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Abstract: In the diagnosis and interventional treatment of coronary artery disease, the 3D൅time 

reconstruction of the coronary artery on the basis of X-ray angiographic image sequences can 

provide dynamic structural information. The synchronization of cardiac phases in the sequences 15 

is essential for minimizing the influence of cardiorespiratory motion and realizing precise 

3D൅time reconstruction. Key points are initially extracted from the first image of a sequence. 

Matching grid points between consecutive images in the sequence are extracted by a multi-layer 

matching strategy. Then deep motion tracking of key points is achieved by local deformation based 

on the neighboring grid points of key points. The local deformation is optimized by the Random 20 

Sample Consensus algorithm. Then, a simple harmonic motion model is utilized to distinguish car-

diac motion from other motion sources (e.g. respiratory, patient movement, etc.). Next, the signal 

which is composed of cardiac motions is filtered by a band-pass filter to reconstruct the cardiac 

phases. Finally, the synchronization of cardiac phases from different imaging angles is realized by 

piece-wise linear transformation. The proposed method was evaluated using clinical X-ray angio-25 

graphic image sequences from 13 patients. ͺͷΨ matching points can be accurately computed by 

the deep motion tracking method. The mean peak temporal distance between the reconstructed car-

diac phases and the electrocardiograph signal is ͲǤͲʹ͹s. The correlation between the cardiac phases 

of the same patient is over ͺͻΨ. Compared with three other state-of-the-art methods, the proposed 

method accurately reconstructs and synchronizes the cardiac phases from different sequences of the 30 

same patient. The proposed deep motion tracking method is robust and highly effective in synchro-

nizing cardiac phases of angiographic image sequences captured from different imaging angles. 

Key words: coronary arteries, X-ray angiographic image sequence, cardiac phase, synchronization, 

deep motion tracking 

 35 

1. Introduction 
With its fast imaging speed and high-resolution capability, X-ray angiography has been re-

garded as the gold standard for diagnosis and interventional treatment of coronary artery disease in 

clinical practice (Kurra et al., 2010; Chen et al., 2014). However, owing to the perspective projection 

principle, 2D X-ray angiographic images lose 3D information of the coronary artery. 3D+time re-40 

construction of coronary artery in sequences can provides a dynamic 3D structure for the clinicians 

to realize the preoperative surgical planning. In 3D reconstruction of the vasculature in 3D space, 
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the angiographic images should be captured at the same time and at different imaging angles (Cong 

et al., 2016; Yang et al., 2009; Yang et al., 2014). However, in clinical practice, the widely utilized 

mono-plane imaging device can only obtain a single sequence from a specific imaging angle in a 45 

single acquisition procedure. To realize the 3D+time reconstruction of vasculature in sequences, 

cardiac phases of images in different sequences should be synchronized to minimize the influence 

of cardiorespiratory motion to reconstruction (Cimen et al., 2016). In clinical practice, the synchro-

nization can be handled by cardiac electrocardiogram (ECG) gating (Lauritsch et al., 2006). But the 

ECG-gating device is usually an optional extra for an X-ray imaging system and cannot normally 50 

be obtained in a regular hospital. Meanwhile, the use of an ECG-gating device in an operation may 

raise concerns because of its complexity and cost. Hence, image-based cardiac phase reconstruction 

and synchronization are highly necessary.  

In the past two decades, to realize the cardiac phase synchronization, numerous methods have 

been proposed to measure cardiac motion. Lehmann et al. (Lehmann et al., 2006) applied histogram 55 

equalization to enhance vessels in an angiographic sequence and measured the superior–inferior 

component of a weighed centroid to track cardiac motion. Sundar et al. (Sundar et al., 2009) esti-

mated cardiac and respiratory motion between successive images by a phase correlation-based 

method. By assuming that the motion of the structures only exhibits translation, cardiac phases can 

be computed with the sum of the cross-power spectrum of successive images. However, this as-60 

sumption is not complex enough for the coronary artery. Considering the motions of both the coro-

nary sinus catheter and coronary artery in angiographic image sequences are all highly related to 

cardiac motion, Toth et al. (Toth et al., 2017) reconstructed cardiac phases by a mask-PCA method 

(Panayiotou et al., 2014) by setting the threshold segmented and dilated coronary artery region as 

the mask. In addition, the mask-PCA method is proposed by Panayiotou et al. (Panayiotou et al., 65 

2014) in the estimation of cardiac motion from angiographic image sequences that only contain a 

coronary sinus (CS) catheter. In the cardiac motion estimation of CS catheter sequences, hierarchical 

manifold learning (Panayiotou et al., 2013) is also proposed which is similar to the mask-PCA 

method. In the two methods, the catheter is initially enhanced by vesselness filter (Frangi et al., 

1998) and then dilated. The intensity of the dilated regions is employed to form a matrix. After 70 

reducing the dimensionality of the matrix by hierarchical manifold learning or PCA method, the 

first or second principal components are used for describing cardiac and respiratory motion, respec-

tively. Panayiotou et al. (Panayiotou et al., 2013) also proposed the Track-PCA to track the positions 

of CS catheter in the angiographic sequence and then exploited PCA to acquire cardiac and respira-

tory motion. Due to the possible absence of the catheter, Panayiotou et al. proved that Mask-PCA is 75 

more accurate than Track-PCA. However, when the influence of contrast agent washing in and out 

within the coronary arteries was considered, the three methods proposed by Panayiotou et al. (Pa-

nayiotou et al., 2014; Panayiotou et al., 2013; Panayiotou et al., 2013) were challenged by image 

intensity fluctuations and introduce errors to the cardiac phases reconstructed from the angiographic 

image sequences. Brost et al. (Brost et al., 2011) utilized a boosted classifier to segment the catheter 80 

and track the catheter by rigid registration in successive images. The catheter trajectory can com-

pensate cardiac and respiratory motions. However, the extraction of coronary artery from angio-

graphic images remains extremely challenging due to the coexistence of multi-organs (Chen et al., 

2016). In the angiographic image sequences of coronary artery, multi-organ interference, non-uni-

form contrast agent infusion and complex motion of coronary artery all exist in the images. The 85 

above mentioned methods cannot accurately estimate the cardiac motion in the sequences.  
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In this paper, we propose a novel deep motion matching (DMT) method for synchronization of 

the cardiac phase by estimating the cardiac motion. Initially, in a sequence, the image with whole 

coronary artery is regarded as the first image and key points are extracted from the image. Mean-

while, matching grid points between consecutive images are computed by a multi-layer matching 90 

strategy. Next, an octree model is utilized to search for the neighboring grid points around each key 

point. Then, for the neighboring grid points of each key point, a local projective transformation is 

computed by the neighboring grid points. In computing the transformation, Random Sample Con-

sensus (RANSAC) algorithm is utilized to discard the matching gird points that cause errors to the 

transformation. The local transformation is applied to the corresponding key point and obtain the 95 

matching key point in the next image. By repeating computing the transformation of different key 

points throughout the sequence, all the key points can be tracked in the sequence. After this, a simple 

harmonic motion (SHM) model is utilized to estimate the cardiac motions which constitute the final 

cardiac phases. Finally, for the cardiac phases reconstructed from different sequences, a piece-wise 

linear transformation is computed to synchronize the cardiac phases.  100 

The proposed algorithm has three main contributions. First, cardiac phase synchronization is 

achieved by point motion tracking. The tracking is very effective to alleviate the influence of non-

uniform contrast agent infusion. Second, the motion tracking is realized through the projective de-

formation of the dense correspondences of local region. It is highly robust to solve the challenging 

non-rigid motion within weak texture regions (without anatomical structures). Third, a simple har-105 

monic motion model is utilized to compute the motion velocity between consecutive images in a 

sequence. It can effectively distinguish the cardiac motion from other motion sources (e.g. respira-

tory, patient movement, etc.).  

2. Methods 
 In this study, sequences are comprised of images with full coronary artery. Let 110 ሼܫ௘ȁ݁ ൌ ͳǡ ڮ ǡ ݁ ௘ is theܫ ሽ denote the coronary artery images, whereܧ ௧௛ image, and ܧ is the to-

tal number of the images belong to a sequence. In a sequence, cardiac phases are reconstructed by 

tracking the motion of the key points that are extracted from ܫଵ. In addition, cardiac phases recon-

structed from different sequences are synchronized by matching the peaks and valleys of the cardiac 

phases. 115 

2.1 Key Point Detection 
 The key points are extracted from ܫଵ, and then the motion of the key points in the whole se-

quence are tracked. In this paper, we utilize a constraint to extract the key points that are mainly 

distributed on the coronary artery. The constraint can effectively identify the tubular structures in 

the images and distinguish the points belong to the coronary artery. 120 

 First, ܫଵ is enhanced by the vesselness based enhancement filter (Frangi et al., 1998), and the 

enhanced image is denoted as ܫܧଵ. The gradient matrix ܩሺݔǡ ǡݔሺܪ ଵ and Hessian matrixܫ ሻ ofݕ  ሻݕ

of ܫܧଵ can be computed as: 

۔ۖەۖ
ۓ ǡݔሺܩ ሻݕ ൌ ቆ ௫ଶܫ ௬ܫ௫ܫ௬ܫ௫ܫ ௬ଶܫ ቇܪሺݔǡ ሻݕ ൌ ൬ܫܧ௫௫ ௬௫ܫܧ௫௬ܫܧ  ௬௬൰                            (1)ܫܧ

Page 3 of 22 AUTHOR SUBMITTED MANUSCRIPT - PMB-107971.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 Ac
ce

pt
ed

 M
an

us
cr

ip
t



where ܫ௫  and ܫ௬  represent the first-order partial derivatives of the intensity in image ܫଵ , and 125 ܫܧ௫௫ ǡ ௫௬ܫܧ ǡ ௞. The eigenvalues ɉଵǡଶீܧ ௬௬ represent the second-order partial derivatives of the intensity in imageܫܧ ௬௫ andܫܧ  and ɉଵǡଶு  of the gradient and Hessian matrices are computed: 

۔ۖەۖ
ۓ ɉଵǡଶீ ሺݔǡ ሻݕ ൌ ቆܫ௫ଶ ൅ ௬ଶܫ േ ට൫ܫ௫ଶ െ ௬ଶ൯ଶܫ ൅ Ͷ൫ܫ௫ܫ௬൯ଶቇ

ɉଵǡଶு ሺݔǡ ሻݕ ൌ ቆܫܧ௫௫ ൅ ௬௬ܫܧ േ ට൫ܫܧ௫௫ െ ௬௬൯ଶܫܧ ൅ Ͷܫܧ௫௬ଶ ቇ              (2) 

 Then, we extract the key points ሼ݌௨ଵȁݑ ൌ ͳǡʹǡ ڮ ǡ ܷሽ in image ܫଵ, where ݌௨ଵ refers to ݑ௧௛ the 

key point in ܫଵ, ܷ is the number of detected key points. In addition, the key points are computed 130 

according to the following constraints: 

ቐܴ ൌ ɉଵீ ɉଶீ െ ߙ כ ሺɉଵீ ൅ ɉଶீ ሻଶȁɉଵுȁ ൎ Ͳȁɉଵுȁ ا ȁɉଶுȁ                          (3) 

where ܴ  is decided by the gray variation of local region (Harris et al., 1988) and is computed for 

every point in image ܫଵ. ߙ is a weighted value. When ܴ  is beyond a threshold value, the corre-

sponding point is regarded as the initial key points. Then, the other two constraints are utilized to 135 

remove the points that are distributed in the tubular structures. The final remaining points are the 

extracted key points. ȁήȁ is the absolute value. Fig. 1 shows an example of the extracted key points 

in the angiograms. 

 
Fig. 1. Examples of the extracted key points in the angiograms when 0.09=ߙ, ܴ ൐ ͷ. Number of key points in (a): 140 

54 and in (b): 77.  

2.2 Deep Motion Tracking 
 Considering angiograms in the sequence are achieved by a perspective projection procedure, 

we compute the motion of each key point in ሼ݌௨ଵȁݑ ൌ ͳǡʹǡ ڮ ǡ ܷሽ by the local projective transfor-

mation in two consecutive angiograms iteratively throughout the whole sequence. In addition, the 145 

local projective transformation can be computed by the matching point pairs of each key point in 

two consecutive angiograms. 

 The matching point pairs between two consecutive angiograms are computed by the multi-

layer matching strategy (Revaud et al., 2016) and refer to the matching grid points. In the strategy, 

points per 4 pixels in the first image constitute the grid points. For images of size ͷͳʹ ൈ ͷͳʹ pixels, 150 

the grid points are denoted as ሼʹǡ͸ǡͳͲǡ ǥ ǡͷͳͲሽ ൈ ሼʹǡ͸ǡͳͲǡ ǥ ǡͷͳͲሽ. Matching is realized by the bot-

tom-up correlation pyramid computation and top-down correspondence extraction. In bottom-up 

procedure, a series of grid-point-centered non-overlapped patches (Ͷ כ Ͷ pixels) are extracted from 

the first image and convolved with the patches with the same size at all points in the second image 
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to generate the bottom correlation maps, respectively. ͵ כ ͵ max-pooling and averaging are applied 155 

to the 4 neighboring patches to generate the correlation maps in a higher layer. In the bottom-up 

correlation pyramid computation, ͸ repetitions are used in the convolution and max-pooling pro-

cedures when the image size is of ͷͳʹ כ ͷͳʹ pixels. In top-down procedure, by extracting the cor-

respondences with largest correlation values in the top layer of the pyramid, the correspondences at 

the lower layer are computed by searching for the maximum correlation values in the local region 160 

of the corresponding 4 sub-patches. By propagating searching procedure for the maximum correla-

tion values from top layer to the bottom layer, the matching grid points between two consecutive 

images can be obtained. Meanwhile, in the searching procedure, incorrect correspondences are suc-

cessively discarded. 

For a specific sequence, grid points are extracted in images ሼܫ௘ȁ݁ ൌ ͳǡ ڮ ǡ ܧ െ ͳሽ, respectively. 165 

The matching grid points are then computed by the multi-layer strategy, and are denoted as ቄሼሺݍ௞௘ǡ ௞௘ାଵሻȁ݇ݍ ൌ ͳǡ ǡ ڮ ௘ሽȁ݁ܭ ൌ  ͳǡ ڮ ǡ ܧ െ ͳቅ, where ሺݍ௞௘ ǡ  ௘. By assuming that theܫ ௘ is the number of matching grid points inܭ ,௘ାଵ, respectivelyܫ ௘ andܫ ௞௘ାଵሻ is ݇௧௛ matching grid points inݍ

key points and grid points are distributed in a plane that is perpendicular to the z-axis in 3D space, 

the octree-based algorithm (Meagher et al., 1982) is utilized to search for the neighboring grid points 170 

of each key point. For a key point ݌௨ଵ, ൛൫ݍ௔ǡ௨ଵ ǡ ௔ǡ௨ଶݍ ൯ȁܽ ൌ ͳǡʹǡ ڮ ǡ ௞ଵǡݍൟ is a subset of ሼሺܣ ௞ଶሻȁ݇ݍ ൌͳǡ ǡ ڮ ௨ଵ݌ ଵሽ and denotes the neighboring grid points ofܭ , where ݍ௔ǡ௨ଵ  is ܽ௧௛ neighboring grid 

points of ݑ௧௛ key point in image ܫଵ, ݍ௔ǡ௨ଶ  is the matching grid point of ݍ௔ǡ௨ଵ  in ܫଶ, ܣ is the num-

ber of the neighboring grid points. For each key point, we compute the same number of neighboring 

grid points. Fig. 2 shows an example of key point tracking based on the neighboring grid points 175 

when ܣ ൌ ͺ. 

 
Fig. 2. An example of the key point tracking based on 8 neighboring grid points in the consecutive images. (a and b) 

first image and second image; (c) enlarged view in the green rectangular box from Fig. (a); (d) enlarged view in the 
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orange rectangular box from Fig. (b); (c and d) points in red color: matching key points; points in blue color: ͺ 180 

neighboring grid points of the matching key points, respectively. 

For the matching key points ݌௨ଵ ௨ଵǡଶܤ ,  denotes the projective transformation. Hence, the 

matching key point ݌௨ଶ in ܫଶ can be calculated as follows: 

൭ݔ௨ଶݕ௨ଶͳ ൱ ൌ ൭ܾଵଵ ܾଵଶ ܾଵଷܾଶଵ ܾଶଶ ܾଶଷܾଷଵ ܾଷଶ ܾଷଷ൱ כ ൭ݔ௨ଵݕ௨ଵͳ ൱                   (4) 

where ൛ܾ௭భ௭మǡȁݖଵǡ ଶݖ ൌ ͳǡʹǡ͵ൟ are the free variables of matrix ܤ௨ଵǡଶ, while ሺݔ௨ଵ ǡ ௨ଶǡݔ௨ଵሻ and ሺݕ  ௨ଶሻ 185ݕ

are the coordinates of key points  ݌௨ଵ and ݌௨ଶ, respectively. ܤ௨ଵǡଶ is computed by the neighboring 

grid points. However, as the ܣ neighboring grid points may not correspond to the same projective 

transformation, the RANSAC optimization (Fischler et al., 1981) method is then used to search for 

the optimal projective transformation. 

To find the optimal projective transformation, we randomly select four points from the ܣ grid 190 

points to compute ܤ௨ଵǡଶ. Then, all the ܣ grid points in ܫଵ are transformed by current ܤ௨ଵǡଶ. If the 

difference values between the computed point and the matching grid point in ܫଶ are less than the 

pre-defined threshold, the point is then considered as an inlier point, otherwise, it is an outlier point. 

The threshold function can be defined: ݈ܽ൫ݍ௔ǡ௨ଵ ൯ ൌ ቄͳͲ    ฮܤ௨ଵǡଶ כ ௔ǡ௨ଵݍ െ ௔ǡ௨ଶݍ ฮ ൑ ݁ݏ݈݁ߝ ǡ ܽ ൌ ͳǡ ڮ ǡ  195 (5)       ܣ

where ԡήԡ is the Euclidean distance between points ܤ௨ଵǡଶ כ ௔ǡ௨ଵݍ  and ݍ௔ǡ௨ଶ . ݈ܽ൫ݍ௔ǡ௨ଵ ൯ is the label to 

define whether ݍ௔ǡ௨ଵ  is an inlier or outlier, ߝ is the threshold, ܽ is the order number of the neigh-

boring grid points. After iteratively computing ܤ௨ଵǡଶ by randomly selecting four points from the ܣ 

grid points, the matrix ܤ௨ଵǡଶ that has the largest number of inliers is the optimal: argmin஻ೠభǡమ σ ݈ܽ൫ݍ௔ǡ௨ଵ ൯௨                            (6) 200 

After computing the optimal ܤ௨ଵǡଶ, ݌௨ଶ can be obtained by equation (4). All the computed matching 

key points in ܫଶ are regarded as the key points when computing the matching key points in ܫଷ. By 

repeating computing the matching key points in the consecutive images in the sequence, the motion 

of the key points extracted in ܫଵ can be tracked in the whole sequence. 

2.3 Cardiac Phase Reconstruction 205 

Integrated cardiac motion comprises four major parts, namely, expansion, contraction, rotation, 

and twisting. Potel et al. (Potel et al., 1984) found that the expansion and contraction of the ventricle 

wall are far more significant than rotation or twisting. He concluded that expansion and contraction 

accounts for 90% of cardiac motion and assumed that the heart has a spherical shape (Potel et al., 

1984; Chen et al., 1994). Given that the coronary artery distributes on the cardiac surface, the points 210 

on the coronary artery move towards and away from the center along with the cardiac systolic and 

diastolic movement. Hence, by regarding the point on the static cardiac surface as the motion center, 

the motion of points on the coronary artery can be modeled as simple harmonic motion (SHM) 

(Marion et al., 2013) that moves towards and away from the cardiac center.  

In the SHM model, the intersections of extension lines or the reverse extension lines of the 215 

velocities define the cardiac center ܱ௘ାଵ in ܫ௘ାଵ. As shown in Fig. 3(a) and (b), the velocity ݒ௨௘ାଵሬሬሬሬሬሬሬሬሬԦ of ݌௨௘ାଵ forms an angle ߠ௨௘ାଵ with the vector ݌௨௘ାଵܱ௘ାଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ. Hence, the center ܱ௘ାଵ of cardiac 

motion can be obtained by minimizing the sum of ߠ௨௘ାଵ of all key points:  
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argminை೐శభ σ ൅ͳ௎௨ୀଵݑ݁ߠ                                 (7) 

 220 

Fig. 3. Estimation of cardiac motion center and cardiac velocity: (a) and (b) cardiac motion center in systolic and 

diastole stage, respectively; (c) and (d) cardiac velocity in systolic and diastole stage, respectively. 

As shown in Figs. 3(c) and (d), the velocity for each the key point can be projected towards the 

center ܱ ௘ାଵ, which can be defined as: 

௨௘ାଵݒ   ൌ ௩ೠ೐శభሬሬሬሬሬሬሬሬሬሬԦ כ௣ೠ೐శభை೐శభሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቚ௣ೠ೐శభை೐శభሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቚ                                (8) 225 

where ݌௨௘ାଵܱ௘ାଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ is the vector from ܱ ௘ାଵ to ݌௨௘ାଵ, and ݒ௨௘ାଵ is the scalar quantity. If ݒ௨௘ାଵ ൐ Ͳ, 

the heart is in the systolic stage; otherwise, the heart is in the diastolic stage. The sum of all the ݒ௨௘ାଵ refers to the overall motion tendency. Thus, the cardiac motion velocity ௘ܸାଵ from image ܫ௘ 

to ܫ௘ାଵ can be calculated as: 

௘ܸାଵ ൌ σ ௩ೠ೐శభೠೆసభ௎                                 (9) 230 

 The cardiac phases can be reconstructed by connecting the cardiac motion velocity values. To 

further completely remove the motion (respiratory, patient movement) from the cardiac phases, a ʹ௡ௗ order Butterworth band-pass filter (Hernandez-Sabate et al., 2011) is utilized. After normaliz-

ing the filtered cardiac phases to ሾെͳǡͳሿ, the final cardiac phases can be obtained. The cardiac 

phases from ݉ ௧௛ sequence is denoted as ܥ୫. The peaks ቄݐ௝ǡ௣௞௦஼ౣ ȁ݆ ൌ ͳǡʹǡ ڮ ǡ  ୫ represents 235ܥ ௠ቅ ofܬ

the end-systole (Sundar et al., 2009), where ܬ௠ is the number of peaks in ݉௧௛ sequence, ݏ݇݌ 
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refers to the peaks. 

2.4 Synchronization 
 The synchronization includes two parts: one is the synchronization between the reconstructed 

cardiac phases and the ECG signal. The corresponding purpose is to validate the accuracy of cardiac 240 

phase reconstruction. The other is the synchronization between different reconstructed cardiac 

phases from the sequences of the same patient. The purpose is to synchronize the images from dif-

ferent imaging angles.  

 Given that a time delay may exist between the ECG signal and coronary artery sequence, a 

time offset should be added to the ECG signal. Hence, the synchronization between the ECG signal 245 

and reconstructed cardiac phases can be realized as: argminௗ௧ σ หݐ௝ா஼ீౣ ൅ ݐ݀ െ ௝ǡ௣௞௦஼ౣݐ ห௃௝ୀଵ                        (10) 

where ݀  ௝ா஼ீౣݐ .is the time offset between the ECG signal and the reconstructed cardiac phases ݐ

refers to the closest peak in the ECG signal to the ݆௧௛ peak in the reconstructed cardiac phases.  

 In the second kind of synchronization, after the cardiac phase of all the sequences from a same 250 

patient are extracted, the peaks and valleys of the cardiac phases are all extracted. The sequence of 

the cardiac phases that have the largest number of peaks is regarded as the reference, and we assume 

the reference sequence is ݉௧௛ one. For the reference sequence, the time of peaks in the cardiac 

phases are denoted as ቄݐ௝ǡ௣௞௦஼ౣ ȁ݆ ൌ ͳǡʹǡ ڮ ǡ -ቅ, and the time of valleys in the cardiac phases are deܬ

noted as ൛ݐ௢ǡ௩௬௦஼ౣ ȁ݋ ൌ ͳǡʹǡ ڮ ǡ ܱൟ, where ݏݕݒ refers to the valleys. For another ݉ᇱ௧௛ sequence from 255 

the same patient, the peaks are denoted as ቄݐ௝ᇲǡ௣௞௦஼ౣᇲ ȁ݆ᇱ ൌ ͳǡʹǡ ڮ ǡ  ᇱቅ, and the valleys are denoted asܬ

ቄݐ௢ᇲǡ௩௬௦஼ౣᇲ ȁ݋ᇱ ൌ ͳǡʹǡ ڮ ǡ ܱᇱቅ. The synchronization between the cardiac phases are realized by a piece-

wise linear transformation. Considering that the first local extreme value in the cardiac phases may 

be a peak or a valley, the four endpoints for computing first linear transformation is decided as 

follows: 260 

۔ۖۖەۖۖ
ଵǡ௣௞௦஼ౣᇲݐቀቂۓ ǡ ଵǡ௩௬௦஼ౣᇲݐ ቃ ǡ ଵǡ௣௞௦஼ౣݐൣ ǡ ଵǡ௩௬௦஼ౣݐ ൧ ቁቀቂݐଵǡ௩௬௦஼ౣᇲ ǡ ଵǡ௣௞௦஼ౣᇲݐ ቃ ǡ ଵ௩௬௦஼ౣݐൣ ǡ ଶǡ௣௞௦஼ౣݐ ൧ ቁቀቂݐଵǡ௣௞௦஼ౣᇲ ǡ ଵǡ௩௬௦஼ౣᇲݐ ቃ ǡ ଵǡ௣௞௦஼ౣݐൣ ǡ ଶǡ௩௬௦஼ౣݐ ൧ ቁቀቂݐଵǡ௩௬௦஼ౣᇲ ǡ ଵǡ௣௞௦஼ౣᇲݐ ቃ ǡ ଵǡ௩௬௦஼ౣݐൣ ǡ ଵǡ௣௞௦஼ౣݐ ൧ ቁ

ଵǡ௣௞௦஼ౣݐ ݂݅ ൏ ଵǡ௩௬௦஼ౣݐ ǡ ଵǡ௣௞௦஼ౣᇲݐ ൏ ଵǡ௩௬௦஼ౣᇲݐ ଵǡ௣௞௦஼ౣݐ ݂݅  ൏ ଵǡ௩௬௦஼ౣݐ ǡ ଵǡ௣௞௦஼ౣᇲݐ ൐ ଵǡ௣௞௦஼ౣݐ ଵǡ௩௬௦஼ౣᇲ݂݅ݐ ൐ ଵǡ௩௬௦஼ౣݐ ǡ ଵǡ௣௞௦஼ౣᇲݐ ൏ ଵǡ௣௞௦஼ౣݐ ଵǡ௩௬௦஼ౣᇲ݂݅ݐ ൐ ଵǡ௩௬௦஼ౣݐ ǡ ଵǡ௣௞௦஼ౣᇲݐ ൐ ଵǡ௩௬௦஼ౣᇲݐ
         (11) 

where ሺሾήǡήሿǡ ሾήǡήሿ ሻ refers to the two intervals to compute the first linear transformation, ሾήǡήሿ is an 

interval comprised by two endpoints. The transformation transforms the values in the first interval 

to the values in the second interval. After obtaining the endpoints of the first linear transformation, 

the endpoints of the remaining linear transformation can be obtained in chronological order. After 265 

the piece-wise linear transformation is computed, the cardiac phases of ݉ᇱ௧௛ sequence can be syn-

chronized to the cardiac phases of ݉௧௛ sequence.  
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2.5 Dataset and Evaluation Criteria 

A) Clinical Datasets  
The clinical coronary artery angiographic image sequences from 13 patients were used in our 270 

experiments. All the sequences were captured by using a monoplane cardiac X-ray angiographic 

device (Philips Medical System, The Netherlands) in the Peking Union Hospital, Beijing, China. In 

the angiograms, multiple types of motion, including cardiac, respiratory and patient motion coexist. 

In addition, structures such as heart present large weak texture regions. Furthermore, multiple phys-

ical structures, including heart, bones, ribs, diaphragm and vessels coexist. All the sequences are 275 

initiated by injecting the contrast agent to the catheter. The frequency of image acquisition is ͳͷfps. 

The size of images is ͷͳʹ כ ͷͳʹ pixels. The pixel sizes of the images are ͲǤ͵ כ ͲǤ͵ mm. The range 

of magnification is ሾͳǤ͵ǡ ͳǤͶሿ when acquiring image sequences. The imaging angles of a sequence 

are described by two angles, which were left/right anterior oblique angles (LAO/RAO) and cau-

dal/cranial angles (CAU/CRA), respectively. The sequences are divided into two datasets, viz. Da-280 

taset with ground truth (DWGT) and Dataset without ground truth (DWOGT). DWGT contains 7 

sequences from the same patient who underwent ECG-gated examination. The embedded ECG sig-

nal is continuously recorded, and images in the corresponding sequence are captured at several spe-

cific time points of the ECG signal. The number of images in DWGT varies from 49 to 63. The 

imaging angles of sequences in DWGT vary from LAOʹʹǤʹι to RAOͶͳǤͶι and CAU͵ͲǤͳι to 285 

CRAͶʹǤʹι. DWOGT contains 75 sequences from 12 another patients without ECG signal. For the 

12 patients, the number of sequences varies between 12 and 2. The number of images in the se-

quences varies from 42 to 90. The imaging angles of sequences in DWOGT vary from LAO͵͹Ǥ͸ι 
to RAOͶ͸Ǥͷι and CAU͵ ͸Ǥͻι to CRAͶͲǤ͹ι. The 13 patients are denoted as P1 to P13, respectively. 

For each patient, we denote the sequences as ሼܽݐܽܦͳǡ ڮ ǡ  ሽ, and ܰ is the number of the 290ܰܽݐܽܦ

sequences belong to the same patient.  

B) Evaluation Criteria 
 The proposed deep motion tracking (DMT) method will be compared with the techniques, viz. 

Multi-resolution image registration (MIR) (Nejati et al., 2014), DeepFlow (Weinzaepfel et al., 2013) 

and EpicFlow (Revaud et al., 2015), using a set of matching points. The points are manually labelled 295 

in two groups of consecutive images from left coronary artery (LCA) and right coronary artery 

(RCA) sequences, respectively. The labelled points are distributed on the vascular structures, in-

cluding the intersection, branching, large scale and small scale segments. As for each kind of seg-

ment, the points are labelled randomly. We achieve DeepFlow (https://thoth.inrialpes.fr/src/deep-

flow/) and EpicFlow (https://thoth.inrialpes.fr/src/epicflow/) using available public implementa-300 

tions. We re-implemented MIR in strict accordance with the method in the original paper. The Eu-

clidean distance between the computed point and the labelled point is utilized to evaluate the accu-

racy of motion tracking. Fig. 4 shows the manually labelled points in two groups of images.  
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Fig. 4. Manually labelled points in two groups of images. (a) and (b): two consecutive images from a RCA sequence. 305 

(c) and (d): two consecutive images from a LCA sequence.  

 The DMT-based cardiac phase reconstruction will be compared with the approaches, viz. 

Track-PCA (T-PCA) (Panayiotou et al., 2013), Mask-PCA (M-PCA) (Panayiotou et al., 2014) and 

Phase-Correlation (PCR) (Sundar et al., 2009), using the sequences from DWGT. Meanwhile, to 

evaluate the effectiveness of the DMT-based cardiac phase reconstruction on branching points (B-310 

DMT), we also manually select the branching points from ܫଵ and compare the reconstructed car-

diac phases with the proposed method. We re-implement the three approaches in strict accordance 

with the original paper and utilize the same band-filter to obtain the final cardiac phases. Before the 

evaluation, the ECG signal is synchronized to the reconstructed cardiac phases, as described in sec-

tion 2.4. The mean peak temporal distance (MPTD) is utilized to evaluate the accuracy of cardiac 315 

phase reconstruction. The MPTD refers to the distance between the peak time of the reconstructed 

cardiac phases and of the R-waves of the ECG signal. MPTD is computed using the following equa-

tion: 

 MPTDሺ݉ǡ ௠ሻܩܥܧ ൌ σ ቚ௧೐ǡ೛ೖೞ಴ౣ ି௧೐ಶ಴ಸౣቚಶ೐సభ ா                       (12) 

where ܧ is the number of peaks in the reconstructed cardiac phases. ݐ௘ǡ௣௞௦஼ౣ  is the time of ݉ ௧௛ 320 

peak in the reconstructed cardiac phases; and ݐ௘ா஼ீౣ is the time of the ݉ ௧௛ peak in the ECG signal. ȁήȁ is the absolute value. If the cardiac phases and ECG signal are accurately aligned, the MPTD 

equals to Ͳ. However, for the reason that the ECG signal is continuously recorded while the images 

in the sequences are captured in specific time points, MPTD cannot strictly equal to 0. Hence, the 

smaller MPTD is, more accurately the cardiac phases is reconstructed. The standard deviation of the 325 

peak temporal distance (SDPTD) is computed to evaluate the variability for each sequence. 

 The DMT-based cardiac phase synchronization will also be compared with methods, viz. T-

PCA, M-PCA and PCR, using the sequences both from DWGT and DWOGT. Before the compari-

son, we utilize the spline interpolation method (Smith et al., 2012) to interpolate the synchronized 

cardiac phases and generate a group of new cardiac phases with the same length. Pearson correlation 330 

coefficient (PCC) (Benesty et al., 2009) is then utilized to evaluate the correlation between two 

synchronized cardiac phases from the same patient. PCC is computed using the following equation: PCCሺ݉ǡ ݉ᇱሻ ൌ ௖௢௩൫஼೘ǡ஼೘ᇲ൯ఙ಴೘ఙ಴೘ᇲ                        (13) 

where ܿ ஼೘ᇲߪ ஼೘ andߪ ;௠ᇲܥ ௠ andܥ ሺήሻ is the covariance between interpolated cardiac phasesݒ݋  
are the standard deviation of ܥ௠ and ܥ௠ᇲ, respectively. If cardiac phases are reconstructed accu-335 

rately, the correlation is close to ͳͲͲΨ . The mean and standard deviation of the PCC 

(MPCCേSDPCC) are computed to evaluate the correlations between the cardiac phases from the 

sequences of each patient.  

3. Results 
 All the algorithms were implemented in C++ under the Ubuntu environment, and all the ex-340 

periments were conducted on a relatively low-cost PC with 16 GB RAM and 3.2 GHz Intel CPU. 

For the proposed method, parameters Ƚ ൌ ͲǤͲͻ, Ԗ ൌ ͵ǤͲ. The parameters are the same for the se-

quences of all the patients. 
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A. Evaluation of Motion Tracking 
Fig. 5 shows the Euclidean distances between the labelled points and computed points by meth-345 

ods, viz. MIR, DeepFlow, EpicFlow and DMT, respectively. In Fig. 5(a), the percentage of the point 

distances less than 3 pixels is ͻͲǤ͹Ψ. In Fig. 5(b), the percentage of the point distances less than 3 

pixels is ͺͷΨ. The points computed by DMT are very close to the labelled points which indicates 

DMT can accurately obtain the matching points in two consecutive images. While most of the points 

computed by MIR, DeepFlow and EpicFlow are far away from the labelled points. Fig. 6 shows the 350 

points whose distances is beyond 3 pixels by DMT. Especially in the small scale vascular segments, 

when the number of the vascular segments is very large, or the vascular segments between images 

disappear, the matching points cannot accurately obtained by DMT.  

 

Fig. 5. Euclidean distances between the manually labelled points and the computed points by methods MIR, Deep-355 

Flow, EpicFlow and DMT. (a): Distances of points in Fig. 3(b); (b): Distances of points in Fig. 3(d). 

 

Fig. 6. Points whose distances with the labelled points are beyond 3 pixels in Fig. 3(b) and Fig. 3(d), respectively. 

Red color: labelled points; Green color: computed points by DMT. 

 Fig. 7 shows the Euclidean distances between the manually labelled points and the computed 360 

points by DMT method when ߝ varies from ͲǤͲ to ͺǤͲ. As can be seen from the figure, when ߝ 

changes, the error of point matching does not change much. This indicates that the motion tracking 

is not sensitive to value ߝ. 
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Fig. 7. Euclidean distances between the manually labelled points and the computed points by DMT methods when 365 ɂ varies from ͲǤͲ to ͺǤͲ. (a): Distances of points in Fig. 3(b); (b): Distances of points in Fig. 3(d). 

B. Evaluation of Cardiac Phase Reconstruction 
Fig. 8 shows the synchronization between the reconstructed cardiac phases and ECG signal for 

sequence Data2 of patient P1. The magnitudes of the reconstructed cardiac phases refer to the nor-

malized cardiac motion velocity. In the figure, the cardiac phases and ECG signal are both linearly 370 

normalized to ሾͲǡͳሿ. In computing cardiac velocity, the changing of patient motion in each frame 

results in the magnitude difference even in the same cardiac phase, as can be seen in Figs. 8 and 10. 

From full infusion of coronary artery to the dissipation beginning of contrast agent, the images cover Ͷ R-wave of the ECG signal. The time of the peaks in the ECG signal are ͳǤͶ͸͹s, ʹǤʹͳͻs, ʹǤͻ͸͹s 

and ͵Ǥ͹ʹͲs, respectively. The MPTDേSDPTD between the reconstructed cardiac phases and the 375 

ECG signal are ͲǤͲʹ͵ േ ͲǤͲʹͳs. The four peaks of the reconstructed cardiac phases are effectively 

aligned with the peaks of the ECG signal, as shown in Fig. 8. 

 
Fig. 8. An example of the reconstructed cardiac phases synchronized with the ECG signal for sequence Data2 of 

patient P1. Red curve: the ECG signal; Orange curve: reconstructed cardiac phases; Data2: LCA sequence. 380 
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Fig. 9. Reconstructed cardiac phases along with the increase of ߙ, synchronized with the ECG signal for sequence 

Data4 of patient P1. Data4: LCA sequence. 

 Fig. 9 shows the synchronization between the ECG signal and the reconstructed cardiac phases 

along with the increase of ߙ from ͲǤͲͳ to ͲǤͳ. The time of the peaks in the ECG signal are 385 ͲǤͺ͹Ͳs, ͳǤͷ͸Ͷs, ʹǤʹͷ͸s and ʹ ǤͻͶͶs, respectively. For each reconstructed cardiac phases at differ-

ent ߙ, the MPTDേSDPTD between the cardiac phases and the ECG signal are all ͲǤͲʹ͵ േ ͲǤͲͳͷs. 

In addition, for the other sequences in DWGT, the reconstructed cardiac phases at different ߙ also 

have the same accuracy which indicates that the accuracy of cardiac phase reconstruction is not 

influenced by 390 .ߙ 

Fig. 10 shows the synchronization between the ECG signal and the cardiac phases by T-PCA, 

M-PCA, PCR, and DMT, respectively. Cardiac cycles in the ECG signal are computed by the time 

difference between the peaks in two successive R-waves. The mean and standard deviation of the 

cardiac cycles are ͲǤ͹ͶͶ േ ͲǤͲͻͶs, indicating that the cardiac cycles change much throughout the 

sequence, as shown in Fig. 10. According to the order of T-PCA, M-PCA, PCR, B-DMT and DMT, 395 

the MPTDേSDPTD between the cardiac phases and ECG signal are ͲǤͲ͹͸ േ ͲǤͲͻ͵s, ͲǤͲͷͻ േͲǤͲͺ͵s, ͲǤͲ͵͹ േ ͲǤͲͶͷs, ͲǤͲͳͷ േ ͲǤͲͳ͵s and ͲǤͲͳͷ േ ͲǤͲͳ͵s, respectively. The peaks of the car-

diac phases achieved by DMT is the closest to the peaks of the R-waves in the ECG signal. In 

addition, the cardiac phases by B-DMT is coincident with the phases by DMT.  

 400 

Fig. 10. An example of reconstructed cardiac phases synchronized with the ECG signal of sequence Data5 of patient 

P1 by four methods, T-PCA, M-PCA, PCR, B-DMT and DMT, respectively. Cardiac phases obtained by each method 
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are synchronized with ECG signal, respectively. Data5: RCA sequence.  

Table 1. MPTDേSDPTD (s) between the cardiac phases and corresponding ECG signals from ͹ sequences in 

DWGT by four methods, viz. T-PCA, M-PCA, PCR, and DMT, respectively. Num.: Number of covered R-waves. 405 

Data1-Data3: LCA sequences; Data4-Data7: RCA sequences. Avg.: Average values. 

Data 
ECG Signal T-PCA  M-PCA PCR DMT 

Cycles (s) Num. MPTDേSDPTD (s) 

Data1 ͲǤ͹ʹ͵ േ ͲǤͲͲͶ 3 ͲǤͲͻͺ േ ͲǤͲͺ͵ ͲǤͳʹͻ േ ͲǤͳͺͷ ͲǤͳͺ͹ േ ͲǤʹͷ͵ ͲǤͲ͵ͳ േ ͲǤͲͶͷ 

Data2 ͲǤ͹Ͷ͸ േ ͲǤͲͳͲ 4 ͲǤͲ͵͵ േ ͲǤͲʹͶ ͲǤͳ͸͹ േ ͲǤʹͷͶ ͲǤͳͳ͹ േ ͲǤͳͲͳ ͲǤͲʹ͵ േ ͲǤͲʹͳ 

Data3 ͲǤ͸Ͷʹ േ ͲǤͲͲͷ 2 ͲǤͲͳͺ േ ͲǤͲͳͻ ͲǤͲͶͻ േ ͲǤͲ͸͹ ͲǤ͵ͺʹ േ ͲǤʹʹ͹ ͲǤͲͳͺ േ ͲǤͲͳͻ 

Data4 ͲǤ͸ͺ͸ േ ͲǤͲͲͷ 4 ͲǤͲʹͻ േ ͲǤͲʹ͵ ͲǤ͵ͳʹ േ ͲǤ͵ͷ͹ ͲǤͳʹ͵ േ ͲǤͳ͹ͳ ͲǤͲʹ͵ േ ͲǤͲͳͷ 

Data5 ͲǤ͹ͶͶ േ ͲǤͲͻͶ 3 ͲǤͲ͹͸ േ ͲǤͲͻ͵ ͲǤͲͷͻ േ ͲǤͲͺ͵ ͲǤͲ͵͹ േ ͲǤͲͶͷ ͲǤͲͳͷ േ ͲǤͲͳͶ 

Data6 ͲǤ͸ͻͷ േ ͲǤͲͲͷ 4 ͲǤͲ͵ͻ േ ͲǤͲͶͷ ͲǤͳ͸͹ േ ͲǤͳ͹͹ ͲǤͳͷͷ േ ͲǤͳ͹ͷ ͲǤͲ͵Ͷ േ ͲǤͲ͵͹ 

Data7 ͲǤ͹ͲͲ േ ͲǤͲͳʹ 4 ͲǤͲͷͷ േ ͲǤͲͶ͵ ͲǤͳͳͶ േ ͲǤͳʹͷ ͲǤͲ͵ͻ േ ͲǤͲͳ͹ ͲǤͲ͵ͻ േ ͲǤͲͳ͹ 

Avg. ͲǤ͹ͳͲ േ ͲǤͲͶͷ - ͲǤͲͷ͵ േ ͲǤͲ͸͹ ͲǤͳ͸ͳ േ ͲǤʹͲͶ ͲǤͳͶͳ േ ͲǤͳ͸Ͳ ͲǤͲʹ͹ േ ͲǤͲʹͶ 

For each sequence from dataset DWGT, Table 1 shows the MPTD±SDPTD between the recon-

structed cardiac phases and the corresponding ECG signals by T-PCA, M-PCA, PCR, and DMT, 

respectively. The Cycles in the second column of Table 1 show the mean and standard deviation of 

cardiac cycles in each ECG signal, and Num. refers to the number of covered R-waves from the full 410 

contrast filling of coronary artery to the start of contrast agent washing out of the coronary artery. 

In Table 1, a large heart rate variation is observed when Data2, Data5, and Data7 are acquired. In 

particular, the heart rate varies much in Data5. Despite the variations in heart rate, the cardiac phases 

reconstructed by DMT can always effectively synchronized with the corresponding ECG signals. 

The cardiac phases reconstructed by T-PCA have a large deviation when the heart rate varies much. 415 

In M-PCA and PCR, cardiac phases have a larger deviation with the ECG signals in most sequences. 

In addition, MPTD±SDPTD by B-DMT are the same with DMT.  

 
Fig. 11. Distribution of the peak temporal distances between the reconstructed cardiac phases and ECG signal by 

four methods, T-PCA, M-PCA, PCR, B-DMT and DMT, respectively. 420 

Fig. 11 shows the performance of cardiac phase reconstruction by computing the peak temporal 
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distance between the cardiac phases and ECG signals. After synchronizing the peaks of all the data 

in DWGT with the corresponding peaks in the ECG signal, the peak temporal distances are dis-

played in Fig. 11. According to the order of T-PCA, M-PCA, PCR, B-DMT and DMT, the 

MPTDേSDPTD are ͲǤͲͷ͵ േ ͲǤͲ͸͸s, ͲǤͳ͸Ͳ േ ͲǤʹͲ͵s, ͲǤͳͶͲ േ ͲǤͳͷͻs, ͲǤͲʹ͹ േ ͲǤͲʹͶs and 425 ͲǤͲʹ͹ േ ͲǤͲʹͶs, respectively. This indicates that the cardiac phases by DMT are in maximum agree-

ment with the ECG signals. B-DMT can also achieve the same accuracy with DMT. Several peaks 

that are computed by T-PCA deviate with the ECG signal. As to the cardiac phases computed by M-

PCA and PCR, large errors are caused due to the methods highly dependent on the intensity of 

images. We also performed paired t-test on the peak temporal distances to evaluate the performance 430 

of the cardiac phase reconstruction. The p-values between DMT and T-PCA, M-PCA, PCA are ͲǤͲʹ͸, ͲǤͲͲʹ and ͲǤͲͲͳ, respectively. It can be seen that all the p-values are smaller than the 

commonly accepted significant value of ͲǤͲͷ, which demonstrates significant differences between 

DMT and other three methods. 

C. Evaluation of Cardiac Phase Synchronization 435 

 
Fig. 12. Synchronization of the cardiac phases reconstructed from all the sequences in DWGT. Cardiac phases are 

reconstructed by four methods, (a) T-PCA, (b) M-PCA, (c) PCR, and (d) DMT, respectively. Data2: reference cardiac 

phases. Data1-Data3: LCA sequences. Data4-Data7: RCA sequences. 

Fig. 12 shows the synchronization of the cardiac phases from the sequences in dataset DWGT 440 

by T-PCA, M-PCA, PCR, and DMT, respectively. In Figs. 12(a)-(d), cardiac phases extracted from 

Data2 are regarded as the reference, and the other cardiac phases are synchronized with it by the 

method in Section 2.4. As can be seen from Fig. 12(d), cardiac phases computed by DMT are highly 
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correlated with each other. In Fig. 12(a), the cardiac phases from Data7 differ much with other car-

diac phases. In Fig. 12(b) and 12(c), cardiac phases from Data5 and Data6 deviate much with respect 445 

to cardiac phases of Data2. In two different sequences, if the cardiac phases are reconstructed accu-

rately, the spline interpolation will not change the increasing or decreasing rule of the cardiac phases. 

Hence, the cardiac phases present high correlation after the synchronization, as can also be seen 

from Fig. 12(d).  

According to the order of T-PCA, M-PCA, PCR and DMT, the MPCCേSDPCC between dif-450 

ferent cardiac phases are ͹͸ǤͶʹΨ േ ͳ͸ǤʹͶΨ , ͺͳǤͲ͵Ψ േ ʹʹǤ͸͸Ψ , ͺͳǤ͵͵Ψ േ ͳ͹Ǥͺ͹Ψ  and ͺͻǤͶͷΨ േ ͻǤʹʹΨ, respectively. As shown in Fig. 13, with either stable or varying heart rate, DMT 

could obtain an effective synchronization between different cardiac phases. The synchronization 

between RCA and LCA sequences is also very robust. Paired t-test is calculated on the correlations 

of DMT and other three methods T-PCA, M-PCA, and PCR. The p-values are all much smaller than 455 ͲǤͲͷ, which demonstrates the significance of the differences in performance between DMT and 

other three methods. 

 

Fig. 13. PCC between the reconstructed cardiac phases from sequences in DWGT by methods, T-PCA, M-PCA, 

PCR and DMT, respectively. 460 

To validate the wide applicability of DMT, Fig. 14 compares the accuracy of the cardiac phase 

synchronization from the sequences of patient P2 in DWOGT. Fig. 14(a) shows the cardiac phase 

synchronization by DMT, which indicates that cardiac phases from different sequences are highly 

correlated with each other. Fig. 14(b) shows the correlations by T-PCA, M-PCA, PCR, and DMT, 

respectively. The MPCCേSDPCC by the four methods are ͸ͷǤ͵͵Ψ േ ͳʹǤ͹ͳΨ, ͹͹ǤͲ͵Ψ േ ͹Ǥ͹ͷΨ, 465 ͹ͻǤ͵ʹΨ േ ͹ǤͲͶΨ and ͻͲǤ͵ͳΨ േ ͵Ǥͺ͵Ψ, respectively. Fig. 15 also compares the accuracy of car-

diac phase synchronization from the sequences of patient P9 in DWOGT. The MPCCേSDPCC by 

the four methods are ͸͹ǤͷͶΨ േ ͳʹǤ͹ͳΨ , ͺͺǤͶʹΨ േ ͹ǤͲ͵Ψ , ͹ʹǤͲͺΨ േ ͳͷǤ͵ͳΨ  and ͻͺǤͳ͹Ψ േ ͳǤͶͺΨ, respectively. Table 2 displays the correlations of cardiac phases from the se-

quences of the remaining 10 patients in DWOGT. DMT achieves the largest correlation for all the 470 
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sequences from the 10 patients. It is demonstrated that DMT could effectively synchronize the car-

diac phases from different RCA and LCA sequences. Paired t-test is again applied on the PCC of all 

the sequences from DWOGT between DMT and T-PCA, M-PCA and PCR, respectively. The p-

values are all much smaller than ͲǤͲͷ, which also demonstrates statistical significance of the dif-

ferences between DMT and other three methods. 475 

 
Fig. 14. Synchronization of the cardiac phases reconstructed from the sequences of patient P2 in DWOGT. (a) Syn-

chronized cardiac phases. (b) Correlations of the cardiac phases by four methods, T-PCA, M-PCA, PCR, and DMT, 

respectively. Data1-Data5: LCA sequences; Data6-Data7: RCA sequences. 

 480 

Fig. 15. Synchronization of the cardiac phases reconstructed from the sequences of patient P9 in DWOGT. (a) Syn-

chronized cardiac phases. (b) Correlations of the cardiac phases by methods T-PCA, M-PCA, PCR, and DMT, re-

spectively. Data1-Data5, Data8-Data11: LCA sequences; Data6-Data7, Data12: RCA sequences. 

Table 2. MPCCേSDPCC (%) of synchronized cardiac phases from the sequences in DWOGT by four methods, T-

PCA, M-PCA, PCR, and DMT, respectively. Avg.: average value. 485 

Data T-PCA M-PCA PCR DMT 

P3 ͺʹǤͶͷ േ ͳ͸Ǥ͵͹ ͺͲǤ͸͹ േ ͳͶǤͷͲ ͸ͷǤ͹ͳ േ ʹǤ͸͸ ૢ૟Ǥ ૢ૙ േ ૙Ǥ ૜ૢ 

P4 ͺͶǤʹ͹ േ ͷǤ͹͵ ͸ʹǤͺͳ േ ͷǤͻͶ ͹ͻǤ͵Ͳ േ ʹͷǤͷͻ ૢ૜Ǥ ૞ૡ േ ૙Ǥ ૠૢ 

P5 ͺ͹Ǥͷͳ േ ͳͲǤͷͻ ͸ͺǤͲ͵ േ ͳͺǤʹͷ ͷͺǤ͸Ͷ േ ͶʹǤͶͻ ૢ૜Ǥ ૝ૡ േ ૜Ǥ ૜૝ 

P6 ͺͶǤʹ͸ േ ͷǤͻͳ ͹ͷǤͷ͸ േ ͳͲǤͷͲ ͺͳǤͷͶ േ ͻǤͶͳ ૢ૝Ǥ ૜૞ േ ૛Ǥ ૚ૠ 

P7 ͻʹǤͶ͵ േ ͹Ǥͳͻ ͹ͳǤʹͳ േ ͳͺǤͳͲ ͻͲǤʹͲ േ ͷǤʹ͸ ૢ૝Ǥ ૜૙ േ ૞Ǥ ૚૜ 

P8 ͹ͳǤͶ͹ േ ͳʹǤ͸Ͳ ͺͲǤͺͶ േ ͹Ǥ͹ͺ ͹ʹǤͳͺ േ ͳ͹ǤͲ͹ ૢ૟Ǥ ૜૞ േ ૛Ǥ ૚૟ 
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P10 ͹͹Ǥͳͷ േ ͳʹǤ͸Ͳ ͺ͵Ǥʹͺ േ ͳʹǤʹͲ ͹ͻǤ͹ͺ േ ͸Ǥͷʹ ૢૠǤ ૜ૢ േ ૚Ǥ ૝૛ 

P11 ͺͻǤ͸ͻ േ ͳͳǤͲ͸ ͺͻǤ͸ʹ േ ͵ǤͶ͵ ͸ʹǤ͵͹ േ ͳʹǤʹʹ ૢ૞Ǥ ૝ૠ േ ૜Ǥ ૢૡ 

P12 ͺ͸Ǥͻʹ േ ͳͲǤͻͻ ͹͹ǤʹͶ േ ͳͲǤͶͲ ͺͶǤͻ͸ േ ͵Ǥ͹ʹ ૢૠǤ ૡૡ േ ૚Ǥ ૙૝ 

P13 ͺ͵ǤͲ͸ േ ͺǤͷͺ ͷ͹Ǥͳ͹ േ ͶǤ͹ͻ ͻͳǤ͸ʹ േ ͵Ǥ͹ͷ ૢ૛Ǥ ૡૠ േ ૝Ǥ ૙૛ 

Avg. ͹ͻǤʹͻ േ ͳ͵Ǥʹͷ ͹͸Ǥͺͻ േ ͳͶǤͳͶ ͹͵Ǥ͹ͺ േ ʹʹǤͷͷ ૢ૞Ǥ ૙૞ േ ͵Ǥ͸ͳ 

 Table 3 shows the time of motion tracking, cardiac phase reconstruction and cardiac phase 

synchronization, respectively, when ߙ ൌ ͲǤͲͳ and ߙ ൌ ͲǤͳ. For different sequences, the time ef-

ficiency differs by the number of angiograms in the sequences. For the same sequence, the time 

efficiency differs by the number of detected key points and the number is decided by ߙ.  

Table 3. Computational time (s) of motion tracking, cardiac phase reconstruction and cardiac phase synchronization, 490 

respectively, when ߙ ൌ ͲǤͲͳ and ߙ ൌ ͲǤͳ.  

Data ߙ ൌ ͲǤͲͳ ߙ ൌ ͲǤͳ 

DMT 
Multi-Layer Matching ͷ͵ͻǤ͹ͻ േ ͷʹǤͳ͸ ͷ͵ͻǤ͹ͻ േ ͷʹǤͳ͸ 

Motion Tracking ͶͲǤʹ͵ േ ͵Ǥ͹ͻ ʹǤͷͶ േ ͲǤͻͻ 

Cardiac Phase Reconstruction ͲǤͶͲ േ ͲǤͲͷ ͲǤͲʹ േ ͲǤͲͳ 

Cardiac Phase Synchronization ͲǤͳͻ ͲǤͳͻ 

4. Discussion  
 In this manuscript, we proposed a novel and robust deep motion tracking technique for syn-

chronization of cardiac phases from multiview angiographic images and demonstrated its applica-

tion in X-ray angiographic image sequences from different imaging angles. Our technique was val-495 

idated by using DWGT which contains 7 clinical sequences of the same patient who underwent 

ECG-gated examination. DWOGT was also used for the evaluation, which contains 75 clinical se-

quences from another 12 patients. For the motion tracking, ͺͷΨ and ͻͲǤ͹Ψ matched points are 

accurately computed. For the reconstruction of cardiac phases, we established peak temporal dis-

tance of ͲǤͲʹ͹ േ ͲǤͲʹͶs and correlations of ͅͻǤͶͷΨ േ ͻǤʹʹΨ for 7 sequences in DWGT. We 500 

also obtained correlations with lowest values of ͻͲǤ͵ͳΨ േ ͵Ǥͺ͵Ψ  and highest values of ͻͺǤͳ͹Ψ േ ͳǤͶͺΨ for the 75 X-ray sequences in DWOGT.  

 For motion tracking, we performed a comparative quantitative evaluation on two groups of 

consecutive images randomly selected from clinical datasets to validate whether our tracking 

method is superior to previously published MIR, DeepFlow and EpicFlow methods. Ma et al. (Ma 505 

et al., 2015) proposed that the maximum coronary diameter is 5-7 mm. With the minimum magni-

fication of 1.3, the diameter of coronary artery in images is 6.5-9.1mm (22-30 pixels in diameter). 

Hence, the Euclidean distance less than 3 pixels between the computed point and labelled point can 

be regarded as accurate matching. However, since DMT is based on the local transformation, track-

ing errors can be caused when the structures does not appear both in consecutive angiograms. Be-510 

sides, the tracking errors can also appear when matching point pairs appear in regions with repetitive 

textures. When compared with other methods, the results showed that our proposed tracking method 

is much better than MIR, DeepFlow and EpicFlow methods. For MIR method, intensity based sim-

ilarity metric and affine transformation are utilized. The metric is not suitable for the coronary artery 

sequences in which patient motion and contrast agent non-uniform injection both cause intensity 515 

variation in images. Meanwhile, the motion in coronary artery sequences is non-rigid and cannot 

accurately computed by an affine transformation. For both DeepFlow and EpicFlow methods, gray 

value assumed constancy throughout the sequence. However, this assumption is not true in most 
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coronary artery sequences (Meijering et al., 1999; Meijering et al., 1999). These two methods utilize 

variational optimization techniques, which cannot accurately deal with regions without anatomical 520 

structures (Baker et al., 2011). These may be the reasons that DeepFlow and EpicFlow cannot ac-

curately track points in the images of coronary artery sequences.  

For the evaluation of cardiac phases, a comparison was performed on all clinical X-ray angio-

graphic image sequences. The purpose was to determine whether the proposed technique is superior 

to previously developed T-PCA, M-PCA, or PCR methods. The results indicated that our proposed 525 

technique outperforms the T-PCA method, which relies on tracking key points throughout the se-

quence. In T-PCA, the coordinates of the key points in all the images comprise the matrix. Given 

that some key points deviates from the centerline of coronary artery, the motion largely differs from 

homologous points owing to cardiac motion. This may cause the large errors on T-PCA. In the M-

PCA and PCR, image intensity may be changed during imaging procedure by other disturbance 530 

including clinician operation catheters and non-uniform contrast agent infusion. This may be a rea-

son why M-PCA and PCR methods reconstruct cardiac phases incorrectly.  

For the time efficiency of the proposed method, the mean and standard deviation of deep motion 

tracking and cardiac phase reconstruction are ͷͶʹǤ͵͵ േ ͷ͵Ǥͳͷs and ͲǤͲʹ േ ͲǤͲͳs, respectively. 

The time of cardiac phase synchronization is ͲǤͳͻs for 7 sequences. Since the mutli-layer matching 535 

based motion tracking has low time efficiency, the current method cannot be applied in the intra-

operative image-guided surgical navigation. However, considering cardiac phase reconstruction and 

synchronization in the proposed method require considerably low computational time, an extension 

of motion tracking based on deep learning will be considered. By combining the high accuracy and 

efficiency of deep learning, the proposed method can then be suitable for intra-operation.  540 

The proposed technique is clinical-workflow-friendly and requires no fiducial markers. In clin-

ical practice, the technique has the potential to synchronize X-ray angiographic images from se-

quences at different imaging angles. The process is very important for the 3D൅t reconstruction of 

the coronary artery because it generates clear and dynamic structural information for physicians.  

5. Conclusions 545 

 We presented a novel and potentially clinically useful cardiac phase synchronization technique 

based on deep motion tracking and applied it to the automatic synchronization in X-ray image se-

quences. Unlike previously developed synchronization methods, our technique is robust to motion 

of complicated weak textures and multiple motion coexistence. Thus, it is suitable to X-ray angio-

graphic images that contain different types of motions, large weak texture regions, and multiple 550 

physical structures. One major limitation of the proposed method is based on the motion tracking. 

When the motion tracking are not accurately computed, the precision of the cardiac phase recon-

struction will be greatly affected. This situation often occurs when the vascular structures present 

missing segments.  
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