ 3.
The models with m = 2 machines are closely related, espe-
cially if the flexible operation can be started on the first
machine and then preempted at any point in time to be
restarted on the second machine. Indeed, in such an instance
of model (a) with preemption of the flexible operation, every
job j consists of three operations of lengths p1 j , p∗ j and p2 j .
The first and the last operations are fixed and have to be pro-
cessed by machines M1 and M2, while the middle one can be
split into at most two parts and distributed between M1 and
M2. In an equivalent instance of the pliability model, job j
is defined by its total processing time p j = p1 j + p∗ j + p2 j
and lower andupper bounds onoperation lengths, p

1 j
= p1 j ,

p
2 j

= p2 j and p1 j = p2 j = p j . On the other hand, the flow
shop model of type (b) with relocatable operations of lengths
p1 j , p2 j associated with machines M1 and M2 has similari-
ties with the pliability model of type (i) with p

1 j
= p

2 j
= 0

and p1 j = p2 j = p1 j + p2 j . Interestingly, the preemptive
version of model (a) has not been considered in the litera-
ture, although it is observed by Lin et al. (2016) that this case
would be an interesting extension of the model.

The traditional, unsplittable flow shop problem (a) with
flexible operations is NP-hard for the makespan objective
even in its simplest setting with m = 2 machines, see Gupta
et al. (2004). It remains NP-hard even if the job sequence
is fixed (cf. Lin et al. 2016). Therefore, the study of models
with flexible operations focuses on approximability results
(Gupta et al. 2004), pseudopolynomial-time algorithms (Lin
et al. 2016), construction heuristics and local searchmethods
(Ruiz-Torres et al. 2010, 2011). The models often incor-
porate special features such as limitations on the buffer
capacities used for handling jobs in-between the machines,
requirements to optimize workstation utilization or through-
put rate, etc. The main special case of the flexible model, for
which efficient algorithms have been developed, is the one
with identical jobs, see Crama and Gultekin (2010), Gultekin
(2012).

Flow shop problems with redistribution are less studied
(compared to the model with flexible operations), especially
in terms of a complexity analysis. Burdett and Kozan (2001)
consider several scenarios where adjacent machines can per-
form the same tasks and parts of an operation may be shifted
to the upstream or downstream machine. Besides proposing
a MILP formulation, heuristics are described and empiri-
cally evaluated. In Bultmann et al. (2018a), a very general
framework for flexibility is introduced. Similar to the model
with pliable jobs, the processing times of the operations are

not fixed in advance, but lower and upper bounds on the
processing times are specified for consecutive machines. A
decomposition algorithm is proposed, using a local search
procedure on the set of all permutations where optimal cor-
responding processing times are efficiently computed in a
second step. In Bultmann et al. (2018b), a similar approach
can be found for a synchronous flow shop environment with
pliable jobs.

Our study continues the line of research on flow shop
models with flexibility and relocation, and extends it also to
open shop counterparts.

3 General properties and reductions

In this section, we explore the links between the pliability
models and classical scheduling models: flow shop, open
shop and single-stage scheduling with parallel machines.
Furthermore, we establish some key properties of the pli-
ability models and discuss their implications.

3.1 Unrestricted pliability

In order to address type (i) problemsO|plbl| f and F |plbl| f ,
it is often useful to relax the requirement of dedicated
machines typical for open shops and flow shops and to
consider identical parallel machines instead. The pliability
condition, that allows to determine the actual processing
times of the operations, can then be interpreted as process-
ing with preemption. The resulting problem is denoted by
P|pmtn| f , where P denotes “identical parallel machines”
and pmtn denotes preemption. In this problem, jobs may be
split into multiple parts and these job parts can be processed
on different machines.

Clearly, if in a feasible schedule for problem P|pmtn| f
every machine processes exactly n job parts, one for each
job, then that schedule also represents a feasible open shop
schedule. Alternatively, if every machine processes each job
at most once, then the schedule can be converted into a feasi-
ble open shop schedule by introducing zero-length operations
formissing operations at the beginning of a schedule.Wewill
call a schedule for problem P|pmtn| f with exactly nm job
parts, some of which may be of zero length, an “open shop
type” schedule, or an O-type schedule for short.

In a “flow shop type” schedule, or an F-type schedule for
short, eachmachine processes exactly one part of each job, as
in an O-type schedule; additionally jobs visit the machines
in a flow shop manner, moving from machine Mi to Mi+1,
1 ≤ i ≤ m − 1. As for an O-type schedule, some of the nm
operations may be of zero length. However, in F-type sched-
ules, those zero-length operations might appear in themiddle
of the schedule and zero-length operations which appear on
a machine Mi with 2 ≤ i ≤ m cannot usually be moved to

123

640 Journal of Scheduling (2019) 22:635–661

the beginning of the schedule instead. Therefore, as opposed
to the open shop case, for F-type schedules such zero-length
operations may create idle times on upstream or downstream
machines and have an impact on the completion time of the
job they belong to.

In the case of permutation schedules, with all machines
processing the jobs in the same order, the notion of an F-type
schedule coincides with the notion of a “Permutation Flow
Shop-like schedule”, introduced by Prot et al. (2013).

For a scheduling problem α|β|γ , let S(α|β|γ) denote the
set of its feasible solutions. Since any feasible solution to
F |plbl| f is also feasible for O|plbl| f , and in its turn any
feasible solution to O|plbl| f is feasible for P|pmtn| f , we
conclude:

S(F |plbl| f) ⊆ S(O|plbl| f) ⊆ S(P|pmtn| f). (3)

In what follows we revise known algorithms and NP-
hardness results for problem P|pmtn| f with the focus on
optimal schedules of O- and F-type. The existence of an
optimal F-type schedule for problem P|pmtn| f with any
non-decreasing objective function f was proved by Prot et al.
(2013).

Theorem 1 (Prot et al. 2013) For problem P|pmtn| f with
any non-decreasing objective function f ∈ { fmax, f�}, there
exists an optimal F-type schedule.

Clearly, due to the inclosed structure of solution regions
(3), an optimal schedule for problem P|pmtn| f , which is of
F-type, is also an optimal schedule for problems F |plbl| f
and O|plbl| f with pliable jobs. It follows that for problems
P|pmtn| f , O|plbl| f and F |plbl| f there exists a common
optimal schedule and it is of F-type. Thus the optimal objec-
tive values for these three problems are the same, and the
following corollary holds.

Corollary 1 Any optimal schedule for problem P|pmtn| f
which is of F-type is also optimal for problems F |plbl| f
and O|plbl| f . Any optimal schedule for problem F |plbl| f
or O|plbl| f is also optimal for problem P|pmtn| f .

We use Corollary 1 in order to transfer complexity results
from scheduling problems with parallel machines to shop
scheduling with pliability.

Consider first the case when a particular version of prob-
lem P|pmtn| f is NP-hard. Then, the corresponding versions
of F |plbl| f and O|plbl| f are alsoNP-hard since otherwise,
due to the second part ofCorollary 1, a polynomial-time algo-
rithm for F |plbl| f or O|plbl| f would also solve problem
P|pmtn| f in polynomial time. We combine this observa-
tion with the known NP-hardness results for P|pmtn| f (see
Brucker 2007; Lawler et al. 1993).

Theorem 2 Problems F2|plbl| f and O2|plbl| f with f ∈
{∑w jC j ,

∑
Tj ,

∑
w jU j } are NP-hard in the ordinary

sense, and they are NP-hard in the strong sense if f =∑
w j Tj .
Problems F |plbl| f and O|plbl| f with f = ∑

Uj are
NP-hard in the ordinary sense and they are NP-hard in the
strong sense if f = ∑

w jC j .

Whenever a job sequence is known for an optimal F-type
schedule for problem P|pmtn| f , an optimal allocation of
jobs to the machines can be obtained as a solution to the
following model, see Prot et al. (2013):

min f (C1,C2, . . . ,Cn)

s.t.∑m
i=1 xi j = p j , 1 ≤ j ≤ n,

ti j + xi j ≤ ti+1, j , 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n,

ti j + xi j ≤ ti, j+1, 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1,
tmj + xmj = C j , 1 ≤ j ≤ n,

xi j , ti j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

C j ≥ 0, 1 ≤ j ≤ n.

(4)

Here, it is assumed that the jobs are numbered in the order
they appear in an optimal schedule, xi j is the processing time
of operation Oi j , ti j is its starting time, and C j is the com-
pletion time of job j . The range of functions that allow fixing
the job sequence includes f = Cmax (the job order can be
arbitrary), f = Lmax (earliest due date first; see Sahni 1979)
and f = ∑

C j (shortest processing time first; see Conway
et al. 1967). Thus, in the case of f ∈ {

Cmax, Lmax,
∑

C j
}

problemsO|plbl| f and F |plbl| f are solvable via linear pro-
gramming. However, special properties of these pliability
problems allow us to develop faster algorithms. We present
them in Sects. 4.1, 4.2 and 7.1.

3.2 Restricted pliability with a common lower bound

In this section, we establish two important properties for the
type (ii) flow shopmodel F |plbl(p)| f with a common lower
bound p on operation lengths. Unfortunately these properties
cannot be easily generalized to the open shop version of the
problem, O|plbl(p)| f . They also do not hold for the most
general model of type (iii), where job splitting has to respect
individual lower and upper bounds on operation lengths.

In Sect. 3.2.1, we prove that for problem F |plbl(p)| f
with an arbitrary (not necessarily non-decreasing) objective
function f , there exists an optimal permutation schedule.
Note that in Prot et al. (2013) Theorem 1 was proved for
a more restricted type (i) problem (p = 0) with a non-
decreasing objective function. Their technique cannot be
reused for our proof, as it involves cutting jobs into arbi-
trarily small pieces.

In Sect. 3.2.2, we present the common methodology for
solvingproblem F |plbl(p)| f with f ∈ {Cmax, Lmax,

∑
C j }

123

Journal of Scheduling (2019) 22:635–661 641

Fig. 1 Adjacent jobs swap: initial schedule S (above) and modified
schedule S′ (below); gray boxes represent fixed parts of schedules S
and S′ where the jobs J \{u, v} are processed

based on job disaggregation and decomposing the problem
into two subproblems. The implementation details of that
methodology are then elaborated in Sects. 5.1, 5.2 and 7.2.

3.2.1 The existence of an optimal permutation schedule for
F|plbl(p)|f

We start with an auxiliary property based on adjacent swaps.
By that property, the order of any two adjacent jobs u and
v in a permutation schedule can be reversed without mak-
ing changes to the rest of the schedule. To achieve this, the
operation lengths of jobs u and v may be redistributed, if
necessary.

Lemma 1 Given a feasible permutation schedule S for prob-
lem F |plbl(p)| f where job u is sequenced immediately
before job v in the permutation, there exists another feasible
permutation schedule S′ where u is sequenced immediately
after v, while all remaining jobs are scheduled in the same
time slots as in S. For schedule S′,

C ′
j = C j , j ∈ J \{u, v},

C ′
u ≤ Cv,

C ′
v ≤ Cv.

Lemma 1 is illustrated in Fig. 1 and proved in Appendix 1.
Note that the proof uses the property that there is a common
lower bound p

i j
= p for the operation lengths and that the

remaining processing time p j − mp of a job j can be dis-

tributed among the operations without restrictions. This does
not work for problem F |plbl(p

i j
, pi j)| f .

Theorem 3 Given an arbitrary schedule S for problem
F |plbl(p)| f , there exists a permutation schedule S′ in which
every job has the same completion time on machine Mm as
in S.

Proof The proof is done by induction on the number of
machines m. For m = 1 the statement is obvious. Consider
m ≥ 2, assuming that the statement of the theorem holds for
m − 1 machines.

Let S be a non-permutation schedule on m machines. We
split S into two subschedules S (M1, . . . , Mm−1) and S (Mm)

defined over the correspondingmachine sets. For the instance
of the problem defined by S (M1, . . . , Mm−1), the induc-
tion hypothesis holds: there exists a permutation schedule
S′ (M1, . . . , Mm−1) such that each job has the same comple-
tion time on machine Mm−1 as in S (M1, . . . , Mm−1).

Let Ŝ be a complete schedule defined as a combination
of S′ (M1, . . . , Mm−1) with the final part S (Mm) of the
original schedule S. Schedule Ŝ is feasible, since by the
induction hypothesis each job completes on machine Mm−1

at the same time in both schedules, S (M1, . . . , Mm−1) and
S′ (M1, . . . , Mm−1).

If Ŝ is a permutation schedule, then no further action is
needed. Otherwise consider S′ (M1, . . . , Mm−1) and apply
a sequence of adjacent swaps, described in the proof of
Lemma 1. The swaps eventually result in the same job order
as in S (Mm). We demonstrate that each swap on the first
m − 1 machines does not cause conflicts with operations in
S (Mm).

Assume u is sequenced immediately before v in
S′ (M1, . . . , Mm−1), but somewhere after v in S(Mm). Then,
by Lemma 1, after swapping u and v on the first m − 1
machines, the completion time of job v on machine Mm−1 is
at most as large as before, and hence job v is not postponed
on Mm . By the same lemma, the completion time of job u on
Mm−1 remains no larger than the completion time of job v

before the swap. This means that u finishes on Mm−1 before
v starts on Mm , and therefore before u starts on Mm .

Performing at most O(n2) swaps in the part S′ (M1, . . . ,

Mm−1), we get a permutation schedule onm machines with-
out changing the completion times on machine Mm . 	

It is worth noting that in the proof of Theorem 3, the
schedule transformations keep the operations on the last
machine unchanged. This implies that an optimal permuta-
tion schedule exists for any objective function depending on
job completion times, monotone or non-monotone. Note also
that Theorem 3 does not hold for the more general problem
F |plbl(p

i j
, pi j)| f since for the special case F ||Cmax with

more than threemachines there exist instances forwhich only

123

642 Journal of Scheduling (2019) 22:635–661

non-permutation schedules are optimal (see, e.g., Potts et al.
1991).

3.2.2 A job disaggregation approach for problem
F|plbl(p)|f

In this section, we introduce the disaggregation approach,
which serves as a common methodology for solving prob-
lem F |plbl(p)| f with f ∈ {Cmax, Lmax,

∑
C j }. It provides

the tool for constructing optimal schedules and for justifying
their optimality. Problem-specific details on how themethod-
ology can be implemented are presented in Sects. 5.1, 5.2 and
7.2.

The main idea is to define for an instance I of problem
F |plbl(p)| f two auxiliary instances by disaggregating the
jobs into two parts: instance I e of type (ii) with equal pro-
cessing times and instance I d of type (i) with diminished
processing times. Optimal solutions to the two instances are
then found and combined, delivering a solution to the initial
problem.

Definition 1 For an instance I of problem F |plbl(p)| f ,
there are two associated instances:

Instance I e of type (ii) with processing times pej = mp
for all jobs j ∈ J and with the same lower bound p as in
the original instance I ,
Instance I d of type (i) with processing times pdj = p j −
mp, for all jobs j ∈ J , and zero lower bounds.

Let Sd and Se be two feasible schedules for instances I d

and I e which satisfy the following conditions, see Fig. 2 for
an illustration.

(D1) Sd and Se are permutation schedules with the same
job sequence (1, 2, . . . , n).

(D2) Se has a staircase structure, uniquely defined by com-
pletion times Ce

i j = (i + j − 1) p of its operations
Oi j . In that schedule, machine Mi is idle in the time

interval
[
0, (i − 1) p

]
.

(D3) In Sd , every machine operates without idle times from
time 0 until all assigned operations are completed;
some operations in Sd may be of zero length.

Here, and in the remainder of the paper, we use the notion of
an idle time of machine Mi if it occurs before the last job is
completed on Mi .

Denote operation lengths in schedules Sd and Se by pdi j
and pei j , respectively, where pei j = p. Schedules Sd and Se

satisfying properties (D1)-(D3) can be easily combined to
produce a permutation schedule S for the original instance
I , as illustrated in Fig. 2. The job order remains the same as in

schedules Sd and Se, while the aggregate operation lengths
pi j are defined as

pi j = pdi j + pei j .

Theorem 4 Let Sd and Se be feasible schedules for instances
I d and I e satisfying conditions (D1)-(D3). Then, there exists
an aggregate schedule S for the original instance I with

Ci j = Cd
i j + (i + j − 1) p, (5)

where Cd
i j and Ce

i j = (i + j − 1) p are completion times of

operations Oi j in Sd and Se.
Conversely, if in a permutation schedule S for instance I

with the job order (1, 2, . . . , n) there are no idle times except

for time intervals
[
0, (i − 1) p

]
(as in Condition (D2) for

schedule Se), then S can be decomposed into two schedules
Se and Sd such that conditions (D1)-(D3) and relation (5)
holds.

Proof Consider schedules Sd , Se and their disjunctive graph
representation shown in Fig. 3. In that graph, nodes (i, j)
correspond to operations Oi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The nodes are associated with weights: pdi j for the graph

representing Sd and pei j = p for the graph representing Se.
The length of a path in the graph is defined as the sum of
weights of the nodes on the path. The completion time of
any operation Oi j is calculated as the length of a longest
path from the source node (1, 1) to node (i, j). Combining
Sd and Se implies increasing the weights of all nodes in the
graph for Sd by the same amount p. Since any path from
(1, 1) to (i, j) includes exactly i + j −1 nodes, the structure
of a longest path does not change, and its length increases by
(i + j − 1)p, so that (5) holds for the aggregate schedule.

Similar arguments justify the reverse statement on decom-
posing S into Se and Sd . 	

3.3 Restricted pliability with individual lower and
upper bounds

The following proposition establishes basic reductions for
type (iii) problems.

Proposition 1 For flow shop and open shop problems, the
following reductions hold:

α|| f ∝ α|plbl(p
i j

, pi j)| f , (6)

α|plbl| f ∝ α|plbl(p)| f ∝ α|plbl(p
i j

, pi j)| f , (7)

where α ∈ {F, O}.
Here A ∝ B indicates that problem A polynomially reduces
to problem B, see Garey et al. (1976).

123

Journal of Scheduling (2019) 22:635–661 643

Fig. 2 Schedules Se and Sd for instances I e and I d , and an aggregate schedule S

Fig. 3 The disjunctive graph representation of schedules Sd and Se

Reduction (6) follows from the fact that the pliability
problem α|plbl(p

i j
, pi j)| f with p

i j
= pi j , 1 ≤ i ≤ m,

1 ≤ j ≤ n, coincides with the traditional flow shop problem
(if α = F) or open shop problem (if α = O). The chain of
reductions (7) reflects the fact that pliability model (i) is a
special case of model (ii), which in its turn is a special case
of model (iii).

Using (6), we can transfer all NP-hardness results known
for F || f and O|| f to the corresponding pliability problems

of type (iii), concluding that problemO3|plbl(p
i j

, pi j)|Cmax

is NP-hard in the ordinary sense, while problems
F3|plbl(p

i j
, pi j)|Cmax,O|plbl(p

i j
, pi j)|Cmax andα2|plbl

(p
i j

, pi j)| f with α ∈ {F, O} and f ∈ {
Lmax,

∑
C j

}
are

NP-hard in the strong sense.
Similarly, using (7), we transfer the NP-hardness results

for f ∈ {∑w jC j ,
∑

Tj ,
∑

w j Tj ,
∑

Uj ,
∑

w jU j }, dis-
cussed in Sect. 3.1 in relation to type (i) problems α|plbl| f
to the pliability problems of types (ii) and (iii). Note that for
the problems of type (iii) these results are dominated by those
obtained through reduction (6).

4 Unrestricted pliability: Minmax objectives

In this section, we apply the methodology from Sect. 3.1 to
develop efficient algorithms for problems F |plbl| fmax and
O|plbl| fmax with unrestricted pliability. To this end, we con-
sider the relaxed problem P|pmtn| f and construct optimal
F- and O-type schedules for it.

123

644 Journal of Scheduling (2019) 22:635–661

Fig. 4 An optimal schedule for P|pmtn|Cmax of F-type and O-type,
with zero-length operations

4.1 Problems F|plbl|Cmax andO|plbl|Cmax

Consider problem P|pmtn|Cmax. An optimal schedule can
be constructed in O(n) time by the wrap-around algorithm
(McNaughton1959), achieving the optimummakespanvalue

C∗ = max

{
1

m
p(J),max

j∈J
{
p j

}}
, (8)

where p(J) = ∑
j∈J p j . In order to force McNaughton’s

wrap-around algorithm to produce a solution of F- and O-
type, suitable for problems F |plbl|Cmax and O|plbl|Cmax,
we consider the jobs in the order of their numbering and allo-
cate them in the time window [0,C∗] first on machine Mm ,
then on Mm−1, etc., until all jobs are fully allocated. Notice
that machine Mm is always fully occupied in the interval
[0,C∗], while other machines might only be partly occupied
in that interval, if C∗ = pq for a job q ∈ J with the longest
processing time. Note that after performing the wrap-around
algorithm, there exist at most m − 1 jobs which have opera-
tions of length greater than zero on more than one machine
while all other jobs are processedon a singlemachine for their
whole processing time. The order in which the machines are
considered, gives an easy way for introducing zero-length
operations, as illustrated in Fig. 4. The resulting schedule
satisfies the requirements of F- and O-type schedules, has
the minimummakespanC∗, and is therefore optimal for both
problems, F |plbl|Cmax and O|plbl|Cmax.

Theorem 5 Problems F |plbl|Cmax and O|plbl|Cmax are
solvable in O(n) time.

4.2 Problems F|plbl|Lmax andO|plbl|Lmax

Consider the open shop problem O|plbl|Lmax and its relaxed
counterpart P|pmtn|Lmax. Our approach to find an optimal
O-type schedule for the latter problem consists of two stages.
First calculate an optimal value L∗ of the objective using, for
example, the closed form expression for L∗ from Baptiste

(2000). That calculation requires O(n log n) time due to the
sorting of the jobs. In the second stage, adjust the due dates
to d j = d j + L∗, treat them as deadlines, and find a feasible
schedule for P|pmtn,C j ≤ d j |−. The fastest algorithm is
due to Sahni (1979); its time complexity is O(n log(nm)) or
O(n log n) under our assumption n ≥ m. It is a property of
Sahni’s algorithm that the resulting parallel machine sched-
ule has at most one preemption per job, and a preempted job
is not restarted on the same machine. Therefore, the sched-
ule is of O-type, if zero-length operations are added at the
beginning of the schedule.

Theorem 6 Problem O|plbl|Lmax is solvable in O(n log n)

time.

Consider now the flow shop problem F |plbl|Lmax, using
again its relaxed counterpart P|pmtn|Lmax. The approach
discussed above for constructing an O-type schedule is no
longer applicable, since Sahni’s algorithm used at the second
stage does not guarantee that the resulting schedule is of F-
type. An alternative approach for solving the second stage
problem is to apply the O(n log n + mn)-time algorithm by
Baptiste (2000), which does find an optimal schedule of F-
type, thus providing a solution to problem F |plbl|Lmax.

Theorem 7 Problem F |plbl|Lmax is solvable in O(n log n+
mn) time.

Interestingly, the term mn in the complexity estimate
cannot be reduced, since there are instances which require
�(nm) nonzero operations in an optimal schedule. One such
instance is presented in Appendix 2. Recall that for prob-
lem F |plbl|Cmax with the makespan objective, there exists
an optimal schedule with the total number of nonzero oper-
ations bounded by n + m − 1, see Sect. 4.1.

5 Restricted pliability with a common lower
bound: Minmax objectives

In this section, we apply the methodology of Sect. 3.2 to
problems F |plbl(p)| fmax by solving the flow shop problems
F |plbl| fmax. Furthermore, we discuss difficulties encoun-
tered for problem O|plbl(p)|Cmax.

5.1 Problem F|plbl(p)|Cmax

By Theorem 3 we limit our consideration to the class of
permutation schedules and use the disaggregation technique
from Sect. 3.2 to construct an optimal schedule and to justify
its optimality. Given an instance I of problem F |plbl|Cmax,
introduce instances I d and I e as in Definition 1.

123

Journal of Scheduling (2019) 22:635–661 645

Let Sd be a permutation schedule for instance I d with
every machine working contiguously from time 0 [in accor-
dance with (D3) from Sect. 3.2.2], and let Se be a solution to
I e in the staircase form, which uses the same job permutation
as Sd [in accordance with (D1) and (D2) from Sect. 3.2.2].
Let S be the schedule for the original instance I obtained by
combining Sd and Se. By Theorem 4,

Cmax(S) = Cmn(S) = Cmn(S
d) + (m + n − 1) p

= Cmax(S
d) + (m + n − 1) p. (9)

Thus, ifCmax(Sd) achieves its minimum value, thenCmax(S)

is minimum as well.
Following the approach from Sect. 4.1, construct an opti-

mal schedule Sd∗ by McNaughton’s wrap-around algorithm,
using an arbitrary job permutation. Note that, by construc-
tion, schedule Sd∗ is of permutation type. The illustrative
example presented in Fig. 2 satisfies this requirement. With-
out loss of generality, we assume that the jobs are sequenced
in the order of their numbering, and the same job order is
used in an optimal solution Se∗ to I e.

Consider the aggregate schedule S∗, obtained as a merger
of Sd∗ and Se∗. Due to (9), S∗ is an optimal schedule among
all permutation schedules, and by Theorem 3 it is globally
optimal among all schedules.

The most time-consuming step in the described approach
is the merger of Sd∗ and Se∗. Its time complexity is O(nm),
and it defines the overall time complexity for constructing a
complete optimal schedule for F |plbl(p)|Cmax.

Following the ideas of a compact encoding of an optimal
solution, known in the context of high-multiplicity schedul-
ing problems (see, e.g., Brauner et al. 2005), we specify
formulae for starting times of all operations, each of which
can be computed in O(1) time, provided a special O(n) pre-
processing is done.

At the preprocessing stage, the diminished instance I d

is analyzed and the calculations related to McNaughton’s
wrap-around algorithm are performed. The optimal schedule
Sd∗ can be specified by m − 1 split jobs, which define three
types of operations in Sd∗ : zero-length initial operations I,
zero-length final operations F , and the remaining nonzero
middle operationsM characterized by starting times ti j (Sd∗)

and processing times pi j (Sd∗) for operations Oi j .
After themerger of the two schedules Sd∗ and Se∗, the aggre-

gate initial and final operations I ∪ F become of length p,
while the lengths of the middle operationsM increase by p;
see Fig. 2 where the middle operations M are represented
as shaded boxes. For the resulting schedule, the processing
times and the starting times are calculated as

pi j (S∗) = pi j (S
d∗) + p, (10)

ti j (S∗) = (i + j − 2) p +
⎧
⎨

⎩

0, if Oi j ∈ I,
ti j (Sd∗), if Oi j ∈ M,

C∗(Mi), if Oi j ∈ F ,

(11)

where C∗(Mi) is the completion time of the last operation
on machine Mi in schedule Sd∗ , 1 ≤ i ≤ m.

Theorem 8 Anoptimal schedule for problem F |plbl(p)|Cmax

can be specified by formulae (10), (11) for the processing
times and starting times of all nm operations, each com-
putable in O(1) time provided the O(n) preprocessing is
done. The optimal makespan is

CFlowShop∗ = max

{
1

m
p(J) + (m − 1)p,

max
j∈J

{
p j

} + (n − 1)p

}
, (12)

where p(J) is the total processing time of all jobs.

Notice that the makespan formula (12) follows from (9):

CFlowShop∗ = Cd∗ + (m + n − 1)p, (13)

whereCd∗ is the optimalmakespan of the diminished instance
calculated as

Cd∗ = max

{
1

m
pd(J),max

j∈J

{
pdj

}}
.

Here pdj = p j − mp is the processing time of job j in the

diminished instance I d and pd(J) is the total processing
time of all jobs in the diminished instance.

5.2 Problem F|plbl(p)|Lmax

Now, we consider problem F |plbl(p)|Lmax. By Theorem 3,
it is sufficient to consider permutation schedules. The fol-
lowing lemma justifies that we can fix the job sequence in
accordance with the earliest due date order (EDD).

Lemma 2 For problem F |plbl(p)|Lmax, there exists an opti-
mal permutation schedule with the jobs sequenced in the
EDD order.

The lemma can be proved using pairwise interchange argu-
ments by swapping adjacent jobs violating theEDDorder and
verifying that the Lmax-value does not increase. Note that the
swapping of adjacent jobs is always feasible, as established
in Lemma 1.

123

646 Journal of Scheduling (2019) 22:635–661

Given an instance I of F |plbl(p)|Lmax, renumber the jobs
so that d1 ≤ d2 ≤ · · · ≤ dn , and apply the job disaggregation
methodology of Sect. 3.2.2. Define the two instances:

Instance I e :
pej = mp,
dej = (j + m − 1) p,

Instance I d :
pdj = p j − mp,
ddj = d j − (j + m − 1) p.

Notice that the original instance I satisfies

p j = pej + pdj , d j = dej + ddj .

In the class of permutation schedules with the fixed job
sequence (1, 2, . . . , n), let Se, Sd and S be the schedules for
instances I e, I d and I , respectively. Note that Se is the same
as the top left schedule in Fig. 2 with Lmax(Se) = 0. By
Theorem 4,

L j (S) = Cmj − d j = Cd
mj + (j + m − 1)p − d j

= Cd
mj − ddj = L j (S

d), (14)

so that Lmax(S) = Lmax(Sd).
An optimal F-type schedule Sd with the EDD job

sequence (1, 2, . . . , n) can be constructed by the algorithm
from Baptiste (2000); see Sect. 4.2. Combining Sd (with the
smallest possible value of Lmax) and Se (with the same job
sequence) delivers an optimal schedule S for the original
instance I . The most time-consuming step is the algorithm
from Baptiste (2000), which takes O(n log n + mn) time,
dominating the time needed to renumber the jobs in the EDD
order and the time for combining the two schedules.

Theorem 9 Problem F |plbl(p)|Lmax is solvable in O(n log
n + mn) time.

Note that as opposed to Sect. 5.1, we cannot eliminate the
term mn from the complexity estimate by introducing com-
pact encoding. Indeed, even the easier problem F |plbl|Lmax

with unrestricted pliability, which needs to be solved as a
subproblem, already requires O(n log n + mn) time; see
Sect. 4.2.

5.3 ProblemO|plbl(p)|Cmax

The open shop problem O|plbl(p)|Cmax appears to be much
harder to handle than the corresponding flow shop version.
While for the model studied in the previous section, F-type
permutation schedules have a well-defined structure, the O-
type schedules for the current model provide a greater level
of flexibility. Another difficulty comes from the optimal-
ity check: in contrast to problem O|plbl|Cmax, there exist
instances for O|plbl(p)|Cmax where the lower bound C∗,

Fig. 5 Optimal schedules for instances I1 (top) and I2 (bottom)

defined by (8) for the related parallel machine problem, can-
not be reached. For example, consider instances I1 and I2 as
follows.

Instance I1: m = 3, p = 2
j 1 2 3 4 5

p j 21 15 12 9 6

Instance I2: m = 3, p = 2
j 1 2 3 4 5 6 7 8

p j 21 6 6 6 6 6 6 6

The averagemachineworkload 1
3 p(J) and the processing

time of the longest job p1 have the same value of 21, resulting
in the lower bound value C∗ = 21. For instance I1 that lower
bound can be achieved, while for instance I2 the lower bound
is unachievable: it is impossible to process job 1without some
waiting time in-between its operations, while observing the
restriction p = 2 and ensuring that no machine is idle before
it finishes processing all jobs. This is due to the fact that all
operations of all other jobs are of even length 2, but job 1
has odd processing time and cannot be split into three even
length operations; see Fig. 5 for an illustration.

In the following,we consider the cases fromTable 4where
problem O|plbl(p)|Cmax can be solved efficiently. We use
the notations p1, p2 and p3 for the processing times of the
three longest jobs, assuming p1 ≥ p2 ≥ p3.

In Case 1 we adjust the approach from Sect. 5.1 devel-
oped for problem F |plbl(p)|Cmax. Using the concept of the

123

Journal of Scheduling (2019) 22:635–661 647

Table 4 Solvable cases of
problem O|plbl(p)|Cmax

Case Conditions Makespan

1 p1 + n p ≤ p(J)
m + mp p(J)

m

2 m = 2 max
{
p1,

p(J)
m

}

3 m = 3,p1 = p2 max
{
p1,

p(J)
m

}

4 m = 3, p1 > p2 and p(J) ≤ 2p1 + p2 p1

5 m = 3, p1 > p2 and p(J) ≥ 3p1 + p3
p(J)
m

diminished instance with pdj = p j −mp, the inequality that
defines Case 1 can be rewritten as

(
pd1 + mp

)
+ n p ≤ pd(J) + n · mp

m
+ mp

or equivalently

max
j∈J

{
pdj

}
≤ 1

m
pd(J). (15)

It implies that there exists an optimal flow shop schedule for
problem F |plbl(p)|Cmax with

CFlowShop∗ = 1

m
p(J) + (m − 1)p;

see Theorem 8. An optimal open shop schedule can be
obtained from the optimal flow shop schedule by moving
to the front the last k − 1 operations of length p on every
machine Mk , 2 ≤ k ≤ m. These moves do not cause any
conflicts since n ≥ m, and the flow shop makespan value
CFlowShop∗ decreases by (m − 1)p:

COpenShop∗ = CFlowShop∗ − (m − 1)p = 1

m
p(J).

By the same theorem, an optimal schedule can be fully
defined in O(nm) time.

Case 2 follows immediately from the more general result
for problem O2|plbl(p

i j
, pi j)|Cmax, which we present in

Sect. 6.2.
Optimal schedules for Cases 1-2 have a common

permutation-like structure, with job sequences on machines
M1, M2, . . . , Mm selected from the set of sequences

(1, 2, 3, . . . , n − 2, n − 1, n),

(n, 1, 2, . . . , n − 3, n − 2, n − 1),
(n − 1, n, 1, . . . , n − 4, n − 3, n − 2),

...

(3, 4, 5, . . . , n, 1, 2),
(2, 3, 4, . . . , n − 1, n, 1).

Conditions that define Cases 3–5 also result in optimal
scheduleswith permutation-like structure. Theywere derived

byKoulamas andKyparisis (2015) for the open shop problem
with m = 3 machines and with each job consisting of equal-
size operations. Due to our assumption p j ≥ mp (necessary
for feasibility), splitting each job intom equal-size operations
of length

p j
m leads to a feasible schedule for the model with

pliable jobs. Moreover, the makespan of each optimal sched-
ule for Cases 3-5 achieves the lower bound C∗. Therefore,
the resulting schedules are optimal for O|plbl(p)|Cmax.

The longest processing time order, assumed in Koulamas
and Kyparisis (2015) for the whole set of jobs J , is not
needed once the three longest jobs {1, 2, 3} are identified, so
that the optimal schedules in Cases 3-5 can be found in O(n)

time.
It is likely that the permutation-like property holds for the

general case of problem O|plbl(p)|Cmax. An optimal job
splitting may violate the equal-size property, with possibly
unequal splitting of a job into m operations, as illustrated
by the top schedule of Fig. 5. However, a proportionate open
shop schedule,where jobs are split into equal-size operations,
can be a good starting point for identifying the boundary jobs,
processed at the beginning and at the end on each machine.
The optimal operation lengths can then be found via linear
programming. Unfortunately, we were unable to prove the
correctness of the outlined approach and leave it for future
research.

6 Restricted pliability with individual lower
and upper bounds: Makespan objective

In this section, we consider flow shop and open shop prob-
lems with m = 2 machines, the makespan objective, and
individual lower and upper bounds on operation processing
times. To simplify the notation, we denote the two machines
by A and B, and the lower and upper bounds of the operations
by a j , a j (for machine A) and by b j , b j (for machine B).
The objective is to find an order of the jobs for each machine
and the lengths a j and b j for A- and B-operations for every
job j , 1 ≤ j ≤ n, so that

123

648 Journal of Scheduling (2019) 22:635–661

Fig. 6 An optimal solution to the instance of the flow shop problem

a j + b j = p j ,

a j ≤ a j ≤ a j ,

b j ≤ b j ≤ b j ,

and the makespan is minimized.

6.1 Problem F2|plbl(p
ij
, pij)|Cmax

Wedemonstrate that problem F2|plbl(p
i j

, pi j)|Cmax is NP-
hard and its special case with a fixed job order can be solved
via linear programming. Interestingly, the counterpart of the
problem with flexible operations is NP-hard in both cases;
see Gupta et al. (2004) and Lin et al. (2016).

Theorem 10 Problem F2|plbl(p
i j

, pi j)|Cmax is NP-hard.

Proof Consider an instance of PARTITION with integers
e1, . . . , en and

∑n
j=1 e j = 2E . The objective is to decide

whether a set J1 ⊂ {1, 2, . . . , n} exists with ∑
i∈J1

ei = E .
We construct an instance of the flow shop problemwith n+1
jobs:

j 1 2 · · · n n + 1

p j e1 e2 · · · en 2E
[a j , a j] [0, e1] [0, e2] · · · [0, en] [E, E]
[b j , b j] [0, e1] [0, e2] · · · [0, en] [E, E]

Notice that job n + 1 has a fixed splitting, with two
operations of length E , and for any permutation schedule
it partitions the remaining jobs into two subsets, jobs J1 pre-
ceding n + 1 and jobs J2 which follow it.

It is easy to verify that PARTITION has a solution if and
only if a flow shop schedule of makespan Cmax = 2E exists;
see Fig. 6 for an illustration, where A-operations of jobs J1

and B-operations of jobs J2 have 0 length. 	

The problem becomes solvable via linear programming if

a job sequence is fixed, even in the case of more than two
machines and for more general objective functions. For this,

we need to extend theLP formulation (4) by Prot et al. (2013),
adding box inequalities p

i j
≤ xi j ≤ pi j for all variables xi j .

6.2 ProblemO2|plbl(p
ij
, pij)|Cmax

Solving problem O2|plbl(p
i j

, pi j)|Cmax involves two deci-
sions: finding the job splitting p j = a j + b j for all jobs
j ∈ J , and sequencing the operations with fixed lengths on
two machines to minimize the makespan. The second task
can be done in O(n) time using the well-known algorithm
by Gonzalez and Sahni (1976), which constructs an optimal
schedule with the makespan

Cmax = max

⎧
⎨

⎩
∑

j∈J
a j ,

∑

j∈J
b j , pq

⎫
⎬

⎭ . (16)

Here, the first two terms correspond to the loads of machines
A and B, while the last term is the processing timeof a longest
job q,

pq = max
{
p j | j ∈ J }

. (17)

In what follows we formulate three LP problems LP(A),
LP(B), and LP(q), one for each term in (16), aimed at find-
ing an optimal job splitting. Notice that some of the problems
may be infeasible. An optimal solution is selected among the
solutions to these three problems as the one with the smallest
makespan value.

Consider first problem LP(A) formulated for the class
of schedules with Cmax = ∑

j∈J a j , assuming that the first
term in (16) determines the maximum. If � denotes the dif-
ference between the third and the first term in (16), then this
class of schedules is characterized by

∑
j∈J a j = pq +� ≥∑

j∈J b j , where � ≥ 0, and minimizing the makespan is
equivalent to minimizing �:

LP(A) : min �

s.t.
∑

j∈J a j = pq + �,∑
j∈J b j ≤ pq + �,

a j + b j = p j , j ∈ J ,

a j ≤ a j ≤ a j , j ∈ J ,

b j ≤ b j ≤ b j , j ∈ J ,

� ≥ 0.

From the first and the third constraints we derive the fol-
lowing expressions for � and b j :

� =
∑

j∈J
a j − pq ,

b j = p j − a j , j ∈ J , (18)

123

Journal of Scheduling (2019) 22:635–661 649

and rewrite LP(A) as follows:

LP ′(A) : min
∑
j∈J

a j

s.t.
∑
j∈J

a j ≥ max
{ 1
2 p(J), pq

}
,

� j ≤ a j ≤ u j , j ∈ J ,

where

p(J) =
∑

j∈J
p j ,

� j = max
{
a j , p j − b j

}
, u j = min

{
a j , p j − b j

}
.

(19)

The resulting problem is the knapsack problem with contin-
uous variables a j , j ∈ J , solvable in O(n) time (Balas and
Zemel 1980).

Problem LP(B) is formulated similarly for the class of
schedules with Cmax = ∑

j∈J b j ; it is also solvable in O(n)

time.
Consider now problem LP(q) formulated for the class

of schedules with Cmax = pq . Since the makespan value
is constant, there is no objective function to minimize, and
we only need to find a feasible solution with respect to the
following constraints:

LP(q) : ∑
j∈J \{q}

a j ≤ bq ,
∑

j∈J \{q}
b j ≤ aq ,

a j + b j = p j , j ∈ J ,

a j ≤ a j ≤ a j , j ∈ J ,

b j ≤ b j ≤ b j , j ∈ J .

Using expression b j = p j − a j for j ∈ J we obtain:

LP ′(q) : ∑
j∈J

a j ≤ pq ,
∑
j∈J

a j ≥ p(J) − pq ,

� j ≤ a j ≤ u j , j ∈ J ,

where � j and u j are given by (19). The latter problem can be
solved in O(n) time by performing the following steps.

1. Computea∗ = ∑
j∈J � j , the smallest valueof

∑
j∈J a j .

2. If a∗ satisfies both main conditions, i.e.,
p(J) − pq ≤ a∗ ≤ pq , then stop: a feasible solution is
found.

3. If a∗ > pq , then stop: problem LP ′(q) is infeasible.

Table 5 Solvable cases of the parallel machine problem with m = 2
and restricted preemption

Case Conditions Makespan

1 p1 ≥ 1
2 p(J) p1

2 p1 ≥ 4p max{p1, 1
2 p(J)}

3 p1 ≥ 3p, p2 ≥ 2p max{p1, 1
2 p(J)}

4. If a∗ < p(J) − pq , then solve the LP problem

max
∑
j∈J

a j

s.t.
∑
j∈J

a j ≤ pq ,

� j ≤ a j ≤ u j , j ∈ J ,

(20)

and verify whether for the found solution the required
condition

∑
j∈J a j ≥ p(J) − pq is satisfied. Problem

(20) is again the knapsack problem with continuous vari-
ables a j , j ∈ J , solvable in O(n) time.

To summarize, each of the problems LP(A), LP(B) and
LP(q) can be solved in O(n) time, and this is the over-
all time complexity of the described approach for solving
O2|plbl(p

i j
, pi j)|Cmax.

Theorem 11 Problem O2|plbl(p
i j

, pi j)|Cmax is solvable in

O(n) time.

We conclude this section by reviewing the results for
another related problem, namely the parallel machine prob-
lem with restricted preemption and the makespan objective
studied by Ecker and Hirschberg (1993), Baranski (2011),
and Pienkosz and Prus (2015). In that problem, job preemp-
tion may happen several times, but each job part has to be
at least p time units long, for some lower bound p. Notice
that unlike the pliability problem O|plbl(p)|Cmax, it is not
required that every job is split exactly into m pieces, one per
machine.

Polynomial-time algorithms for the parallel machine
problem with restricted preemption where no job part may
be shorter than p are known only for special cases with two
machines; see Table 5. The complexity of the general case
with m = 2 is left as open in the literature. Interestingly, our
algorithm presented in this section finds an optimal schedule
not only for the pliability problem O2|plbl(p

i j
, pi j)|Cmax,

but it also solves the problem with restricted preemption for
m = 2 machines, assuming p

i j
= p for all operations and

p j ≥ 2p.

123

650 Journal of Scheduling (2019) 22:635–661

7 Unrestricted and restricted pliability:
Minsum objectives

In this section, we consider pliability problems with minsum
objectives, focusing on problems with unrestricted pliabil-
ity and restricted pliability with a common lower bound p.
The restricted problems of type (iii) are strongly NP-hard
since by Proposition 1 they are not easier than the related
classical problems F2|| f and O2|| f , which are known to be
strongly NP-hard for all traditional minsum objectives f� ;
see Brucker (2007).

7.1 Problems F|plbl|∑ Cj andO|plbl|∑ Cj

As observed in Sect. 3.1, problem F |plbl|∑C j can be
solved in polynomial time via linear programming, consider-
ing a fixed sequence of job completion times corresponding
to the shortest processing time (SPT) order; the optimality of
that order for P|pmtn|∑C j is stated, e.g., in Conway et al.
(1967).

A faster algorithm is based on the approach which con-
structs an optimal F-type schedule for problem P|pmtn|∑

C j , formulated by Bruno and Gonzalez (1976) and
Labetoulle et al. (1984) for the more general problem
Q|pmtn| ∑C j , where machines have different processing
speeds. The algorithm can be described as follows.

Algorithm F-Sum

1. Construct an SPT schedule by assigning a shortest job to
the earliest available machine, breaking ties arbitrarily.

2. Consider time intervals Iu = [
Cu−1,Cu

]
, 1 ≤ u ≤ n,

defined by the completion times Cu of the jobs; for com-
pleteness set C0 = 0. In each interval Iu , reallocate the
job parts so that any machine Mi , 1 ≤ i ≤ m, pro-
cesses the job with the index u + m − i in that interval,
if u + m − i ≤ n, and no job otherwise; see the bottom
schedule in Fig. 7.

Steps 1 and 2 of the algorithm are illustrated by the two
schedules of Fig. 7. Note that Step 1 constructs an optimal
schedule for problems P||∑C j and P|pmtn|∑C j , while
Step 2 reshuffles operation parts without increasing comple-
tion times of individual jobs, producing an F-type solution
for P|pmtn|∑C j . By Corollary 1, the resulting schedule is
optimal for F |plbl|∑C j .

The combined time complexity of the two steps is
O(n log n + mn). Following the ideas of compact encod-
ing of an optimal solution, we can use the following function
J (i, u) that specifies for eachmachine-interval pair (i, u) the
job which is processed by machine Mi in interval Iu :

Fig. 7 Two schedules with the same completion times for all jobs: an
optimal schedule for problems P|| ∑C j and P|pmtn| ∑C j (above)
and an optimal schedule for problem F |plbl| ∑C j (below)

J (i, u) =
{
u + m − i, if u + m − i ≤ n
0, otherwise,

(21)

where the job index 0 means that no job is assigned.

Theorem 12 An optimal schedule for problem F |plbl|∑C j

can be constructed in O(n log n +mn) time. It can be spec-
ified by formula (21), computable in O(1) time for each
machine-interval pair (i, u), provided the O(n log n) pre-
processing is done and n intervals Iu, 1 ≤ u ≤ n, are found
using Step 1 of Algorithm F-Sum.

Consider now problem O|plbl|∑C j . The task of con-
structing an O-type schedule optimal for problem P|pmtn|∑

C j is a simpler task than constructing an F-type schedule.
It is sufficient to adjust an SPT schedule produced by Step 1
of Algorithm F-Sum by adding zero-length operations in the
beginning of the schedule, so that every job has an operation
on every machine.

Theorem 13 Problem O|plbl|∑C j is solvable in O(n log n)

time.

7.2 Problem F|plbl(p)|∑ Cj

In order to solve problem F |plbl(p)|∑C j , we use the dis-
aggregation methodology from Sect. 3.2.2, which results in
two simplified instances: one instance of problem
F |plbl| ∑C j with unrestricted pliability, which can be
solved by the approach from the previous section, and one

123

Journal of Scheduling (2019) 22:635–661 651

instancewith equal processing times. Let the two instances be
I d and I e, as inDefinition 1, and the corresponding schedules
be Sd and Se. We assume that Sd and Se satisfy condi-
tions (D1)-(D3) required for Theorem 4. Note that if (D3)
is not satisfied for Sd , i.e., if there are idle times on some
machines, then they can be eliminated, without increasing
job completion times, by left-shifting operations or by mov-
ing processing load to downstream machines.

By Theorem 4, the schedule S obtained as a merger of Sd

and Se satisfies:

n∑

j=1

C j =
n∑

j=1

Cd
j +

n∑

j=1

Ce
j .

As the objective value
∑n

j=1 C
e
j of schedule S

e for instance
I e is the same for any permutation schedule Se,

∑n
j=1 C j

achieves its minimum value if and only if
∑n

j=1 C
d
j is min-

imum. Thus, an optimal schedule for problem F |plbl(p)|∑
C j can be found as a merger of schedule Se defined in

Sect. 3.2.2 and schedule Sd constructed byAlgorithm F-Sum
for instance I d as in Sect. 7.1.

The merger involves n + m − 1 intervals of schedule Se,
which we denote by I ′

v , 1 ≤ v ≤ (m − 1) + n, and n inter-
vals of schedule Sd , defined in the previous section as Iu ,
1 ≤ u ≤ n. Notice that the last n intervals of schedule Se

have exactly the same job allocation as the n intervals of
schedule Sd . Thus, as a result of the merger, the combined
schedule gets the first (m − 1) intervals of length p taken

from Se, and the next n intervals taken from Se and Sd ; result-
ing intervals are of length |Iu | + p, 1 ≤ u ≤ n. We modify
the function J (i, u), introduced in the previous section for
a compact encoding of schedule Sd . For the current prob-
lem F |plbl(p)|∑C j , function J ′(i, v) specifies for each
machine-interval pair (i, v) the job which is processed by
machine Mi in the v-th interval:

J ′(i, v) =
⎧
⎨

⎩

v − i + 1, if 1 ≤ v ≤ (m − 1) + n
and 1 ≤ v − i + 1 ≤ n,

0, otherwise,
(22)

where the job index 0 means that no job is assigned. Here
the expression v − i + 1 corresponds to the main expression
u +m − i from (21) after substituting u = v − (m − 1), the
link between the u-th interval of Sd and the v-th interval of
Se.

Theorem 14 An optimal schedule for problem F |plbl(p)|∑
C j can be constructed in O(n log n +mn) time by defin-

ing the lengths of (m − 1) + n intervals and mn operations
allocated to them. It can be specified by formula (22), com-
putable in O(1) time for each machine-interval pair (i, v),

provided the O(n log n)preprocessing is doneandn intervals
Iu, 1 ≤ u ≤ n, are found using Step 1 of Algorithm F-Sum.

7.3 ProblemO|plbl(p)|∑ Cj

We find an optimal schedule for problem O|plbl(p)|∑C j

by constructing a common optimal schedule for problems
P|| ∑C j and P|pmtn|∑C j and reorganizing its structure
in order to achieve a solution of O-type.

Without loss of generality, we assume that n is a multiple
of m, i.e., n = Qm for some integer Q. Otherwise, we add
as many jobs of maximum length as needed to satisfy this
condition (at most m − 1 jobs are sufficient). Then we apply
the approach described below, which would place the longest
jobs at the end of the schedule, and remove the added jobs
from the resulting schedule.

Construct an SPT schedule by assigning a shortest job to
the earliest available machine; see the top schedule in Fig. 8.
In what follows, we assume that the jobs are renumbered in
SPT order, and the job numbering is from 0 up to n − 1 (in
order to improve readability of the formulae for an optimal
schedule).

Consider Q sections of the schedule, each of length

mp: the first section is given by the interval
[
0,mp

]
and

the remaining sections by intervals
[
Cqm−1,Cqm−1 + mp

]
,

1 ≤ q ≤ Q − 1. In each section q, there are m jobs Jq =
{ j = qm + r |0 ≤ r ≤ m − 1} allocated to m machines, one
job per machine. To justify this, notice that all jobs from J0

start at time 0 and have processing times no less than mp.
The property holds for every subsequent section q since

Cqm − Cqm−1 =
q∑

η=0

pηm −
q∑

η=1

pηm−1

= p0 +
q∑

η=1

(
pηm − pηm−1

) ≥ p0 ≥ mp,

and C j ≥ Cqm for any j ∈ Jq . Note that each job appears
in exactly one of the Q sections.

In order to produce a feasible O-type schedule with m
operations per job, each of length no less than p, we adopt
a two-stage approach: first redistribute the jobs within every
section q, 0 ≤ q ≤ Q − 1; next redistribute the jobs in-
between the sections. Stage 1 ensures that every machine
gets one operation of every job of length p; Stage 2 places
a nonzero operation of a job from in-between two sections
next to the p-operation of the same job and combines them
into one operation, see Fig. 8 for an illustration.

123

652 Journal of Scheduling (2019) 22:635–661

Fig. 8 Two schedules with the same completion times for all jobs: an optimal schedule for problems P|| ∑C j and P|pmtn| ∑C j (above) and an
optimal schedule for problem O|plbl(p)| ∑C j (below)

Formally, in Stage 1 we split every section q intom subin-
tervals of length p and reshuffle the jobs in each subinterval
in a wrap-around manner. The reshuffling is done slightly
differently, depending on whether q is even or odd:

Job
j = qm + r

Machine index for the k-th operation of job j

(even q) k = 1 k = 2 · · · k = m

qm + 0 1 2 · · · m
qm + 1 m 1 · · · m − 1
qm + 2 m − 1 m · · · m − 2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

qm + (m − 1) 2 3 · · · 1

Job
j = qm + r

Machine index for the k-th operation of job j

(odd q) k = 1 k = 2 · · · k = m

qm + 0 m m − 1 · · · 1
qm + 1 m − 1 m − 2 · · · m
qm + 2 m − 2 m − 3 · · · m − 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

qm + (m − 1) 1 m · · · 2

After Stage 1, the following property holds for any pair
of jobs j ∈ Jq and j + m ∈ Jq+1, which were adjacent
in the initial schedule: the last p-operation of j in section
q and the first p-operation of j + m in the next section are
assigned to the same machine (compare the last column of
the top table with the first column of the bottom one). Due to
this, at Stage 2 we can rearrange the job parts in-between the
sections while keeping j and j +m adjacent: the last part of

job j is placed on the same machine as the last p-operation
of that job in section q, and the two operations are merged;
the first part of j + m is placed on the same machine as the
first p-operation of that job in the section q + 1, and the
two operations are also merged; see the bottom schedule in
Fig. 8. Thus, we create a schedule with exactly m operations
per job, the m − 2 middle operations are of minimum length
p while the first and last operation of each job may be larger.

The operation lengths are thus defined as follows:

(a) all intermediate operations of any job j , corresponding
to position 2 ≤ k ≤ m − 1, have the common length p;

(b) all first operations of section q = 0 have the common
length p;

(c) for any job j = qm + r processed in position k = 1 in
section q, 1 ≤ q ≤ Q − 1, its first operation is merged
with the part of that job positioned just before section
q; the combined length is Cqm−1 − C j−m + p, where
Cqm−1 is the starting point of section q andC j−m is the
completion time of the job j −m which precedes job j
in the initial schedule;

(d) for any job j = qm + r processed in position k = m in
section q, 0 ≤ q ≤ Q − 1, its last operation is merged
with the part of that job positioned just after section

q; their combined length is C j −
(
Cqm−1 + mp

)
+ p,

where C j is the completion time of the last part of job

j in the initial schedule and
(
Cqm−1 + mp

)
is the end

point of section q (assuming C−1 = 0 for complete-
ness).

For a compact encoding, the machine order can be repre-
sented by the function M(j, k) which defines the machine

123

Journal of Scheduling (2019) 22:635–661 653

index for the k-th operation of job j = qm+r that appears in
the schedule (this is not necessarily the operation onmachine
Mk):

M(qm + r , k) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k − r , if q is even and
k − r ≥ 1,

m + (k − r) , if q is even and
k − r < 1,

(m + 1) − (k + r) , if q is odd and
k + r < m + 1,

(2m + 1) − (k + r) , if q is odd and
k + r ≥ m + 1.

(23)

Note that here 1 ≤ k ≤ m and 0 ≤ r ≤ m − 1.
The described approach finds an optimal open shop sched-

ule, since the job completion times in it are the same as in an
optimal schedule for problem P|pmtn|∑C j . If n �= Qm
and auxiliary jobs of maximum length have been added ini-
tially, we can assume without loss of generality that they are
the last
 jobs to finish processing, for some
 < m. Their
removal from the final schedule keeps completion times of
the remaining jobs equal to their competition times in an
optimal schedule to P|pmtn|∑C j .

Theorem 15 An optimal schedule for problem O|plbl(p)|∑
C j can be constructed in O(n log n + mn) time by con-

structing an SPT schedule for P||∑C j , splitting it into Q =
�n/m� sections and rearranging nm operations. It can be
specified by formula (23), which defines the machine number
for the k-th operation of job j , and rules (a)-(d) for oper-
ation lengths, each computable in O(1) time, provided the
O(n log n) preprocessing related to SPT scheduling is done.

7.4 Other minsum criteria

In this section, we give a brief overview of other traditional
minsum criteria f ∈ {∑

w jC j ,
∑

Uj ,
∑

w jU j ,
∑

Tj ,∑
w j Tj

}
.

7.4.1 Weighted sum of completion times

By Theorem 2, problems α2|plbl|∑ w jC j , are NP-hard
and problems α|plbl|∑ w jC j are strongly NP-hard for
α ∈ {F, O}.

Problem Om|plbl|∑ w jC j can be solved in

O(mn
(∑

p j
)m−1

) time by adopting the algorithm due to
Lawler et al. (1993) developed for Pm||∑w jC j and adding
zero-length operations in the beginning of the schedule. Note
that the same schedule is optimal for Pm||∑w jC j and
Pm|pmtn|∑w jC j .

For problem Fm|plbl|∑w jC j , by Theorem 1, an opti-
mal solution can be found in the class of F-type schedules for
Pm|pmtn|∑w jC j . If an optimal job permutation is known,
then the LP formulation (4) from Prot et al. (2013) produces
such a solution. Thus, the following two-step approach solves
the problem.

1. Solve problem Pm|pmtn|∑w jC j by the

O(mn
(∑

p j
)m−1

) time algorithm by Lawler et al.
(1993). Renumber the jobs in the order of their com-
pletion times.

2. SolveLP (4) and treat it as a solution to Fm|plbl|∑w jC j .

Unfortunately, our methodology is not applicable to the
corresponding pliability problems with a common lower
bound. In the flow shop case, the disaggregation methodol-
ogy of Sect. 3.2.2 cannot be adopted as it requires a common
permutation for optimal schedules Sd and Se for instances
I d and I e. A common optimal permutation may not exist for
arbitrary job weights w j and processing times p j .

In the case of the open shop, the approach from Sect. 7.3
cannot be generalized since an optimal schedule for problem
Pm|pmtn|∑w jC j does not necessarily have time intervals
of length mp where exactly m jobs are scheduled.

7.4.2 The number of late jobs

By Theorem 2, problems O|plbl|∑Uj and F |plbl|∑Uj

are NP-hard. It is an open question whether these problems
are solvable in pseudopolynomial time. Notice that this ques-
tion is also open for P|pmtn|∑Uj . In what follows we
consider the versions of the above problems with a fixed
number of machines.

Problem Om|plbl|∑Uj can be solved in O(n3(m−1))

time by adopting the algorithm due to Lawler et al. (1993)
developed for Pm|pmtn|∑Uj and adding zero-length
operations in the beginning of the schedule.

For problem Fm|plbl|∑Uj , by Theorem 1, an optimal
solution can be found in the class of F-type schedules for
Pm|pmtn|∑Uj . For the latter problem, there exists an
optimal schedule in which all on-time jobs are processed
before the late jobs. Thus, we can use an optimal solution to
Pm|pmtn|∑Uj in order to define the largest set J1 ⊆ J
of on-time jobs. For scheduling them in the flow shop man-
ner, introduce an auxiliary problem Fm|plbl|Lmax defined
on the set of jobs J1. It can be solved in O(mn + n log n)

time, as discussed in Sect. 4.2. Adding the jobs J \ J1 at
the end of the schedule provides a solution to the origi-
nal problem Fm|plbl|∑Uj . Combining O(n3(m−1)) and
O(mn + n log n), we conclude that the overall time com-
plexity is O(n3(m−1)), assuming m ≥ 2 and n ≥ m.

123

654 Journal of Scheduling (2019) 22:635–661

Nextweconsider the pliability problem Fm|plbl(p)|∑Uj .
Note that the open shop problem Om|plbl(p)|∑Uj is left
open since it causes difficulties similar to the easier prob-
lem Om|plbl(p)|Cmax with the makespan objective. Our
approach is based on the following two properties, which
hold even for the NP-hard problem F |plbl(p)|∑Uj with
an arbitrary number of machines.

Property 1 For problem F |plbl(p)|∑Uj , there exists an
optimal permutation schedule with on-time jobs scheduled
in non-decreasing order of due dates, followed by all late
jobs.

Property 2 Let I bean instanceof problem F |plbl(p)|∑Uj

and let I d be the diminished instance as inDefinition 1. Then,
given a subsetJ1 ⊆ J , there exists a schedule S for instance
I in which all jobs of set J1 are on time, if and only if there
exists a schedule Sd for instance I d in which all jobs of the
set J1 are on time.

Note that the first property can be proved by pairwise
interchange arguments using adjacent swaps, as in Lemma
1. The second property can be proved by considering the
Lmax-equivalents of the two problems in question.

Based on Properties 1, 2, we formulate the following 2-
step approach.

1. Construct the diminished instance I d for problem
Fm|plbl(p)|∑Uj and find the largest set J1 ⊆ J
of on-time jobs using the O(n3(m−1))-time approach
described in the beginning of this section.

2. Solve problem Fm|plbl(p)|Lmax defined on the set of
jobs J1, using the O(mn + n log n)-time approach from
Sect. 5.2. Adding the jobs J \ J1 at the end of the
schedule provides a solution to the original problem
Fm|plbl(p)|∑Uj .

The combined time complexity of the above two steps is
O(n3(m−1)), assuming m ≥ 2 and n ≥ m.

7.4.3 Weighted number of late jobs, total tardiness and
weighted total tardiness

By Theorem 2, problems α2|plbl|∑ Tj and α2|plbl|∑
w jU j are NP-hard in the ordinary sense and problems

α2|plbl|∑ w j Tj are strongly NP-hard for α ∈ {F, O}.
Problem Om|plbl|∑w jU j can be solved in

O
(
n3m−5

(∑
wi

)2) time for m ≥ 3 and in O
(
n2

(∑
wi

))

time for m = 2 by adopting the algorithms due to Lawler
and Martel (1989) and Lawler et al. (1993) developed for
Pm|pmtn|∑w jU j and adding zero-length operations in
the beginning of the schedule.

For problems Fm|plbl|∑w jU j and Fm|plbl(p)|∑
w jU j we can use the same idea as in the previous

section: first solve the related parallel machine problem
to find out an optimal set J1 of on-time jobs (after
creating the diminished instance in the case of problem
Fm|plbl(p)|∑ w jU j), then solve problem Fm|plbl|Lmax

or Fm|plbl(p)|Lmax, respectively, for the job set J1 to
obtain a schedule in which all jobs of set J1 are on time.
Finally, add the late jobs at the end of the schedule. Thus,
problems Fm|plbl|∑w jU j and Fm|plbl(p)|∑w jU j are
pseudopolynomially solvable with the same time complexity
as problem Pm|pmtn|∑w jU j .

It is an open question whether problems O2|plbl|∑ Tj

and F2|plbl|∑ Tj are solvable in pseudopolynomial time.
Notice that this question is also open for P2|pmtn|∑ Tj .

8 Pliability problems with n < m

If the number of jobs is smaller than the number of machines,
n < m, an optimal schedule for a pliability problem with
unrestricted pliability or restricted pliability with a common
lower bound exhibits a more regular structure than in the
case n ≥ m. Note that for the flow shop problem Theorem 3
still holds, and we can limit our consideration to permutation
schedules. If we limit our consideration to a specific permu-
tation π , we add that restriction in the second field of the
problem notation.

Theorem 16 For problem O|n < m, plbl(p)| f , there exists
an optimal schedule with

C j = p j , j ∈ J . (24)

For problem F |n < m, plbl(p)| f with a fixed job permuta-
tion π = (1, 2, . . . , n), there exists an optimal schedule with

C j = max
1≤u≤ j

{pu} + (j − 1)p, j ∈ J . (25)

For both schedules, the characteristics of each operation
(machine index, operation length and its starting time) can be
specified by formulae computable in O(1) time. In the case of
the flow shop, the formulae for starting times require O(n)

preprocessing related to finding C j -values for all j ∈ J
using (25).

Proof For problem O|n < m, plbl(p)| f , consider a sched-
ule given by the functions M(j, k), p(j, k) and S(j, k),
which define for the k-th operation of job j the corresponding
machine index, operation length and its starting time:

M(j, k) =
{
k + m + 1 − j, if k + 1 ≤ j,
k + 1 − j, otherwise,

p(j, k) =
{
p, if k ≤ m − 1,
p j − (m − 1)p, otherwise,

S(j, k) = (k − 1)p.

123

Journal of Scheduling (2019) 22:635–661 655

Fig. 9 An optimal schedule for O|n < m, plbl(p)| f

The schedule is illustrated in Fig. 9. The interval[
0, (m − 1)p

]
is used for operations of length p sequenced

in a wrap-around manner; the last m operations on m down-
streammachines handle the remainingprocessing for all jobs,
one job per machine. The completion times C j satisfy (24)
and they cannot be reduced; thus, the resulting schedule is
optimal.

For problem F |n < m, plbl(p)| f and a fixed job permu-
tation π = (1, 2, . . . , n), consider a permutation schedule
constructed in the following way. Split each job j intom− j
initial operations of length p, followed by operationm− j+1
of length p j − (m − 1)p, followed by j − 1 tail operations,
again of length p. For each job j the initial operations are
scheduled in a staircase manner, starting at time (j − 1)p.
Operation m − j + 1 is started at time (m − 1)p for each
job j . Finally, schedule the tail operations of length p, again
in a staircase manner as early as possible, without violat-
ing any (permutation) flow shop constraints. The schedule is
illustrated in Fig. 10.

The job completion times in the constructed schedule sat-
isfy:

C1 = p1,

C j = max
{
C j−1 + p, p j + (j − 1)p

}
, j = 2, . . . , n,

Here, C j = C j−1 + p corresponds to the case when the last
operation of j , which is of minimum length, starts on the
last machine immediately after job j − 1 is completed, and
C j = p j + (j − 1)p corresponds to the case when job j is
processed contiguously after the minimum quantities of the
preceding j − 1 jobs are processed on M1. Since in either
case C j matches the lowest achievable value, the resulting
schedule is optimal. Notice that the above formulae imply
(25).

Fig. 10 An optimal schedule for F |n < m, plbl(p)| f and a fixed job
permutation π = (1, 2, . . . , n)

For a compact encoding, we specify an optimal schedule
via functions p(j, i) and S(j, i), which compute the pro-
cessing times and starting times for operations Oi j :

p(j, i) =
{
p, if i + j �= m + 1,
p j − (m − 1)p, otherwise,

S(j, i) =
{

(i − 1)p, if i + j ≤ m + 1,
C j − (m + 1 − i)p, otherwise.

Here, C j is given by (25). Note that in the flow shop, the i-th
operation of a job j is operation Oi j processed by machine
Mi . 	

Weconclude that for problem O|n < m, plbl(p)| f , a sin-
gle schedule is optimal for any non-decreasing objective f ,
while solving problem F |n < m, plbl(p)| f reduces to find-
ing an optimal job permutation minimizing f (C1, . . . ,Cn)

with C j given by (25). Notice that formula (25) is similar to
the formula for C j known for the proportionate flow shop
Fm|pi j = τ j | f (C1, . . . ,Cn) (Pinedo 2016):

C j = (m − 1) max
1≤u≤ j

{τu} +
j∑

u=1

τu, j ∈ J . (26)

In the latter problem, every job j ∈ J consists of m oper-
ations of equal length τ j , so that the total length of job j is
p j = mτ j . Not surprisingly, the sequencing problems with
completion times given by (25) and (26) are similar to their
single-machine counterparts:

• for f = Cmax, any permutation provides the same value;
namely Cmax = max{p j | j ∈ J } + (n − 1)p for the
pliability problem;

123

656 Journal of Scheduling (2019) 22:635–661

• for f = ∑
C j the jobs can be sequenced in SPT order,

so that for the pliability problem C j = p j + (j − 1)p
for any j ∈ J ;

• for f = Lmax, the jobs can be sequenced in EDD order;
for the pliability problem this can be proved using adja-
cent swaps introduced in Lemma 1;

• for f = ∑
Uj ,Moore’s algorithm (1968) canbe adjusted

accordingly, without increasing its running time;
• for f = ∑

Tj , the pseudopolynomial-time algorithm for
1|| ∑ Tj can be adjusted as well, also without increasing
its running time.

Not all results known for the single-machine problem are
transferable though. As in the case of the proportionate flow
shop, the problemwith f = ∑

w jC j can be solved in O(n2)
time by a special ‘minimum cost insertion’ (MCI) algorithm.
Without presenting full proof details, which follow from
Shakhlevich et al. (1998), we formulate some properties of
an optimal schedule and outline the algorithm.

Property 3 If in an instance of problem F |n < m, plbl(p)|∑
w jC j two jobs h and j satisfy conditions

ph ≤ p j and wh ≥ w j ,

then there exists an optimal schedule with h scheduled prior
to j .

Given a schedule, we define concepts of a new-max job
and a segment. A new-max job is a job with a processing time
which exceeds the processing times of all its predecessors in
the schedule. A segment starts with a new-max job and it
includes all subsequent jobs, with processing times no larger
than that of the new-max job.

Property 4 An optimal schedule for problem F |n < m,

plbl(p)| ∑w jC j consists of segments, in which all jobs are
sequenced in non-increasing order of their w j -values.

The algorithm, which follows the ideas from Shakhlevich
et al. (1998), is as follows.

Algorithm MCI

1. Renumber the jobs so that w1 ≥ w2 ≥ · · · ≥ wn . Break
ties in favor of a job with a smaller processing time.

2. Set the initial sequence consisting of job 1 as σ1 = (1).
3. For j = 2 to n

(a) Produce sequence σ j consisting of jobs 1, 2, . . . , j as
the best outcome of inserting j into σ j−1. If there are
several insertion possibilities with the same outcome,
choose the one with the latest insertion position of j .

Note that the “best outcome” can be obtained by trying
all possible insertions of job j and selecting the one which
delivers the minimum value of the objective. Due to the job
numbering and by Property 3, we do not need to consider
insertion positions for j in any part of the schedule that pre-
cedes a smaller job. By the job numbering and Properties 4
and 3, we only need to consider insertion positions for j
immediately before the next new-max job (if j is not a new-
max job) and at the end of the schedule (if j is a new-max
job). Therefore, for each insertion, the change in the objec-
tive can be calculated in O(1) time. Since there are at most
n insertion points in σ j−1 and n−1 repetitions of Step 3, the
overall time complexity is O(n2).

9 Conclusions

In this paper, we studied general properties of pliability mod-
els and performed a thorough complexity classification of
flow shop and open shop problems with pliable jobs.

Comparing open shop and flow shop models, we cannot
draw a single conclusion: inmany cases, the two counterparts
have the same time complexity. For the unrestricted model
with f = Lmax, we have a faster algorithm for the open shop
problem; for the models with a common lower bound and
f ∈ {Cmax, Lmax}, the flow shop problems are polynomially
solvable, but the complexity status of the open shop counter-
parts is left as an open question. For the restricted case and
f = Cmax, the flow shop problem with two machines is NP-
hard, while the open shop problem is solvable in O(n) time.

Under the assumption n < m, several type (i) and type
(ii) problems become tractable. For the open shop problem
of type (i) and (ii), a common schedule is optimal for any
regular criterion. The same is true for the flow shop problem
of type (i). The flow shop problem of type (ii) reduces to
finding an optimal job permutation and becomes similar to
its single-machine counterpart. Whenever a job permutation
is found, the characteristics of an optimal schedule can be
found by using O(1) formulae.

In the situation n ≥ m, the problems of type (i) and
(ii) appear to be no harder than their flow shop and open
shop counterparts, with or without preemption, and are
often solvable by faster algorithms than the traditional
problems. Exceptions are problems O|plbl(p)|Cmax and
O|plbl(p)|Lmax: the complexity status of both problems
remains open. On the other hand, problems of type (iii) are
no easier than their traditional counterparts. In particular,
for F2| ◦ |Cmax, the pliability version is NP-hard, while its
classical counterpart is solvable in O(n log n) time (Johnson
1954).

Having studied basic models with pliability, we propose
the following directions for further research. Type (ii) and
type (iii) models handle scenarios with restrictions on oper-

123

Journal of Scheduling (2019) 22:635–661 657

ation lengths: there can be a common lower bound p for all
jobs, or the lower bounds p

i j
can be individual for all job-

machine pairs. The intermediate cases, lying in-between type
(ii) and type (iii) models, are job-dependent lower bounds
p
i j

= p
j
ormachine-dependent lower bounds p

i j
= p

i
. Our

study already provides some initial results, in particular those
presented in Sects. 5.1, 6.1, 6.2: the approach from Sect. 5.1
can be generalized for solving F2|plbl(p

i j
= p

i
)|Cmax, the

NP-hardness proof from Sect. 6.1 is applicable for problem
F2|plbl(p

i j
= p

j
)|Cmax, and the algorithm from Sect. 6.2

solves efficiently themost general open shop problem of type
(iii). Other versions require further analysis.

Another type of pliability can be defined in terms of the
deviation from “ideal” operation lengths p0i j . In such mod-
els actual processing times pi j have to be selected from

intervals
[
p0i j − �, p0i j + �

]
with some given parameter�.

Whenever an actual processing time exceeds its ideal value,
pi j > p0i j , a cost may be incurred associated with addi-
tional power or other resources for extra-work, allocated to
the machine above the expected “ideal” load. Alternatively,
performing a part of an operation on a “wrong”machine may
increase the processing time of that part, since a “wrong”
machine may operate at a slower rate processing the relo-
cated operation part. The proposed model has similarities to
models with controllable processing times where operation
lengths can be reduced via the usage of additional resources.
It will be interesting to explore links between the proposed
“�-redistribution” model and the stream of research related
to controllable processing times.

Acknowledgements The authors thank the referee for suggestions
aimed at improving the paper. This workwas supported by theDeutsche
Forschungsgemeinschaft, KN 512/7-1. The work of Stefan Waldherr
was supported by the TUM Institute for Advanced Study through a
Hans Fischer Senior Fellowship. The work of N.V. Shakhlevich was
supported by the EPSRC Grant EP/K041274/1.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Proof of Lemma 1

Consider problem F |plbl(p)| f and the permutation sched-
ule S where job u is sequenced immediately before job v in
the permutation, as described in the formulation of Lemma 1.
To prove the lemma, we first formulate assumptions (A1)-
(A2) about schedule S, then derive properties (P1)-(P7) of
S, and finally construct the required schedule S′, the feasi-
bility of which is justified by stating conditions (C1)-(C6),
characterizing the constructed schedule.

Fig. 11 Splitting into two subinstances if ri − �i+1 ≤ p (i = 3), with
unique allocation of the v-operation to Mi and u-operation to Mi+1;
allocation of remaining operations is not shown

Schedule S: Assumptions
Given schedule S, define for each machine Mi , 1 ≤ i ≤ m,
the time window [�i , ri] where jobs u and v are processed:
�i is the starting time of the u-operation on machine Mi and
ri is the completion time of the v-operation on that machine.
Since all operations have length no less than p, the time
windows follow a staircase pattern: for any pair of machines
Mi , Mi+1, 1 ≤ i ≤ m − 1,

�i + p ≤ �i+1,

ri + p ≤ ri+1.
(A1)

Furthermore, if for a pair of machines Mi , Mi+1 the
intersection of [�i , ri] and

[
�i+1, ri+1

]
is empty, then an

instance of problem F |plbl(p)| f can be split into two inde-
pendent subinstances defined by machine sets {M1, . . . , Mi }
and {Mi+1, . . . , Mm}. A splitting can also be done if the inter-
section is non-empty, but sufficiently small, with a common
subinterval

[
�i+1, ri

]
of length

ri − �i+1 ≤ p,

see Fig. 11 for an illustration with i = 3. Notice that in
the intersection interval machine Mi can only process the
compulsory part of the v-operation, while machine Mi+1 can
only process the compulsory part of the u-operation, partially
if the interval length is less than p. For the remaining pairs
of machines Mx , My with x ≤ i , y ≥ i + 1, where at least
one of the inequalities is strict, the time windows [�x , rx] and[
�y, ry

]
do not intersect due to (A1).

In the remainder of the proof,we assume that any splittable
instance is replaced by independent subinstances, with each
subinstance satisfying

ri − �i+1 > p (A2)

for every pair of machines Mi , Mi+1, 1 ≤ i ≤ m − 1.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

658 Journal of Scheduling (2019) 22:635–661

Fig. 12 Two types of intervals I1 and I2 for schedule S

Schedule S: Properties
For the combined interval [�1, rm], define subintervals of
types I1 and I2 in accordance with the number of available
machines: a subinterval is of type I1, if only one machine is
available for processing {u, v}, and it is of type I2, if there
are at least two machines available. An illustrative example
is presented in Fig. 12. Denote the total lengths of I1- and I2-
intervals by T1 and T2, respectively, with T1 + T2 = rm − �1.

In what follows we formulate properties of I1- and I2-
intervals for schedule S.

(P1) On machine M1, an interval of type I1 is followed by
an interval of type I2.

(P2) On every machine Mi , 2 ≤ i ≤ m − 1, there is either
one interval of type I2 or there are three intervals of
types I2, I1, I2, which appear in this order.

(P3) On machine Mm , an interval of type I2 is followed by
an interval of type I1.

(P4) T1 ≥ 2p,
(P5) ri − �i ≥ 2p, 1 ≤ i ≤ m,
(P6) max {pu, pv} ≤ T1 + T2 − p,
(P7) pu + pv ≤ T1 + 2T2.

Properties (P1)-(P3) hold due to (A1), (A2).
Property (P4) holds since I1 contains at least two intervals:

one on M1 and one on Mm (by (P1), (P3)), and the length of
each such interval is at least p (by (A1)).

Property (P5) holds since during time interval [�i , ri],
machine Mi processes one operation of job u and one oper-
ation of job v, each of length no less than p.

If property (P6) does not hold, then scheduling the longest
job does not leave room of length p for the compulsory part

of the other job on Mm (if job u is the longest) or on M1 (if
job v is the longest). In that case, no feasible permutation
schedule exists with job u and job v scheduled in intervals
[�i , ri], 1 ≤ i ≤ m, in any order; a contradiction to the
feasibility of S.

Finally, if property (P7) does not hold, then no feasible
schedule exists even for the relaxed problemwithm identical
parallel machines processing two jobs {u, v} of lengths pu
and pv with preemption in intervals [�i , ri], 1 ≤ i ≤ m;
again, a contradiction to the feasibility of S. Here we take
into account that only intervals of type I2 are suitable for
processing two jobs simultaneously.

Schedule S′: Construction
Given time windows [�i , ri], 1 ≤ i ≤ m, satisfying (A1),
(A2) and (P1)–(P7), we construct schedule S′ by allocating
operations of jobs v and u in these time windows, with v

preceding u. Our task is to find operation lengths piv and piu
for these two jobs on all machines Mi , 1 ≤ i ≤ m.

Without loss of generality we assume that

min {pu, pv} ≥ T2 + p; (27)

otherwise adjust (temporarily) the processing times of jobs u

and v to max
{
pu, T2 + p

}
and max

{
pv, T2 + p

}
, respec-

tively; the extra amount of processing will be removed from
a feasible schedule, after it is constructed. This condition
simplifies the construction of the new schedule, and the
adjustment does not affect (P1)–(P5) and keeps (P6), (P7)
satisfied. Indeed, property (P6) for the adjusted processing

times is of the form max
{
pu, pv, T2 + p

}
≤ T1 +T2 − p. It

holds since the original property (P6) is satisfied for pu, pv

and by (P4). For property (P7), the sum of the adjusted pro-
cessing times in the left hand side is equal to one of the
following values:

pu + pv, if pu > T2 + p, pv > T2 + p;
pu +

(
T2 + p

)
, if pu > T2 + p, pv ≤ T2 + p;(

T2 + p
)

+ pv, if pu ≤ T2 + p, pv > T2 + p;
2

(
T2 + p

)
, if pu > T2 + p, pv > T2 + p.

The first expression is bounded by T1 + 2T2 if (P7) holds
for original pu, pv; the second and the third expressions are

bounded by
(
T1 + T2 − p

)
+

(
T2 + p

)
by (P6); the last

expression is bounded by 2T2 + T1 by (P4).
The algorithm for scheduling jobs u and v satisfying (27)

consists of two stages.
Stage 1 Allocate the processing amount T2 + p of job v,

using the following intervals:

–
[
�1, �1 + p

]
on M1,

123

Journal of Scheduling (2019) 22:635–661 659

Fig. 13 The outcome of Stage 1

–
[
�i ,min {ri−1, �i+1}

]
on each Mi , 2 ≤ i ≤ m − 1,

–
[
�m, rm−1

]
on Mm .

Allocate the processing amount T2 + p of job u, using the
following intervals:

–
[
rm − p, rm

]
on Mm ,

–
[
max {ri−1, �i+1} , ri

]
on each Mi , 2 ≤ i ≤ m − 1,

– [�2, r1] on M1.

The schedule found as a result of Stage 1 is shown in Fig. 13.
Stage 2 If pu = pv = T2 + p, then no further action is

needed. Otherwise use intervals of type I1, which are left
free after Stage 1, for allocating the remaining quantities of
jobs u and v, splitting each I1-interval into three parts, some
of which may be of zero length: one part for job v, another
one for an idle interval and the third part for job u. For each
machine, the splitting can be performed arbitrarily, but the
resulting cumulative length of all operations of jobs u and v

has to constitute pu and pv . Such a splitting can always be
found, justified as condition (C6) below.

Note that if an interval of type I2 has more than two avail-
able machines, then two of them receive jobs u and v for
processing, while the remaining available machines are left
idle (for example, an idle interval on machine M2 in Fig. 13).

In order to justify the correctness of the algorithm, we
demonstrate that the following conditions hold for the result-
ing schedule:

(C1) every machine Mi , 1 ≤ i ≤ m, processes job v first
and job u next;

(C2) for each job v and u, the minimum processing amount
p is assigned to each machine Mi , 1 ≤ i ≤ m;

(C3) the time intervals with v-operations on two consec-
utive machines do not overlap; the same is true for
u-operations;

(C4) the time intervals with v- and u-operations on one
machine do not overlap;

(C5) at the end of Stage 1 the intervals of combined capacity
of T2 + 2p are used to process the amount 2T2 + 2p
of jobs v and u;

(C6) at the end of Stage 2 processing quantities pv , pu are
allocated in full.

First we prove conditions (C1)–(C3) for job v; similar
arguments are applicable for job u.

Condition (C1) holds since job v starts at time �i on every
machine Mi , according to allocation of Stage 1; further allo-
cation of the same job on Mi performed at Stage 2 is done
in the I1-interval, if one exists; such an interval follows the
previously used I2 interval by property (P2).

Condition (C2) holds for job v since the length of the
interval

[
�i ,min {ri−1, �i+1}

]
is no smaller than p: �i+1 −

�i ≥ p by (A1) and ri−1 − �i > p by (A2).
Condition (C3) holds for job v since after Stage 1 is

completed, the allocated intervals
[
�i ,min {ri−1, �i+1}

]
and[

�i+1,min {ri , �i+2}
]
on machines Mi , Mi+1 do not overlap

for any i , 1 ≤ i ≤ m − 1. If at Stage 2 an interval of type I1
is used for allocating job v on machine Mi , 1 ≤ i ≤ m, no
overlapping can happen as any I1-interval is associated with
only one available machine.

We now prove the remaining conditions.
Condition (C4) follows from the splitting strategy of

Stage 2.
Condition (C5) holds since at the end of Stage 1 opera-

tions of job v fully occupy all intervals of type I2 together

with
[
�1, �1 + p

]
, and operations of job u fully occupy all

intervals of type I2 together with
[
rm − p, rm

]
.

In order to prove condition (C6), first recall that due to
(27) we have pu, pv ≥ T2 + p. The parts of the processing
amounts of jobs u and v that still need to be allocated after

Stage 1, are pu −
(
T2 + p

)
and pv −

(
T2 + p

)
, respectively.

The remaining capacity of I1-intervals is
(
T1 − 2p

)
. Then

condition (C6) follows from property (P7) rewritten as

pu + pv − 2
(
T2 + p

)
≤ T1 − 2p.

Finally, in the case that one of the original processing
times is lower than T2+ p, the extra amount can be arbitrarily
removed from intervals of type I2 as long as the processing
times on all machines remain at least p.

Thus, the described algorithm constructs the required
schedule S′. 	

123

660 Journal of Scheduling (2019) 22:635–661

Appendix 2: An instance of problem F|plbl|
Lmax with Ä(nm) nonzero operations in an
optimal solution

The following example shows that the term mn in the com-
plexity estimate O(n log n + mn) for problem F |plbl|Lmax

in Theorem 7 cannot be eliminated. Consider an instance
with m machines and n jobs under the assumption that

m <
1

3
n. (28)

The job set J consists of three types of jobs, U =
{u1, u2, . . . , um}, H = {h1, h2, . . . , hn−2m} and V =
{v1, v2, . . . , vm}, with the following characteristics:

pu j = j, du j = j, u j ∈ U ,

ph j = m, dh j = m + j, h j ∈ H,

pv j = j, dv j = n − m + 1, v j ∈ V.

Clearly,

d = n − m + 1

is themaximumdue date in the instance.We demonstrate that
in an optimal solution, there is a unique way for allocating
the jobs from U ∪ H such that every job u j is split into j
unit-length operations and every job h j is split into m unit-
length operations, see Fig. 14 for an illustration. This implies
that the total number of nonzero operations is at least

Q = 1

2
m (m + 1) + (n − 2m)m > m

(
n − 3

2
m

)

>
1

2
mn = �(mn) , (29)

where the last inequality holds by (28). Deriving the estimate
Q, we do not count the number of nonzero operations asso-
ciated with the jobs V as there may be multiple ways for their
allocation.

First notice that for the relaxed problem P|pmtn|Lmax,
the optimal objective value is Lmax = 0, which can be calcu-
lated using the closed form expression from Baptiste (2000).
Moreover, the total processing time of all n jobs is equal to
the total capacity dm of all machines in the interval

[
0, d

]
.

Thus, for any schedule with Lmax = 0, every machine Mi

operates without idle times in
[
0, d

]
.

Without focusing on the allocation of operations of jobs
V on machine Mm , consider the allocation of the jobs U ∪H
on that machine. Job u1 has to be fully processed in time
interval [0, 1] completing at time 1 on Mm . If the operation
of u1 on Mm is of length pm,u1 < 1, then there is an idle
time on Mm , since in an optimal schedule with Lmax = 0

Fig. 14 Anoptimal solution to an instance of F |plbl|Lmax with�(mn)

nonzero operations

no other job can have its final operation before time 1. Thus,
pm,u1 = 1.

Job u2 has to be fully processed in time interval [0, 2]
completing at time 2 on Mm . Again, the operation length of
u2 on Mm has to be pm,u2 = 1 in order to avoid an idle time
on that machine.

Continuing this line of arguments, it is easy to prove by
induction that machine Mm processes unit-length operations
of jobs U ∪ H in the order of their numbering, first U and
then H. Such an allocation on Mm induces the deadlines
for completing jobs U ∪ H on machine Mm−1: du j − 1 for
the U-jobs and dh j − 1 for the H-jobs. In this way, we
obtain a smaller instance with machines {M1, . . . , Mm−1}
and adjusted job characteristics: for every job from U ∪ H
the d- and p-values are reduced by 1, while for the V-jobs,
their total processing time is reduced by 1. Since this subin-
stance is similar to the initial one, the above arguments are
applicable to prove that machine Mm−1 processes a zero-
length operation of u1 first, followed by the unit-length
operations of jobs U\{u1}∪H in the order of their num-
bering.

Proceeding similarly, we conclude that there is a unique
way of allocating jobs U ∪ H in an optimal F-type schedule,
and it leaves on every machine Mi , 1 ≤ i ≤ m, time win-
dows

[
d − m + i − 1, d

]
for processing jobsV . One possible

allocation of the V-jobs is presented in Fig. 14 , where each
job vi is processed in full on one of the machines, with zero-
length operations on the remaining machines. Thus, estimate
(29) holds and the constructed instance has �(mn) nonzero
operations.

References

Anuar, R., & Bukchin, Y. (2006). Design and operation of dynamic
assembly lines using work-sharing. International Journal of Pro-
duction Research, 44, 4043–4065.

123

Journal of Scheduling (2019) 22:635–661 661

Askin, R. G., & Chen, J. (2006). Dynamic task assignment for
throughput maximization with worksharing. European Journal of
Operational Research, 168, 853–869.

Balas, E.,&Zemel, E. (1980).An algorithm for large zero-one knapsack
problems. Operations Research, 28, 1130–1154.

Baptiste, P. (2000). Preemptive scheduling of identical machines. UTC
research report 2000/314, Univ. de Tech. de Compiègne, F-60200
Compiègne, France.

Baranski, T. (2011). Task scheduling with restricted preemptions. In
Proceedings of the federated conference on computer science and
information systems (pp. 231–238).

Brauner, N., Crama, Y., Grigoriev, A., & van de Klundert, J. (2005).
A framework for the complexity of high-multiplicity scheduling
problems. Journal of Combinatorial Optimization, 9, 313–323.

Bruno, J., & Gonzalez, T. (1976). Scheduling independent tasks with
release dates and due dates on parallel machines. Technical Report
213, Pennsylvania State University.

Brucker, P. (2007). Scheduling algorithms (5th ed.). Heidelberg:
Springer.

Bultmann, M., Knust, S., &Waldherr, S. (2018). Flow shop scheduling
with flexible processing times. OR Spectrum, 40, 809–829.

Bultmann,M.,Knust, S.,&Waldherr, S. (2018). Synchronous flow shop
scheduling with pliable jobs. European Journal of Operational
Research, 270, 943–956.

Burdett, R. L., & Kozan, E. (2001). Sequencing and scheduling in flow-
shopswith task redistribution. Journal of theOperational Research
Society, 52, 1379–1389.

Chang, J. H., & Chiu, H. N. (2005). A comprehensive review of
lot streaming. International Journal of Production Research, 43,
1515–1536.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of
scheduling (p. 1967). Reading, MA: Addison-Welsey.

Crama, Y., & Gultekin, H. (2010). Throughput optimization in two-
machine flowshops with flexible operations. Journal of Schedul-
ing, 13, 227–243.

Ecker, K., & Hirschberg, R. (1993). Task scheduling with restricted
preemptions. Lecture Notes in Computer Science, 694, 464–475.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of
flowshop and job shop scheduling. Mathematics of Operations
Research, 1, 117–129.

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize
finish time. Journal of the ACM, 23, 665–679.

Gupta, J. N. D., Koulamas, C. P., Kyparisis, G. J., Potts, C. N., &
Strusevich, V. A. (2004). Scheduling three-operation jobs in a two-
machine flow shop to minimize makespan. Annals of Operations
Research, 129, 171–185.

Gultekin, H. (2012). Scheduling in flow shops with flexible operations:
Throughput optimization and benefits of flexibility. International
Journal of Production Economics, 140, 900–911.

Hefetz, N., & Adiri, I. (1982). A note on the influence of missing opera-
tions on schedulingproblems.NavalResearchLogisticsQuarterly,
29, 535–539.

Johnson, S. M. (1954). Optimal two-and-three-stage production sched-
ules with set-up times included. Naval Research Logistics Quar-
terly, 1, 61–68.

Koulamas, C., & Kyparisis, G. J. (2015). The three-machine propor-
tionate open shop and mixed shop minimum makespan problems.
European Journal of Operational Research, 243(1), 70–74.

Kropp, D. H., & Smunt, T. L. (1990). Optimal and heuristic models for
lot splitting in a flow shop. Decision Sciences, 21, 691–709.

Labetoulle, J., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H.
G. (1984). Preemptive scheduling of uniform machines subject to
release dates. In H. R. Pulleybank (Ed.),Progress in combinatorial
optimization (pp. 245–261). New York: Academic Press.

Lawler, E. L. (1983). Recent results in the theory ofmachine scheduling.
In A. Bachem, M. Grötschel, & B. Korte (Eds.), Mathematical
programming the state of the art (pp. 202–234). Berlin: Springer.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D.
B. (1993) Sequencing and scheduling: algorithms and complexity.
Handbook in Operations Research andManagement Science (Vol.
4, 445–522). Amsterdam.

Lawler, E. L., & Martel, C. U. (1989). Preemptive scheduling of two
uniformmachines tominimize the number of late jobs.Operations
Research, 37, 314–318.

Lin, B. M. T., Hwang, F. J., & Gupta, J. N. D. (2016). Two-machine
flowshop scheduling with three-operation jobs subject to a fixed
job sequence. Journal of Scheduling, 20, 293–302.

McLain, J. O., Thomas, L. J., & Sox, C. (1992). “On-the-fly” line bal-
ancing with very little WIP. International Journal of Production
Economics, 27, 283–289.

McNaughton, R. (1959). Scheduling with deadlines and loss functions.
Management Science, 12, 1–12.

Moore, J. M. (1968). An n job, one machine sequencing algorithm
for minimizing the number of late jobs.Management Science, 15,
102–109.

Ostolaza, J., McLain, J. O., & Sox, C. (1990). The use of dynamic
(state-dependent) assembly-line balancing to improve throughput.
Journal of Manufacturing and Operations Management, 3, 105–
133.

Pienkosz, K., & Prus, A. (2015). Task scheduling with restricted pre-
emptions on two parallel processors. International Conference on
Methods and Models in Automation and Robotics, 2015, 58–61.

Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems (6th
ed.). Berlin: Springer.

Potts, C. N., Shmoys, D. B., & Williamson, D. P. (1991). Permutation
vs. non-permutation flow shop schedules. Operations Research
Letters, 10, 281–284.

Prot, D., Bellenguez-Morineau, O., & Lahlou, C. (2013). New com-
plexity results for parallel identical machine scheduling.European
Journal of Operational Research, 231, 282–287.

Ruiz-Torres, A. J., Ablanedo-Rosas, J. H., & Ho, J. C. (2010). Mini-
mizing the number of tardy jobs in the flow shop problem with
operation and resource flexibility. Computers and Operations
Research, 37, 291–292.

Ruiz-Torres,A. J., Ho, J. C.,&Ablanedo-Rosas, J. H. (2011).Makespan
and workstation utilization minimization in a flowshop with oper-
ations flexibility. Omega, 39, 273–282.

Sahni, S. (1979). Preemptive scheduling with due dates. Operations
Research, 27, 925–934.

Serafini, P. (1996). Scheduling jobs on several machines with the job
splitting property. Operations Research, 44, 617–628.

Shakhlevich, N. V., Hoogeveen, H., & Pinedo, M. (1998). Minimiz-
ing total weighted completion time in a proportionate flow shop.
Journal of Scheduling, 1, 157–168.

Trietsch, D., & Baker, K. R. (1993). Basic techniques for lot streaming.
Operations Research, 41, 1065–1076.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Shop scheduling problems with pliable jobs
	Abstract
	1 Introduction
	1.1 Pliability
	1.2 Contributions

	2 Related work
	3 General properties and reductions
	3.1 Unrestricted pliability
	3.2 Restricted pliability with a common lower bound
	3.2.1 The existence of an optimal permutation schedule for F|plbl(underlinep)|f
	3.2.2 A job disaggregation approach for problem F|plbl(underlinep)|f

	3.3 Restricted pliability with individual lower and upper bounds

	4 Unrestricted pliability: Minmax objectives
	4.1 Problems F|plbl|Cmax and O|plbl|Cmax
	4.2 Problems F|plbl|Lmax and O|plbl|Lmax

	5 Restricted pliability with a common lower bound: Minmax objectives
	5.1 Problem F|plbl(underlinep)|Cmax
	5.2 Problem F|plbl(underlinep)|Lmax
	5.3 Problem O|plbl(underlinep)|Cmax

	6 Restricted pliability with individual lower and upper bounds: Makespan objective
	6.1 Problem F2|plbl(underlinepij,overlinepij)|Cmax
	6.2 Problem O2|plbl(underlinepij,overlinepij)|Cmax

	7 Unrestricted and restricted pliability: Minsum objectives
	7.1 Problems F|plbl|sumCj and O|plbl|sumCj
	7.2 Problem F|plbl(underlinep)|sumCj
	7.3 Problem O|plbl(underlinep)|sumCj
	7.4 Other minsum criteria
	7.4.1 Weighted sum of completion times
	7.4.2 The number of late jobs
	7.4.3 Weighted number of late jobs, total tardiness and weighted total tardiness

	8 Pliability problems with n<m
	9 Conclusions
	Acknowledgements
	Appendix 1: Proof of Lemma 1
	Appendix 2: An instance of problem F|plbl| Lmax with Ω(nm) nonzero operations in an optimal solution
	References

