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Hybrid PET-MR list-mode kernelized expectation

maximization reconstruction for quantitative PET

images of the carotid arteries
Daniel Deidda, Student Member, IEEE, Nicolas Karakatsanis, Senior Member, IEEE, Philip M. Robson, Nikos

Efthimiou, Member, IEEE, Zahi A. Fayad, Robert G. Aykroyd, Charalampos Tsoumpas, Senior Member, IEEE

Abstract—Ordered subsets expectation maximization (OSEM)
has been widely used in PET imaging. Although Bayesian
algorithms have been shown to perform better, they are still not
used in the clinical practice due to the difficulty of choosing ap-
propriate and robust regularization parameters. The recently in-
troduced kernelized expectation maximization (KEM) has shown
some promise to work successfully for different applications.
Therefore, we propose a list mode hybrid KEM (LM-HKEM)
for static reconstructions, which we implemented in the open
source Software for Tomographic Image Reconstruction (STIR)
library. The proposed algorithm uses both MR and PET update
images to create a feature vector for each voxel in the image,
which contains the information about the local neighborhood.
So as not to over-smooth the reconstructed images a 3×3×3
voxels kernel was used. Three real datasets were acquired with
the Siemens mMR: a phantom to validate the algorithm and two
patient carotid artery studies to show the possible applications
of the method. The reconstructed images are assessed and
compared for different algorithms: OSEM, OSEM with median
root prior (MRP), KEM and LM-HKEM. The results show better
quantification performance for the phantom low count images
with around 4% bias compared to 7% for KEM and over 11%
for OSEM and OSEM with (MRP). Our results show that the
proposed technique can be used to improve quantification at low-
count condition and it shows promising performance in terms
of stability as for different subsets, with comparable number of
events, we used the same parameters values. Emphasis is given on
the reconstruction of the carotid artery and the characterization
of atherosclerosis.

I. INTRODUCTION

Tomographic image reconstruction in PET, nowadays is

mostly performed using iterative techniques. Some of

them use prior information to model the noise. One way

to introduce prior information into the PET reconstruction

problem is the Bayesian method [1, 2, 3, 4, 5]. In clinical
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practice, however, mostly no prior information is used as

regularization can be time demanding and it is preferred

to use ordered subsets expectation maximization (OSEM)

[13, 14, 15, 16, 17] with Gaussian post-filtering. Recent studies

have introduced a different approach called the kernel method

[18, 19, 20, 21, 22, 23, 24] which has been shown to give better

performance than Bayesian methods. For this reason, this

work aims to propose a Kernel Method, which makes use of

anatomical information, able to improve image reconstruction

in the clinical environment while avoiding the aforementioned

problems related to regularization. In this work emphasis is

given on quantification for low-count condition, which has

shown to be challenging due to bias, noise and contrast losses

[5, 25, 26, 27, 28].

Our method is suitable for static reconstruction at different

count levels. The LM reconstruction is particularly convenient

for low-count images as it helps to speed up the reconstruction.

The kernel matrix consists of two terms, which are derived

from PET and MR. The PET part is taken from the iterative

update using a similar approach as Maximum a Posteriori

(MAP). As a result, this part of the kernel depends on the

iteration number. Such a procedure avoids the need for a

preliminary reconstruction from high count PET data, as in

other work, without affecting the convergence rate. In addition,

the hybrid nature of the algorithm makes it possible to model

the noise in the projection domain while maintaining good

resolution. The algorithm has the same form as OSEM with

the image being written as a linear combination of a kernel

matrix K and a coefficient vector, α, λ = Kα. Estimation

of α then uses the update equation
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where αf is the estimated f th voxel value and pij is the ijth

element of the system matrix. This represents the probability

that an event occurring in voxel j produces a coincidence in

the ith pair of detectors, ai is the additive sinogram containing

scatter and random events, and kfj is the fjth element of the

kernel matrix.
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(a) (b)

Fig. 1. Slices of the MR images used to estimate the kernel matrix for (a)
FDG and (b) NaF studies.
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is the part coming from the iterative update. Here the Gaussian

kernels function have been modulated by the distance between

voxels in the image space. xj is the position of the jth voxel,

and σm, σp, σdm and σdp are scaling parameters for the

distances in (3) and (4), and v and z
n
j are the feature vectors

extracted from the MR and the PET images respectively. Note

that the PET information come from the iterative estimate

of the coefficient αn, thus the feature vector extracted from

that depends on the iteration n. For each voxel of the PET

image the corresponding feature vectors, v
(n)
j and vj , are

extracted from the local neighborhood of the voxel from the

MR image and the PET update image respectively. To keep

computation time short, we construct a sparse kernel matrix.

A cubic neighborood, νj , with N ×N ×N voxels was used

and the k
(n)
fj element of the kernel was defined by

k
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0, otherwise.
(5)

Following previous studies, to make it easier to choose the

kernel parameters (such as σm and σp), the feature vector, vj ,

is normalized as

v̄j =
vj

SD
(6)

for km(vj ,vl), where SD is the standard deviation of the mean

voxel value over the whole MR image, and
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j ) where zc

(n)
k is the value of the voxel

corresponding to the center of the neighborhood of λ
(n)
j . This

choice is related to the fact that the first PET image used for

the kernel is uniform and the standard deviation is then zero.

Moreover the SD grows significantly iteration by iteration.

The contribution of the PET image is crucial to take into

account regions associated with molecular processes that are

not detected with MR, such as atherosclerotic lesions. In this

method, in contrast to [21], each feature vector has 1 non zero

element. In this way, the calculation of the norm in (3) and (4)

simply become the squared difference between neighbouring

voxels. This was chosen to avoid the computation of the norm

for every sub-iteration of the algorithm.

II. METHODS AND MATERIAL

A. Phantom and Clinical Data

The data used in this study were acquired with a Siemens

Biograph mMR scanner [9] at Mount Sinai Hospital, NY,

USA. A NEMA 3D Phantom was used, which was filled

with 155 MBq of FDG and acquired over 1 hour. This data

was used to validate the proposed algorithm and to find a

stable configuration. For this purpose, also a co-registered

MR VIBE sequence was acquired which was used for the

kernel matrix calculation. The clinical data comes from two

patients with atherosclerotic plaques in the carotid arteries.

They were injected with FDG, 184 MBq and 189 MBq of

NaF respectively, both scanned for 90 minutes. The List Mode

(LM) file for each of the datasets was then partitioned so as

to obtain a short frame dataset (5 s for the phantom and

30 s for the patients). For the patient the MR part of the

kernel is obtained from the images of a TOF MR Angiography

sequence, Figures 1(a) and 1(b).

B. Reconstruction Setup

All the datasets were reconstructed with 10 iterations and

21 subsets using LM-HKEM. The parameters discussed in

Section I, ν, σm, σp, σmd and σpd were chosen from a

preliminary study. The values used in this work are reported

in Table I. The size of the neighborhood, ν, was chosen to be,

3×3×3 voxels. The voxel size, 2.087 × 2.087 × 2.031 mm3,

was chosen based on the scanner characteristics.

TABLE I
kernel parameters values

σm=1 σp=1 ν=33

σdm σdp

Phantom 5 s 0.6 0.6
Patients 30 s 0.6 0.6

For comparison the same datasets have been reconstructed

also with OSEM as this is the standard used in clinical

routine, ordered subsets maximum a posteriori one step late

with median root prior (OSMAPOSL-MRP), for simplicity

we refer to it as OSEM-MRP, and the kernelised OSEM

using only the MR part. Scatter correction was performed

as developed by Tsoumpas et al [29] and discussed in more

detail by Polycarpou et al [30]. Randoms were estimated

from singles, which were calculated from delayed events [31].

The procedures for these evaluations, including attenuation

and normalisation corrections [32], make use of Software

for Tomographic Image Reconstruction (STIR) library [33]

version 3.0. All datasets were reconstructed using span 11.

C. Images Analysis

The comparison was carried out in terms of bias and

contrast recovery coefficient (CRC), these figures of merit

were assessed for the low-count case. The long acquisition
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reconstructed image with 5 iterations was used as the “true”

image for the bias and “true” contrast for CRC. Region of

interest (ROI) analysis was performed using: a plaque in the

left carotid bifurcation segmented from the PET image, and

the surrounding tissue ROI is a 14×14×22 mm3 parallelogram

around the lesion1 to study the contrast. Finally, for the

phantom, two regions were chosen that are reported in Figure

2, together with the other ROIs. Quantitative comparison

between algorithms is performed using the following figure

of merit definitions for a single ROI:

(a) (b) (c)

Fig. 2. Regions of interest (ROI) chosen for this study: (a) the phantom target
ROI described by the white part, and the background described by the black
holes; (b) plaque for patient FDG study and (c) plaque for patient NaF study.
The target ROIs are indicated by the white arrows for (b) and (c).

bias =
m−MT

MT

(8)

and

CRC =
mt −mb

CT

(9)

where m is the mean value over target (hot region) ROIs, mt

is the mean value of the target ROI, mb is the mean value

of the background ROI and CT is the true contrast estimated

from the long acquisition dataset. Note that the bias is only

calculated on the phantom ROI.

III. RESULTS

The convergence of the mean activity was studied as a

function of the number of iterations in order to see whether

the iteration dependent part of the kernel could affect the

convergence rate. Figures 3 and 4 show the convergence rate

for ten iterations. The values of the kernel parameters are

reported in the table I. Figures 3 and 4 also shows the ROI

comparison, for the NEMA phantom, between OSEM, OSEM-

MRP, KEM using MR and the proposed HKEM in terms of

CRC and bias for one 5 s frame. Although the focus of the

study is quantification, reconstructed images are also shown.

In Figures 5, reconstructed images with OSEM, OSEM plus

Gaussian post filter with a 5 mm kernel, OSEM-MRP and

the kernelized method with, KEM and HKEM with different

values for the kernel parameters σdm and σdp are shown

for the phantom data. The CRC was also estimated in one

atherosclerotic plaque for both FDG and NaF patient studies.

Figures 6 and 8 show the CRC in a ROI of the 30 s image

for the patient studies using FDG and NaF separately. Image

1The part corresponding to the lesion is set to zero by calculating the
difference image between the parallelogram and the lesion ROI.

Fig. 3. Quantitative comparison between reconstructed image with EM, EM-
MRP, KEM using only MR and the proposed method HKEM for phantom
data: bias on a 5 s acquisition.

Fig. 4. Quantitative comparison between reconstructed image with EM, EM-
MRP, KEM using only MR and the proposed method HKEM for phantom
data: CRC on a 5 s acquisition.

quality is also shown in Figure 7 for the FDG study to give

an idea of the improvement we obtain with the kernel method

and with different parameter values.

IV. DISCUSSION

This work aimed at improving quantification by exploiting

the information from both MR and PET images obtained

with an hybrid PET-MR scanner. Emphasis was given on

those applications that are affected by low count, such as

short frames, but potentially also low injected activities. The

phantom study showed promising outcomes with respect to

bias, as with the proposed method is possible to obtain bias

lower than 5%. The LM-HKEM method outperforms the

others in terms of bias and CRC, however when it comes to

low count it is noisier than the KEM as the kernel contains

also the noise. These results are consistent with all the datasets

we used, phantom, patient FDG, and patient NaF (Figures 3,

4, 6 8). The results for the convergence study show that if

we choose the parameters carefully the rate is not affected.



4

No filter Gaussian 5mm MRP

σdm = σdp = 0.5 σdm = σdp = 1 σdm = σdp = 5

σdm = σdp = 0.6 σdm = σdp = 1 σdm = σdp = 5

Fig. 5. Reconstructed images with OSEM, OSEM-MRP, KEM using only MR and the proposed method LM-HKEM for 5s frame of the phantom data.

Figures 3 and 4 show that convergence rate is higher for

the kernel method during the early iterations but it reaches

similar values as OSEM after the 6th iteration. In addition,

we noticed that the most sensitive parameters are σdm and σdp

and that they do not strongly depend on the number of events,

however, more precise investigation needs to be done. This

finding, is an indicator that the proposed LM-HKEM is stable

for different datasets having comparable number of events with

small tuning for low count. The choice of the parameters here

is the result of a preliminary study in terms of CNR and bias

with the phantom. The choice of these parameters is important

as big values for σdm, which is related to the MR image,

end up with artefacts in the borders between different tissues.

From the quality point of view, from Figures 5 and 7 we can

appreciate how the kernel method is able to suppress the noise

while keeping good resolution and contrast even at extreme

situation like low-count.

V. WORK IN PROGRESS

We are currently performing the complete analysis for

phantom and patient data. For the short frame cases multiple

realizations will be analysed to improve the statistics. The

long acquisition reconstructed images will be also analyzed.

In addition, the time activity curve (TAC) will be studied for

regions like aorta in rabbit data with different reconstruction

algorithms, in order to study whether is feasible to improve

the image-derived input function (IDIF) from the aorta. Fi-

nally, the optimization of the kernel parameters will be more

thoroughly studied.
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No filter Gaussian 5mm MRP

σdm = σdp = 0.5 σdm = σdp = 1 σdm = σdp = 5

σdm = σdp = 0.6 σdm = σdp = 1 σdm = σdp = 5

Fig. 7. Reconstructed images with OSEM, OSEM-MRP, KEM using only MR and the proposed method LM-HKEM for a 30 s frame of FDG patient data.
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