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Drift kinetic response of ions to magnetic island

perturbation and effects on NTM threshold
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Hill1

1 York Plasma Institute, Department of Physics, University of York, Heslington, York, YO10
5DD, United Kingdom
2 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom

Abstract. Controlling neoclassical tearing modes (NTMs) is vital for future tokamaks, such
as ITER. An NTM control system relies on the magnetic island threshold physics. In this
paper, new results for the ion response to the island perturbation and its influence on the
island evolution are presented. Considering a small island, w ≪ r, where r is the minor
radius, but crucially retaining the ordering ρbi ∼ w (relevant for threshold) to capture the finite
orbit width effect, we determine the ion response using the drift kinetic equation. Momentum
conservation and quasineutrality are taken into account, which are crucial for determining the
current perturbations. The results show that the finite particle orbit effects are significant even
for a moderately small ratio of ρθi/w (ρθi is the ion poloidal Larmor radius; ρbi ∼ ǫ1/2ρθi).
When w ∼ ρθi, the flattening of the pressure gradient across the island is substantially restored,
implying that the bootstrap current drive for the island growth is suppressed. Moreover, we
find that for a sufficiently small island, w ≪ ρθi, the contribution can be negative, meaning that
it can stabilize small seed islands, providing a threshold. This will have significant impact on
our understanding of the NTM threshold physics.

1. Introduction

One of the challenges that future tokamaks will face is the effect of neoclassical tearing modes
(NTMs), which are characterized by the evolution of a magnetic island chain. Across a
magnetic island the enhanced radial transport of particles and heat flattens the pressure gradient,
degrading the plasma confinement. NTMs with large saturated islands can trigger disruptions.
This is why it is important to control NTMs.

According to the original Rutherford theory [1], the evolution of a magnetic island half-
width, w, depends on the tearing parameter, ∆′. In neoclassical theory, the contribution
from a localized parallel current perturbation is taken into account. One such contribution
is the perturbed bootstrap current [2], whose contribution to the island evolution (which we
label ∆bs) scales as 1/w. It means that, if this is destabilizing, seed islands, however small,
would grow to large saturated ones, significantly degrading tokamak confinement. However,
experimental observations point to a threshold mechanism [3], whereby sufficiently small islands
heal themselves and shrink away. One possible source of this threshold is the finite radial
transport effect [4, 5]. This partially restores the pressure gradient that is flattened across the
island, thus reducing the bootstrap drive for the island growth. In this case, the island growth
below a critical width is suppressed.

In toroidal geometry, the combination of ∇B and curvature drifts causes the particle orbits
to stray from a reference flux surface by a distance ∼ ǫρθ for passing particles (ρθ is the poloidal
Larmor radius), while trapped particles execute closed banana orbits, whose width is given by
ρb ∼ ǫ1/2ρθ. When an island chain propagates through the plasma, the different orbit-averaged
E×B drifts of trapped ions and electrons result in a net current: the neoclassical polarization
current. A parallel return current flows to satisfy ∇·J = 0, and it is this current that contributes
to the island evolution (which we label ∆pol). Previous works [6, 7] based on drift kinetic theory
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in toroidal geometry have shown that ∆pol ∝ 1/w3, when ρbi ≪ w. If this contribution is
stabilizing, then it could heal small seed islands, thus providing the threshold.

The currently favoured way of controlling NTMs in ITER is to use electron-cyclotron current
drive (ECCD) [8, 9, 10]. Although the effectiveness of the ECCD has been demonstrated in
a number of tokamaks [11, 12, 13, 14], the power consumption of the ECCD system is rather
high. It is therefore crucial to maximize the efficiency of the system, if we are to achieve a high
fusion Q-factor in future experiments [15]. This is why the understanding of the NTM threshold
physics, including the predictive capability for the threshold island width, is so essential. Existing
theory relies on the assumption ρbi ≪ w, i.e. valid in the limit of large island widths compared
to the ion banana width. However, observations [16] show that the threshold island width is
often comparable in size to the ion banana width; precisely the regime where this assumption
breaks down. A new theory is therefore required to accurately determine the relative sizes of the
∆bs, ∆pol and ∆′ contributions, including their dependence on the curvature and finite particle
orbit width effects. This will allow us to quantitatively predict the threshold width for ITER.

This paper focuses on the effect of finite ion orbit width on the bootstrap current contribution
to the magnetic island evolution, extending the existing drift kinetic theory [6] to describe the
ion response to the island perturbation. Crucially we relax the small banana-width assumption,
and consider magnetic islands whose widths are comparable to the ion banana width: w ∼ ρbi.
We consider a small magnetic island w ≪ r (valid for an island with a width close the threshold
width), which allows us to treat the plasma as toroidally symmetric to leading order. Then,
because of the finite orbit width effect, the ion distribution function is no longer a function of
poloidal magnetic flux ψ, but of toroidal canonical angular momentum:

pφ = (ψ − ψs)−
Iv‖

ωci
, (1)

which is conserved along the orbits in an axisymmetric plasma. Here, ψs is the poloidal flux
at the rational surface where the island is located, I = RBφ, Bφ is the toroidal component of
the magnetic field, v‖ is the component of the particle velocity along the field lines and ωci is
the ion gyrofrequency. For electrons, the assumption ρbe ≪ w is still valid, which allows us to
use the existing analytic solutions for the electron distribution function of [6]. However, in the
regime ρbe ≪ w ∼ ρbi, we anticipate a notable difference in the electron and ion distribution
functions, if we neglect the electrostatic potential Φ. Indeed, one of our findings is that the ion
density gradient will be supported across the island when w ∼ ρθi (N.B. ρbi ∼ ρθi), even if the
electron density is still flat (i.e. without the potential). It is therefore important to calculate Φ
self-consistently from quasineutrality, which we incorporate into our analysis. From the particle
responses, we determine the full contribution of the perturbed current to the island evolution
including the bootstrap current. We will find that, in the limit of a very small island, the
electrons provide the stabilizing contribution; not explained by the standard bootstrap theory.

2. Magnetic Island Geometry and Drift Kinetic Equation

We consider a large aspect ratio, circular cross-section tokamak, neglecting the Shafranov shift.
In the orthogonal coordinate system ∇φ × ∇ψ = rBθ∇θ, where ψ is the poloidal magnetic
flux, θ is the poloidal angle, φ is the toroidal angle and Bθ is the poloidal magnetic field, the
equilibrium magnetic field is given by:

B0 = I(ψ)∇φ+∇φ×∇ψ. (2)

A magnetic perturbation of the following form, which satisfies ∇ ·B = 0, is introduced:

B1 = ∇× (A‖b0), A‖ = − ψ̃
R

cos ξ (3)
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assuming a single dominant helicity perturbation. Here, b0 = B0/B0 is the unit vector in the
direction of the equilibrium field lines and ξ is the helical angle in the island rest frame:

ξ = m

(

θ − φ

qs

)

. (4)

m is the poloidal mode number, qs = m/n is the safety factor at the rational surface where the
island is located and n is the toroidal mode number. All quantities with subscript s are those
evaluated at the rational surface, unless otherwise indicated. In equation (3), ψ̃ = (w2

ψ/4)(qs/q
′
s)

describes the perturbation amplitude, with the prime denoting a differential with respect to ψ.
Here, wψ is the island half-width in ψ-space. It is also convenient to introduce a perturbed flux
function Ω satisfying: B ·∇Ω = 0, which is given by:

Ω =
2(ψ − ψs)

2

w2
ψ

− cos ξ. (5)

The perturbed magnetic field lines lie in surfaces of constant Ω, with Ω = 1 defining the island
separatrix.

We consider a steady state drift kinetic response of ions to the magnetic island perturbation.
Working in the island rest frame, the drift kinetic equation we employ takes the form:

v‖∇‖fj + vE ·∇fj + vb ·∇fj −
ej
mjv

(

v‖∇‖Φ+ vb ·∇Φ
) ∂fj
∂v

= Cj(fj) (6)

for a particle species j. Here, ‖ denotes a component parallel to the magnetic field lines,
∇‖ = b ·∇, b = B/B, v‖ = σv

√
1− λB is the parallel velocity, vE = (B×∇Φ)/B2 is the E×B

drift, vb = −v‖b×∇(v‖/ωcj) is the combination of grad-B and curvature drifts, ωcj = ejB/mj

and ej and mj are the particle charge and mass respectively. Φ is the perturbed electrostatic
potential, to be determined from quasineutrality, and Cj is the momentum-conserving model
collision operator [17]. Like-like particle and electron-ion collision operators are respectively
given by:

Cjj(f) = 2νjj(v)

[√
1− λB

B

∂

∂λ

(

λ
√
1− λB

∂f

∂λ

)

+
v‖ū‖j

v2thj
FMj

]

, (7)

Cei(f) = 2νei(v)

[
√
1− λB

B

∂

∂λ

(

λ
√
1− λB

∂f

∂λ

)

+
v‖u‖i

v2the
FMe

]

, (8)

where the λ differentials are taken at fixed ψ. ū‖j is required for momentum conservation:

ū‖j(f) =
1

n 〈νjj〉v

∫

dv3 νjjv‖f. (9)

(See [17] for the definitions of the deflection frequency νjj(v) and velocity integral 〈νjj〉v.)
In equation (6), spatial derivatives are taken at constant kinetic energy, E = v2/2, and

magnetic moment, µ = v2⊥/2B where ⊥ denotes a component perpendicular to magnetic field
lines. In Section 5, when the current perturbation is calculated, the analytic result for the
electron response in the limit of ρbe ≪ w [6] is used. However, it is worthwhile pointing out
that the electron flow depends on the ion counterpart through momentum conservation, as is
indicated by equation (8). The electron flow is then given by:

〈

〈

Bu‖e
〉

θ

〉

Ω

B0vthe
= − ft

(1 + ft)

Ivthe
ωce

n′

n

(

1 + ηe +
1

2
kfcηe

)〈

∂h

∂ψ

〉

Ω

+
fc

(1 + ft)

〈

〈

Bu‖i
〉

θ

〉

Ω

B0vthi
, (10)
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where 〈...〉
Ω
describes the flux surface-average:

〈· · ·〉
Ω
=

∮

· · · [
√
Ω+ cos ξ]1/2 dξ

∮

[
√
Ω+ cos ξ]1/2 dξ

. (11)

In equation (10) fc and ft are the passing and trapped particle fractions respectively, k = −1.173
[18], ηj = (T ′

j/Tj)/(n
′/n) and h(Ω) describes the perturbed density profile in the vicinity of an

island:

h(Ω) = Θ(Ω− 1)
wψ

2
√
2

∫ Ω

1

dΩ′

Q(Ω′)
, Q(Ω) =

1

2π

∮

√

Ω+ cos ξ. (12)

3. Ion Response

While we assume ρθe ≪ w for electrons, for ions we consider the case where the ion poloidal
Larmor radius is comparable to the island width. Relaxing the assumption ρθi ≪ w, we seek a
Maxwellian solution for the ion distribution function, and Taylor-expand it in the vicinity of the
rational surface, ψ = ψs, in the small island limit, w ≪ r. Then the ion distribution function
can be written as:

fi =

(

1− ZeΦ

Ti

)

FMis +Gi, (13)

where FMi = (n0/π
3/2v3thi) exp[−v2/v2thi] is the Maxwellian, and v2thi = 2Ti/mi. Using the

parameter ∆ = w/r ≪ 1, we expand the perturbation in the ion distribution function in terms
of ∆, retaining the ordering ρθi ∼ w:

Gi =
∑

k

∆kGk. (14)

When ρθi ∼ w, both parallel streaming and magnetic drift dominate the ion response. Then,
the leading order contributions to the drift kinetic equation (6) are:

v‖

Rq

[

∂G0

∂θ

∣

∣

∣

∣

ψ

+ I
∂

∂θ

(

v‖

ωci

)

∂G0

∂ψ

]

= 0. (15)

In the limit of w ≪ r, the toroidal symmetry is approximately conserved to the leading order
in ∆. Then the toroidal canonical momentum (1) is a conserved quantity along particle orbits,
which we can utilize as a radial coordinate in place of ψ. As we shall see, this allows us to
eliminate one of the spatial coordinates, θ. Thus, transforming from radial variable ψ to pφ,
equation (15) simplifies to:

v‖

Rq

∂G0

∂θ

∣

∣

∣

∣

pφ

= 0, (16)

which can straightforwardly be integrated to yield:

G0 = Ḡ0(pφ, ξ,v). (17)

This result for G0 means that the distribution function is a constant on the orbits the particles
free-stream along, rather than being a flux surface quantity. These orbits are described by
pφ =constant (i.e. the standard neoclassical orbits for a toroidally symmetric system).

We now proceed to the O(∆) contribution to the drift kinetic equation (6). In order to
annihilate the term in G1, for passing particles we multiply the O(∆) equation by Rq/v‖ and
integrating over a period in θ at fixed pφ, making use of the periodicity in G1. For trapped
particles, the distribution functions at the bounce points satisfy: G1(σ = +1, θb = ±1) =
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G1(σ = −1, θb = ±1), by conservation of particles. Thus, the term in G1 for trapped particles
can be eliminated by multiplying the O(∆) equation by Rq/|v‖|, summing over σ and then
integrating with respect to θ between the bounce points. The result is a particle orbit-averaged
equation for Ḡ0. Introducing normalized quantities:

x =
ψ − ψs
ψs

, y = λBmax, v̂ =
v

vthi
, p̂ =

pφ
ψs
, b =

B(θ)

Bmax

=
1− ǫ cos θ

1 + ǫ
,

L̂−1
q =

ψs
qs

dq

dψ

∣

∣

∣

∣

s

, L̂−1
n =

ψs
n

dn

dψ
, L̂−1

B =
ψs
B

∂B

∂ψ
, ŵ =

w

rs
, ρ̂θ =

ρθi
rs
,

Φ̂ =
eiΦ

Ti
, ν̂ii =

Rq

vthi
νii, ω̂D = ρ̂θ

σv̂

(1 + ǫ)

[

1

L̂q

〈√
1− yb

b

〉

θ

− 1

2

〈

1

L̂B

(2− yb)

b
√
1− yb

〉

θ

]

,

we obtain the dimensionless equation for Ḡ0:

−m
[

p̂

L̂q
Θ(yc − y) + ω̂D − ρ̂θ

2

〈

1

v̂‖

∂Φ̂

∂x

〉

θ

]

∂Ḡ0

∂ξ

∣

∣

∣

∣

p

+m

[

ŵ2

4L̂q
sin ξ Θ(yc − y)− ρ̂θ

2

〈

1

v̂‖

∂Φ̂

∂ξ

〉

θ

]

∂Ḡ0

∂p̂
=

〈

1

v̂‖
Ĉii(Ḡ0)

〉

θ

, (18)

where Θ is the Heaviside function. Here,

〈· · ·〉θ =
{

1

2π

∮

· · · dθ (passing particles),
1

2π

∑

σ σ
∫ +θb
−θb

· · · dθ (trapped particles),
(19)

Ĉii = (Rq/vthi)Cii and yc = 1 corresponds to the trapped/passing boundary in pitch angle
space. In the next section we consider the form of the solution in the collisionless limit, then
proceed to solve equation (18) in full.

4. Solution for Ḡ0

In Section 2 we introduced the perturbed flux function Ω describing the magnetic island geometry
(see equation (5)). In our present analysis, we introduce a new set of surfaces defined by S:

S =
ŵ2

4L̂q







2
(

p̂− ω̂DL̂q

)2

ŵ2
− cos ξ






Θ(yc − y)− p̂ω̂DΘ(y − yc)−

1

2

〈

ρ̂θ
v̂‖

Φ̂

〉

θ

. (20)

Note that, for Φ̂ = 0 and y < yc (passing particles) the constant S surfaces are identical to the
constant Ω surfaces, but shifted radially by an amount proportional to ρθi. Working with S as
the new “radial” coordinate, we can further simplify equation (18) for Ḡ0, which now takes the
form:

−m
[

p̂

L̂q
Θ(yc − y) + ω̂D − ρ̂θ

2

〈

1

v̂‖

∂Φ̂

∂x

〉

θ

]

∂Ḡ0

∂ξ

∣

∣

∣

∣

S

=

〈

1

v̂‖
Ĉii(Ḡ0)

〉

θ

, (21)

where it should be noted that the differential with respect to ξ is now taken at fixed S. This
illustrates that the streamlines lie in surfaces of constant S, not constant Ω. They differ because
of the particle orbits - the radial shift of the “drift island” of the constant S contours relative to
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S :

Figure 1. Colour contour plot of S structure in the absence of perturbed electrostatic potential
(Left) and full ion distribution function with electrostatic potential (Right) in the x− ξ plane.
In both cases solid lines are the S contours, while the dashed line indicates the position of the
magnetic island separatrix.

the magnetic island is due to the grad-B and curvature drifts, while the term in Φ arises from
E×B drifts.

In Figure 1 (left) we show the contour plot of the S profile in the x − ξ plane, for

ŵ = ρ̂θi = 0.02, L̂q = 1.0, λ/λc = 0.1, v̂ = 1.0, ǫ = 0.1, and v‖ > 0 (likewise for all subsequent
figures, unless otherwise indicated). The magnetic island itself is centred about x = 0. It is clear
that the constant S surfaces have the same structure as that of the magnetic island geometry
(i.e. constant Ω surfaces), but are radially shifted by O(ρθi). In the absence of the electrostatic
potential term, this shift is equal and opposite for the v‖ < 0 case. We call this shifted island
structure in S the “drift island”, whose physical consequence is paramount. In the low collision
frequency limit, where we may assume that the term on the right hand side of equation (21)
becomes O(νiiRq/vthi) ≪ 1 smaller, it can be shown straightforwardly that the solution for Ḡ0

is a function S: Ḡ0 = Ḡ0(S,v). As we shall see, this leads to the restoration of the density
gradient inside the magnetic island, when ρθi ∼ w. This is what we call the finite orbit width
effect, which is distinct from the well known radial transport effect [4].

In Figure 1 (right), we present the colour contour plot of the full perturbed ion distribution
function fi in the x− ξ plane, obtained by solving equation (21) numerically for ν∗ = 0.01. The
electrostatic potential is determined via quasineutrality using the present result for ions and the
electron response of [6]. The plot clearly shows that the colour contours of fi are well-aligned
with the contour lines of S, and they are radially shifted relative to the island separatrix. As
expected, fi is indeed a function of S to leading order, and the radial shift of the profile is
O(ρθi). As shown in Figure 2 (left), flattening of the density gradient inside the magnetic island
is well-preserved for ρθi ≪ w but is almost absent for ρθi ∼ w. The restoration of the density
gradient across the magnetic island is precisely the result of the shift in the drift islands; because
the flat spots in the shifted distribution functions for σ = ±1 no longer align when w ∼ ρθi;
the summation over σ causes the gradient to be maintained across the island. Specifically, the
σ = +1 solution for fi has a gradient where the σ = −1 solution is flattened, and vice versa (see
Figure 2 (right)). On the other hand, if ρθi ≪ w, then the flat regions for σ = ±1 do align to a
large extent and the density gradient is flattened inside the magnetic island.

For electrons, the strong parallel flow tends to keep the density flattened across the magnetic
island width, even for small islands (i.e. ρθi ∼ w, but ρθe ≪ w). However, the electron
distribution function depends on the electrostatic potential as well, in such a way as to satisfy
quasineutrality. Therefore the full density, including the Boltzmann factor, takes the form given
in Figure 2 for both ions and electrons. This physics has consequences for the structure of the
electrostatic potential (Figure 3). When ρθi ≪ w, the potential is constant on the perturbed flux
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Figure 2. Left: Ion density profile for w/r = 0.02, ρθi/w = 0.1 (blue) and ρθi/w = 1.0
(red) across the island O-point (ξ = 0). Even for small ρθi there is a partial restoration of
the flattened density gradient, and the flattening is almost entirely gone for ρθi ∼ w. Right:
Schematic drawing depicting the radial shifts of the ion distribution function resulting in the
restoration of the density gradient.

Figure 3. Left: Colour contour plot of the normalised electrostatic potential Φ̂ in the x − ξ
plane, for ρθi/w = 0.1 (left half) and ρθi/w = 1.0 (right half). Solid lines indicate the position of
the island separatrix. Right: Plot of the electrostatic potential radial gradient against x across
the island O-point. A substantial potential gradient is maintained across the island width.

surfaces, as expected from previous theories. However, when ρθi ∼ w, this is no longer the case.
Furthermore, the region inside the island retains a substantial potential gradient, consistent
with the picture described above. The same is true for the ion parallel flow profile, as shown in
Figure 4. For large islands, the flow is a perturbed flux quantity, with a well defined boundary
layer flow in the vicinity of the island separatrix. Conversely, for a small island the flow is no
longer constant on the flux surfaces, and the boundary layer structure is completely lost.

5. Contributions to Island Evolution

We now consider the contribution to the island evolution originating from the perturbed current,
localized in the vicinity of the rational surface, ∆′

loc (which includes the bootstrap current
contribution ∆bs). We project out the component that is constant on the flux surface,

〈

J‖
〉

Ω
=

1

B0

∑

j

njej

〈

〈

Bu‖j
〉

θ

〉

Ω
, (22)

from which ∆′
loc can be calculated using the dispersion relation derived from Ampère’s law:

∫ ∞

−∞
dx

∮

dξ
〈

J‖
〉

Ω
cos ξ =

c

32

w2

Lq

B

Rq
∆′
loc, (23)
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Figure 4. Colour contour plot of the ion parallel flow u‖i on x− ξ plane, for ρθi/w = 0.1 (left)
and ρθi/w = 1.0 (right). Solid lines indicate the position of the island separatrix.

Figure 5. Left: The contribution to the island evolution, ∆′
loc, normalised to βθ, as a function

of of ŵ, for different values of ρθi. The black dotted line is the analytic result of [6] for the
bootstrap current contribution, for which ∆bs ∝ 1/w. Right: Plot of ρθi∆

′
loc/βθ, as a function of

w/ρθi, for different values of ρθi. Red solid curves represent the total contribution, while green
dash and blue dotted curves correspond to ion and electron contributions respectively.

Figure 5 (left) shows the results for ∆′
loc normalized to βθ = 2µ0p/B

2
θ as a function of w for a

range of values of ρθi. For large w ≫ ρθi, ∆
′
loc tends to the asymptotic value (lim ρθi/w → 0)

expected from previous analytic theories for the bootstrap drive [2, 6], which is represented by
the dashed line. However, for small island widths comparable to ρθi, we see that the impact
of the shifted drift islands is to reduce the bootstrap drive. For even smaller island widths,
∆′
loc becomes negative. This is a rather remarkable result, as it means that the effect of the

current perturbation is to heal the island and therefore represents new threshold physics that
cannot be explained by a reduced bootstrap drive alone. For larger ρθi, the peak value in ∆′

loc
decreases substantially, hence suppressing the bootstrap drive for the island growth. The critical
island width, wc, increases linearly with ρθi: it can be fitted by wc ≃ 2.76ρθi. Experimental
observations support this linear relationship [16], though the coefficient we derive is somewhat
larger than the result obtained from experiments.

Finally, we consider the physics underpinning the stabilization of small islands, w . ρθi.
Figure 5 (right) shows the plots of ρθi × ∆′

loc/βθ vs. w/ρθi (red solid lines), with separate
ion (green dashed lines) and electron (blue dotted lines) contributions. The smallest island
considered has the width: w/ρθi = 1/20, for which the assumption of small electron poloidal
Larmor radius, ρθe ≪ w, is still approximately valid. It is clear that all cases with different
ρθi/r values condense onto a universal set of curves for both the ion and electron contributions.
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This is a consequence of the parallel flows being proportional to ρθi,e, as predicted by analytic
neoclassical theory. An important point to address is that, as w → 0, the ion contribution to
∆′
loc tends to zero. This is consistent with the density gradient (and therefore bootstrap current)

being unperturbed in this limit (as found in the PIC simulations of [19]). Indeed, we expect
that when the island width is much less than the ion banana width, the ions will average over
the perturbed electromagnetic fields associated with the island. Electrons still respond to the
perturbed fields, and we see from Figure 5 (right) that it is their response that provides the
stabilizing contribution, which is not the standard result for the bootstrap current contribution.
We conclude that it is the response of the electrons to the electrostatic potential, required
for quasi-neutrality, that creates the stabilizing contribution to the current density. For even
smaller islands with a width w . ρθe, however, the electron response needs to be treated in the
same framework as that for the ion response presented here. Going further, as w → 0, i.e.
w ≪ ρθi and w ≪ ρθe, then we anticipate the finite Larmor radius effect to start dominating.
Investigating this in toroidal geometry would be a challenging task, but is in the scope of our
future work.

6. Conclusion

We have presented a new drift kinetic theory for the response of ions to small magnetic island
perturbations in a tokamak plasma, as well as the implications for the NTM threshold physics.
The effects of guiding centre drifts and finite orbit width effect are substantial. The profile
of the perturbed ion distribution function is radially shifted relative to the magnetic island.
This implies that the distribution function is no longer flattened across the magnetic island,
but instead across a radially shifted drift island. This shift is important for small islands
w ∼ ρθi, in which case a pressure gradient is maintained inside the magnetic island even if
cross-field transport is neglected. The bootstrap current drive for the NTM is then suppressed
with the flows dominated by the electron physics. The response of the electrons to the perturbed
electrostatic potential is such that it tends to heal islands of width w below a critical width wc,
thus providing a threshold for NTM growth. We find that, in the absence of other effects, the
critical island width scales linearly with ρθi: wc ∼ 2.76ρθi.

The new physics of the finite ion orbit width effect is important for a complete theory of the
neoclassical tearing mode threshold and, in particular, for designing the NTM control system for
ITER. For our theory to fully quantify the NTM theory, we need to address additional physics
including the accuracy of the analytic electron response employed here, the finite ion Larmor
radius effect, particularly in the vicinity of the island separatrix, as well as the impact of the
island propagation frequency that leads to the ion polarization current. Nevertheless, this work
gives a new insight into the physics of small magnetic islands and the NTM threshold.
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