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Abstract: In the diagnosis and interventional treatment of coronary artery disea3p;ttime
reconstruction of the coronary artery on the basis of X-ray angiograpageisequences can
provide dynamic structural information. The synchronization of.cardiac phases in thrcEqu

is essential for minimizing the influence of cardierespiratory motiod realizing precise
3D+time reconstructionKey points are initially extracted from the first image of a sequence.
Matching grid points between consecutive images. in the.sequence are extracted by a multi-layer
matching strategy. Then deep motion tracking of key points is achieved by local deformation based
on the neighboring grid points of key peints. The local deformation is optimized by the Random
Sample Consensus algorithm. Then, a simple harmonic motion model is utilized to distinguish car-
diac motion from other motion sources (e.g. respiratory, patient movement, etc.). Nexgn#he si
which is composed of cardiac mations is filtered by a band-pass filter to reconstroatdize

phases. Finally, the synchronization-of cardiac phases from different imaging angles is rgalized b
piece-wise linear transformation! The proposed method was evaluated using clinical X-ray angio-
graphic image sequences from 13 patieB&% matching points can be accurately computed by

the deep motion tracking method. The mean peak temporal distance between the reconstructed car-
diac phases and the electrocardiograph sign@li27s. The correlation between the cardiac phases

of the same patient is'.evé&9%. Compared with three other state-of-the-art methods, the proposed
method accurately reconstructs,and synchronizes the cardiac phases from different sequences of the
same patient. The‘proposed deep motion tracking method is robust and highly effective in synchro-
nizing cardiac phases of angiographic image sequences captured from different imaging angles.
Key words: coronary arteries, X-ray angiographic image sequence, cardiac phase, synchronization,
deep motion tracking

1. Imtroduction
With its fast imaging speed and high-resolution capability, X-ray angiography has been re-
garded as:the gold standard for diagnosis and interventional treatment of coronary artery disease in
clinicalpractice (Kurra et al., 2010; Chen et al., 2014). However, owing to the patspeajection
principle, 2D X-ray angiographic images lose 3D information of the coronary arteryin8Dre-
construction of coronary artery in sequences can provides a dynamic 3D structure for the clinicians
to realize the preoperative surgical planning. In 3D reconstruction of the vasculature in 3D space,
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the angiographic images should be captured at the same time and at different imaging angles (Cong
et al., 2016; Yang et al., 2009; Yang et al., 2014). However, in clinical practice, thg witiz¢d
mono-plane imaging device can only obtain a single sequence from a specific imaging angle in a
single acquisition procedureoTealize the 3D+time reconstruction of vasculature in sequences,
cardiac phases of imagesdifferent sequences should be synchronized to minimize the influence

of cardiorespiratory motion to reconstruction (Cimen et al., 204 @)inical practice, the synchro-
nization can be handled by cardiac electrocardioges@@ gating (Lauritsch et al., 2006). But the
ECG-gating device is usually an optional extra for an X-ray imaging system and cannotynormal

be obtained in a regular hospital. Meanwhile, the use of an ECG-gating device in an.operation may
raise concerns because of its complexity and cost. Hence, image-based cardiae-phase reconstruction
and synchronization are highly necessary.

In the past two decades, to realize the cardiac phase synchronization, numerous methods have
been proposed to measure cardiac motion. Lehmann et al. (Lehmann et al., 2006) applied histogram
equalization to enhance vessels in an angiographic sequence and measured theirdieperior
component of a weighed centroid to track cardiac motion. Sundanet al. (Sundar et al., 2009) est
mated cardiac and respiratory motion between successive images by a phase correlation-based
method. By assuming that the motion of the structures only exhibits translation, cardiac phases can
be computed with the sum of the cross-power spectfum ofisuccessive images. However, this as-
sumption is not complegnough for the coronary artery, Considering the motions of both the coro-
nary sinus catheter and coronary artery in angiographic image sequences are all highly related to
cardiac motion, Toth et.aToth et al., 2017) reconstructed cardiac phases by a mask-PCA method
(Panayiotou et al., 2014) by setting the threshold segmented and dilated coronarggidargs
the mask. In additiorthe mask-PCA methad.is proposed by Panayiotou et al. (Panayiotou et al.
2014) in the estimation of cardiac motion from angiographic image sequences that only contain a
coronary sinus (CS) catheter. In the cardiac motion estimation of CS catheter sequences, hierarchical
manifold learning (Panayiotou et al., 2013) is also proposed which is similar to theP@ask
method. In the two methods, the catheter is initially enhanced by vesselness filter (Fedngi et
1998) and then dilated. The intensity. of the dilated regions is employed to form a #fadnix.
reducing the dimensionality of the matrix by hierarchical manifold learning or PCA mékteod,
first or second principal components are used for describing cardiac and respiratory motion, respec-
tively. Panayiotou et al{(Panayiotou et al., 2013) also proposed the Traclk-B&&tthe positions
of CS catheter in the angiographic sequence and then exploited PCA to acquire cardiac and respira-
tory motion. Due to the possible absence of the catheter, Panayiotou et al. proved that Miask-PC
more accurate than Track-PCA. However, when the influence of contrast agent washing in and out
within the coronary arteries was considered, the three methods proposed by Panayiotou et al. (Pa-
nayiotou et al., 2014; Panayiotou et al., 2013; Panayiotou et al., 2013) were challengadey im
intensity fluctuations and introduce errors to the cardiac phases reconstructed fronoip@ghigi
image-sequences: Brost et al. (Brost et al., 2011) utilized a boosted classifier to Heguatheter
and track thetcatheter by rigid registration in successive images. The catheter trajectory-can com
pensate cardiac and respiratory motions. However, the extraction of coronary artery from angio-
graphic images remains extremely challenging due to the coexistence of multi-organs (Chen et al.
2016). In the angiographic image sequences of coronary artery, multi-organ interference, non-uni-
form-contrast agent infusion and complex motion of coronary artery all exist in the irmhges.
above mentioned methods cannot accurately estimate the cardiac motion in the sequences.
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In this paper, we propose a novel deep motion matching (DMT) method for synchronization of
the cardiac phase by estimating the cardiac motion. Initially, in a sequence, the image véth whol
coronary artery is regarded as the first imagdkey points are extracted from the image. Mean-
while, matching grid points between consecutive images are computed by a multi-layermatching
strategy. Next, an octree model is utilized to search for the neighboring grid points around each key
point. Thenfor the neighboring grid points of each key point, a local projective transformation is
computed by the neighboring grid points. In computing the transformation, Random Sample Con-
sensus (RANSAC) algorithm is utilized to discard the matching gird pointsahaé errors to the
transformation. The local transformation is applied to the corresponding key point.aimdtbét
matching key point in the next image. By repeating computing the transformation, of different key
points throughout the sequence, all the key points can be tracked in the sequence./After this, a simple
harmonic motion (SHM) model is utilized to estimate the cardiac motions,which:cortsit diteal
cardiac phases. Finally, for the cardiac phases reconstructed from different sequences, a piece-wise
linear transformation is computed to synchronize the cardiac phases.

The proposed algorithm has three main contributions. First, cardiac phase synchronization is
achieved by point motion tracking. The tracking is very effective to alleviate the influenoa-of
uniform contrast agent infusion. Second, the motion tracking is realized through the projective de-
formation of the dense correspondences of local region. Itis highly robust to solve the challenging
non-rigid motion within weak texture regions (without anatomical structures). Third, a diaupl
monic motion model is utilized to compute the meotion velocity between consecutive images in a
sequence. ktaneffectively distinguish the cardiac motion. from other motion sources (e.g. respira-
tory, patient movement, etc.).

2. Methods

In this study, sequences,are comprised»of images with full coronary artery. Let
{I,|le = 1,---,E} denote the coronaryartery images, wheres the et® image,and E is the to-
tal number of the images belong{o a sequence. éq@encecardiac phases are reconstructed by
tracking the motion of the key points that are extracted ffpnin addition, cardiac phases recon-
structed from different sequences are synchronized by matching the peaks and valleys of the cardiac
phases.

2.1 Key Point Detection

The key points are extracted froln, andthen the motion of the key points in the whole se-
guence are tracked. In this paper, we utilize a constraint to extract the key points thaihbre m
distributed on the coronary artery. The constraint can effectively identify the tubular stsuatur
the images and distinguish the points belong to the coronary artery.

First, I; is enhanced by the vesselness based enhancement filter (Frangi et al., 1998), and the
enhancedimage is denotedBg . The gradient matrixG (x, y) of I, andHessian matrixH (x, y)

of EI,-can be computed as:
12 Ll
G(x,y) = ( > y)

LL, 2 )
ElL Elxy>

Hx,y) = (Elyx ElL,
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where I, and I, represent the first-order partial derivatives of the intensity in imagend
El.y, Elyy, EL,, and El,, represent the second-order partial derivatives of the intensity in image
Ey. The eigenvalued§, and A, of the gradient and Hessian matrices are computed:

(
[ - (75 -5 4001,

2
'Wf_z (x,y) = (Elxx +ElL,y, + J (El — ELyy)" + 4E1§y>

Then, we extract the key poinfpl|u = 1,2,---,U} inimage I, wherepl refers tou!" the
key pointin I;, U is the number of detected key points. In addition, the key.points,are‘computed
according to the following constraints:
R =225 —a + (A§ +25)?
[Af|~0 3)
Y] < 1Af]

where R is decided by the gray variation of local region (Harris et al:;, 1888)s computed for
evel point in imagel;. a is a weigheéd value. WhenR is beyond athreshold value, the corre-
sponding point is regarded as the initial key points. Thenthe othertwo constraints aretatilized
remove the points that are distributed in the tubular structures.The final remaining poihés are
extracted key points|-| is the absolute value. Fig. 1 shows an.example of the extracted key points
in the angiograms.

)

() (b)
Fig. 1. Examples of the extracted key points in the angiograms whei®9, R > 5. Number of key points in (a):
54 and in (b)77.

2.2 Deep Motion Traeking

Considering langiograms in the sequence are achieved by a perspective projection procedure
we compute the metion of each key pointfjp |u = 1,2,---,U} by the local projective transfor-
mationin twerconsecutive angiograms iteratively throughout the whole sequence. In addition, the
local projective/transformation can be computed by the matching point pairs of each key point in
two consecutive angiograms.

The matching point pairs between two consecutive angiograms are computed by the multi-
layer matching strategy (Revaud et al., 20 refer to the matching grid points. In the strategy,
points per4pixels in the firstimage constitute the grid points. For images dftze 512 pixels,
the grid‘points are denoted 3,6,10, ...,510} x {2,6,10, ...,510}. Matching is realized by the bot-
tem-up/correlation pyramid computati@md top-down correspondence extraction. In bottom-up
procedure, a series of grid-point-centered non-overlapped paichdsixels) are extracted from
the first imageandconvolved with the patches with the same size at all points in the second image
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to generate the bottom correlation maps, respectidel3 max-poolingandaveraging are applied
to the 4 neighboring patches to generate the correlation maps in a higher layer. In theupottom-
correlation pyramid computatiorg repetitions are used in the convolution and max-pooling pro-
cedures when the image size is5if2 * 512 pixels. In top-down procedure, by extracting the cor-
respondencewith largest correlation values in the top layer of the pyramid, the correspondences at
the lower layer are computed by searching for the maximum correlation values in thredamal
of the corresponding 4 sub-patches. By propagating searching procedure for the maximum correla-
tion values from top layer to the bottom layer, the matching grid points betweerohsecutive
images can be obtained. Meanwhile, in the searching procedure, incorrect correspondences are suc-
cessively discarded.

For a specific sequence, grid points are extracted in im@ggs= 1, ---, F =11}, respectively.
The matching grid points are then computed by the multi-layer strategy, and are denoted as

{{(q,‘i,q,i“ﬂk =1, ,K°}|le=1,--,E — 1}, where (g, q¢*) is k. matching grid points in

I, and I, respectively,K¢ is the number of matching grid/points.Ip. By assuming that the

key points and grid points are distributed in a plane that issperpendicular to the z-axispiacgD

the octree-based algorithm (Meagher et al., 1982) is utilized to search for the neighbd poindsi

of each key point. For a key poip, {(qi. q2.)la =4,2,--3A} is a subset o{(qi, q?)|k =
1,--,K'} and denotes the neighboring grid pointspgf wheregqz ,, is a*™ neighboring grid

points of ut" key pointin imagel,, g2, is the matehing grid point ofZ,, in I, 4 is the num-

ber of the neighboring grid points. For each key point, we compute the same number of neighboring
grid points. Fig. 2 shows an example of;key point tracking based on the neighboring grid points
when 4 = 8.

Fig.2-An example of the key point tracking based on 8ibeidgng grid points in the consecutive images. (a and b)

first.image and second image; (c) enlarged view in the green reletabgw from Fig. (a); (d) enlarged view in the
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orange rectangular box from Fig. (b); (c and d) points in red coldching key points; points in blue colog
neighboring grid points of the matching key points, respectively.

For the matching key pointpl, BL? denotes the projective transformation. Hencé, the
matching key pointpZ in I, can be calculated as follows:

x2 bi1 b1z bys xL
y2|= byy by byz | % yl (4)
1 bs; b3, bss 1

where {b,.,. |z;,z, = 1,2,3} are the free variables of matri&;?, while (x%, i) and (xZ,%2)

are the coordinates of key points, and p2, respectively.B? is computed by.the neighboring

grid points. However, as tha neighboring grid points may not correspond to thessame projective
transformation, the RANSAC optimization (Fischler et al., 1981) method isithen used to search for
the optimal projective transformation.

To find the optimal projective transformation, we randomly select four points from thed
points to computeB.. Then, all theA grid points inl, are transformed, by curreit. . If the
difference values between the computed point and the matehing grid pdjntire less than the
pre-defined threshold, the point is then considered as an inlier point, otherwise, it iEeapoiat.

The threshold function can be defined:

la(Qé,u) — {é ”B&'Z * qtll,u - qg,u” = g’a =14 (5)

else

where ||-|| is the Euclidean distance between poififs’ = gl nand q2.,. la(ql,) is the label to
define whetherg; ,, is an inlier or outlier,e is the threshoelda is the order number of the neigh-
boring grid points. After iteratively computing.* by randomly selecting four points from the
grid points, the matrix,? that has the largest number of inliers is the optimal:
argirzlin hn la(qé,u) (6)

After computing the optimaB,?, p2scanbe obtained by equation (4). All the computed matching

key points inl, are regarded as the key points when computing the matching key polpt8in
repeating computing the matching key points in the consecutive images in the sequence, the motion
of the key points extracted ify can’be tracked in the whole sequence.

2.3 Cardiac Phase Reconstruetion

Integrated cardiac motion comprises four major parts, namely, expansion, contraction, rotation,
and twisting. Potel et-al. (Potelet al., 1984) found that the expansion and contraitte®wvearitricle
wall are far more [significant than rotation or twisting. He concluded that expansion and aontracti
accounts for 90% of cardiac motiandassumed that the heart has a spherical shape (Potel et al.
1984; Chen.etal:, 1994). Given that the coronary artery distributes on the cardiac surface, the points
on the coronary artery move towards and away from the center along with the cardiac aydtoli
diastolic mavement. Hence, by regarding the point on the static cardiac surface asotheembér,
the motion of points on the coronary artery can be modeled as simple harmonic motion (SHM)
(Marion et al., 2013) that moves towards and away from the cardiac center.

In“the,SHM model, the intersections of extension lines or the reverse extension khes of
velocities define the cardiac centéy,, in I,,;. As shown in Fig. 3(a) and (b), the velocity

vethof pg*tt forms an angledgt! with the vectorp¢*'o, ., . Hence, the cented,., of cardiac

motion can be obtained by minimizing the sumagf* of all key points:
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35 Fig. 3. Estimation of cardiac motion center,and cardiac velocity:n@flg cardiac motion center in systolic and

diastole stage, respectively; (c) and (d)«cardiac velocity in systalidiastole stage, respectively.

38 As shown in Figs. 3(c) and (d), the velocity for each the key point can be projeciedsdine
center 0,.,, which can be defineals

_—

41 225 1}5+1 — 175+1 *771181+1Oe+1 (8)
|pﬁ+ Oe+1|

44 where p¢*10,,, is the vectorfromo,,, to p¢*t, and ve*! is the scalar quantity. I6Ett > 0,

46 the heart is in the systolic stage; otherwise, the heart is in the diastolic stage. Theafiuimeof
vet1 refers to the overall motion tendency. Thus, the cardiac motion veldgity from imagel,
49 to I,,, can‘be calculateas

50 _ 21111=1 vt

o 230 Verr = ©)

The cardiac phases can be reconstructed by connecting the cardiac motion velocity values. To
54 further. completely remove the motion (respiratory, patient movement) from tiecahases, a

55 2" order Butterworth band-pass filter (Hernandez-Sabate et al., 2011) is utilizednédnaliz-

ing the' filtered cardiac phases fe-1,1], the final cardiac phases can be obtained. The cardiac

U

58 235 phases fromm‘ sequence is denoted@s. The peaks{tﬁ;“ksu = 1,2,---,]m} of C,, represents

the end-systole (Sundar et al., 2009), whggeis the number of peaka m!"* sequencepks
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refers to the peaks.

2.4 Synchronization

The synchronization includes two parts: one is the synchronization between the reconstructed
cardiac phases and the ECG signal. The corresponding purpose is to validate the accurhayg of car
phase reconstruction. The other is the synchronization between different reconstructed cardiac
phases from the sequences of the same patient. The purpose is to synchronize the images from dif
ferent imaging angles.

Given thata time delay may exist between the ECG signal and coronary artery segaence,
time offset should be added to the ECG signal. Hence, the synchronization betweenthe ECG signal
and reconstructed cardiac phases can be realized as:

argmin $_, [¢7°™ + dt — £ | (10)
dt

where dt is the time offset between the ECG signal and the reconstructed cardiac pfis&es.

refers to the closest peak in the ECG signal tojtRepeak in the reconstructed cardiac phases.

In the second kind of synchronization, after the cardiac phase of all the sequencessinoen a
patient are extracted, the peaks and valleys of the cardiac,phasesiare all extracted. The sequence of
the cardiac phases that have the largest number of peaks.is regarded as the reference, arel we assum
the reference sequencerns™ one. For the reference sequence, the time of gaake cardiac

phases are denoted

pks|j =12, ]}, and the time of valleym the cardiac phases are de-

noted as{ Ovy5|o =12, 0}, where vys refers to the valleys. For another't"® sequence from
. C_.1 .
the same patient, the peaks are denote{i};,{%{S ' =12, ---.]'}, and the valleys are denoted as

{ts,mv'ys|o’ =1,2, ---,0’}. The synchronizationsbetween the cardiac phases are realized by a piece-

wise linear transformation. Censideringithat the first local extreme value in the cardiac phases may
be a peak or a valley, the four/endpoints for computing first linear transformation dedlesi
follows:

<tm

if ¢ém gom
1 pks’ 1 vys 1 ka’ 1 vys 1 pks 1 vys' 1 pks 1 vys

I

.( 1)

I

{ 1 vys’ 1 pks] [tlvys’ 2 pks ) lf tl pks 1 vys’ tl r;)lks > tl r1?3/5 (11)
(I 1) ’

m m
1 pks’ 1 vys] [tl ,pks’ 2 vys lf tl pks 1 vys' t1 pks < t1 vys

l ([tl vys’ 1 pks] [tl ,Vys’ 1 pks] ) lf tl pks 1 vys’ tl r;)lks > tl r1?3/5

where ([-,],[;]) refers to the two intervals to contpuhe first linear transformation;,-] is an
interval comprised by two endpoints. The transformation transforms the valuedimtthrgerval

to the values'in the second interval. After obtaining the endpoints of the first limesfiotmation,
the,endpoints of the remaining linear transformation can be obtained in chronological fieder. A
the piege-wise linear transformation is computed, the cardiac phase€§'osequence can be syn-
chronized to the cardiac phasesmf"® sequence
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2.5 Dataset and Evaluation Criteria

A) Clinical Datasets

The clinical coronary artery angiographic image sequences from 13 patients were used in,our
experiments. All the sequences were captured by using a monoplane cardiac X-ray.,angiographic
device (Philips Medical System, The Netherlands) in the Peking Union Hospital, Beijing, l@hina.
the angiograms, multiple types of motion, including cardiac, respiratory and patient.motion,coexist.
In addition, structures such as heart present large weak texture regions. Furthermore, mystiple ph
ical structures, including heart, bones, ribs, diaphragm and vessels coexist. Allthe sequences are
initiated by injecting the contrast agent to the catheter. The frequency of image acquidifisis
The size of images i§12 =« 512 pixels. The pixel sizes of the images &8 0.3 .mm. The range
of magpnification is[1.3,1.4] when acquiring image sequences. The imaging angles of a sequence
are described by two angles, which were left/right anterior oblique angles (LAO/&#&iDdau-
dal/cranial angles (CAU/CRA), respectively. The sequences are‘divided into two datasbis, viz.
taset with ground truth (DWGT) and Dataset without ground truth (DWOGT). DWGT comains
sequences from the same patient who underwent ECG-gated examination. The embedded ECG sig-
nal is continuously recorded, and images in the corresponding.sequence are captured at several spe-
cific time points of the ECG signalrhe number of imagesiin DWGT varies from 49 to 63. The
imaging angles of sequences in DWGT vary frbAQ22.2” to RAO41.4° and CAU30.1° to
CRA42.2°. DWOGT contains 75 sequences from 12 anaother patients without ECG signal. For the
12 patients, the number of sequences varies between 12 'and 2. The number of images in the se-
quences varies from 42 €. The imaging angles of.sequences in DWOGT vary from 8A6
to RAO46.5° and CALB6.9" to CRA40.7°. The'13.patients are denoted as P1 to P13, respectively.
For each patient, we denote the sequenceasal, -, DataN}, and N is the number of the
sequences belong to the same patient.

B) Evaluation Criteria
The proposed deep motion tracking (DMT) method will be compared with the techniques, viz.

Multi-resolution image registration (MIR) (Nejati et al., 2014), DeepFlow (Weinzaegft| 2013)

andEpicFlow (Revaud et al4 2015), usiaget of matching points. The points are manually labelled

in two groups of consecutive images from left coronary artery (L&)right coronary artery

(RCA) sequences, respectively. The labelled points are distributed on the vascular stinetures,

cluding the intersection, branching, large scale and small scale segments. As for each kind of seg-

ment, the points are labelled randomly. We achieve DeepFlow (https://thoth.inrialpeddefsrc/

flow/) and EpicFlow (https://thoth.inrialpes.fr/src/epicflow/) using available publicémphta-

tions. e re-implementedMIR in strict accordance with the method in the original paper. The Eu-

clidean distance betweenthe computed point and the labelled point is utilized to evaluate the accu-

racy of maotion‘tracking. Fig. 4 shows the manually labelled poirttgdrgroups of images.

1 B b ]

(@) (b)

()
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Fig. 4. Manually labelled points in two groups of images. (aapdwo consecutive images from a RCA sequence.
(c) and (d): two consecutive images from a LCA sequence.

The DMT-based cardiac phase reconstructiolh be compared with the approaches, viz.
Track-PCA (T-PCA) (Panayiotou et al., 2013), Mask-PCA (M-PCA) (Panayiotali,2014)‘and
Phase-Correlation (PCR) (Sundar et al., 2009), using the sequences from DWGT. Meanwhile, to
evaluate the effectiveness of the DMT-based cardiac phase reconstruction on branchirB-points
DMT), we also manually select the branching points frhmand compare the reconstructed car-
diac phases with the proposed method. We re-implement the three approaches in strict accordance
with the original paper and utilize the same band-filter to obtain the final catiaes. Before the
evaluation, the ECG signal is synchronized to the reconstructed cardiac phasesyas described in sec-
tion 2.4. The mean peak temporal distance (MPiB utilized to evaluate theraccuracy of cardiac
phase reconstruction. TR&PTD refers to the distance between the peakitime ofithe reconstructed
cardiac phases and of the R-waves of the ECG signal. MPTD is computed using the following equa-
tion:

C ECG
ZE:l tem g m

MPTD(m, ECG,,) = ——1epks ¢ 1 (12)

E
where E is the number of peaks in the reconstructed-cardiac pl”qf_s:pkg is the time ofm®"

peak in the reconstructed cardiac phases;tﬁﬁﬁ‘n is the time of them" peak in the ECG signal.
|| is the absolute value. If the cardiac phases and ECG signal are accurately aligned,Bhe MPT
equals to0. However, for the reason that the ECG signal.is continuously recorded while the images
in the sequences are captured in specifie,time pd#R3,D cannot strictly equal to 0. Hence, the
smaller MPTD is, more accurfiiehe cardiac phasesiis reconstructed. The standard deviation of the
peak temporal distance (SDPTB)omputed to evaluate the variability for each sequence.

The DMT-based cardiac phase synchronizaiuih also be compared with methods, viz. T-
PCA, M-PCA and PCR, using the sequences both from DWGT and DWOGT. Before the compari-
son, we utilize the spline interpolation method (Smith et al., 2012) to interpolatmtireaized
cardiac phases and generate a group.of new cardiac phases with the same length. Pearson correlation
coefficient (PCC) (Benesty/et al.,’2008)then utilized to evaluate the correlation between two
synchronized cardiac phases from the same patient. PCC is computed using the following equation:

PCC(m,m') = E":C(:;v:::') (13)

where cov(:) is the covariance between interpolated cardiac phégeand C,,,/; o, and ac,
are the standard,deviation 6f,, and C,,, respectivelylf cardiac phases are reconstructed accu-
rately, the correlation is close t400% . The mean and standard deviation of the PCC
(MPCCtSPPCC) are computed to evaluate the correlations between the cardiac phases from the
sequences of €ach patient.

3. Results

All the algorithms were implemented in C++ under the Ubuntu environment, and all the ex-
periments:were conducted on a relatively low-cost PC with 16 GB RAM and 3.2nBHZPU.
For the/proposed method, parameters: 0.09, € = 3.0. The parameters are the same for the se-
guences of all the patients.
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1
2
i A. Evaluation of Motion Tracking
5 345 Fig. 5 shows the Euclidean distances between the labelled points and computed points by meth-
6 ods, viz. MIR, DeepFlow, EpicFlow and DMT, respectively. In Fig. 5(a), the percentage of the point
; distances less than 3 pixels99.7%. In Fig. 5(b), the percentage of the point distances less,than'3
9 pixels is 85%. The points computed by DMT are very close to the labelled points which indicates
10 DMT can accurately obtain the matching points in two consecutive images. While most ofithe poi
n 350 computed by MIR, DeepFlow and EpicFlow are far away from the labelled points. Fig. 6 shows the
1; points whose distances is beyond 3 sixgi DMT. Especially in the small scale vascular segments,
14 when the number of the vascular segments is very large, or the vascular segments.between images
15 disappear, the matching points cannot accurately obtained by DMT.

16
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29 ! M[IR Deepll-‘iuw EpinTFlnw DI\I‘IT ‘ M'IR DeeplFIm\' Epic!FInw DMT
30 (@) (b)
31
32 355 Fig. 5. Euclidean distances between the manually labelled @midtthe computed points by methods MIR, Deep-
23 Flow, EpicFlow and DMT. (a): Distances of poiirisFig. 3(b); (b): Distances of points in Fig. 3(d).

4
36
37
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39
40
41
42
43
44
45
46
47 ()
48
49 Fig. 6 Points‘'whose distancesywith the labelled points are beyond 3 piXéls iB(b) and Fig. 3(d), respectively.
50 Red color: labelled points; Green color: computed points by DMT.
2; 360 Fige7 shows:the Euclidean distances between the manually labelled points and the computed
53 points by DMT method wher varies from0.0 to 8.0. As can be seen from the figure, when
54 changes, the/error of point matching does not change much. This indicates that the motion tracking
22 IS not sensitive to value.
57
58
59
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Fig. 7. Euclidean distances between the manually labelled points aedrtifited points by DMT methods when
¢ varies from0.0 to 8.0. (a): Distances of points in Fig. 3(b); (b): Distances of paints in Fig. 3(d).

B. Evaluation of Cardiac Phase Reconstruction

Fig. 8 shows the synchronization between the reconstructed cardiac phases and ECG signal for
sequence Data2 of patient P1. The magnitudes of the reconstructed cardiac phases refer to the nor-
malized cardiac motion velocity. In the figure, the cardiac phases)and ECG signal are bdgh linear
normalizedto [0,1]. In computing cardiac velogity, the changing of patient motion in each frame
results in the magnitude difference even in the same,cardiac phase, as can be seerainddigs. 8
From full infusion of coronary artery to the dissipation beginning of contrast ageiniatipes cover
4 R-wave of the ECG signal. The time of theipeaks'in the ECG signal46@&s, 2.219s, 2.967s
and 3.720s, respectively. The MPTBESDPTD between the reconstructed cardiac phases and the
ECG signal are0.023 + 0.021s. The four peaks of the reconstructed cardiac phases are effectively
aligned with the peaks of the ECG signal, as shown in Fig. 8.

——ECG 5 ' 4
1 Cardiac Phases
- _'.-**'\f‘l \__JV"”\f‘A__.._.:—-'\fj\_J“"“‘\PjL

-1.0 T T ¥ T Y T T T T T v T T T T T T
20 25 30 35 40 45 50 55 60
Time (X 0.067s)

Fig. 8 An example of the reconstructed cardiac phases synchronized wlCthesignal for sequence Data2 of

—
[—]

ty (mm/s)
)
h
!

Normalized Veloci

patient P1. Red curve:/the ECG signal; Orange curve: reconstructed génalies; Data2: LCA sequence.
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Fig. 9. Reconstructed cardiac phases along with the increase ©inchronized with the ECGisignal for sequence
Data4 of patient P1. Data4: LCA sequence.

Fig. 9 shows the synchronization between the ECG signal andithe reconstructed cardiac phases
along with the increase ot from 0.01 to 0.1. The time of.the peaks’in the ECG signal are
0.870s, 1.564s, 2.256s and 2.944s, respectively. For each reconstructed cardiac phases at differ-
ent a, the MPTD:SDPTD between the cardiac phases and the ECG signal @628/ + 0.015s.

In addition, for the other sequences in DWGT, the reconstructed cardiac phases at diffalenmt
have the same accuracy which indicates that the,accuracy/of cardiac phase reconstruction is not
influenced bya.

Fig. 10 shows the synchronization between the ECG signal and the cardiac phases by T-PCA,
M-PCA, PCR, and DMT, respectively. Cardiac cycles in the ECG signal are computexithye
difference between the peaks in two successive,R-waves. The mean and standard deviation of the
cardiac cycles ar®.744 + 0.094s; indicating that the cardiac cycles change much throughout the
sequence, as shown in Fid). According to.the order of T-PCA, M-PCA, PCR, B-DMT and DMT,
the MPTD+SDPTD between the cardiac phases and ECG signa).aré + 0.093s, 0.059 +
0.083s, 0.037 + 0.045s, 0.015 + 0.013sand 0.015 + 0.013s, respectively. The peaks of the car-
diac phases achieved by DM3 the closst to the peaks of the R-waves in the ECG signal. In
addition, the cardiac phases by B-DMT is coincident with the phases by DMT.

— FECG ~»  T-PCA
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B-DMT =—— DMT
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Fig.10-An example of reconstructed cardiac phases synchronized with theif@Gof sequence Data5 of patient
P1by four methods, T-PCA, M-PCA, PCR, B-DMT and DMT, respectivesrdiac phases obtained by each method
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are synchronized with ECG signal, respectively. Data5: RCA sequence.
Table 1 MPTD+SDPTD (s) between the cardiac phases and corresponding ECG signalg famences in
DWGT by four methods, viz. T-PCA, M-PCA, PCR, and DMT, respectivelynNNumber of covered R-waves

Page 14 of 22

Datal-Data3: LCA sequences; Data4-Data7: RCA sequences. AvcagAvalues.

ECG Signal T-PCA M-PCA PCR DMT

pata Cycles (s) Num. MPTD+SDPTD (s)

Datal | 0.723 + 0.004 3 0.098 £+ 0.083 0.129 + 0.185 0.187 + 0.253 0.031 £+ 0.045
Data2 | 0.746 + 0.010 4 0.033 £ 0.024 0.167 + 0.254 0.117 £ 0.101 0.023 + 0.021
Data3 | 0.642 + 0.005 2 0.018 £ 0.019 0.049 £+ 0.067 0.382 £ 0.227 0.018 £0.019
Data4 | 0.686 + 0.005 4 0.029 £ 0.023 0.312 + 0.357 0.123+0.171 0.023 4 0.015
Data5 | 0.744 + 0.094 3 0.076 £ 0.093 0.059 + 0.083 0.037 +,0.045 0.015+ 0.014
Data6 | 0.695 + 0.005 4 0.039 + 0.045 0.167 £ 0.177 0.155 + 0.175». 0.034 £+ 0.037
Data7 | 0.700+ 0.012 4 0.055 + 0.043 0.114 + 0.125 0.039+£ 0.017 | 0.039 £ 0.017
Avg. 0.710 + 0.045 - 0.053 + 0.067 0.161 + 0.204 0:141 + 0.160°  0.027 + 0.024

For each sequence from dataset DWGT, Table 1 shows the MPTD£SDPTD between the recon-
structed cardiac phases and the corresponding ECG signals by T-PCA, M-PCA, PCR, and DMT
respectively. The Cycles in the second column of Table 1 show the'mean and standard déviation
cardiac cycles in each ECG signal, and Num. refers to the number of covered R-wavesfiudm the
contrast filling of coronary artery to the start of contrast'agent washing out ajrteary artery.

In Table 1, a large heart rate variation is observed when Data2, Data5, and Data7 are &tquired.
particular, the heart rate varies much in Data5. Despite the'variations in heart g]iiiephases
reconstructed by DMT can always effectively synchronized with the corresponding ECG signals.
The cardiac phases reconstructed by T-PCA have a large deviation when the heart rateiclaries m

In M-PCA and PCR, cardiac phases have a larger deviation with the ECG signals in most sequences.
In addition,MPTD+SDPTD by B-DMT are the same with DMT.
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Fig: 11 Distribution of the peak temporal distances between the reconstructét gardses and ECG signal by
four methods, T-PCA, M-PCA, PCR, B-DMT and DMT, respectively.

Fig. 11 shows the performance of cardiac phase reconstruction by computing the peak temporal
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distance between the cardiac phases and ECG signals. After synchronizing the peaks of all the data
in DWGT with the corresponding peaks in the ECG signal, the peak temporal distances are dis-
played in Fig.11 According to the order of T-PCA, M-PCA, PCR, B-DMT and DMT,; the
MPTD+SDPTD are0.053 + 0.066s, 0.160 + 0.203s, 0.140 + 0.159s, 0.027 + 0.024s and

0.027 + 0.024s, respectively. This indicates that the cardiac phases by DMT are in maximum agree-
ment with the ECG signals. B-DMT can also achieve the same accuracy with DMT. Peatsal

that are computed by T-PCA deviate with the ECG signal. As to the cardiac phases complited by
PCA and PCR, large errors are caused due to the methods highly dependent on the intensity of
images. We also performed paired t-test on the peak temporal distances to_ evaluate.the performance
of the cardiac phase reconstruction. The p-values between DMT and J-PCA;sM-PCA, PCA are
0.026, 0.002 and 0.001, respectively. It can be seen that all the p-values are smaller than the
commonly accepted significant value 8105, which demonstrates significant differences between
DMT and other three methods.

C. Evaluation of Cardiac Phase Synchronization
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Fig. 12. Synchrenization of the cardiac phases reconstructed from all thenseguin DWGT. Cardiac phases are
reconstructed by four methods, (a) T-PCA, (b) M-PCA, (c) PCR, and (d) Dspectvely. Data2: reference cardiac
phases. Datal-Data3: LCA sequences. Data4-Data7: RCA sequences.

Fig. 12 shows the synchronization of the cardiac phases from the sequences in dataset DWGT
by T-PCA, M-PCA, PCR, and DMT, respectively. In Figs. 12(a)-(d), cardiac phases extracted from
Data2 are regarded as the reference, and the other cardiac phases are synchronizedtiéth it by
method in Section 2.4. As can be seen from Fig. 12(d), cardiac phases computed by DMT are highly
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correlated with each other. In Fig. 12(a), the cardiac phases from Data7 differ much with other _car-
diac phases. In Fig. 12(b) and 12(&diac phases from Data5 and Data6 deviate much with respect
to cardiac phases of Data2. In two different sequences, if the cardiac phases are recenstructed accu-
rately, the spline interpolation will not change the increasing or decreasing rule ofliee paases
Hence, the cardiac phases present high correlation after the synchronization, as can also be seen
from Fig. 12(d).

According to the order of T-PCA, M-PCA, PCR and DMT, the MRSDPCC between dif=
ferent cardiac phases arg6.42% + 16.24%, 81.03% + 22.66%, 81.33% + 17.87% and
89.45% + 9.22%, respectively. As shown in Fig. 13, with either stable or varying heart rate, DMT
could obtain an effective synchronization between different cardiac phases. The synchronization
between RCA and LCA sequences is also very robust. Paired t-test is calculated on the correlations
of DMT and other three methods T-PCA, M-PCA, and PCR. The p-values are all'much graaller
0.05, which demonstrates the significance of the differences in performance between DMT and
other three methods.
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Fig. 13. PCC between the reconstructed cardiac phases from sequdd&3Trby methods, T-PCA, M-PCA,
PCR and DMT, respectively:

To validate the wide applicability of DMT, Fig. 14 compares the accuracy of the cahdise
synchronization fromnthessequences of patient P2 in DWOGT. Fig. 14(a) shows the cardiac phase
synchronization by DMT, which indicates that cardiac phases from different sequences are highly
correlated with each other. Fig. 14(b) shows the correlations by T-PCA, M-PCA aRERMT,
respectively. The.MPCESDPCC by the four methods a6&.33% + 12.71%, 77.03% + 7.75%,

79.32% + 7.04% and 90.31% + 3.83%, respectively. Fig. 15 also compares the accuracy of car-
diac phase synchronization from the sequences of patient P9 in DWOGT. TheH3PECC by

the four methods are67.54% + 12.71% , 88.42% + 7.03% , 72.08% + 15.31% and
98.17% + 1.48%, respectively. Table 2 displays the correlations of cardiac phases from the se-
guences of the remaining 10 patients in DWOGT. DMT achieves the largest correlationhier al
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1
2
i sequences from the 10 patients. It is demonstrated that DMT could effectively synchronize the car-
5 diac phases from different RCA and LCA sequences. Paired t-test is again applied o@ tialPC
6 the sequences from DWOGT between DMT and T-PCA, M-PCA and PCR, respediivelp-
; values are all much smaller th@n05, which also demonstrates statistical significance of the dif-
9 475  ferences between DMT and other three methods.
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;2 Fig. 14. Synchronization of the cardiac phases reconstructed ffom treseg of patient P2 in DWOGT. (a) Syn-
27 chronized cardiac phases. (b) Correlations of the cardiac phases by footsn@tPCA, M-PCA, PCR, and DMT,
28 respectively. Datal-Data5: LCA sequences; Data6-Data7::RCA sequences.
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45 Fig. 15. Synchronization of the cardiac phases reconstructed from trenseg of patient P9 in DWOGT. (a) Syn-
46 chronized cardiacphases. (b) Correlations of the cardiac phases by nfeB@ds M-PCA, PCR, and DMT, re-
47
48 spectively. Datal-Data5, Pata8-Datall: LCA sequences; Data6-Data7, Datal2:(REnAces.
49 Table 2. MPC@SDPCC (%) of.synchronized cardiac phases from the sequences in DWJ@r byethods, T-
50 485 PCA, M-PCA, PCR, and DMT, respectivefvg.: average value.
51
52 Data T-PCA M-PCA PCR DMT
gi P3 8245+ 16.37 80.67 £ 14.50 65.71 + 2.66 96.90 + 0.39
55 P4 84.27 +5.73 62.81+594 79.30+2559 93.58+0.79
56 P5 87.51+10.59 68.03+18.25 58.64+42.49 93.48+3.34
;7; P6 84.26+591 7556+10.50 81.54+9.41 94.35+2.17
59 P7 92.43+7.19 71.21 £18.10 90.20 £ 5.26 94.30+5.13
60 P8 71.47 £ 12.60 80.84 + 7.78 7218 +17.07 96.35+2.16
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P10 77.15+12.60 83.28+12.20 79.78%6.52 97.39 +£1.42
P11 89.69+11.06 89.62+343 6237+12.22 95.47+3.98
P12 86.92+10.99 77.24+10.40 8496 £3.72 97.88 +1.04
P13 83.06 + 8.58 57.17 +4.79 91.62 +3.75 92.87 +4.02
Avg. 79.29+13.25 76.89+14.14 73.78+£22.55 95.05+3.61

Table 3 shows the time of motion tracking, cardiac phase reconstruction and cardiac phase
synchronization, respectively, whemm = 0.01 and « = 0.1. For different sequences, the time ef-
ficiency differs by the number of angiograms in the sequences. For the same sequence, the time
efficiency differs by the number of detected key points and the number is decided by
Table 3. Computational time (s) of motion tracking, cardiac phasestaotion and cardiac phase synchronization,
respectively, where = 0.01 and a« = 0.1.

Data a =0.01 a=0.1
DMT Multi-Layer Matching 539.79 + 52.16 539.79 £ 52.16
Motion Tracking 40.23 + 3.79 2.54'+ 0.99
Cardiac Phase Reconstruction 0.40 £+ 0.05 0.02 + 0.01
Cardiac Phase Synchronization 0.19 0.19
4. Discussion

In this manuscript, we proposed a novel{and robust.deep motion tracking technique for syn-
chronization of cardiac phases from multiview angiographic images and demonstrated its applica-
tion in X-ray angiographic image sequences from different imaging angles. Our technique was val-
idated by using DWGT which contains 7 clinicalysequences of the same patient who underwent
ECG-gated examination. DWOGT was also used for the evaluation, which contains 75 clinical se-
guences from another 12 patients. For the motion traclébgy and 90.7% matched points are
accurately computed. For the reconstruction of cardiac phases, we established peak temporal dis-
tance of0.027 + 0.024s and correlations 089.45% + 9.22% for 7 sequences in DWGT. &V
also obtained correlations with*lowest values 99.31% + 3.83% and highest values of
98.17% + 1.48% for the 75 X-ray:sequencesDWOGT.

For motion tracking, we performed a comparative quantitative evaluation on two groups of
corsecutive images«randomly. selected from clinical datasets to validate whether our tracking
method is superior to‘previously published MIR, DeepFlow and EpicFlow methods. Ma et al. (Ma
et al., 2015) proposed:that the'maximum coronary diameter rarb-¥Vith the minimum magni-
fication of 1.3, the diameter of coronary artery in images is 6.5-9.1mm (22-30 pixels &tefjam
Hence, the Euclidean distance less than 3 pixels between the computed point and labelled point can
be regarded as accurateimatching. However, since DMT is based on the local transformation, track-
ing errorsican be caused when the structures does not appear both in consecutive angiograms. Be-
sides, the tracking.errors can also appear when matching point pairs appear in regiepgtititrer
textures. When compared with other methods, the results showed that our proposed tracking method
is much better than MIR, DeepFlow and EpicFlow methods. For MIR method, intensity based sim-
ilarity metric and affine transformation are utilized. The metric is not suitabledadronary artery
sequences in which patient motion and contrast agent non-uniform injection both cause intensity
variation in images. Meanwhile, the motion in coronary artery sequences is non-rigid and cannot
accurately computed by an affine transformation. For both DeepFlow and EpicFlow methods, gray
value assumed constancy throughout the sequence. However, this assumption is not true in most
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1

2

2 coronary artery sequences (Meijering et al., 1999; Meijering et al., 1999). Thasethauls utilize

5 520 variational optimization techniques, which cannot accurately deal with regions without anatomical
6 structures (Baker et al., 2011). These may be the reasons that DeepFlow and Epicklow ¢annot ac-
7 curately track pointg the images of coronary artery sequences.

S For the evaluation of cardiac phases, a comparison was performed on all clinical X-cay angi

10 graphic image sequences. The purpose was to determine whether the proposed technigue is superior
n 525  to previously developed T-PCA, M-PCA, or PCR methods. The results indicated that our proposed
g technigue outperforms the T-PCA method, which relies on tracking key points throughout the se-
14 guence. In T-PCA, the coordinates of the key points in all the images comprise thke Giaén

15 that some key points deviates from the centerline of coronary artery, the motiondargetyfrifin

1? homologous points owing to cardiac motion. This may cause the large errors on T-PCA. In the M-
18 530 PCA and PCR, image intensity may be changed during imaging procedure by other disturbance
19 including clinician operation catheters and non-uniform contrast agent infusion. This may be a rea-
20 son why M-PCA and PCR methods reconstruct cardiac phases incorrectly.

;; For the time efficiency of the proposed method, the mean@and standard deviation of deep moti
23 tracking and cardiac phase reconstruction 22.33 + 53.15s'and 0.02' 0.01s, respectively.

24 535  The time of cardiac phase synchronizatioi$9s for 7 sequencesaSince the mutli-layer matching

;Z based motion tracking has low time efficiency, the current method cannot be applied in the intra-
27 operative image-guided surgical navigation. However, considering cardiac phase reconstruction and
28 synchronization in the proposed method require considerably low computational time, an extension
;g of motion tracking based on deep learning will be considered. By combining the high accuracy and
31 540 efficiency of deep learning, the proposed.method can then be suitable for intra-operation.

32 The proposed technique is clinical-workflow-friendly and requires no fiducial markers. In clin-
33 ical practice, the technique has the potential to,synchronize X-ray angiographic images from se-
gg guences at different imaging angles. The process is very important for the&fnstruction of

36 the coronary artery because it generates clear and dynamic structural information for physicians.
;73 545 5. Conclusions

39 We presented a novel andipotentially clinically useful cardiac phase synchronization technique
2(1) based on deep motion tracking@and.applied it to the automatic synchronization in X-ray image se-
42 guences. Unlike previously developed synchronization methods, our technique is robust to motion
43 of complicated weak textures and multiple motion coexistence. Thus, it is suitable to X-ray angio-
jg 550 graphic images that-econtain different types of motions, large weak texture regions, and multiple
46 physical structures. One major limitation of the proposed method is based on the motion.tracking
47 When the motion tracking are not accurately computed, the precision of the cardiac phase recon-
48 struction will-be greatly affected. This situation often occurs when the vascular ssustasent

gg missing segments.
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