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Abstract 

Background. Processing speed (PS) deficits have been consistently observed in secondary 

progressive multiple sclerosis (SPMS). However, the underlying neural correlates have not been 

clarified yet. The present study aimed to investigate the relationship between macrostructural and 

microstructural white matter (WM) integrity and performance on different cognitive measures 

with prominent PS load. 

Methods. Thirty-one patients with SPMS were recruited and underwent neurological, 

neuropsychological, and MRI assessments. The associations between a composite index of PS 

abilities and scores on various tests with prominent PS load and T1-weighted and diffusion tensor 

image parameters were tested. Analyses were carried out using voxel-based morphometry (VBM) 

and tract-based spatial statistics (TBSS). 

Results. VBM results showed that only the semantic fluency task correlated with the volume of 

different grey matter (GM) volume in a range of cortical and subcortical areas bilaterally as well 

as the corpus callosum and the superior longitudinal fasciculus. TBSS analysis revealed 

consistent results across all the cognitive measures investigated, showing a prominent role of 

commissural and frontal associative WM tracts in supporting PS-demanding cognitive operations. 

Conclusions. In patients with SPMS, PS abilities are mainly dependent on the degree of both 

macrostructural and microstructural WM integrity. Preservation of associative WM tracts that 

support information integration seems crucial to sustain performance in tasks requiring fast 

cognitive processes. 
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Hightlights 

 

• Processing speed deficits are common in secondary progressive multiple sclerosis 

• Little is known about the neural correlates of this function in this disease 

• Frontal white matter integrity supports this function in this disease 

• Associative and callosal tracts with information integration roles are involved 

• These white matter tracts are crucial to support fast cognitive computations 
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1. Introduction 

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system 

characterized by demyelination and axonal loss [1]. Cognitive impairment has been increasingly 

recognised as one of the common symptoms observed in 40% to 70% of patients [2]. Processing 

speed (PS) appears to be one of the cognitive functions more consistently affected by this 

pathology [3,4], even in the absence of any significant motor slowing [5]. 

PS is defined as either the time required to process a given amount of information or the amount 

of information processed in a time unit [6]. The first signs of PS decline can be detected in pre-

symptomatic patients at the radiologically isolated syndrome stage of this illness [7], although the 

most severe deficits are usually observed in patients with secondary progressive MS (SPMS) [8]. 

Slowed PS has broader repercussions on performance in other cognitive domains [9-15]. 

Moreover, PS deficits negatively influence patients’ quality of life [16] and the anxiety and 

depressive symptoms experienced by their caregivers [17]. 

Advancements in neuroimaging studies have highlighted how demyelinating lesions are 

increasingly detected in grey matter (GM) [18,19], and the association between regional GM loss 

and functional disability has become a well-established feature of MS [20]. However, the 

structural neural correlates of specific cognitive symptoms commonly observed in MS have not 

been completely clarified especially in the progressive phenotypes of this disease [21]. 
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Most published studies investigated structural differences between cognitively impaired and 

unimpaired patients with either relapsing-remitting MS (RRMS) or other MS phenotypes 

indistinctly grouped [22,23]. Such studies have two major flows. Firstly, the operational 

definition of cognitive impairment in MS varies considerably across studies [24]. Secondly, 

patients are usually diagnosed as being cognitively impaired only on the basis of a set number of 

failed tests without discriminating which specific function. However, recently different profiles of 

cognitive decline have been detected among people with RRMS [25]. Therefore, grouping 

together individuals who may present deficits in different cognitive domains may lead to 

potentially confounding results. In those studies that looked at the correlations between cognitive 

performance and voxel-based brain morphometric measures, only global indices of GM atrophy 

were analyzed [26-28]. Similarly, those studies that focused more specifically on PS performance 

in patients with SPMS only investigated the relationship with the global volume of regions of 

interest [29,30]. 

Diffusion tensor imaging (DTI) studies in SPMS comparing patients with and without cognitive 

impairment observed diffuse reductions of white matter (WM) microstructural integrity in 

cognitively impaired patients [31,32]. Moreover, Rocca et al. [33] found that PS abilities of 

patients with SPMS correlated with average WM microstructural integrity in the corpus callosum 

and the fornix. To our knowledge, there are no published studies that have investigated the 

correlation between PS abilities of patients with SPMS and voxel-based measures of GM and 

WM structural integrity. 

Considering the severe cognitive impairment seen in patients with SPMS, and the paucity of 

published neuroimaging studies focusing on the neural underpinning of PS impairments in this 

patient population, the aim of the present study was to investigate, at both macrostructural and 
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microstructural levels, the neural correlates of PS-demanding cognitive performance of patients 

affected by SPMS. 

 

2. Methods 

2.1. Sample 

Thirty-one patients (16 females) with SPMS meeting the clinical diagnostic criteria by Lublin et 

al. [34] who reported subjective cognitive complaints and who had been relapse-free for at least 3 

months were consecutively recruited at the MS clinic of the IRCCS Fondazione Ospedale San 

Camillo (Venice, Italy). To be included in this study, patients had to show preserved global 

cognitive status screened by means of the Raven’s Coloured Progressive Matrices [35] and 

absence of other neurological or psychiatric comorbidities. All participants underwent a detailed 

neurological examination and were assigned scores on the Expanded Disability Status Scale 

(EDSS) [36]. 

This study was carried out according to the Declaration of Helsinki and was approved by the 

Institutional Review Board of the aforementioned institution (Protocol N. 11/09 version 2). 

Written informed consent was obtained from each study participant. 

 

2.2. Neuropsychologica l assessment 

Patients’ cognitive performance was assessed by means of a neuropsychological battery of 

selected tests: 

- Raven’s Coloured Progressive Matrices [37]. Thirty-six figures missing a part are to be 

completed with a piece selected among a choice of six (maximum execution time of 10 
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minutes). This test measures abstract reasoning skills and absence of major intellectual 

deficits is indexed by an adjusted score > 17.5. 

Five tests were specifically selected to assess cognitive performance with prominent PS 

demands either in terms of time to complete a task or the amount of information processed 

per unit of time: 

- Trail Making Test part A (TMT-A) and part B (TMT-B) [38]. In TMT-A participants are 

instructed to connect as fast as they can numbers from 1 to 25 on a paper sheet drawing 

straight lines and without raising the pen from the paper. TMT B is analogous but 

participants have to alternate both numbers (1-13) and letters (A-L).  The PS measure is 

the time in seconds needed for a participant to complete the TMT A [39], while the 

difference between part B and part A (TMT B-A) provides an index of executive task-

switching abilities [40]; 

-  Stroop Test [41]. Participants have to complete three sequential trials of word reading, 

colour naming and word-colour interference inhibition. The PS measure is calculated as 

the average of the time in seconds required to complete the first two trials [10], while the 

difference between the time on the third trial and the average time on the first two is used 

to quantify the executive ability to inhibit automatic responses [41]; 

- Digit Cancellation Test (DCT) [42]. Three arrays of digits are presented to participants 

that have to scan each line from left to right and cancel out as fast as they can one, two 

and three given digits respectively. The sum of all the correct items detected within 45 

seconds is considered a measure of PS; 

- Phonemic Fluency (PF) [43]. Participants are given the letters P, L, and F (one at a time) 

and asked to say as many words starting with each letter that they can think of in one 
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minute, excluding proper names of people and names of places. The sum of all the 

correct items reported is the PS-dependent variable investigated [44]; 

- Semantic Fluency (SF) [43]. Participants are given the categories cities, animals, and 

fruits (one at a time) and asked to say as many items from each category that they can 

think of in one minute. The sum of all the correct items reported is the PS-dependent 

variable investigated [44]. 

 

Scores obtained by patients on three timed tests that enable the evaluation of different types of 

cognitive speed (i.e. TMT-A, Stroop speed and number of items detected on the DCT) were z-

transformed and averaged to calculate a composite index (PSCI) as a measure of PS function. 

Before calculating the composite index, the score on the DCT had to be converted in a format that 

quantified PS abilities analogously to the other two tests, i.e. the higher the score the worse PS 

performance. The PSCI was calculated by combining three simple tests routinely used in clinical 

practice but nonetheless characterised by a substantial cognitive component (more complex than 

in simple reaction time tasks) in order to minimise possible confounding effects of peripheral 

motor impairments on test results. Indeed, it is difficult, if not almost impossible, to disentangle 

completely the assessment of sensory, cognitive, and motor components in PS tasks [45]. 

Moreover, raw scores on the TMT B-A, Stroop inhibition, PF and SF tests were used to 

investigate cognitive abilities characterised by substantial PS load. 

 

2.3. MRI acquisition 

Patients were scanned on a 1.5 T Philips Medical Systems Achieva scanner (Best, the 

Netherlands) with a standard head coil. The MRI protocol included a structural three-dimensional 
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T1-weighted scan acquired using the following parameters: 280 sagittal slices; repetition time 

(TR) = 7.4 ms; echo time (TE) = 3.4 ms; voxel dimension = 1.1 mm × 1.1 mm × 0.6 mm. A 

Diffusion Tensor Imaging (DTI) scan was also acquired using the following parameters: 32 

diffusion-weighted directions; 45 axial slices; TR = 8280 ms; TE = 70 ms; voxel dimension = 

1.67 mm × 1.67 mm × 3 mm. Additionally a Fluid-Attenuated Inversion Recovery (FLAIR) scan 

was acquired: 30 coronal slices; TR = 8000 ms; TE = 125 ms; voxel dimension = 0.75 mm x 0.75 

mm x 4.5 mm. 

 

2.4. WM lesion segmenta tion 

First T1-weighted and FLAIR scans were reoriented to the Anterior Commissure-Posterior 

Commissure line to optimize subsequent preprocessing steps. Second WM lesions were 

segmented on the reoriented T1-weighted and FLAIR images by the lesion growth algorithm as 

implemented in the Lesion Segmentation Toolbox (LST) v1.2.3 

(www.statisticalmodelling.de/lst.html) developed for SPM8 and tested on a sample of 53 people 

with MS by Schmidt et al. [46]. The initial threshold to produce lesion maps was set at k = 0.3, 

value that has been observed by the authors to provide the closest quantification of total lesion 

volume (TLV) to that obtained using manual segmentation, considered as the gold standard. TLV 

in millilitres was automatically extracted by the toolbox. 

After visually inspecting all individual lesion probability maps generated by LST to ensure no 

errors of lesion tissue classification had occurred, the maps were binarised and normalised to the 

standard ICBM template by using SPM8. Subsequently the individual maps were averaged by 

using the SPM8 toolbox ImCalc in order to obtain a group-specific lesion probability map [47]. 
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2.5. VBM preprocessing 

VBM analysis was carried out using Statistical Parametric Mapping software (SPM8, Wellcome 

Trust Centre for Neuroimaging, London, UK, http//www.fil.ion.ucl.ac.uk/spm) running on 

MATLAB R2008a, version 7.6.0 (The Mathworks, Natick, Massachusetts, USA). 

First to avoid possible biases in VBM analysis, T1-weighted images underwent a lesion-filling 

process implemented in the LST toolbox using the previously segmented lesion maps [48,49]. 

Second the images were segmented into three tissue classes, i.e. GM, WM, and cerebrospinal 

fluid (CSF). Tissue maps saved in the native space were used to extract global volumes of each 

tissue by using the “get_totals” script (http://www0.cs.ucl.ac.uk/staff/g.ridgway/ 

vbm/get_totals.m) and total intracranial volume (TIV) was calculated as the sum of GM, WM, 

and CSF volumes. Finally, GM and WM images, bias-corrected for MR field inhomogeneities 

and normalised to the MNI template, were smoothed applying an isotropic Gaussian kernel of 8 

mm. 

 

2.6. TBSS preprocessing 

TBSS analysis was carried out on DTI scans using the FMRIB Software Library v5.0.8 (FSL, 

http://www.fmrib.ox.ac.uk/fsl). 

The Diffusion Toolbox was used to correct the scans for eddy currents and head motion. Then the 

Brain Extraction Tool deleted the non-brain tissue from the corrected images by applying a 

fractional intensity threshold of 0.5 to delineate the brain outline. A binary brain mask was 

generated and used to fit the diffusion tensor model at each voxel of the DTI images. The 

obtained FA images were fed into the 4-step TBSS procedure 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide). Firstly, FA images were eroded in order 
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to prevent outliers to be included in the diffusion tensor fitting step. Secondly, the most 

representative subject of the sample was identified as a target template for subsequent non-linear 

alignment. Finally, images were registered to the MNI152 standard space and a threshold of 0.2 

was applied to FA to exclude GM and CSF voxels. 

2.7. Sta tistica l ana lysis 

All the statistical analyses on cognitive and clinical data were carried out using IBM SPSS 

Statistics Version 21 (IBM, Chicago, IL, USA). 

Normality of distribution for all cognitive variables was tested using the Shapiro-Wilk test. 

Subsequently, correlations between the PSCI, Stroop test and fluency tasks were tested by using 

the Pearson’s r (two-tailed Į = 0.01). The Spearman’s ȡ was used for the TMT-B-A because 

performance on this test was not normally distributed. In addition, the relationship between all the 

cognitive variables, WM TLV and fatigue severity was investigated. A correlational approach 

[50] was also adopted in the neuroimaging analyses and the same linear regression model was 

applied to both VBM and TBSS with three covariates: age, education, and TIV as a proxy 

measure of brain reserve [51]. The VBM analysis was used to correlate cognitive performance 

with regional WM and GM volumes. TBSS, instead, allowed the parallel investigation of the 

relationship between PS function and WM microstructural integrity. Additionally, to investigate 

whether associations with MRI variables were specifically dependent on PS load, the 

correlational analyses for all the cognitive tests (TMT B-A, Stroop inhibition, PF and SF) were 

subsequently repeated controlling for the PSCI. 

In the VBM analysis, clusters were considered as significant if they survived statistical correction 

for multiple comparisons at a family wise error (FWE) threshold of p < 0.05. The brain areas 

included in the significant GM clusters were identified by means of the Talairach Daemon 
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(http://www.talairach.org/daemon.html). Similarly, the randomise FSL tool was used to perform 

non-parametric TBSS analysis on DTI data and 5000 permutations were carried out for each 

model. Significant results were reported by threshold-free cluster enhanced (TFCE) images.[52] 

Raw result images were masked with significant (p < 0.05) voxels from TFCE images and both 

peak and cluster data in MNI152 standard space were extracted from the resulting images. 

Finally, WM tracts were identified using the JHU ICBM-DTI-81 White-Matter Labels atlas [53]. 

 

3. Results 

3.1. Behavioura l results 

The clinical, cognitive and volumetric characteristics of the patients recruited in this study are 

summarised in Table 1. The correlational analysis showed that the PSCI was strongly associated 

with performance on all tests apart from TMT B-A: semantic fluency (r = -0.52, p < 0.01), 

phonemic fluency (r = -0.51, p < 0.01) and Stroop inhibition (r = 0.38, p < 0.05). However, when 

the impact of TLV on cognition was investigated, only scores on the SF task were found to be 

negatively associated with the amount of WM damage (r = -0.39, p < 0.05). Moreover, the 

correlational analysis between FSS scores and cognitive data (Pearson’s r for PSCI, Stroop and 

fluency tests and Spearman’s ȡ for the TMT-B-A)  found that only the PSCI resulted significantly 

correlated with fatigue severity: r = 0.483, p = 0.013. 

 

[Add Table 1] 

 

3.2. VBM results 
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The highest peaks of WM lesion probability were detected mainly in the superior corona radiata, 

containing both projection and associative tracts, periventricular WM and occipital WM (Figure 

1). 

 

 

Figure 1 Lesion probability map created as an average of individual lesion maps 

 

Scores on the semantic fluency task were found to correlate with regional volumes of bilateral 

WM clusters mainly involving the superior longitudinal fasciculus, the corpus callosum and the 

anterior thalamic radiations (Figure 2). The same WM tracts retained significant associations after 

controlling for PS abilities, but in much smaller clusters (Table 2). Instead, no significant 

correlations were found between WM regional volume and the PSCI score or scores on other 

cognitive tests. 
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Figure 2 WM regions correlated with scores on the semantic fluency task before (red) and after (blue) 

correcting for PS abilities at pFWE < 0.05 

 

Similar findings were observed in the VBM analysis on GM maps where only scores on the 

semantic fluency task were significantly correlated with regional GM volumes namely the 

occipital and temporal areas, the posterior cingulate cortex and the caudate (Figure 3). After 

controlling for PS performance, only occipito-temporal areas still emerged as strongly correlated 

with semantic fluency scores (Table 2). 
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Figure 3 GM regions correlated with scores on the semantic fluency task before (red) and after (blue) 

correcting for PS abilities at pFWE < 0.05 

 

[Add Table 2] 

 

3.3. TBSS results 

At a microstructural level, PSCI scores were associated with the integrity of the corpus callosum 

and different frontal tracts, namely the anterior thalamic radiations and the inferior fronto-

occipital fasciculus. Performance in all cognitive tests was differentially associated with FA in 

several WM tracts, though, for the TMT B-A, the significance threshold was increased to p = 0.1 

to probe the strongest peaks of correlation that emerged in a cluster in the forceps minor (Figure 

4). Indeed, FA in the corpus callosum was positively associated with performance on all tests, 
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despite widespread patterns of correlations, especially for the semantic fluency and the Stroop 

inhibition tasks. Nonetheless, some of the strongest associations were consistently found in the 

inferior fronto-occipital fasciculus as observed for the PSCI (Table 3). Additionally, the superior 

longitudinal fasciculus also emerged as significantly involved in supporting PS-demanding 

cognitive performance across tests. 

For semantic fluency and Stroop inhibition, a similar pattern of associations survived statistical 

correction for the PSCI, but in smaller clusters. However, a shift of the most significant peaks of 

association towards more posterior occipito-temporal tracts, i.e. the forceps major and the inferior 

longitudinal fasciculus, clearly emerged for both tests. For phonemic fluency, no significant 

results were observed after controlling for PS abilities. 
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Figure 4 WM tracts in which FA positively correlated with the PSCI (blue), the phonemic fluency task 

(red), and the semantic fluency task before (orange) and after (light blue) correcting for PS abilities (p < 

0.05 TFCE) 

 

[Add Table 3] 

 

3.4. Supplementary results 

Because of the heterogeneous cognitive and motor functions required by the tests used to 

compute the PSCI , supplementary analyses were carried out on two distinct PS components: 

visuo-motor (combining the TMT-A and the DCT scores) and verbal (Stroop speed). While no 

significant associations with GM/WM volumes were found, we observed that verbal PS 

correlated with FA mainly in the corpus callosum, left anterior thalamic radiations and bilateral 

inferior fronto-occipital fasciculus. Increasing the significant threshold in TBSS analysis to p = 

0.1, visual PS also correlated with FA in similar frontal WM tracts (Table 4). These results are 

consistent with those observed for the PSCI and highlight how the verbal and less motor-related 

PS index appears more strongly correlated with WM integrity, as reflected also in the analysis of 

the different PS-demanding cognitive tests. 

Additionally, given the finding of an association between fatigue severity and PSCI, FSS scores 

were added as a covariate in the analyses of the neural correlates of the PSCI.  

No significant associations between the PSCI and either GM or WM regional volumes emerged in 

our VBM analyses after controlling also for fatigue severity. A change in results, instead, was 

observed in the TBSS analysis after adding FSS scores as fourth covariate, since no significant 

associations between the PSCI and FA remained. This result may, to some extent, be expected 

considering the correlation existing between the PSCI measure and fatigue severity. However, in 
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this study the directionality of the relationship between objectively assessed PS performance and 

patients’ self-perception of fatigue cannot be ascertained. 

 

[Add Table 4] 

 

4. Discussion 

In this study the combination of VBM and TBSS analyses provided new insights into the 

association between measures of structural brain integrity and cognitive performance of patients 

with SPMS on tasks characterized by a substantial PS load. The investigation of WM 

microstructure showed that PS function is associated preferentially with the level of integrity of 

commissural and frontal associative WM tracts: the body of the corpus callosum, the anterior 

thalamic radiations and the inferior fronto-occipital fasciculus. Similar results were replicated 

after disentangling the visuomotor and the verbal components of the PSCI. The latter, less 

confounded by possible deficits in motor execution, was observed to be more strongly correlated 

with FA in the abovementioned WM tracts than its visuomotor counterpart. Indeed, only the 

adoption of a less restrictive threshold in the TBSS analysis allowed the detection of significant 

correlations for the visuomotor PS component. 

Furthermore, performance on the PS-loaded cognitive tests was associated with FA values in 

analogous WM tracts, especially with the corpus callosum, which resulted significantly involved 

in each single test, and the inferior fronto-occipital fasciculus, detected for the Stroop and the 

fluency tasks. Hence, these two fiber bundles, along with anterior thalamic radiations, appear to 

represent the structural network supporting PS-loaded cognitive performance in people affected 

by SPMS, in line with previous findings in ageing [54-56]. Additionally, the superior longitudinal 
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fasciculus was found associated only with more complex tests (Stroop and the fluency tasks), but 

not with the indices of PS, possibly because of their greater global cognitive load beyond PS 

[57,58]. 

After statistically controlling for PS ability, the correlation between FA and the Stroop and 

semantic fluency tests only survived in smaller clusters of WM mainly localised in posterior 

occipital (forceps major) and occipito-temporal (inferior longitudinal fasciculus) tracts involved 

primarily in visual perceptual processes [59]. Therefore, the PS load that characterizes these tests 

appears the main component driving the detection of significant correlations in more frontal and 

cognitively salient WM tracts. 

VBM analysis was used with the aim to investigate whether regional atrophy of either WM or 

GM could also capture PS decline, since the secondary progressive stage of this disease is known 

to be heavily characterized by neurodegenerative processes [60] resulting in considerable levels 

of brain atrophy [61]. In our battery of tests, only the scores obtained on the semantic fluency task 

emerged significantly correlated with both GM and WM volumes. Moreover, this unique 

association was also found with TLV, thus confirming that semantic fluency may be particularly 

sensitive to WM damage. Indeed, semantic cognition is supported by a distributed network both 

for storage of semantic knowledge [62] and deployment of sematic control processes [63].  On 

the contrary letter fluency is a task requiring prevalently executive control processes associated 

with the frontal lobes that undergo macrostructural degeneration later on in the disease course 

[61]. 

The findings of this study suggest that in this clinical population fast cognitive processing is 

supported by structural connections that enable integration of information across each hemisphere 

and especially between frontal lobes and other GM structures. Indeed, these findings support the 
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view that MS is a disconnection syndrome [64] and the hypothesized network collapse underlying 

the cognitive dysfunction seen in this illness [65]. In line with the cognitive efficiency theory [66] 

and neuroimaging findings that support it [67,68], it could also be argued that in MS, a condition 

particularly characterized by PS deficits [3], the execution of PS-challenging cognitive tasks 

requires greater deployment of executive control processes reliant on brain networks centered on 

the frontal lobes. Therefore, preservation of frontal connections that allow control processes over 

other cognitive functions appears crucial for people affected by MS while performing PS-

demanding tasks. Among the various WM tracts likely to be crucial for cognitive PS abilities, of 

particular interest is the IFOF whose level of microstructural integrity was found to correlate with 

all of PS-related tests investigated in this study. In fact, the IFOF has been found to subserve 

complex functions related to semantic cognition, though characterized by interhemispheric 

differences [69,70], and to contribute to attention orienting [71]. 

Instead, results on the correlation between PS performance and self-reported levels of fatigue are 

of difficult interpretation, since the analysis carried out in this paper cannot clarify the 

directionality of such association. Fatigue, in fact, represents the symptom most commonly 

experienced by a vast majority of patients with MS and its relationship with cognitive decline and 

depressive symptoms is not clear [72]. In particular, self-reported fatigue and cognition appear 

only weakly related and depression and fatigue were observed to explain only 6% of the variance 

in objectively assessed cognitive performance [73]. Consistently, deficits in PS in people with 

progressive MS, compared to healthy controls, have been observed also after controlling for 

fatigue and depression scores [74]. 

In conclusion, our study provides new insights into the structural correlates of PS-related 

cognitive performance of patients with SPMS, a clinical population whose neurocognitive profile 
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is still poorly studied, probably due to the relatively small number of patients experiencing this 

condition compared to RRMS [75]. Further investigations on the functional networks connected 

by the WM tracts observed in our analysis are needed to characterise more extensively the 

relationship between neural and cognitive changes in SPMS. Indeed, currently little is known 

about functional reorganization in SPMS since most investigations have focused on RRMS and 

the Default Mode Network [76]. Moreover, our results should encourage the investigation of 

specific MRI markers of cognitive decline across the spectrum of MS phenotypes. Such MRI-

based markers could provide objective outcome measures for clinical trials that would be useful 

in testing the effects of pharmacological and non-pharmacological interventions on 

neurocognitive function. 
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Table 1 Clinical, cognitive and volumetric characteristics of the patient sample (n = 31) 

Variable Mean SD Median Minimum Maximum 

Demographics      

Age (years) 54.80 11.54 54 29 70 
Education (years) 10.32 2.78 11 5 13 

Clinical characteristics      

Disease duration (years) 16.32 8.48 14 3 31 
EDSS 6.48 1.20 7 3.5 8 
FSS 4.94 1.22 5 2.67 7 

Cognitive tests      

PSCI 0.02 0.95 -0.07 -1.15 2.37 
Stroop inhibition 28.27 15.02 20.50 5.50 66.00 
TMT B-A 131.89 151.03 80.00 5 663 
PF 28.08 11.22 31 8 48 
SF 37.96 11.62 35 20 61 

Neural characteristics      

GMV (ml) 578.88 58.07 587.30 482.30 715.70 
WMV (ml) 433.91 65.96 426.92 312.75 655.00 
TIV (ml) 1685.09 170.39 1685.58 1341.29 2044.44 
TLV (ml) 23.55 18.95 21.69 0.85 81.96 

EDSS: Expanded Disability Status Scale, FSS: Fatigue Status Scale, GMV: Grey matter volume, PF: 
Phonemic fluency, PSCI: Processing speed composite index, SF: Semantic fluency, TIV: Total intracranial 
volume, TLV: Total lesion volume, TMT B-A: Trail Making Test part B - part A, WMV: White matter 
volume 
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Table 2 Positive association between semantic fluency scores and GM/WM regional volumes before and 

after controlling for the PSCI (pFWE <.05) 

Cognitive 
variable 

Cluster 
extent 

Side Brain region t value MNI coordinates 
x y z 

White matter tracts 

SF 364 L ATR 6.16 -16 -2 24 
  L Corpus callosum (body) 4.32 -8 -12 28 
  L Forceps minor 3.96 -14 26 10 
 1180 L Uncinate fasciculus 5.81 -42 16 16 
  L SLF 5.30 -34 12 20 
  L SLF 4.88 -32 -4 40 
 334 R SLF 4.72 46 -6 18 
  R SLF 4.68 42 2 18 
  R SLF 4.19 42 -14 36 

PSCI-
corrected 

SF 

281 L ATR 5.38 -16 -2 24 

  L Corpus callosum (body) 4.28 -12 -14 30 
  L ATR 4.20 -18 -20 24 
 235 R SLF 4.37 42 4 16 
  R SLF 4.36 48 -6 18 
  R SLF 3.99 36 12 24 

Grey matter regions 

SF 504 R Temporal pole (BA 38) 5.99 16 14 -36 
  R PHG (BA 28) 4.21 16 -14 -38 
  R PHG (BA 34) 4.11 8 -8 -24 
 456 R MTG (BA 19) 5.48 44 -84 14 
  R IOG (BA 18) 5.46 40 -92 -12 
  R IOG (BA 19) 4.74 50 -82 -10 
 272 L Caudate 5.06 -6 12 0 
  L Caudate 4.07 -10 8 14 
  L Caudate 3.97 -10 -2 14 
 718 L Precuneus (BA 7) 4.92 -2 -56 54 
  L Precuneus (BA 7) 4.88 -2 -64 48 
  L Precuneus (BA 7) 4.42 -12 -76 52 
 835 L STG (BA 22) 4.86 -48 10 -2 
  L STG (BA 42) 4.44 -58 -14 14 
  L PreCG (BA 44) 4.34 -58 14 10 

PSCI-
corrected 

SF 

211 L IOG (BA 18) 6.11 -42 -92 -12 

  L MOG (BA 19) 5.45 -50 -84 -2 
 466 R MOG (BA 19) 5.81 44 -84 12 
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  R IOG (BA 18) 5.37 40 -92 -12 
  R ITG (BA 37) 4.65 58 -72 -2 
 223 L STG (BA 21) 5.49 -52 -6 -12 
  L STG (BA 22) 3.92 -48 10 -2 
  L Temporal pole (BA 38) 3.65 -40 6 -16 
 215 R Temporal pole (BA 38) 5.27 16 14 -36 
  R PHG (BA 36) 4.43 14 6 -40 
  R PHG (BA 35) 4.00 16 -14 -36 

ATR: Anterior thalamic radiations, BA: Brodmann area, IOG: Inferior occipital gyrus, ITG: Inferior 
temporal gyrus, MOG: Middle occipital gyrus, MTG: Middle temporal gyrus, PHG: Parahippocampal 
gyrus, PreCG: Precentral gyrus, SF: Semantic fluency, SLF: Superior longitudinal fasciculus, STG: 
Superior temporal gyrus 
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Table 3 Correlation between cognitive tests and FA (pFWE <.05) 

Cognitive 
variable 

Cluster 
extent 

Side White matter tract t value MNI coordinates 
x y z 

PSCI 1705 L ATR 5.42 -20 27 30 
  L Corpus callosum (body) 4.78 -13 14 26 
  L ATR 4.75 -22 29 21 
  L Corpus callosum (body) 4.48 -13 7 30 
  L IFOF 4.46 -24 28 8 
  L Corpus callosum (body) 4.40 -7 7 27 

Stroop 
inhibition 

38191 R SLF 5.91 42 -45 9 

  L IFOF 5.76 -29 -72 4 
  R Corpus callosum (body) 5.49 12 19 22 
  L ATR 5.39 -16 -10 -1 
  L Forceps major 5.31 -27 -74 4 
  R Forceps minor 5.20 11 28 13 

PSCI-
corrected 
Stroop 

inhibition 

29954 R SLF 6.14 43 -46 8 

  R SLF 6.07 43 -46 10 
  L Forceps major 5.50 -29 -72 4 
  L Forceps major 5.12 -29 -71 6 
  L ILF 5.02 -44 -38 -7 
  L Forceps major 5.00 -27 -69 2 

TMT B-A*  18 L Forceps minor 3.85 -10 30 11 
  L Forceps minor 3.66 -8 29 10 
  L Forceps minor 3.39 -5 27 10 

PF 212 L SLF 4.71 -17 6 34 
  L SLF 4.19 -17 12 34 
  L SLF 3.93 -16 1 37 
  L Corpus callosum (body) 3.67 -15 19 25 
  L SLF 3.65 -16 9 35 
  L SLF 3.48 -17 15 32 
 205 L SLF 4.70 -29 3 7 
  L SLF 4.58 -28 3 9 
  L IFOF 3.97 -25 18 0 
  L SLF 3.91 -30 -4 11 
  L SLF 3.69 -29 -1 10 
  L IFOF 3.66 -26 14 0 

SF 18771 L SLF 7.58 -18 7 35 
  L SLF 7.37 -17 6 37 
  R Corpus callosum (body) 6.44 6 -24 28 
  L SLF 5.86 -41 11 8 
  L Corpus callosum (body) 5.86 -10 2 31 
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  L SLF 5.64 -17 1 37 
 144 R IFOF 3.10 39 -27 -3 
  R IFOF 3.02 39 -28 -1 
  R IFOF 2.98 32 -21 -2 
  R IFOF 2.67 35 -28 0 
  R IFOF 2.61 37 -32 2 
  R IFOF 2.49 40 -32 -3 

PSCI-
corrected 

SF 

4420 L SLF 6.74 -18 7 37 

  L SLF 6.36 -18 7 35 
  R Corpus callosum (body) 6.14 6 -24 28 
  L Corpus callosum (body) 5.77 -15 -5 36 
  L SLF 5.42 -17 -18 37 
  L SLF 5.38 -17 -16 36 
 1332 L ILF 4.27 -32 -60 24 
  L ILF 4.17 -32 -61 26 
  L IFOF 3.66 -31 -60 19 
  L IFOF 3.52 -33 -55 17 
  L ILF 3.48 -27 -59 19 
  L SLF 3.37 -37 -51 29 

ATR: Anterior thalamic radiations, IFOF: Inferior fronto-occipital fasciculus, ILF: Inferior longitudinal 
fasciculus, PF: Phonemic fluency, PSCI: Processing speed composite index, SF: Semantic fluency, SLF: 
Superior longitudinal fasciculus, TMT B-A: Trail Making Test part B - part A 

* p < 0.1 
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Table 4 Correlation between the visuomotor and cognitive components of the PSCI and FA (pFWE <.05) 

Cognitive 
variable 

Cluster 
extent 

Side White matter tract t value MNI coordinates 
x y z 

Visuomotor 
speed* 

123 L ATR 4.98 -20 27 30 

  L ATR 4.73 -22 29 21 
  L ATR 3.79 -20 22 34 
  L Forceps minor 3.33 -21 31 23 
  L ATR 3.20 -23 28 17 
  L ATR 2.99 -22 23 30 
 60 L IFOF 3.68 -24 28 8 
  L IFOF 3.64 -24 29 6 
  L IFOF 3.62 -24 32 5 
  L IFOF 3.20 -26 29 11 
  L IFOF 2.94 -24 26 12 
  L IFOF 2.84 -24 29 11 

Stroop 
speed 

18071 L Cingulum 6.40 -17 -66 -1 

  L IFOF 5.47 -24 28 8 
  L ATR 5.29 -16 -11 -3 
  L Corpus callosum (body) 5.13 -12 16 24 
  L ATR 5.08 -18 -2 9 
  L Cingulum 4.85 -17 -65 3 
 448 R ILF 3.68 39 -25 -6 
  R ILF 3.50 43 -35 -8 
  R ILF 3.24 42 -35 -12 
  R IFOF 3.10 40 -32 -4 
  R IFOF 3.09 41 -34 -2 
  R ILF 2.97 41 -28 -1 

ATR: Anterior thalamic radiations, IFOF: Inferior fronto-occipital fasciculus, ILF: Inferior longitudinal 
fasciculus 

* p < 0.1 

 
 


