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Advances in medical technology have made kidney transplants over the blood group barrier feasible.
This article investigates how such technology should be implemented when designing pairwise kidney
exchange programs. The possibility to receive a kidney transplant from a blood group incompatible donor
motivates an extension of the preference domain, allowing patients to distinguish between compatible
donors and half-compatible donors (i.e. blood group incompatible donors that only become compatible
after undergoing an immunosuppressive treatment). It is demonstrated that the number of transplants can
be substantially increased by providing an incentive for patients with half-compatible donors to participate
in kidney exchange programs. The results also suggest that the technology is beneficial for patient groups
that are traditionally disadvantaged in kidney exchange programs (e.g. blood group O patients). The
positive effect of allowing transplants over the blood group barrier is larger than the corresponding effects
of including altruistic patient–donor pairs or of allowing three-way exchanges in addition to pairwise
exchanges.

Key words: Market design, Pairwise kidney exchange, Blood group incompatibility, Immunosuppressants,
Half-compatibility priority matchings.
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1. INTRODUCTION

Since the pioneering work by Roth et al. (2004, 2005b) and the establishment of the first
centralized multi-hospital kidney exchange program in New England in 2004, kidney exchange
research has become an integral part of the market design literature. The research is motivated
by the rapidly increasing shortage of kidneys1 together with the key observation that even if

1. In the Unites States, for example, the number of patients on the waiting list for kidney transplantation increased
from 22,063 to over 100,000 between 1992 and 2014 (Ellison, 2014).

The editor in charge of this paper was Christian Hellwig.
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1092 REVIEW OF ECONOMIC STUDIES

patients have access to living donors, they cannot always receive transplants due to medical
incompatibilities. Kidney exchange programs facilitate transplantation for these patients by
gathering them in exchange pools and by organizing centralized trades where incompatible
patient–donor pairs exchange their kidneys with other pairs defined as medically compatible.2

The standard notion of medical compatibility in kidney exchange (adopted by, e.g.,
Roth et al., 2004, 2005a,b, 2007; Okumura, 2014; Saidman et al., 2006; Sönmez and Ünver,
2014; Sönmez et al., 2018) defines a patient and a donor as compatible if they are blood
group and tissue type compatible. This article challenges this notion by considering a medical
technology based on immunosuppressive protocols that enables kidney transplantation over the
blood group barrier, i.e., a technology that removes one of the two major sources for medical
incompatibility. The extended compatibility notion allows patient–donor pairs to also be classified
as half-compatible, meaning that a patient can receive a kidney from the donor only by crossing
the blood group barrier. As demonstrated in this article, this seemingly small extension of the
standard kidney exchange model will have large positive welfare effects for patients in need of
transplantation if utilized correctly.

Following, e.g., Roth et al. (2005b) and Sönmez and Ünver (2014), the analysis in this article is
restricted to kidney exchange programs that only allow for pairwise exchanges. This was initially
the case in the United States and it is the current practice in, for example, France, India, Italy, and
Sweden.3 The point of departure in the welfare analysis is a model, referred to as the Benchmark
Model, in which transplantation over the blood group barrier is either not allowed or not an
option considered by the transplant community. The Benchmark Model describes the standard
kidney exchange model in the theoretical literature analysed in, e.g., all of the above-cited papers.
Note also that in, e.g., Belgium, France, India, Italy, The Netherlands, Poland, and Portugal,
transplantation over the blood group barrier is not allowed within their corresponding exchange
programs. The article attempts to investigate how the availability of a medical technology that
enables transplantation over the blood group barrier affects patient welfare in exchange programs.
To investigate this, it is noted that the technology can be utilized in two different ways and these
specific ways can be described and analysed in two different “models”. Both these models allow

for transplantation across the blood group barrier within the exchange program as in, e.g., Austria,
the Czech Republic, Spain, the United Kingdom, Sweden, and Switzerland.

In the first model, referred to as Model (a), patients with half-compatible donors receive
kidneys from their own donors over the blood group barrier and are therefore not part of the kidney
exchange program. Consequently, the kidney exchange pool consists exclusively of incompatible
patient–donor pairs. Kidney exchanges over the blood group barrier are, however, allowed within
the exchange program. This is in line with current practice in, e.g., Sweden, where patients that
can feasibly receive kidneys from their own donors over the blood group barrier are routinely
referred to immunosuppressive treatments outside the kidney exchange program.4 In fact, a recent
paper by Biró et al. (2019) concludes that a key challenge reported by all European countries is
immunosuppressive treatments outside of organized kidney exchange programs. It can therefore
be argued that Model (a) is a fair description of the programs in Austria, the Czech Republic,

2. For an overview of the development of kidney exchange programs in the United States and Europe, see
Anderson et al. (2015), Biró et al. (2017, 2018, 2019), and Sönmez and Ünver (2014).

3. All references to European kidney exchange programs in the remaining part of this section are from Biró et al.

(2017, 2019). For the considered Indian program, see Jha et al. (2015).
4. Patients with half-compatible donors are strictly speaking not prohibited from participating in kidney exchange

in Sweden but the option is routinely not presented to them. As far as we know, only one such pair participated in the
Swedish program in the years 2017–8.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1093

Spain, the United Kingdom, and Switzerland, where transplants over the blood group barrier are
allowed within their corresponding exchange programs.5

In the second model, referred to as Model (b), all patients with either half-compatible or
incompatible donors participate in the kidney exchange program. To the best of our knowledge,
no such program currently exists in the world. As will be explained in more detail in Section 2, it
is natural to assume that patients strictly prefer compatible donors to half-compatible donors, e.g.,
to avoid additional medical treatments or to shorten the time to transplantation. Consequently, to
ensure that patients with half-compatible donors have an incentive to participate in Model (b), it
is reasonable to restrict the feasible exchanges for these patients to exchanges with compatible
donors. Note also that patients with half-compatible donors that are included in the exchange
pool, as in Model (b), but remain unmatched after the match run can always receive transplants
over the blood group barrier from their own half-compatible donors. In this sense, patients with
half-compatible donors are, in Model (b), always first given the possibility to receive a compatible
kidney within the exchange framework. This possibility is never presented to patients in Model (a).

The theoretical findings in this article indicate that Model (b) always generates a weakly larger
number of transplants than both the Benchmark Model and Model (a). Somewhat surprisingly,
the theoretical results also reveal that the number of transplants need not be higher in Model (a)
than in the Benchmark Model. In other words, if transplantation over the blood group barrier is
implemented as in Model (a), it may actually reduce the number of transplants. These theoretical
findings suggest that if the objective of a kidney exchange program is to maximize the number
of transplants, then any program corresponding to the Benchmark Model or Model (a) should be
redesigned in accordance with Model (b). The magnitudes of the theoretical findings are evaluated
by means of a simulation study that, in addition, also investigates whether certain patient groups
are proportionally disadvantaged by the technology enabling transplants over the blood group
barrier, e.g., patients with incompatible donors or patients with blood group O (it is well-known
that blood group O patients are often proportionally disadvantaged in kidney exchange programs,
see, e.g. Roth et al., 2007). This exercise further strengthens the arguments in favour of Model (b).
In particular, if the technology is utilized as in Model (b), there is a large spill over to patients
with incompatible donors since they also receive transplants more frequently.

To put the medical technology enabling transplantation over the blood group barrier to the
test, the simulation study also compares Models (a) and (b) to two other models that have
design features that are known to substantially increase the number of transplants. These are
the Altruistic Model (Roth et al., 2005a; Sönmez and Ünver, 2014) in which compatible patient–
donor pairs participate in the kidney exchange program, and the Cycle Model (Saidman et al.,
2006; Roth et al., 2007) which allows for three-way exchanges in addition to pairwise exchanges.
The simulation study reveals that the positive effect on the mean number of transplants is
significantly larger for Models (a) and (b) than for the Altruistic Model and the Cycle Model. In
addition, blood group O patients are on average less disadvantaged.

Even though the conclusions above suggest that a transition to Model (b) would improve
patient welfare, it should be noted that when half-compatibility is introduced, the preference
domain of the patients is extended from the dichotomous to the trichotomous domain. As can
be expected from findings in the literature (e.g. Sönmez, 1999; Nicoló and Rodríguez-Álvarez,
2012), the domain extension makes it possible for some patients to manipulate any maximal
matching mechanism to their advantage. Thus, half-compatibility introduces a trade-off between
welfare improvements and incentives. However, the simulation results reveal that, depending on
the pool size, between 6.2% and 15.9% of the patients can manipulate Model (a), but only between

5. Note, however, that some of these programs allow for larger cyclical exchanges.
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1094 REVIEW OF ECONOMIC STUDIES

1.9% and 8.5% of the patients can manipulate Model (b). Hence, Model (b) performs better than
Model (a) in this respect as well. Here, it should also be noted that manipulation attempts are
risky for patients because if they are unsuccessful, the patients will not receive any transplants at
all. In this sense, an attempt to manipulate the outcome of the mechanism may ultimately come
at the cost of the patient’s own life.

1.1. Related literature

After the establishment of the kidney exchange program in New England 2004, new design
features such as non-simultaneous extended altruistic donor chains (Roth et al., 2006) and larger
cyclic exchanges (Saidman et al., 2006; Roth et al., 2007) were suggested in the literature and
added to existing exchange programs. One of the most important insights from the early literature
is that a clever method for increasing the number of transplants in existing kidney exchange
programs is to increase the number of participating patient–donor pairs. This can be achieved in
a number of different ways. For example, Roth et al. (2005a) advocate the inclusion of patients
with compatible donors, as this would generate “the largest patient welfare gains in comparison
to a number of other design modifications” (Sönmez and Ünver, 2014, p. 108). Considering that
the participation of compatible pairs is purely altruistic, one may wish to minimize the number
of compatible pairs involved in exchanges. This is the idea in Sönmez and Ünver (2014), where a
pairwise kidney exchange problem with both compatible and incompatible patient–donor pairs is
investigated. They introduce Pareto efficient matchings that maximize the number of transplants
while minimizing participation of compatible pairs.

A crucial assumption in Sönmez and Ünver (2014) is that patients are indifferent between
compatible donors. This assumption can be supported by medical practice in the United States,
as the general tendency among U.S. doctors is to assume that two compatible living donor
kidneys essentially have the same survival rates (Gjertson and Cecka, 2000; Delmonico, 2004;
Sönmez and Ünver, 2014). A recent paper by Nicoló and Rodríguez-Álvarez (2017) also focuses
on the inclusion of compatible pairs in kidney exchange programs. Based on a number of medical
studies (e.g. Gentry et al., 2007; Øien et al., 2007), they argue that the age and general health
status of a donor impacts graft survival. Given this observation, patients in their model have
strict preferences over compatible donors based on kidney age. This provides an incentive for
compatible pairs to participate in exchange programs as the patient may be assigned a different,
strictly preferred donor. As already explained above and in similarity with Sönmez and Ünver
(2014) and Nicoló and Rodríguez-Álvarez (2017), this article also considers exchanges involving
“compatible pairs”. However, their participation is not motivated by altruism or the possibility
to receive a preferred kidney in terms of age. Instead, the main argument rests, as in Chun et al.

(2015), on recent developments in immunosuppressive protocols and, more specifically, on the
possibility to transplant kidneys over the blood group barrier (see Section 2 for a description of
the immunological conditions and the medical requirements for transplantation across the blood
group barrier). This also motivates the extension of the compatibility concept to also include
half-compatibility.

The inclusion of half-compatible patient–donor pairs in a kidney exchange program plays a
similar role to the inclusion of compatible pairs, as the inclusion increases the size of the patient–
donor pool. However, these patients have an incentive beyond altruism to participate since they
may be assigned a compatible donor and thereby avoid transplantation over the blood group
barrier. Due to the distinction between compatible and half-compatible donors, some standard
results in the literature will not continue to hold. For example, Roth et al. (2005b) consider a
pairwise kidney exchange problem with no transplantation over the blood group barrier and
introduce a class of Pareto efficient matchings called priority matchings (see Appendix A.2).
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1095

However, priority matchings are no longer Pareto efficient in settings that distinguish between
compatible and half-compatible donors. For this reason, a specific subset of priority matchings is
introduced in this article. They are called half-compatibility priority matchings and are guaranteed
to be Pareto efficient. The article also provides a computationally efficient method for identifying
such matchings.

The two papers that are most closely related to this article are Chun et al. (2015) and
Sönmez et al. (2018). The former of these papers considers a kidney exchange program where
transplants can be carried out over immunological barriers (both blood group and tissue type). In
their model, it is assumed that patients are indifferent between crossing the immunological barrier
and not crossing it and that cyclic exchanges of arbitrary length are possible. To reflect that there
is a limited availability of immunosuppressants in South Korea, Chun et al. (2015) assume that
at most k patients are allowed to use immunosuppressants. For each kidney exchange problem,
they first determine which patients are to receive immunosuppressants. Based on this selection
and the compatibility structure, a matching is chosen. Their counterfactual analysis shows that
the current use of immunosuppressants in South Korea can be reduced by 55%.

Sönmez et al. (2018) analyse a recent change in the United States where kidneys are
transplanted over the blood group barrier using advanced blood subtyping. This new method
allows a fraction of blood group A kidneys to be safely transplanted into a fraction of blood group
B and O patients. Given their assumptions, Sönmez et al. (2018) demonstrate that the current
implementation of this technology has some unintended consequences in the sense that it reduces
the number of transplants from living donors, both in the overall population and for certain
biologically disadvantaged groups. Their main results show that these unintended problems can
be solved by making two small adjustments to the current practice. They suggest the establishment
of an anti-A titre level history for blood group O patients and a delay in the subtyping tests until
incompatible pairs are transferred to the kidney exchange pool.

1.2. Outline of the article

The remaining part of the article is outlined as follows: Section 2 provides a description of the
immunological conditions and the medical requirements that enable transplantation across the
blood group barrier. The formal kidney exchange framework is introduced in Section 3. Section 4
provides some properties of half-compatibility priority matchings and presents a computational
method for finding them. Section 5 analyses the welfare implications of pairwise kidney exchange
over the blood group barrier, both theoretically and by means of a simulation study. Section 6
concludes the article. Appendix A provides an equivalence between the set of priority matchings
as defined in this article and the set of priority matchings as defined by Roth et al. (2005b), and
some technical results relating to the matroid structure of pairwise kidney exchange problems.
Appendix B contains the proofs of the theoretical results.

2. MEDICAL DETAILS OF BLOOD GROUP INCOMPATIBLE TRANSPLANTATION

This section provides a brief description of the ABO blood group classification system and a
medical technology that enables transplantation across the blood group barrier. Throughout this
section, the reader should keep in mind that transplantation across the blood group barrier is a
medical reality not only in “regular” transplantation, but also within kidney exchange frameworks.
As described in Section 1, European countries like Austria, the Czech Republic, Spain, the United
Kingdom, Sweden, and Switzerland already use this technology within their exchange programs.

The central principle in the ABO blood group system is that antigens on red blood cells differ
between individuals. Since there are two possible antigens (A and B), there are four possible
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1096 REVIEW OF ECONOMIC STUDIES

red blood cell types (or blood groups); O, A, B, and AB, where O is standard notation for the
absence of antigen A and B. A patient who only has antigen A (antigen B) cannot produce anti-A
antibodies (anti-B antibodies) and will therefore only have anti-B antibodies (anti-A antibodies)
in her blood plasma. For a patient to be blood group compatible with a donor, the patient must
not have anti-A or anti-B antibodies in the plasma that correspond to the A or B antigens in the
donor’s red blood cells. Consequently, a patient with red blood cell type A (type B) is only blood
group compatible with donors that have red blood cell types A and O (types B and O). Patients
with red blood cell type O have neither antigen A nor antigen B while carrying both antibodies,
and patients with red blood cell type AB have both antigens while carrying neither antibody.
Hence, red blood cell type O patients are only blood group compatible with donors that have red
blood cell type O, whereas red blood cell type AB patients are blood group compatible with all
donors independently of their red blood cell types.

The incompatibilities between some blood groups clearly impose restrictions on organ
transplantation as the patient’s immune system rejects kidneys from incompatible blood groups.
However, immunosuppressive protocols for removing anti-A and/or anti-B antibodies, also known
as desensitization, have been known since the 1970s (Alexander et al., 1987). By removing
antibodies, these protocols make transplants over the blood group barrier feasible. In 2001, the
blood group antigen-specific filter GlycoSorb was introduced (Rydberg et al., 2005). This filter
absorbs specific antibodies with the purpose of reducing the patient’s antibody level below a
certain threshold in order to enable transplantation over the blood group barrier. The antibody
level (antibody titre) is determined by a blood serum sample and is diluted in serial ratios (1:1,
1:2, 1:4, 1:8, 1:16, 1:32, ...). Using an appropriate detection method, each dilution is tested for
the presence of detectable levels of the antibody of interest. If the level of anti-A and/or anti-B
antibodies in a patient’s blood is below a threshold value after the filtering process and over a
given period of time, a transplant over the blood group barrier is feasible. In Sweden, for example,
the threshold is set to 1:32 and the time period is typically set between three and six months.6,7

GlycoSorb is currently used in all Swedish transplant centres and at least 60 European centres
spread across 17 countries. Between 2001 and 2012, more than 200 living donor kidney transplants
over the blood group barrier were carried out in Sweden using this filter (Thydén et al., 2012).

There are no medical reasons related to graft and/or patient survival for not using GlycoSorb
to conduct transplants over the blood group barrier. In fact, the GlycoSorb filtering process is
completely non-toxic (as opposed to non-specific plasma exchange). Moreover, the five-year
graft survival rate and patient survival rate for living donor kidney transplants across the blood
group barrier are identical to the corresponding five-year survival rates for “normal” blood
group compatible living donor kidney transplants (Thydén et al., 2007). Even though these
arguments speak in favour of using this medical technology, there are also good reasons for
not transplanting kidneys across the blood group barrier whenever alternative transplantation
opportunities exist, e.g., if patients have alternative compatible donors available or if it is possible

6. These numbers were communicated to one of the authors of this article (Andersson) at a meeting in Stockholm
(March, 2016) with immunologists and transplant surgeons from the four Swedish transplant centres (Karolinska institutet,
Akademiska sjukhuset, Sahlgrenska sjukhuset, and Skånes universitetssjukhus). In the United States, for example, a
threshold of 1:8 must be maintained for six months before the transplant (Sönmez et al., 2018).

7. The authors of this article are unaware of any studies that report the share of patients that can feasibly receive
kidneys over the blood group barrier. Peter S. Björk at the “Immunotherapy Unit” at “Skånes universitetssjukhus” stated,
in a telephone conversation with one of the authors (Andersson) in May 2016, that approximately 90% of patients can
receive kidneys over the blood group barrier whenever the donor is tissue type compatible. Furthermore, Thydén et al.

(2004) report that all patients in their sample with a titre value of at most 1:128 who were treated with GlycoSorb
successfully received transplants over the blood group barrier and evidence in Dallaval et al. (2011) suggests that 86.9%
of all blood donors with blood group O had antibody titre values strictly below 1:128.
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to obtain kidneys from compatible donors by means of exchange. By taking advantage of
such alternative transplantation opportunities, additional medical treatments before and after
the transplant can be avoided, time to transplantation can be shortened and costs related to the
purchase of immunosuppressants can be reduced.

Finally, we note that it can be argued that there are no cost–benefit reasons for not using
GlycoSorb.8 In Sweden, for example, the alternative to a transplant is to keep the patient on dialysis
at an annual cost of SEK 650,000. The costs of the surgical procedure and the immunosuppressive
protocol are SEK 2,000,000 and SEK 100,000, respectively. Hence, it only takes around three
years to reach parity in expenses. In addition, sick leave costs are reduced as the patients no
longer need to be on dialysis and patients often experience an increased quality of life after
transplantation (Pinson et al., 2000). Similar evidence can be found in, e.g., the United States.
In a recent debate article in the Washington Post, Cartwright and Roth (2018) concluded that a
kidney transplant “pays for itself in less than two years”.

3. THE MODEL

This section introduces the basic ingredients of the kidney exchange model together with a number
of important concepts and definitions.

3.1. Agents, preferences and priorities

Let N ={1,...,n} be a finite set of patients participating in a kidney exchange program. Each
patient i∈N has a living donor di. Patient i is compatible with donor dj if patient i can receive
a kidney from donor dj without crossing the blood group barrier. Patient i is half-compatible

with donor dj if patient i can receive a kidney from donor dj only by crossing the blood group
barrier. Patient i is incompatible with donor dj if patient i cannot receive a kidney from donor
dj under any circumstances. No patient in N is compatible with her own donor since patients
with compatible donors are assumed to receive kidneys from their own donors outside the kidney
exchange program (except in Section 5.2). The patients in N are partitioned into two disjoint sets:
NH and NI . A patient i belongs to NH if and only if she is half-compatible with her own donor di.
NI thus contains all patients who are incompatible with their own donors. The compatibility

structure C describes the compatibility between patient i and donor dj for any patients
i,j∈N .

For any patient i∈N , let �i denote the patient’s preferences over the set of donors. Let ≻i and
∼i denote the corresponding strict preference and indifference relations, respectively. Each patient
in N strictly prefers any compatible donor to all half-compatible and incompatible donors, and
any half-compatible donor to all incompatible donors. Each patient i∈N is indifferent between
two donors (not including di) whenever both are compatible or both are half-compatible with i.
Patients in NH also strictly prefer their own donors to all other half-compatible donors. Formally,
for any i,j∈N and any k,l∈N \{i}:

• dk ∼i dl if dk and dl are either both compatible or both half-compatible with i,
• dk ≻i dj if i is compatible with dk and half-compatible or incompatible with dj,
• dk ≻i dj if i is half-compatible with dk and incompatible with dj,
• di ≻i dk if i∈NH and i is half-compatible with dk .

8. The figures in this paragraph are based on Swedish data and they can be found in Thydén et al. (2012) and
Wennberg (2010). SEK 1 = USD 0.11 (February, 2019).
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1098 REVIEW OF ECONOMIC STUDIES

The preferences of all patients in N are gathered in the list �:= (�i)i∈N . Many existing kidney
exchange programs give priority to patients that are highly HLA-sensitized (i.e, patients that
are highly sensitized to Human Leukocyte Antigents), since it is particularly difficult to find
compatible donors for such patients (see, e.g., Biró et al., 2017). As in Roth et al. (2005b), this is
modelled by a priority function π :N →R++ assigning each patient i∈N a unique priority π (i).9

Patient i has higher priority than patient j whenever π (i)>π (j). It is assumed that the priority
π (i) of each patient i∈N is given by a fraction of the type π (i)= p(i)

q for some p(i)∈{1,...,p}

and some p,q∈Z++, where p and q are fixed and equal for all patients. The interpretation of this
assumption is that all patients are assigned a priority that takes a value on a predetermined scale
(based on, e.g., Panel Reactive Antibody scores or some other measure of HLA-sensitization).10

A kidney exchange problem is defined as a triple (N,C,π ) and will, with a few exceptions, be
held fixed throughout most of the article.

3.2. Matchings and properties of matchings

A pairwise kidney exchange between pairs (i,di) and (j,dj) is feasible if and only if dj ≻i di and
di ≻j dj. That is, whenever both patients strictly benefit from the exchange. For a given problem
(N,C,π ), a matching M consists of (i) a set of mutually exclusive feasible pairwise exchanges and
(ii) a set of patients in NH that do not participate in any kidney exchanges. Informally, patients may
either receive a transplant (i) through a kidney exchange or (ii) from their own half-compatible
donors. A matching specifies which transplants to carry out. The set of all matchings for a given
problem (N,C,π ) is denoted by M. For any matching M, patients that receive a transplant are
said to be matched and patients that receive kidneys from their own half-compatible donors are
said to be self-matched. A patient that does not receive a transplant is said to be unmatched. If
patient i receives a kidney from donor dj at a matching M, patient i is said to be matched to both
j and dj at M. All patients that are matched at a matching M are collected in the set N∗(M). The
number of transplants at a matching M is therefore given by the cardinality of N∗(M), i.e., by
|N∗(M)|.

A matching M ∈M is a maximal matching if N∗(M) is not properly contained in the set
N∗(M ′) for any other matching M ′ ∈M, i.e., if N∗(M) �⊂N∗(M ′) for all M ′ ∈M. A matching
M ∈M is a maximum matching if it maximizes the number of transplants over all matchings
in M, i.e., if |N∗(M)|≥|N∗(M ′)| for all M ′ ∈M. For any matchings M,M ′ ∈M, matching M

Pareto dominates matching M ′ if, according to the preferences �, all patients in N weakly prefer
the donors they are matched to at M to the donors they are matched to at M ′ with at least one
strict preference. A matching in M is Pareto efficient if it is not Pareto dominated by any other
matching in M.

3.3. Priority matchings and half-compatibility priority matchings

There is a planner (or a market designer) with complete, transitive, and responsive preferences

�B over matchings in M. Let ≻B and ∼B denote strict preference and indifference, respectively.
A matching M is strictly preferred to a matching M ′ if all patients matched at M ′ are also matched
at M and some patients not matched at M ′ are matched at M. Moreover, M is strictly preferred
to M ′ if the set of patients matched at M can be obtained from the set of patients matched at M ′

9. R+ and R++ denote the set of non-negative real numbers and the set of positive real numbers, respectively. The
same convention applies to the set of integers, Z.

10. This assumption on π (i) is made without loss of generality to get a “non-messy” upper bound on the constant
ε defined in Section 4.2. All results presented in the article hold for any π (i)∈R++ as long as the priorities are unique.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1099

by replacing some patient matched at M ′ with some patient with higher priority matched at M.
Finally, given that the planner distinguishes compatible donors from half-compatible donors, it is
reasonable for the preference relation �B to somehow separate the two notions of compatibility.
For this purpose, let B(M) denote the number of patients that are matched to compatible donors
at matching M. Formally, a preference relation �B belongs to a class of preferences called
half-compatibility priority preferences if it is complete, transitive, and satisfies the following
conditions:

M ≻B M ′ if

⎧

⎪

⎨

⎪

⎩

N∗(M ′)⊂N∗(M),

N∗(M)\N∗(M ′)={i},N∗(M ′)\N∗(M)={j} and π (i)>π (j),

N∗(M)=N∗(M ′) and B(M)>B(M ′),

(3.1)

M ∼B M ′ if N∗(M)=N∗(M ′) and B(M)=B(M ′). (3.2)

Half-compatibility priority preferences are closely related to the priority preferences introduced
by Roth et al. (2005b). In fact, a preference relation �π is a priority preference relation if
it satisfies all of the conditions above, given that (3.2) and the last line in (3.1) have been
replaced by a requirement that the planner always be indifferent between M and M ′ whenever
N∗(M)=N∗(M ′).11 The only difference between priority preferences and half-compatibility
priority preferences is that whenever the same patients are matched at two different matchings,
a planner with priority preferences is indifferent between the two matchings whereas a planner
with half-compatibility priority preferences prefers the matching that minimizes the number of
transplants over the blood group barrier. Note that N∗(M)=N∗(M ′) implies that B(M)=B(M ′)
in models where transplantation over the blood group is either disallowed or not considered
an option by the transplant community. Hence, the two classes of preferences coincide in such
settings.

Consider some priority preferences �π and some half-compatibility priority preferences �B.
A matching M is called a priority matching if M �π M ′ for every matching M ′ ∈M. For a given
problem (N,C,π ), all priority matchings are gathered in the set M∗ ⊆M. A matching M is
called a half-compatibility priority matching if M �B M ′ for every matching M ′ ∈M. For a given
problem (N,C,π ), all half-compatibility priority matchings are gathered in the set MB.

4. PROPERTIES OF HALF-COMPATIBILITY PRIORITY MATCHINGS

This section is divided into two parts. The first part discusses the properties of half-compatibility
priority preferences and half-compatibility priority matchings. The second part provides a
computational method based on graph theoretical techniques that can be used to find half-
compatibility priority matchings.

4.1. Properties

A first observation is that the definition of half-compatibility priority preferences does not induce a
unique preference relation. For a given problem, there may be multiple half-compatibility priority
preference relations. A natural question is then whether the set of half-compatibility priority
matchings MB depends on the choice of preference relation �B. Fortunately, the following
result reveals that MB remains the same for any choice of half-compatibility priority preference
relation �B.

11. See Appendix A.2 for a detailed discussion.
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1100 REVIEW OF ECONOMIC STUDIES

Proposition 1. For a given problem (N,C,π ), all half-compatibility priority preference relations
induce the same set of half-compatibility priority matchings.

Consider some matching mechanism that, for every problem (N,C,π ), makes use of some
half-compatibility priority preference relation to locate a half-compatibility priority matching
M. Proposition 1 then guarantees that M is a half-compatibility priority matching for all half-
compatibility priority preferences (such a mechanism is described in Section 4.2). Proposition 1
is closely related to the observation in Roth et al. (2005b, Corollary 1) that any priority matching
(defined differently) is weakly preferred to every other matching by any priority preference
relation. It is established in Appendix A.2 that the definition of priority matchings in this article is
equivalent to the definition in Roth et al. (2005b) and that Corollary 1 in Roth et al. (2005b) can
be extended to a biconditional statement both in settings with and without transplantation over
the blood group barrier. Given the following result, it is not surprising that priority matchings and
half-compatibility priority matchings share many properties.

Proposition 2. For a given problem (N,C,π ), every half-compatibility priority matching is a
priority matching.

Half-compatibility priority matchings can therefore be thought of as the subset of priority
matchings that minimize the number of transplants over the blood group barrier. If patients
do not distinguish between compatible and half-compatible matchings, then every maximal
matching is Pareto efficient. Since priority matchings are maximal by construction, they are
always Pareto efficient in such settings (Roth et al., 2005b).12 However, priority matchings are
no longer necessarily Pareto efficient when transplantation over the blood group barrier is possible.
The next result shows that, contrary to priority matchings, half-compatibility priority matchings
are guaranteed to be Pareto efficient. Furthermore, half-compatibility priority matchings (and
priority matchings) maximize the number of transplants.

Proposition 3. For a given problem (N,C,π ), every half-compatibility priority matching is a
Pareto efficient maximum matching.

Proposition 3 is silent about how the technology enabling transplantation over the blood group
barrier is implemented. The result merely states that if a matching is a half-compatibility priority
matching in a given problem, then it is Pareto efficient and a maximum matching in that particular

problem. As will be discussed in Section 5, immunosuppressants can be introduced in a kidney
exchange program by finding a half-compatibility priority matching for the patients in NI and
self-matching all the patients in NH . Then the outcome may not be Pareto efficient or maximize
the number of transplants when considering all patients in N (see Proposition 7). However,
Proposition 3 still implies that the matching is a Pareto efficient maximum matching in the
reduced problem containing only the patients in NI .

Another implication of Proposition 3 is that all half-compatibility priority matchings result in
the same number of transplants, i.e., |N∗(M)|=|N∗(M ′)| for all M,M ′ ∈MB, since all maximum
matchings necessarily match the same number of patients. In fact, Proposition 4 shows that all
priority matchings (including all half-compatibility priority matchings) match exactly the same
patients.

12. To see that priority matchings are maximal matchings, suppose that M ∈M is a priority matching that is not
maximal. Then there exists some other matching M ′ ∈M such that N∗(M)⊂N∗(M ′). This implies that M ′ ≻π M which
contradicts the assumption that M is a priority matching (i.e. that M �π M ′′ for all M ′′ ∈M).
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1101

Proposition 4. For a given problem (N,C,π ), N∗(M)=N∗(M ′) for all M,M ′ ∈M∗.

This result no longer holds if priorities are not required to be unique as in, e.g., Okumura (2014).
To see this, imagine a situation with three patient–donor pairs; pairs 1, 2, and 3. There is a feasible
kidney exchange between pair 1 and pair 2, a feasible exchange between pair 2 and pair 3, but no
feasible exchange between pair 1 and pair 3. If pair 1 and pair 3 have the same priority, then each
of the two feasible exchanges constitutes a priority matching. Only one of them can be selected
by the planner and depending on this selection, different patients will be matched.

Many of the results in this section relate to the structure of pairwise kidney exchange problems
in particular. One important aspect of pairwise kidney exchange problems is that the set of all
patients N and a family I containing all sets of patients that can be matched simultaneously
constitute a matroid (N,I). Such a structure ensures that every maximal matching is a maximum
matching and that the same number of patients receive a transplant at every Pareto efficient
matching. Thanks to this structure, the opportunity cost of matching a particular patient (e.g. a
high-priority patient) will never be more than one patient (with lower priority) who could otherwise
have been matched. Roth et al. (2005b) showed that the pairwise kidney exchange problem has
a matroid structure when the compatibility structure is binary (no transplantation over the blood
group barrier). Proposition 11 in Appendix A.1 demonstrates that this result continues to hold in
settings that distinguish between compatibility and half-compatibility. This is not immediately
obvious since self-matches alter the structure of the sets of simultaneously matchable patients.

A final remark is that the findings in this section provide justification for half-compatibility
priority preferences. As argued in Section 2, there are good reasons for minimizing the use of
immunosuppressants. Furthermore, as described in Biró et al. (2017), maximizing the number of
transplants is an objective in all existing European kidney exchange programs and all these
programs (except in Austria and the Czech Republic) also prioritize patients in accordance
with their HLA-sensitization levels. A planner with half-compatibility priority preferences
selects a matching from the set of half-compatibility priority matchings. Consequently, the use
of immunosuppressants is minimized, the number of transplants is maximized and patients
receive priority based on, e.g., the degree of HLA-sensitization. In addition, the planner is
guaranteed that any choice of half-compatibility priority preferences will result in the same
set of half-compatibility priority matchings and that the same set of patients will receive
transplants. The last point implies that a planner need not worry about the specific choice of half-
compatibility priority preference relation affecting various groups in a diverse patient population
differently.

4.2. Identification of half-compatibility priority matchings

Given the desirable properties of half-compatibility priority matchings discussed in the previous
section, the main purpose of this section is to investigate how these matchings can be computed.
In contrast to the iterative method for identifying priority matchings introduced by Roth et al.

(2005b), the method considered in this section takes a graph theoretical approach. More
specifically, it is demonstrated that half-compatibility priority matchings can be identified
in polynomial time by solving a maximum weight matching problem. This maximization
technique is, in similarity with many algorithms like, e.g., the deferred acceptance algorithm
(Gale and Shapley, 1962) and the top trading cycles mechanism (Shapley and Scarf, 1974),
frequently adopted in the market design literature to solve various matching problems. For
example, solution methods based on maximum weight matching problems have previously
been applied to problems related to school choice (Kesten and Ünver, 2015), delegate pairings
at meetings (Vaggi et al., 2014), kindergarten placements (Biró and Gudmundsson, 2017), and
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1102 REVIEW OF ECONOMIC STUDIES

kidney exchange (Biró et al., 2009). To describe this computational method, some graph
theoretical notation needs to be introduced.

For any compatibility structure C, there exists a corresponding compatibility graph g= (N,E)
comprising a set N of vertices and a set E of edges. It will sometimes be convenient to let N(g)
and E(g) denote the vertex set and the edge set, respectively, of the compatibility graph g. Every
vertex in a compatibility graph corresponds to a patient in N . There is an edge between two
patients i,j∈N if and only if a pairwise exchange between the pairs (i,di) and (j,dj) is feasible,
and there is a loop at vertex i∈N if and only if patient i is half-compatible with her own donor
di. Let ij denote an edge between patients i and j and let ii denote a loop at patient i. Formally,
the edges in a compatibility graph g= (N,E) have the following construction:

• if i,j∈N and i �= j, then ij∈E if and only if dj ≻i di and di ≻j dj,
• if i∈N , then ii∈E if and only if i∈NH .

For any compatibility graph g= (N,E), a matching M ⊆E can be defined as a set of edges in the
graph that are not incident to each other. That is, for any edge ij∈M, it must be the case that
ik /∈M and jk /∈M for all k ∈N \{i,j}. There is an edge ij∈M for some i,j∈N , i �= j, whenever
the pairs (i,di) and (j,dj) are involved in a pairwise kidney exchange. Moreover, ii∈M for some
i∈NH whenever i receives a kidney from her own donor. The non-incidence requirement on the
edges ensures that each patient receives at most one kidney and each donor donates at most one
kidney. This definition of a matching is thus equivalent to the definition given in Section 3.2.

A weighted graph (g,w) consists of a graph g and a set of edge weights w := (wij)ij∈E(g)
where wij is a weight assigned to edge ij∈E(g). Let (g,w) be a weighted graph and let S(M,w) :=
∑

ij∈M wij be the sum of all edge weights at matching M ∈M. A matching M is a maximum weight

matching in (g,w) if S(M,w)≥S(M ′,w) for all M ′ ∈M. Okumura (2014) demonstrated that
priority matchings can be found by solving an appropriately defined maximum weight matching
problem.

Lemma 1. (Okumura, 2014, Theorem 2). Consider a problem (N,C,π ) with corresponding
compatibility graph g. Suppose that transplantation over the blood group barrier is not possible.13

If wij =π (i)+π (j) for all ij∈E(g), then M is a priority matching if and only if M is a maximum
weight matching in (g,w).

The maximum weight matching problem described in Lemma 1 is not directly applicable in the
setting considered in this article since the result is based on the assumptions that patients cannot
receive kidneys from their own donors (i.e. no loops in the compatibility graph) and that there is
no distinction between compatible and half-compatible donors. However, the following theorem
shows that even if these assumptions are relaxed, priority matchings can be identified by solving
an almost identical maximum weight problem (the only difference being the presence of loops
in the graph).

Proposition 5. Consider a problem (N,C,π ) with corresponding compatibility graph g. If wii =

π (i) for all ii∈E(g) and wij =π (i)+π (j) for all ij∈E(g) whenever i �= j, then M is a priority
matching if and only if M is a maximum weight matching in (g,w).

13. Each patient i∈N is incompatible with her own donor and either compatible or incompatible with donor dj for
all j∈N .
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1103

Recall that the set of half-compatibility priority matchings is the subset of priority matchings
that minimize the number of transplants over the blood group barrier. Hence, solving the
maximum weight matching problem defined in Proposition 5 will not necessarily identify a half-
compatibility priority matching. To address this issue, a modified maximum weight matching
problem is presented, the solution to which is guaranteed to be a half-compatibility priority
matching. Consider a problem (N,C,π ) with corresponding compatibility graph g. Let 0<ε< 1

2nq

and let the weights wε := (wε
ij)ij∈E(g) for each i,j∈N be defined by:

wε
ij =

{

π (i)+π (j)+v(i,j)+v(j,i) if i �= j

π (i) if i= j,

where

v(i,j)=

{

ε if patient i is compatible with donor dj

0 otherwise.

Proposition 6. Consider a problem (N,C,π ) with corresponding compatibility graph g. Then a
matching is a half-compatibility priority matching if and only if it is a maximum weight matching
in (g,wε).

A solution to the maximum weight matching problem in Proposition 6 can be found in polynomial
time by adopting the techniques in Edmonds (1965).

5. WELFARE IMPLICATIONS OF KIDNEY EXCHANGE OVER THE BLOOD
GROUP BARRIER

This section analyses the consequences of introducing transplantation over the blood group barrier
in kidney exchange programs. Even though the existence of some welfare effects can be proven
theoretically, a simulation study is necessary to estimate their magnitudes. The section ends with
an extended discussion on the possibility to manipulate the matching mechanisms induced by
Model (a) and Model (b).

As a benchmark in the analysis, we will use a model with pairwise exchanges, in which
transplants over the blood group barrier are either not allowed or not an option considered by the
medical community (as in, e.g. Roth et al., 2005b). It is then assumed that the technology enabling
transplants across the blood group barrier gets implemented within kidney exchange programs,
e.g., due to new legislation allowing such transplants, awareness, or changes in the attitude towards
immunosuppressants in the transplant community. This will have the consequence that patient
and planner preferences will distinguish between compatible and half-compatible donors and
matchings. Two distinct “models” are introduced to represent two different ways in which the
planner can implement this technology within kidney exchange frameworks. Both models can
be thought of as extensions to the Benchmark Model. Let (NI ,CI ,π ) denote a reduced problem

containing only the patients in NI , where CI denotes the compatibility structure between patients
in NI and donors of patients in NI .14

14. With the exception of Section 5.2, patients with compatible donors are assumed to receive kidneys from their
own donors outside kidney exchange programs throughout the article. Patients with compatible donors are therefore not
included in any of the models described below.
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1104 REVIEW OF ECONOMIC STUDIES

• Benchmark Model. Transplants over the blood group barrier are either disallowed or not
considered an option by the medical community. A priority matching is found for the
problem (N,C,π ).

• Model (a). The technology enabling transplants over the blood group barrier is adopted
by the medical community. Patients in NH (i.e. patients with half-compatible donors) are
self-matched and do not participate in the kidney exchange program. A half-compatibility
priority matching is found for the reduced problem (NI ,CI ,π ).

• Model (b). The technology enabling transplants over the blood group barrier is adopted by
the medical community. A half-compatibility priority matching is found for the problem
(N,C,π ).

Even though there are variations in rules, regulations, techniques, etc., that differentiate kidney
exchange programs from each other, many existing programs can, in general terms, be categorized
within our framework. The Benchmark Model is the standard model in the theoretical kidney
exchange literature and it has been analysed by, e.g., Roth et al. (2004, 2005a,b, 2007), Okumura
(2014), Saidman et al. (2006), Sönmez and Ünver (2014), and Sönmez et al. (2018). Note also
that the initial program in the United States (Roth et al., 2005b) and the current practice in, e.g.,
France, India, and Italy (Jha et al., 2015; Biró et al., 2019), only considered/consider pairwise
exchanges and transplants over the blood group barrier within the existing exchange programs
were/are not allowed or not considered an option by the medical community. The same holds
in, e.g., Belgium, the Netherlands, Poland, and Portugal, even if larger cyclical exchanges are
allowed in these countries (Biró et al., 2017, 2019).

Transplantation across the blood group barrier is, however, allowed in Model (a). This
model corresponds to the current program in, e.g., Sweden, where only pairwise exchanges
are considered and patients with half-compatible donors receive kidneys from their own donors
outside the exchange system. Although larger cyclic exchanges are allowed in, e.g., Austria,
the Czech Republic, Spain, the United Kingdom, and Switzerland, it can be argued that the
exchange programs in these countries correspond to Model (a). Patients in these countries are
routinely referred to desensitization treatments outside their respective exchange programs, even
though transplants over the blood group barrier are allowed within their corresponding exchange
frameworks (Biró et al., 2017, 2019).

Model (b) also allows for transplantation across the blood group barrier. To the best of our
knowledge, no country in the world has adopted an exchange program that corresponds to Model
(b), i.e., a program that includes all incompatible and all half-compatible patient–donor pairs
in a common exchange pool. The main difference between Model (b) and Model (a) is that the
exchange program in the latter model does not include patients with half-compatible donors.
These patients are, in Model (a), always self-matched with their own donors and will therefore
never be part of an exchange.

When transplantation over the blood group barrier is not a possibility, all priority matchings are
half-compatibility priority matchings. This means that, by Proposition 3, the Benchmark model
would always select Pareto efficient matchings. However, if blood group incompatible transplants
are feasible, priority matchings are no longer necessarily half-compatibility priority matchings. In
such settings, there are good reasons for a planner concerned with patient welfare to only select
half-compatibility priority matchings, as in Model (a) and Model (b). The following example
shows that priority matchings may be Pareto dominated by the matching half-compatibility
matchings selected in Models (a) and (b).

Example 1. Suppose that N ={1,2,3,4}, that each patient is incompatible with her own donor
and that transplantation over the blood group barrier is permitted. Furthermore, suppose that
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1105

Patient 1 is compatible with donor d2 and that no other patient is compatible with any other
donor. A possible pairwise exchange between pairs (i,di) and (j,dj) is denoted by ij and it is
assumed that only the pairwise exchanges 12, 23, 34, and 14 are feasible.15 In this case, matchings
M ={12,34} and M ′ ={14,23} are both priority matchings since all patients receive transplants.
However, only M is a half-compatibility priority matching since more patients are matched to
compatible donors at M than at M ′. Since Patient 1 strictly prefers donor d2 to donor d4 and all
other patients are indifferent between M and M ′, it follows that M Pareto dominates M ′. This
demonstrates the importance of distinguishing between priority matchings and half-compatibility
priority matchings and, as in Model (a) and Model (b), selecting matchings of the latter type. �

5.1. Theoretical results

A noteworthy difference between the Benchmark Model and Model (b) on the one hand and
Model (a) on the other is that (half-compatibility) priority matchings are identified for the entire
set of patients in the former two models, whereas Model (a) only selects a half-compatibility
priority matching for the patients in NI and self-matches the patients in NH . Proposition 3 implies
that the half-compatibility priority matching which patients in NI are matched in accordance
within Model (a) is a Pareto efficient maximum matching for the reduced problem (NI ,CI ,π ).
The matchings selected in the Benchmark Model and Model (b), on the other hand, are Pareto
efficient maximum matchings for the problem (N,C,π ) containing all patients in N (note that
the matching selected in the Benchmark Model is only Pareto efficient under the constraint that
transplantation over the blood group barrier is not possible).

By excluding the patients in NH when identifying a half-compatibility priority matching in
Model (a), the aggregate outcome, defined by the transplants outside the kidney exchange program
and the transplants generated by exchanges within the exchange program, need not maximize
the number of transplants or be Pareto efficient. Intuitively, this failure hinges on the use of
immunosuppressants that enable patients with half-compatible donors to receive kidneys from
their own donors outside the kidney exchange program. A planner implementing Model (a) not
only denies patients with half-compatible donors the possibility to find a compatible donor within
the exchange framework, but also shrinks the size of the patient–donor pool when self-matching all
patients with half-compatible donors. This reduces the likelihood that patients with incompatible
donors participate in pairwise exchanges since the set of patients they could be matched to is
smaller.16 The following result is proven with the help of an example that will also be useful later
in this section.

Proposition 7. The matching selected in the Benchmark Model may Pareto dominate the
matching selected in Model (a). In addition, the total number of transplants may be higher in
the Benchmark Model than in Model (a).

Proof. Suppose that N ={1,2} where NI ={1} and NH ={2}. Assume further that Patient 1 is
compatible with donor d2 and that Patient 2 is compatible with donor d1. In Model (a), Patient
2 is self-matched as 2∈NH . Since Patient 1 is incompatible with donor d1, Patient 1 remains
unmatched. In the Benchmark Model, no patients are self-matched. Patient 2 is therefore available
for a mutually beneficial kidney exchange with Patient 1. Thus, both patients receive transplants
in the Benchmark Model, whereas only Patient 2 receives a transplant in Model (a). Furthermore,

15. In the Benchmark model, no pairwise exchanges would be feasible.
16. It is well-known that larger patient–donor pools result in more transplants than smaller pools. See, e.g., Roth et al.

(2006).
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1106 REVIEW OF ECONOMIC STUDIES

Patient 2 is strictly better off in the Benchmark Model since Patient 2 is compatible with donor
d1 and only half-compatible with donor d2. ‖

The above example shows that the introduction of transplantation over the blood group barrier
could, in theory, reduce the number of transplants and make all patients worse off if implemented
as in Model (a). In the simulation study in Section 5.2, the number of transplants was indeed
lower in Model (a) than in the Benchmark Model in a small number cases for the smallest pool
size. However, this problem vanished completely as the size of the patient–donor pool grew.
Negative outcomes of this kind could never occur in Model (b) since it includes patients with
half-compatible donors in the kidney exchange program and selects a Pareto efficient matching
for all patients N in the problem (N,C,π ). Given this observation, it is natural to ask whether
Model (b) will generally result in a weakly larger number of transplants than the Benchmark
Model and Model (a). According to the next result, it will.

Proposition 8. Consider a problem (N,C,π ) and suppose that µ, µ′, and µ′′ contain all patients
that receive transplants in the Benchmark Model, Model (a), and Model (b), respectively.17 Then
|µ′′|≥|µ| and |µ′′|≥|µ′|.

The results above indicate that the manner in which medical technology enabling kidney
transplants over the blood group barrier is used can have significant welfare implications. Even
though one would suspect that this technology would increase the total number of kidney
transplants, Proposition 7 reveals that this is not necessarily the case since a planner implementing
Model (a) first maximizes the number of self-matches and only includes the remaining patient–
donor pairs in the kidney exchange program. A planner implementing Model (b), on the other hand,
regards self-matches as the last option for patients with half-compatible donors since these patients
are first included in the exchange program in the hope of finding compatible donors for them. This
inclusion means that a planner using Model (b) first aims to maximize the number of pairwise
exchanges and, consequently, ensures that the number of patient–donor pairs participating in the
kidney exchange program is maximized. As seen in Proposition 8, this strategy guarantees the
total number of transplants to be (weakly) greater in Model (b) than it is in both the Benchmark
Model and Model (a).

Recall that Model (a) corresponds to current practice in, e.g., the Swedish kidney exchange
program. Given the findings above, a natural question is then whether to transition from Model
(a) to Model (b). The answer not only depends on the number of additional transplants that the
transition would result in, it also depends on how it would affect patients with incompatible
donors. To make this point clear, recall that patients with half-compatible donors can always
receive kidneys over the blood group barrier from their own donors outside the exchange program.
From a welfare perspective, it is then important to ensure that a patient with a half-compatible
donor is not involved in an exchange at the expense of a patient with an incompatible donor
as patients of the latter type cannot receive kidneys outside the exchange program. The next
proposition ensures that such situations never occur. More precisely, Proposition 9 shows that all
patients that would have received transplants in Model (a) will still receive transplants if there is
a transition from Model (a) to Model (b).

Proposition 9. Consider a problem (N,C,π ) and suppose that µ′ and µ′′ contain all patients
that receive transplants in Model (a) and Model (b), respectively. Then µ′ ⊆µ′′.

17. Note that |µ|=|N∗(M)| and |µ′′|=|N∗(M ′′)| if matchings M and M ′′ are the outcomes of the Benchmark Model
and Model (b), respectively.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1107

From a welfare perspective, it is reassuring that a transition from Model (a) to Model (b) is
guaranteed to weakly increase the number of transplants (Proposition 8) and that patients receiving
transplants before the transition are guaranteed to still receive transplants after the transition
(Proposition 9). This does, however, not say anything about what type of donors the patients will
be matched to. It is clear that patients with half-compatible donors are made weakly better off
by the transition since the worst possible outcome for them is to be paired with their own half-
compatible donors, i.e., the same outcome as in Model (a). The story for patients with incompatible
donors is a bit different. and there is no general theoretical prediction. For some problems, there
is no half-compatibility priority matching such that all patients with incompatible donors weakly
gain by the transition from Model (a) to Model (b), and for some problems there is. A situation
where all patients with incompatible donors are made better off by the transition is illustrated in
the Proof of Proposition 7 above, since the outcomes in the Benchmark Model and Model (b)
coincide. A situation where some patient is made worse off by the transition is illustrated in the
following example.

Example 2. Suppose that N ={1,2,3,4}, NI ={1,2,3}, NH ={4} and π (1)>π (3). A feasible
pairwise exchange between pairs (i,di) and (j,dj) is denoted by ij and it is assumed that only the
pairwise exchanges 12, 14, and 23 are feasible. Suppose further that Patient 1 is half-compatible
with donor d4 and that all patients in the other three feasible pairwise exchanges are compatible
with the donors they participate in the exchanges with. In Model (a), Patient 4 is matched to
her own half-compatible donor and the pairwise exchange 12 is conducted since π (1)>π (3). In
Model (b), the pairwise exchanges 14 and 23 are carried out. Even though Patient 1 receives a
transplant in both models, Patient 1 is made worse off by a transition from Model (a) to Model
(b) since the patient is compatible with donor d2 and only half-compatible with donor d4. �

5.2. Simulation results

This section aims to investigate the magnitudes of the theoretical findings presented in the previous
section. It also attempts to shed light on some issues that are discussed extensively in the kidney
exchange literature but have so far not been addressed in this article. For instance, this section will
investigate how patients that are often proportionally disadvantaged in kidney exchange programs
(specifically, blood group O patients) are affected by the introduction of transplantation over the
blood group barrier.

In addition to the three models introduced earlier in this section, two additional models
will be investigated. The first of these models is the Altruistic Model (Roth et al., 2005a;
Sönmez and Ünver, 2014) in which compatible patient–donor pairs participate in the kidney
exchange program. It is called the Altruistic Model because patients with compatible donors do
not benefit from participation in exchange programs, as they can already receive kidneys from their
own donors (without crossing the blood group barrier). The compatible pairs (“altruistic pairs”)
participate to help other incompatible or half-compatible pairs. The second model, called the Cycle
Model (Roth et al., 2007), allows for three-way exchanges in addition to pairwise exchanges, i.e.,
cyclic exchanges involving three patient–donor pairs.18 The reason for including these models in
the simulation study is that the design features of both models are known to (weakly) increase
the number of transplants (see, e.g. Roth et al., 2005a; Gentry et al., 2007; Sönmez and Ünver,
2014). The outcomes in these two models are estimated under the assumption that transplants
over the blood group barrier are either not allowed or not considered an option by the transplant

18. Cyclic exchanges involving four or more pairs are not considered in this section. This restriction can be supported
by Roth et al. (2007) who demonstrated that allowing exchange cycles involving more than three pairs would only have
a marginal impact on the number of transplants.
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1108 REVIEW OF ECONOMIC STUDIES

community, and compared to the outcomes in Models (a) and (b). This makes it possible to
compare the effect of introducing medical technology enabling transplantation over the blood
group barrier to the impact of other design features that are known to work well.

In order to analyse the Altruistic Model, a third type of patients must be added to the model,
namely the patients with compatible donors. These patients are gathered in the set NC and all
patients in NC ∪N are included in the simulations, where NC ∩N =∅. The patients in NC play no
role in the Benchmark Model, Model (a), Model (b), or the Cycle Model since they are simply
self-matched and unavailable for pairwise exchanges in all of these models. The patients in NC

do, however, play a significant role in the Altruistic Model. Let CC be the compatibility structure
between patients in NC ∪N and donors of patients in NC ∪N . Furthermore, let πC :NC ∪N →R++

be a priority function assigning each patient in NC ∪N a unique priority.

• Altruistic Model. Transplants over the blood group barrier are either disallowed or not
considered an option by the medical community. A priority matching is found for the
problem (NC ∪N,CC,πC).19 Unmatched patients in NC are then self-matched with their
own compatible donors.

• Cycle Model. Transplants over the blood group barrier are either disallowed or not
considered an option by the medical community. Three-way exchanges are permitted in
addition to pairwise exchanges. A maximum matching20 is found for the problem (N,C,π ).

The reported results for the Cycle Model are taken from Roth et al. (2007), but these results are
directly comparable to the other simulation results provided in this section (see footnotes 23 and
25 for details). For the other four models, a population of patient-donor pairs is generated using
medical data (e.g. blood group distributions, PRA distributions (i.e., Panel Reactive Antibody
distributions), crossmatch probabilities, etc.) identical to the data described in Roth et al. (2007)
and Saidman et al. (2006).

Two pieces of information required for the simulations are missing in these articles; the
share of patients that are female and have a spouse donor, and the share of patients for whom
transplantation over the blood group barrier is feasible. The first of these numbers is based on
Swedish medical data (Fehrman-Ekholm et al., 2011) and is set to 10%. For the second number,
it is assumed that transplantation over the blood group barrier is feasible for 75% of patients.21

The priority π (i) for each patient i is defined as in Keizer et al. (2005):

π (i)=PRA(i)×(share of donors in the pool that patient i is incompatible with) (5.3)

The equation above captures the transplantation possibilities for patient i both outside and within
the kidney exchange program. The higher the priority, the more difficult it is to find a suitable donor
for the patient. Since both factors on the right hand side of equation (5.3) belong to the interval
[0,1], patient priorities are guaranteed to take values between 0 and 1. Note also that the above

19. Since patients in NC are assumed to be “altruistic” in the Altruistic Model, their preferences must be amended
slightly. More precisely, patients in NC are assumed to be indifferent between all compatible donors, including their own.
Furthermore, it is sufficient that a patient i∈NC weakly gain in a pairwise exchange for the exchange to be feasible.
Patients in N must, however, still strictly gain for an exchange to be feasible.

20. The reason the Cycle Model selects a maximum matching rather than a priority matching is that the matroid
structure, discussed in Section 4.1 and Appendix A.1, is lost in the Cycle Model, giving rise to a trade-off between
prioritization of HLA-sensitized patients and maximization of the number of transplants. See, e.g., Kratz (2019) or
Sönmez and Ünver (2014).

21. Recall from footnote 7 that this number is estimated to be around 90%. In the simulation study, however, a more
conservative number is used to ensure that the results for Models (a) and (b) are not overestimated.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1109

priorities are somewhat arbitrarily selected since priorities may be based on other methods and/or
input variables. In the U.K. program, for example, priorities are based on previous unsuccessful
matching runs, sensitization, HLA mismatch, and donor–donor age difference. For a technical
overview of all European programs (including priority rules), see Biró et al. (2018).

The remainder of this section analyses a Monte Carlo simulation based on 1,000 populations
randomly drawn from the medical distributions discussed above for population sizes of 25, 50,
100, 200, and 500 patient–donor pairs.22 To put these population sizes in perspective, the kidney
exchange program in the United Kingdom is the largest in Europe with 250 participating patient–
donor pairs per matching run. The second largest European program is found in Spain with
110 participating pairs per run. In the simulations, around 50% of the patients already have
compatible donors (see column “Self-match” in Table 1) and will, consequently, not be part of
the patient–donor pool. This means that generated populations of 500 and 200 patient–donor
pairs correspond to kidney exchange programs with 250 and 100 participating pairs, respectively,
like the U.K. program and the Spanish program. Many European countries, including Austria,
Belgium, France, Italy, Poland, Portugal, and Sweden, have much smaller programs captured by
the population sizes 100, 50, and 25.

Table 1 displays the percentages of different types of transplants for each model and population
size. In the table, “Exchange” only includes pairwise exchanges in all models except the Cycle
Model, which includes three-way exchanges as well. Moreover, “ABOi” indicates that a patient
receives a transplant over the blood group barrier. Note that such transplants, by assumption, are
infeasible in the Benchmark Model, the Altruistic Model, and the Cycle Model. Furthermore,
in all models except the Altruistic Model, patients with compatible donors receive kidneys from
their own donors outside the kidney exchange program.

Recall Proposition 8, which states that Model (b) always generates a weakly larger number of
transplants than both the Benchmark Model and Model (a). The exact magnitude of this difference
can be seen in Table 1. For a population size of 50, an average of 34.2% of the patients in the
Benchmark Model will not receive transplants.23 The corresponding numbers for Models (a) and
(b) are 11.1 % and 8.0 %, respectively. For a population size of 50, the simulation results also
suggest that a transition from the Benchmark Model to Model (b) would on average result in
13.1 additional transplants (i.e. 34.2−8.0=26.2 % of 50 patients). To achieve this, 11.5 patients
(i.e. 14.6+8.4=23.0 % of 50 patients) must on average receive transplants over the blood group
barrier. An implied rule of thumb is that for every additional transplant achieved by a transition
from the Benchmark Model to Model (b), one transplant must be carried out over the blood group
barrier. This rule of thumb holds for all population sizes. Note also that the gain, measured in

22. The simulation makes use of Joris van Rantwijk’s script for finding maximum weight matchings in graphs,
ported to MATLAB by Daniel R. Saunders.

23. Roth et al. (2007) consider both the Benchmark Model and the Cycle Model. The patient–donor pool in their
simulation study only contains patients with incompatible donors, whereas the patients in NC are included in this section.
Since roughly 50% of the pairs included in this simulation study have a compatible donor (see the “Self-match” column
for the Benchmark Model in Table 1), the case when n=50 in this article roughly corresponds to the case when n=25 in
Roth et al. (2007). Table 2 in Roth et al. (2007) shows that an average of 8.86 patients are involved in exchanges when
n=25 and only pairwise exchanges are allowed. The corresponding number in this article is 8.6 patients (17.2% when
n=50). Furthermore, Roth et al. (2007) find that an average of 21.8 patients are involved in pairwise exchanges when
n=50. The corresponding number in this article is 21.5 (21.5% when n=100). In this sense, the results in this article
confirm the findings in Roth et al. (2007). As a consequence, the results in Roth et al. (2007) for the Cycle Model can
safely be used as an approximation of the corresponding results in this article.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

-a
b
s
tra

c
t/8

7
/3

/1
0
9
1
/5

4
8
6
5
8
5
 b

y
 g

u
e
s
t o

n
 0

9
 J

u
n
e
 2

0
2
0
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TABLE 1
Distribution of different types of transplants for various models and population sizes

n Model No transplant Self-match ABOi self-match Exchange ABOi exchange Total

25 Benchmark Model 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
Model (a) 16.4% 49.1% 20.6% 9.5% 4.5% 100.0%
Model (b) 13.1% 49.1% 15.4% 15.6% 6.8% 100.0%
Altruistic Model 18.5% 25.9% 0.0% 55.6% 0.0% 100.0%
Cycle Modela N/A N/A N/A N/A N/A N/A

50 Benchmark Model 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
Model (a) 11.1% 48.6% 20.9% 13.2% 6.2% 100.0%
Model (b) 8.0% 48.6% 14.6% 20.4% 8.4% 100.0%
Altruistic Model 12.8% 22.0% 0.0% 65.2% 0.0% 100.0%
Cycle Modela 28.9% 48.6% 0.0% 22.5% 0.0% 100.0%

100 Benchmark Model 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
Model (a) 6.5% 48.6% 21.0% 16.5% 7.4% 100.0%
Model (b) 4.1% 48.6% 13.5% 24.4% 9.4% 100.0%
Altruistic Model 8.2% 19.9% 0.0% 71.9% 0.0% 100.0%
Cycle Modela 24.1% 48.6% 0.0% 27.3% 0.0% 100.0%

200 Benchmark Model 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
Model (a) 2.9% 48.7% 21.1% 19.1% 8.2% 100.0%
Model (b) 1.7% 48.7% 12.9% 27.0% 9.7% 100.0%
Altruistic Model 5.3% 19.0% 0.0% 75.7% 0.0% 100.0%
Cycle Modela

500 Benchmark Model 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
Model (a) 0.4% 48.8% 20.9% 22.3% 7.6% 100.0%
Model (b) 0.2% 48.8% 12.1% 29.7% 9.2% 100.0%
Altruistic Model 3.0% 18.5% 0.0% 78.5% 0.0% 100.0%
Cycle Modela N/A N/A N/A N/A N/A N/A

aApproximations from Roth et al. (2007). N/A, Not Available.

total number of transplants, from introducing transplants over the blood group barrier increases
with pool size.24

It is also notable that not only do more patients receive transplants in Model (b) than in Model
(a), the share of transplants over the blood group barrier is also lower. For a population size of
50, an average of 27.1 % (i.e. 20.9+6.2 %) of patients receive transplants over the blood group
barrier in Model (a). The corresponding number in Model (b) is only 23.0 % (i.e. 14.6+8.4 %).
This conclusion holds for all population sizes. The results in Table 1 also suggest that the impact
on the number of transplants of introducing transplantation over the blood group barrier is larger
than the impact of including altruistic donors or allowing three-way exchanges.25 This conclusion
holds for both Models (a) and (b).

24. This follows from the fact that both Models (a) and (b) select maximal matchings. More specifically, suppose
that a set of patient–donor pairs are added to an existing exchange pool but that the number of transplants decreases. Then
a contradiction is obtained immediately because the matching for the initial and smaller pool is feasible also for the larger
pool and both Models (a) and (b) select maximal matchings. Consequently, the total number of transplants must increase
with pool size (in fact, this conclusion holds for any matching mechanism that selects maximal matchings, including, e.g.

the priority mechanism).
25. Note that the results in Table 1 for the Cycle Model are most likely marginally underestimated. This follows from

the fact that the simulations in Roth et al. (2007) are based on population sizes of 25, 50 and 100, while the corresponding
population sizes in this article are 25.7, 51.4, and 102.6 (see also footnote 23). Since Models (a) and (b) clearly outperform
the Cycle Model in Table 1, the marginal difference in population sizes will not affect the general conclusions that can
be drawn from the results.
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TABLE 2
Distribution of transplant types for Model (a) when different proportions of patients accept ABOi transplants

No transplant Self-match ABOi self-match Exchange ABOi exchange Total
n Model (a) (%) (%) (%) (%) (%) (%)

25 0 % accept 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
25 % accept 32.3% 49.1% 5.1% 11.9% 1.6% 100.0%
50 % accept 26.8% 49.1% 10.1% 11.2% 2.8% 100.0%
75 % accept 21.0% 49.1% 15.3% 10.7% 3.9% 100.0%
100 % accept 16.4% 49.1% 20.6% 9.5% 4.5% 100.0%

50 0 % accept 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
25 % accept 27.6% 48.6% 5.2% 16.6% 2.0% 100.0%
50 % accept 21.5% 48.6% 10.4% 15.7% 3.8% 100.0%
75 % accept 15.9% 48.6% 15.6% 14.7% 5.2% 100.0%
100 % accept 11.1% 48.6% 20.9% 13.2% 6.2% 100.0%

100 0 % accept 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
25 % accept 23.3% 48.6% 5.3% 20.5% 2.3% 100.0%
50 % accept 17.0% 48.6% 10.5% 19.4% 4.5% 100.0%
75 % accept 11.0% 48.6% 15.8% 18.2% 6.4% 100.0%
100 % accept 6.5% 48.6% 21.0% 16.5% 7.4% 100.0%

200 0 % accept 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
25 % accept 20.4% 48.7% 5.2% 23.0% 2.7% 100.0%
50 % accept 13.6% 48.7% 10.5% 21.9% 5.3% 100.0%
75 % accept 7.5% 48.7% 15.8% 20.7% 7.3% 100.0%
100 % accept 2.9% 48.7% 21.1% 19.1% 8.2% 100.0%

500 0 % accept 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
25 % accept 16.9% 48.8% 5.2% 26.1% 3.0% 100.0%
50 % accept 10.0% 48.8% 10.5% 25.2% 5.5% 100.0%
75 % accept 4.1% 48.8% 15.7% 24.1% 7.3% 100.0%
100 % accept 0.4% 48.8% 20.9% 22.3% 7.6% 100.0%

The results for Models (a) and (b) in Table 1 are based on the assumption that all patients would
accept receiving a kidney from any half-compatible donor.26 Even though this is a reasonable
assumption since most patients would prefer receiving a half-compatible kidney to not receiving
any transplant at all27, a sensitivity analysis is provided in Tables 2 and 3. These tables provide
the recalculated results for Model (a) and Model (b) under the assumption that 0, 25, 50, 75, or
100 % of all patients are willing to receive kidneys from all half-compatible donors.
Note first that the results for 0% and 100% in Table 2, by definition, represent the Benchmark
Model and Model (a) as presented in Table 1, respectively. Similarly, the results for 0% and 100%
in Table 3 represent the Benchmark Model and Model (b) as presented in Table 1, respectively.
As can be seen in Tables 2 and 3, for every additional 25% of patients that are willing to receive
kidneys from half-compatible donors, between 3% and 7% more of the patients in the pool will
receive transplants. This conclusion holds for both Model (a) and Model (b) independently of
pool size. Furthermore, it suffices that at least 25% of the patients are willing to receive kidneys
from half-compatible donors for Model (a) and Model (b) to perform better than the Cycle Model
in terms of the number of transplants. However, more than 75% of the patients must be willing to

26. This assumption will be discussed further in Section 5.3 in relation to manipulability. Note also that even if all
patients are assumed to be willing to receive kidneys from all half-compatible donors, not all patients are able to receive
kidneys from all half-compatible donors as explained earlier (see footnote 7).

27. This assumption has also been informally confirmed by the Swedish transplant doctors and immunologists we
have spoken to based on the observation that patients follow the recommendations made by their medical doctors in
almost all cases and the fact that Sweden has had a well-functioning program for kidney transplantation across the blood
group barrier for more than 10 years (see Fehrman-Ekholm et al., 2011). Unfortunately, we have been unable to confirm
this informal statement with official statistics.
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TABLE 3
Distribution of transplant types for Model (b) when different proportions of patients accept ABOi transplants

n Model (b) No transplant Self-match ABOi self-match Exchange ABOi exchange Total

25 0 % accept 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
25 % accept 31.7% 49.1% 4.4% 13.2% 1.6% 100.0%
50 % accept 25.3% 49.1% 8.3% 14.0% 3.3% 100.0%
75 % accept 18.8% 49.1% 12.2% 14.8% 5.1% 100.0%
100 % accept 13.1% 49.1% 15.4% 15.6% 6.8% 100.0%

50 0 % accept 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
25 % accept 27.0% 48.6% 4.4% 17.9% 2.1% 100.0%
50 % accept 20.0% 48.6% 8.4% 18.7% 4.3% 100.0%
75 % accept 13.5% 48.6% 12.1% 19.4% 6.4% 100.0%
100 % accept 8.0% 48.6% 14.6% 20.4% 8.4% 100.0%

100 0 % accept 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
25 % accept 22.6% 48.6% 4.3% 22.1% 2.4% 100.0%
50 % accept 15.5% 48.6% 8.3% 22.7% 4.9% 100.0%
75 % accept 8.9% 48.6% 11.7% 23.5% 7.3% 100.0%
100 % accept 4.1% 48.6% 13.5% 24.4% 9.4% 100.0%

200 0 % accept 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
25 % accept 19.7% 48.7% 4.3% 24.5% 2.8% 100.0%
50 % accept 12.5% 48.7% 8.2% 25.1% 5.5% 100.0%
75 % accept 6.1% 48.7% 11.5% 25.9% 7.8% 100.0%
100 % accept 1.7% 48.7% 12.9% 27.0% 9.7% 100.0%

500 0 % accept 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
25 % accept 16.3% 48.8% 4.3% 27.6% 3.0% 100.0%
50 % accept 9.5% 48.8% 7.9% 28.3% 5.5% 100.0%
75 % accept 3.6% 48.8% 11.1% 29.1% 7.4% 100.0%
100 % accept 0.2% 48.8% 12.1% 29.7% 9.2% 100.0%

TABLE 4
Frequency of cases in which fewer, equally many and more patients receive transplants in Model (a) than in the

Benchmark Model for different population sizes

Patient-donor pool size 25 50 100 200 500

Fewer transplants in Model (a) than in the Benchmark Model 0.3% 0.0% 0.0% 0.0% 0.0%
Equally many transplants in Model (a) and the Benchmark Model 0.9% 0.0% 0.0% 0.0% 0.0%
More transplants in Model (a) than in the Benchmark Model 98.8% 100.0% 100.0% 100.0% 100.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0%

receive kidneys from any half-compatible donors for Model (a) and Model (b) to perform better
than the Altruistic Model. The two latter conclusions also hold independently of pool size.

Proposition 7 showed that the Benchmark Model may generate a larger number of transplants
than Model (a). The simulation results in Table 1 suggest that this is not the average case.
Table 4 provides more details for the different population sizes. For population sizes 50, 100,
200, and 500, the Benchmark Model never generates more transplants than Model (a). For a
population size of 25, the Benchmark Model only generates more transplants than Model (a)
in 0.3% of the cases. In fact, in nearly 100% of all cases, Model (a) generates a strictly larger
number of transplants than the Benchmark Model. Hence, the theoretical finding in Proposition
7 that fewer patients may receive transplants in Model (a) than in the Benchmark model appears
to mostly be a theoretical possibility and not something a planner needs to worry about.

Proposition 9 showed that if there is a transition from Model (a) to Model (b), then all patients
receiving transplants in the former model will still receive transplants in the latter. However,
Example 2 revealed that some patients that would have been matched to compatible donors in
Model (a) may only be matched to half-compatible donors in Model (b). For this reason, it is
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TABLE 5
Shares of patients receiving transplants in Model (a) that are matched to better, equally compatible and worse donors in

Model (b) in terms of blood group compatibility

Patient-donor pool size 25 50 100 200 500

Compatible donor in Model (a) and half-compatible donor in Model (b) 1.2% 1.6% 2.0% 2.2% 2.4%
Equally compatible donors in Models (a) and (b) 92.4% 90.8% 89.2% 88.4% 87.9%
Half-compatible donor in Model (a) and compatible donor in Model (b) 6.4% 7.6% 8.8% 9.5% 9.7%
Total 100.0% 100.0% 100.0% 100.0% 100.0%

important to investigate how many patients are made better off and how many patients are made
worse off by such a transition. Table 5 shows that, on average, between 1.2% and 2.4% of the
patients (depending on the population size) who were matched to compatible donors in Model
(a) were matched to half-compatible donors in Model (b). By comparison, an average of between
6.4 and 9.7 % of the patients (again, depending on the population size) who were matched to
half-compatible donors in Model (a) were matched to compatible donors in Model (b). In this
sense, a transition from Model (a) to Model (b) would improve the average “kidney quality”
for patients receiving transplants in Model (a). Another indication of this result can be found in
Table 1 where, for a population size of 50, an average of 27.1% of patients receive kidneys over
the blood group barrier in Model (a), whereas the corresponding number for Model (b) is 23.0%.

So far, there has been no discussion of the patients who remain unmatched after a
matching has been selected. It is, for example, well-known that patients with blood group
O are often proportionally disadvantaged in kidney exchange programs (Roth et al., 2007;
Sönmez and Ünver, 2013; Sönmez et al., 2018). The underlying reason for this is that there are
typically more blood group O patients than there are blood group O donors in kidney exchange
pools when transplants over the blood group barrier are infeasible. A blood group O patient is
less likely to be involved in a kidney exchange than a patient with a different blood group since
she can only receive kidneys from blood group O donors (see Section 2 for a description of the
ABO blood group classification system). Hence, not only are blood group O patients expected
to be over-represented in the kidney exchange pool, the proportion of blood group O patients is
also expected to increase after the exchanges have been carried out.

Table 6 sheds some light on the impact that the introduction of transplantation over the blood
group barrier would have on this biological unbalance. In the table, the “Ex Ante” distribution
is the blood group distribution in the kidney exchange pool, whereas the “Ex Post” distribution
is the blood group distribution of the patients that remain in the pool after the matched patients
have been removed.

As in Roth et al. (2007) and Saidman et al. (2006), the simulations are based on a blood
group distribution where 48, 34, 14, and 4% of the patients have blood group O, A, B, and AB,
respectively. The biological unbalance described above is confirmed for the Benchmark Model
where between 58.5% and 59.5% (depending on population size) of patients included in the kidney
exchange pool have blood group O. These numbers are even higher in the ex post distribution and
range between 69.0% and 86.3. In fact, the proportion of all blood groups except blood group
O is lower in the ex post distribution than in the ex ante distribution in the Benchmark Model.
Hence, not only are blood group O patients over-represented in the ex ante distribution, they are
even more over-represented in the ex post distribution. The ex ante blood group distribution in the
Altruistic Model is expected to be close to the assumed underlying blood group distribution since
all patients are included in the ex ante distribution, independently of whether they can receive
kidneys from their own donors. However, blood group O patients are still clearly disadvantaged
in the ex post distribution in the Altruistic Model as well. Again, this finding hinges on the fact
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TABLE 6
Average ex ante and ex post distributions of blood groups in the patient–donor pool for various models and population

sizes

Model n Distribution O A B AB Total

Benchmark Model 25 Ex Ante 59.5% (7.56) 24.2% (3.08) 14.5% (1.85) 1.8% (0.23) 100.0% (12.73)

Ex Post 69.0% (6.64) 18.9% (1.82) 11.2% (1.08) 0.9% (0.09) 100.0% (9.63)

Benchmark Model 50 Ex Ante 58.8% (15.12) 24.6% (6.33) 14.7% (3.78) 1.9% (0.49) 100.0% (25.75)

Ex Post 72.5% (12.41) 16.7% (2.86) 10.1% (1.73) 0.7% (0.12) 100.0% (17.12)

Benchmark Model 100 Ex Ante 58.5% (30.07) 25.0% (12.85) 14.6% (7.51) 1.9% (0.98) 100.0% (51.41)

Ex Post 76.9% (23.02) 14.3% (4.28) 8.2% (2.45) 0.6% (0.18) 100.0% (29.93)

Benchmark Model 200 Ex Ante 59.0% (60.53) 25.0% (25.65) 14.3% (14.67) 1.7% (1.74) 100.0% (102.59)

Ex Post 80.8% (44.04) 12.1% (6.60) 6.8% (3.71) 0.3% (0.16) 100.0% (54.51)

Benchmark Model 500 Ex Ante 59.2% (151.56) 24.7% (63.11) 14.3% (36.67) 1.8% (4.66) 100.0% (256.00)

Ex Post 86.3% (103.54) 8.5% (10.23) 5.1% (6.07) 0.1% (0.17) 100.0% (120.01)

Model (a) 25 Ex Ante 53.7% (4.07) 29.0% (2.20) 14.3% (1.08) 3.0% (0.23) 100.0% (7.58)

Ex Post 57.5% (2.36) 26.1% (1.07) 13.7% (0.56) 2.7% (0.11) 100.0% (4.10)

Model (a) 50 Ex Ante 52.4% (8.00) 30.1% (4.60) 14.4% (2.20) 3.1% (0.47) 100.0% (15.27)

Ex Post 59.1% (3.29) 26.0% (1.45) 12.4% (0.69) 2.5% (0.14) 100.0% (5.57)

Model (a) 100 Ex Ante 51.9% (15.77) 30.6% (9.30) 14.2% (4.32) 3.3% (1.00) 100.0% (30.39)

Ex Post 61.3% (4.00) 23.4% (1.53) 12.7% (0.83) 2.6% (0.17) 100.0% (6.53)

Model (a) 200 Ex Ante 52.4% (31.67) 30.4% (18.38) 14.3% (8.64) 2.9% (1.75) 100.0% (60.44)

Ex Post 67.1% (3.95) 20.0% (1.18) 11.2% (0.66) 1.7% (0.1) 100.0% (5.89)

Model (a) 500 Ex Ante 52.8% (80.02) 30.1% (45.56) 14.0% (21.21) 3.1% (4.66) 100.0% (151.45)

Ex Post 69.9% (1.43) 16.7% (0.34) 11.0% (0.22) 2.4% (0.05) 100.0% (2.04)

Model (b) 25 Ex Ante 59.5% (7.67) 24.2% (3.08) 14.5% (1.85) 1.8% (0.23) 100.0% (12.73)

Ex Post 61.1% (2.00) 24.0% (0.79) 12.6% (0.41) 2.3% (0.08) 100.0% (3.28)

Model (b) 50 Ex Ante 58.8% (15.12) 24.6% (6.33) 14.7% (3.78) 1.9% (0.49) 100.0% (25.72)

Ex Post 65.4% (2.63) 21.7% (0.87) 10.5% (0.42) 2.4% (0.10) 100.0% (4.02)

Model (b) 100 Ex Ante 58.5% (30.07) 25.0% (12.85) 14.6% (7.51) 1.9% (0.98) 100.0% (51.31)

Ex Post 69.0% (2.82) 19.5% (0.80) 9.2% (0.38) 2.3% (0.09) 100.0% (4.09)

Model (b) 200 Ex Ante 59.0% (60.53) 25.0% (25.65) 14.3% (14.67) 1.7% (1.74) 100.0% (102.59)

Ex Post 76.1% (2.58) 15.4% (0.52) 7.2% (0.24) 1.3% (0.04) 100.0% (3.38)

Model (b) 500 Ex Ante 59.2% (151.56) 24.7% (63.11) 14.3% (36.67) 1.8% (4.66) 100.0% (256.00)

Ex Post 85.7% (0.96) 9.1% (0.10) 5.0% (0.06) 0.2% (0.00) 100.0% (1.12)

Altruistic Model 25 Ex Ante 48.0% (12.00) 33.8% (8.45) 14.1% (3.52) 4.1% (1.03) 100.0% (25.00)

Ex Post 68.1% (3.16) 19.2% (0.89) 11.7% (0.54) 1.0% (0.05) 100.0% (4.64)

Altruistic Model 50 Ex Ante 48.0% (24.00) 33.9% (16.95) 14.1% (7.05) 4.0% (2.00) 100.0% (50.00)

Ex Post 70.5% (4.52) 17.3% (1.11) 11.5% (0.74) 0.7% (0.04) 100.0% (6.41)

Altruistic Model 100 Ex Ante 47.5% (47.50) 34.2% (34.20) 14.1% (14.10) 4.2% (4.20) 100.0% (100.00)

Ex Post 71.8% (5.90) 16.2% (1.33) 11.5% (0.94) 0.5% (0.04) 100.0% (8.21)

Altruistic Model 200 Ex Ante 47.8% (95.60) 34.3% (68.60) 13.9% (27.80) 4.0% (8.00) 100.0% (200.00)

Ex Post 72.4% (7.73) 16.2% (1.73) 11.1% (1.18) 0.3% (0.03) 100.0% (10.67)

Altruistic Model 500 Ex Ante 47.8% (239.19) 34.2% (170.84) 14.0% (70.00) 4.0% (19.97) 100.0% (500.00)

Ex Post 74.4% (11.16) 15.0% (2.24) 10.5% (1.57) 0.1% (0.02) 100.0% (14.99)

Notes: The absolute number of patients is displayed inside parenthesis.

that it is more difficult for blood group O patients to find donors within the kidney exchange pool
compared to patients with other blood groups.

When the medical technology that enables transplantation over the blood group barrier is
introduced, blood group O patients become less disadvantaged than they were in the Benchmark
Model and the Altruistic model, although they are still disadvantaged. The ex post proportion of
blood group O patients in Models (a) and (b) for a population size of 50 is 59.1% and 65.4%,
respectively. This can be compared to the corresponding numbers for the Benchmark Model and
the Altruistic Model, which are 72.5% and 70.5%, respectively. This means that transplantation
over the blood group barrier both increases the number of transplants and makes blood group
O patients less disadvantaged. This conclusion holds for almost all population sizes. The only
exception is for n=200 and n=500, in which the proportion of blood group O patients in
the ex post distribution is 76.1% and 85.7%, respectively, in Model (b) and 72.4% and 74.4%,
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TABLE 7
Average improvement over the Benchmark model in the number of blood group O patients receiving transplants

n Model (a) Model (b) Altruistic Model

25 4.28 (35.7%) 4.64 (38.6%) 3.48 (29.0%)
50 9.12 (38.0%) 9.78 (40.7%) 7.90 (33.0%)
100 19.02 (40.0%) 20.21 (42.5%) 17.12 (36.1%)
200 40.09 (42.0%) 41.46 (43.4%) 36.31 (38.0%)
500 102.11 (42.7%) 102.58 (42.9%) 92.39 (38.6%)

Notes: The improvement as a percentage of the total number of blood group O
patients is displayed inside parenthesis.

respectively, in the Altruistic Model. However, note that Table 6 also reports the average (absolute)
number of patients for each blood group (in parenthesis). It can be seen that the higher percentages
in Model (b) are a direct consequence of the fact that only an average of 3.38 and 1.12 patients
remain unmatched in Model (b) for n=200 and n=500, respectively. That is, it hinges on the fact
that the proportion of unmatched patients with a specific blood group in the ex post distributions
is defined relative to the proportion of unmatched patients with other blood groups.

Furthermore, a quick look at Table 6 may give the impression that blood group O patients are
less disadvantaged in Model (a) than in Model (b) since the proportion of blood group O patients
in the ex post distribution in Model (a) is lower than the corresponding proportion in Model (b) for
all population sizes. However, Model (b) generates significantly more transplants than Model (a)
and the patients that remain unmatched tend to be those that are the most difficult to find suitable
donors for, e.g., blood group O patients. By consulting the absolute values (in parenthesis) in
Table 6, it is clear that the skewed ex post distributions for Model (b) is a direct consequence
of the fact that almost all patients receive transplants. The average number of blood group O
patients that remain unmatched is lower in Model (b) than in all other models for all population
sizes. To make this point clearer, Table 7 shows the average improvement in the number of blood
group O patients receiving transplants compared to the Benchmark model. For example, with a
pool size of 100, transitioning from the Benchmark model to Model (b) would on average help
20 additional blood group O patients receive transplants, which is 42.5% of all blood group O
patients. Note that Model (b) helps a larger number of blood group O patients receive transplants
than the other two Models for every pool size.

If a planner in a “small” program (e.g. the programs in Austria, Belgium, France, Poland, Portugal,
and Sweden) is concerned about the outcome for blood group O patients in Models (a) and (b),
the edge weights in the maximum weight matching problem (previously defined in Section 4.2)
can be adjusted slightly, by adding a “sufficiently small” constant for blood group O patients to
increase their likelihood of receiving transplants.

5.3. On manipulability

An important problem in all market design applications is whether or not agents can manipulate
the outcome of the matching mechanism by misrepresenting their preferences over donors. When
only pairwise exchanges are allowed and patient preferences are dichotomous, as in, e.g., the
Benchmark Model, it is well-known that it always is in the best interest of the patients to truthfully
report their preferences (Roth et al., 2005b). However, when expanding the preference domain
from the dichotomous to the trichotomous domain, as in, e.g., Model (a) and Model (b), the
positive findings relating to non-manipulability no longer hold. Specifically, if the planner insists
on always selecting maximum matchings that minimize the use of immunosuppressants (such as
half-compatibility priority matchings), it may be possible for patients to benefit by misrepresenting
their preferences as illustrated in the following example.
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Example 3. Suppose that N ={1,2,3,4} and that each patient is incompatible with her own
donor. A possible pairwise exchange between the pairs (i,di) and (j,dj) is denoted by ij and it is
assumed that only the pairwise exchanges 12, 14, and 23 are feasible. Assume that Patient 1 is
compatible with donor d2 but only half-compatible with donor d4, i.e., that Patient 1 strictly prefers
a pairwise exchange with the pair (2,d2) over a pairwise exchange with the pair (4,d4). Next,
suppose that Patient 2 and Patient 3 are half-compatible with donor d3 and donor d2, respectively.
In this case, the unique maximum matching that minimizes the use of immunosuppressants is
described by the pairwise exchanges 14 and 23. However, Patient 1 can manipulate the outcome
by declaring herself incompatible with donor d4. In this case, the unique maximum matching that
minimizes the use of immunosuppressants is described by the pairwise exchange 12. �

The findings in Example 3 should come as no surprise as it is well-known that non-manipulability
is incompatible with individual rationality and Pareto efficiency (or maximality) on preference
domains more general than the dichotomous (Sönmez, 1999).28 Note also that no priority function
is needed to obtain the negative conclusion in Example 3., i.e., it is maximality in combination
with minimal use of immunosuppressants that drives the result. Moreover, while Example 3
demonstrates that Model (b) can be manipulated, it is easy to construct an example showing
that Model (a) can be manipulated as well. In fact, as will be demonstrated below, it is “easier”
for patients to manipulate Model (a) than Model (b). Before evaluating which patients that can
manipulate Models (a) and (b), we state a few general remarks regarding the above type of
manipulation in kidney exchange.

It is by no means obvious that patients are allowed to or even should be allowed to declare
themselves incompatible with specific donors. Such decisions are more likely to be made by
their immunologists and medical doctors based on observable and verifiable medical data. This
conclusion was recently stated by two of the researches that have pioneered kidney exchange
research:

“…manipulations of this sort [preference manipulation] do not play a
significant role, since compatibility information is usually obtained from
observable and verifiable medical data.” (Sönmez and Ünver, 2014, p. 114)

If preferences are solely based on medical information, the manipulation strategy adopted
by patient 1 in Example 3 will no longer work.29 However, even though the use of
immunosuppressants can increase the number of transplants, it may also introduce new
opportunities for manipulation. Whether or not a patient finds kidney transplants over the blood
group barrier acceptable is the patient’s private information (recall the discussion relating to
Tables 2 and 3). Then, if patients are allowed to object to the use of immunosuppressive treatments,
they may use this option to manipulate the matching mechanism. That is, even if a patient accepts
half-compatible donors, she may claim that she does not as part of a strategy to be matched to
a more preferred donor, exactly like Patient 1 did in Example 3. A similar discussion can, for
example, be found in liver exchange frameworks (Ergin et al., 2018) where it is private information
for living donors whether or not they are willing to donate the right lobe of their livers. This kind
of strategy may then be adopted in an attempt to avoid donating the right lobe of the liver as

28. This conclusion has previously been reached in a kidney exchange framework by Nicoló and Rodríguez-Álvarez
(2012). For similar results in other matching frameworks, see, e.g., Alcalde and Barberà (1994), Roth (1982), or Schummer
(1999).

29. Unless patients are assisted by their immunologists and/or medical doctors in manipulating the matching
mechanism.
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the mortality rate is 4–5 times higher for right lobe donors than for left lobe donors. As already
argued in Section 2, no such medical risks are associated with kidney transplantation over the
blood group barrier, but whether or not patients consider these types of transplants to be acceptable
is nevertheless private information. Here, it should also be noted that this type of manipulation
attempt is very risky. If it is unsuccessful, the patient will not receive a transplant at all. In this
sense, an attempt to manipulate the outcome of the matching mechanism may ultimately come
at the cost of the patient’s own life.

Given the insight that patients may successfully manipulate matching mechanisms by declar-
ing half-compatible donors unacceptable, it is next investigated under what circumstances patients
can gain by such manipulation strategies. Since Roth et al. (2005b) and Sönmez and Ünver (2014)
have already proved that the Benchmark Model and the Altruistic Model, respectively, cannot be
manipulated, the analysis is restricted to Model (a) and Model (b). To make the analysis tractable,
it will be based on two assumptions, namely that (i) all medical information is observable and
can be verified, and that (ii) no patient i∈N can affect the priority function π by declaring certain
donors (such as half-compatible donors) unacceptable. The first assumption can be justified by
the arguments above. The second assumption is also standard in the literature, where priorities are
assumed to be exogenously given (see e.g. Roth et al. (2005b) and Okumura (2014)).30 The second
assumption implies that patients cannot affect the edge weights in the maximum weight matching
problem described in Section 4.2. Patients can, however, remove some edges from the graph by
declaring half-compatible donors unacceptable. If some patient i declares half-compatible donors
unacceptable, all edges between patient i and patients whose donors are half-compatible with i

would be removed. Proposition 10 states that only patients matched to half-compatible donors
have the potential to manipulate Model (a) and Model (b) in this way.

Proposition 10. Consider a problem (N,C,π ) and a matching M selected in Model (b) (Model
(a)). Suppose that a patient i∈N is either unmatched or matched to a compatible donor at M.
Then, in Model (b) (Model (a)), patient i cannot benefit by declaring half-compatible donors
unacceptable.

Note that Proposition 10 provides a necessary, but not sufficient, condition for this type of
manipulation. Any patients that could potentially manipulate the matching mechanism in this
way are either (a) incompatible with their own donors and receive half-compatible donors
through exchange or (b) matched to their own half-compatible donors. This means that a failed
manipulation attempt would always result in the patient not receiving any transplant.

A simulation study is conducted to evaluate how “difficult” it is for patients matched to half-
compatible donors to gain by strategic misrepresentation of preferences, i.e., to gain by declaring
half-compatible donors unacceptable. The simulation study is based on each of the 1,000×5=

5,000 populations considered in Section 5.2. The following method is adopted for each population.
First, all patients matched to half-compatible donors are identified. The proportion of these patients
is stated in the column “Potential manipulation” in Table 8. For example, for Model (a) and
population size 50, this group represents, on average, 27.1% of the patients (this can also be

30. If a patient can improve her priority by declaring certain donors unacceptable, it is easy to find problems in
which the priority mechanism in Roth et al. (2005b) can be manipulated (see Appendix A.2 for a formal description of
the priority mechanism). For instance, suppose that some unmatched patient i is compatible with some donor dj , but the
patient matched to dj has higher priority than i when i reports truthfully. Clearly, if i could raise her priority above j’s
priority by declaring some donors (other than dj) unacceptable, the priority mechanism would match i to donor dj , which
she prefers to being unmatched.
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1118 REVIEW OF ECONOMIC STUDIES

TABLE 8
Mean percentage of patients that can successfully manipulate Models (a) and (b)

n Model Potential manipulation Success among potential Success in pool

25 Model (a) 25.1% 24.8% 6.2%
Model (b) 22.2% 8.3% 1.9%

50 Model (a) 27.1% 30.2% 8.2%
Model (b) 23.0% 14.7% 3.4%

100 Model (a) 28.4% 37.2% 10.6%
Model (b) 22.9% 22.9% 5.2%

200 Model (a) 29.3% 44.3% 13.0%
Model (b) 22.6% 31.0% 7.0%

500 Model (a) 28.5% 56.0% 15.9%
Model (b) 21.3% 39.9% 8.5%

seen in Table 1 where 20.9+6.2=27.1 % of the 50 patients in the pool are matched to half-
compatible donors on average). Second, each of these patients will then, one by one, declare all
half-compatible donors unacceptable. For each such unilateral declaration, the maximum weight
matching problem is solved for the modified graph and the matching for the patient that declared
all half-compatible donors unacceptable is compared to the original matching.31 If the patient
is matched to a compatible donor when declaring all half-compatible donors unacceptable, the
manipulation is said to be successful. Note also that successful manipulation always comes at the
cost of fewer transplants in total.

The mean success rate among the patients that could potentially manipulate the matching
mechanism is stated in the column “Success among potential” in Table 8. As can be seen in the
table, patients in Model (a) are on average more successful than patients in Model (b) and the
success rate increases monotonically with pool size. The success rates for the different pool sizes
are between 24.8% and 56.0% in Model (a), and between 8.3% and 39.9% in Model (b). That it is
more difficult to manipulate in Model (b) follows from the fact that patients with half-compatible
donors are always given the opportunity to be matched to a fully compatible donor as they are
always, by construction, included in the kidney exchange pool even when not declaring half-
compatible donors unacceptable. Patients with half-compatible donors in Model (a), however,
are never given this opportunity as they are always, by construction, matched to their own half-
compatible donors. That it is easier to manipulate in larger pools follows from the fact that there
are more transplantation opportunities (i.e. more edges in the graph) in larger pools and patients
are therefore more likely to receive transplants even if they remove edges from the graph by
declaring half-compatible donors unacceptable. The column “Success in pool” in Table 8 reports
the mean percentage of all patients in the pool that can successfully manipulate the matching
mechanism. Given the conclusions above, this number is also expected to be lower in Model (b)
compared to Model (a) but increasing in pool size. This is confirmed in Table 8 where it is shown
that the success rate among all patients in the pool is between 6.2% and 15.9% in Model (a), but
only between 1.9% and 8.5% in Model (b).

31. For, e.g., Model (b) and pool size 500, this means that 106,500 additional maximum weight matching problems
had to be solved. This follows since, for each of the 1,000 populations, an average of 106.5 patients (i.e. 12.1+9.2=21.3 %
of 500 the patients in the pool) were matched to half-compatible donors.
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6. CONCLUSIONS

This article has investigated pairwise kidney exchange programs using a medical technology for
transplanting kidneys over the blood group barrier. In particular, the focus has been on the set
of half-compatibility priority matchings and how the technology is best utilized. If a planner is
only interested in maximizing the number of transplants, minimizing the number of transplants
over the blood group barrier and, in addition, designing a program that is less biased against the
biologically disadvantaged blood group O patients, the theoretical results and the findings in the
simulation study suggest the following policy recommendations.

First, if the technology enabling transplantation over the blood group barrier not is allowed
within the existing kidney exchange framework, like in, e.g., Belgium, France, India, Italy, the
Netherlands, Poland, and Portugal, and there is a change in the legal framework or in the attitude
towards immunosuppressants in the transplant community allowing for transplantation over the
blood group barrier within the exchange program, then any existing kidney exchange program
should be amended to make use of it. In the language of this article, a transition to Model (b) is
recommended. This would generate a significantly larger number of transplants and, in addition,
help the biologically disadvantaged blood group O patients.

Second, if the technology enabling transplantation over the blood group barrier is allowed
but mainly used to obtain self-matches over the blood group barrier outside a kidney exchange
program as in, e.g., Austria, the Czech Republic, Spain, Sweden, Switzerland, and the United
Kingdom, a transition to a system where patients with half-compatible donors are first added to
the exchange pool in search of a compatible donor is recommended. In the language of this article,
a transition from Model (a) to Model (b) is recommended. This would generate more transplants
in total and reduce the proportion of patients receiving transplants over the blood group barrier.

The conclusions above are only valid if the social planner can accept that some patients may be
able to manipulate the outcome of the matching mechanism. More precisely, the introduction of
the technology enabling transplants over the blood group barrier naturally extends the preference
domain from the dichotomous to the trichotomous domain and, therefore, also opens up for
manipulation possibilities. However, fewer patients can manipulate Model (b) than Model (a),
so the former model performs better than the latter in this respect as well. Since less than 10
% of all patients can successfully manipulate Model (b) even in very large exchange pools (and
they attempt to do so with their own lives at stake), the main take away message is that if the
social planner can accept that a small fraction of all patients may be able manipulate the matching
mechanism, then a transition to Model (b) is recommended independently of what the current
exchange framework is.

It should be noted that Model (a) is an exact description of the exchange program currently
used in Sweden. This program was initiated and designed by one of the authors of this article
(Andersson) and will be expanded to also include Norway and Denmark in the spring of 2019
at the latest.32 Patients with half-compatible donors are not routinely asked to join the Swedish
exchange program, although there is a discussion within the transplant community about designing
a protocol for investigating their interest in participating. The findings in this article strongly
support any such initiative.

The theoretical results and the simulation results presented in this article are valid for kidney
exchange programs where only pairwise exchanges are allowed. Considering the findings in this
article, it is important that future research investigates how transplantation over the blood group
barrier can be integrated into more sophisticated kidney exchange programs allowing for, e.g.,
non-simultaneous extended altruistic donor chains and larger cyclic exchanges. Such features

32. For more details on the Swedish/Scandinavian program (STEP), see Biró et al. (2018, 2019).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
s
tu

d
/a

rtic
le

-a
b
s
tra

c
t/8

7
/3

/1
0
9
1
/5

4
8
6
5
8
5
 b

y
 g

u
e
s
t o

n
 0

9
 J

u
n
e
 2

0
2
0



1120 REVIEW OF ECONOMIC STUDIES

will with certainty lead to even more transplants. In general, new medical technology and more
potent immunosuppressants will most likely continue to affect kidney exchange programs in the
future, making more research in this direction important. Apart from the results presented in this
article, future research may also build on, e.g., Chun et al. (2015), Nicoló and Rodríguez-Álvarez
(2017), and Sönmez et al. (2018).

A. PRIORITY MATCHINGS AND MATROIDS

This Appendix is divided in two parts. The first shows that pairwise kidney exchange problems have a matroid structure,
even in settings with immunosuppressants. The second demonstrates that the set of priority matchings defined in this
article is equivalent to the set of priority matchings defined by Roth et al. (2005b). The graph theoretical definition of
matchings will be adopted throughout both Appendices A and B. That is, for any problem (N,C,π ) with corresponding
compatibility graph g, a matching M ⊆E(g) is defined as a set of edges in g that are not incident to each other (see
Section 4.2).

A.1. Matroids

Many of the results in Section 4.1 relate to the structure of pairwise kidney exchange problems in particular. One
important aspect of pairwise kidney exchange problems is that the set of all patients N and a family I containing all
sets of patients that can be matched simultaneously constitute a matroid (N,I). This was shown by Roth et al. (2005b)
for settings with a binary compatibility structure (no transplantation over the blood group barrier). Proposition 11 below
states that the matroid result in Roth et al. (2005b) continues to hold in settings that distinguish between compatibility
and half-compatibility. This is not immediately obvious since self-matches alter the structure of the sets of simultaneously
matchable patients.

Definition 1. A pair (X,I) where X is a finite set (called the ground set) and I is a family of subsets of X (called the
independent sets) is a matroid if it has the following two properties.

• If I ∈I and J ⊂ I , then J ∈I (the hereditary property).
• If I,J ∈I, and |J|< |I|, then there exists some i∈ I \J such that J ∪{i}∈I (the augmentation property).

The matroid structure ensures that every maximal matching is a maximum matching. Before stating the matroid result
formally, note that if cyclic exchanges involving three or more patient–donor pairs are feasible, the matroid result no
longer holds, giving rise to a trade-off between prioritizing patients and maximizing the number of transplants, see, e.g.,
Kratz (2019) or Sönmez and Ünver (2014) for detailed discussions.

Proposition 11. Let I be the sets of simultaneously matchable patients, i.e., I :={I ⊆N | I ⊆N∗(M) for some M ∈M}.
Then (N,I) is a matroid.

Proof. The hereditary property holds trivially. The rest of this proof will focus on elements in I, each of which containing
all patients matched at some matching. By the hereditary property, this is without loss of generality. Let M and M ′ be
two matchings such that |N∗(M)|< |N∗(M ′)|. To reach a contradiction, suppose that the augmentation property does
not hold. Then there exists no patient i∈N∗(M ′)\N∗(M) such that N∗(M)∪{i}∈I. By the hereditary property, this can
only be true if N∗(M)\N∗(M ′) �=∅. This conclusion together with |N∗(M)|< |N∗(M ′)| implies that |N∗(M)\N∗(M ′)|<
|N∗(M ′)\N∗(M)|. Hence, N∗(M ′)\N∗(M) �=∅.

Now consider an arbitrary patient i∈N∗(M ′)\N∗(M). First note that it must be the case that ij∈M ′ for some j∈N∗(M).
To see why, note that if both i,j∈N∗(M ′)\N∗(M), then M ∪{ij}∈M. Furthermore, if ii∈M ′, then M ∪{ii}∈M. Both
cases contradict the non-existence of some i∈N∗(M ′)\N∗(M) such that N∗(M)∪{i}∈I.

Next, note that it must be the case that jk ∈M for some k ∈N∗(M)\{j}. Otherwise, jj∈M and (M \{jj})∪{ij}∈M,
which again is a contradiction.

Finally, note that it cannot be the case that kl∈M ′ for some l∈N∗(M ′)\N∗(M), because then (M \{jk})∪{ij,kl}∈M,
which again contradicts the non-existence of some i∈N∗(M ′)\N∗(M) such that N∗(M)∪{i}∈I. Hence, (a) k ∈N∗(M)\
N∗(M ′), or (b) kl∈M ′ for some l∈N∗(M). In case (b), both ll∈M and ll′ ∈M ′ for some l′ ∈N∗(M ′)\N∗(M) result in the
same contradiction. This “chain” continues until reaching some patient j′ ∈N∗(M)\N∗(M ′).

Thus, both in case (a) and case (b), there exists exactly one “corresponding” patient in N∗(M)\N∗(M ′) for every
patient i∈N∗(M ′)\N∗(M). This contradicts the assumption that |N∗(M)|< |N∗(M ′)|. Hence, the augmentation property
holds and (N,I) is a matroid. ‖
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1121

Henceforth, for any problem (N,C,π ), I will always denote the sets of simultaneously matchable patients, i.e., I :={I ⊆

N | I ⊆N∗(M) for some M ∈M}.

A.2. Priority matchings

This section finds an equivalence between the set of priority matchings defined in this article and the set of priority
matchings defined by Roth et al. (2005b). To achieve this, Proposition 11 is used to derive a number of new lemmas.
These lemmas will not only prove to be important in showing the equivalence mentioned above, they will also be useful
in proving some of the results in Appendix B.

Let Ŵ :N →{1,...,n} be a permutation of N such that Ŵ(i)= j if i is the patient with the jth highest priority. That
is, Ŵ−1(1) is the top priority patient and Ŵ−1(n) is the patient with lowest priority. Roth et al. (2005b) define priority
matchings in terms of the following priority mechanism:

• Let E0 =M.
• For k ∈{1,...,n}, let Ek ⊆Ek−1 be defined by

Ek =

{

{M ∈Ek−1 |Ŵ−1(k)∈N∗(M)} if non-empty,

Ek−1 otherwise.

The set En is the set of priority matchings in Roth et al. (2005b). Note that En is defined without reference to any
preferences. To avoid confusion between the two definitions of priority matchings before they have been shown to be
equivalent, En will be used whenever discussing priority matchings as defined by Roth et al. (2005b).

A first observation is that all priority matchings are maximal matchings by construction. One implication of
Proposition 11 is then that all priority matchings are also maximum matchings.

Lemma 2. For a given problem (N,C,π ), each priority matching is a maximum matching.

Proof. Consider any priority matching M ∈En. M is maximal by construction. Suppose that M is not a maximum matching.
Then there exists some M ′ ∈M such that |N∗(M)|< |N∗(M ′)|. Note that N∗(M),N∗(M ′)∈I by definition of I. Since
(N,I) is a matroid, by Proposition 11, there exists some i∈N∗(M ′)\N∗(M) such that N∗(M)∪{i}∈I by the augmentation
property. Consequently, there is some matching M ′′ ∈M such that N∗(M)∪{i}⊆N∗(M ′′). Hence, M is not a maximal
matching. This contradicts the assumption that M ∈En, since all priority matchings are maximal. ‖

Priority preference relations were defined informally in Section 3. Formally, a preference relation �π is called a priority
preference relation if it is complete, transitive, and satisfies the following conditions:

M ≻π M ′ if

{

N∗(M ′)⊂N∗(M),

N∗(M)\N∗(M ′)={i},N∗(M ′)\N∗(M)={j} and π (i)>π (j),

M ∼π M ′ if N∗(M)=N∗(M ′).

The proof of the result that any priority matching is preferred to any other matching by any priority preference relation
(Lemma 3) is included alongside the proof of the converse statement (Lemma 5) for completeness. Lemmas 3 and 5
imply that the set of priority matchings as defined in this article is identical to the set of priority matchings as defined by
Roth et al. (2005b), i.e., that M∗ =En.

Lemma 3. (Roth et al., 2005b). For any priority preference relation �π and any M ∈En, M �π M ′ for all M ′ ∈M.

Proof. Consider some priority preference relation �π and some M ∈En. To reach a contradiction, suppose that there
exists some M ′ ∈M such that M ′ ≻π M. Note that matchings in En are maximal by construction. Furthermore, since
(N,I) is a matroid by Proposition 11, every maximal matching is a maximum matching by the augmentation property.
Since M ′ ≻π M, it must be the case that N∗(M) �=N∗(M ′) since if N∗(M)=N∗(M ′), then M ∼π M ′ by the definition of
�π .33

Let N∗(M)△N∗(M ′) be the symmetric difference between N∗(M) and N∗(M ′), i.e., the set of patients that are matched
at M or M ′ but not both. In the case that M ′ is not a maximum matching, there exists some maximum matching M1 ∈M

33. It should be noted that this requirement on priority preferences is only imposed implicitly in Roth et al. (2005b),
but is nevertheless necessary for Lemma 3 to hold.
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1122 REVIEW OF ECONOMIC STUDIES

such that N∗(M ′)⊂N∗(M1) by the augmentation property. Then M1 ≻π M by transitivity, since M1 ≻π M ′ ≻π M. Let M1

denote some maximum matching such that M1 ≻π M. Note that N∗(M)△N∗(M1) contains the same number of patients
from N∗(M) and N∗(M1) and that its cardinality is at least 2, since N∗(M) �=N∗(M1) by M1 ≻π M.

First, suppose that |N∗(M)△N∗(M1)|=2. Then N∗(M1)\N∗(M)={j} and N∗(M)\N∗(M1)={j′} for some j,j′ ∈N .
Since M1 ≻π M, it must be the case that π (j)>π (j′) by the definition of priority preferences. Let Ŵ(j)= t. It then follows
from M ∈En that M ∈Et−1. Furthermore, since N∗(M)△N∗(M1) contains only j and j′ and since Ŵ(j′)> t by π (j)>π (j′),
it follows that i∈N∗(M1) for all i∈N∗(M) such that Ŵ(i)< t. Hence, M1 ∈Et−1 as well. Due to the fact that Ŵ−1(t)= j,
M1 ∈Et−1 and j∈N∗(M1)\N∗(M), it follows from the definition of Et that M /∈Et . Since En ⊆Et , this contradicts M ∈En.
Thus, |N∗(M)△N∗(M1)|>2.

Let j be the patient with the highest priority in N∗(M)△N∗(M1). Such patient must exist since each patient have a
unique priority and |N∗(M)△N∗(M1)|>2. By definition of the set N∗(M)△N∗(M1), it must be the case that j∈N∗(M1)
or j∈N∗(M). To reach the desired contradiction, it will be demonstrated that (a) j /∈N∗(M1) and (b) j /∈N∗(M).

(a) Suppose that j∈N∗(M1). Let A=N∗(M)∩N∗(M1) be the set of patients matched at both M and M1. Since
A∪{j}⊂N∗(M1) and N∗(M1)∈I, A∪{j}∈I by the hereditary property. Furthermore, because |A∪{j}|< |N∗(M)|,
there exists some patient j′ ∈N∗(M)\(A∪{j}) such that A∪{j,j′}∈I by the augmentation property. Patients can
continue to be added in this way until the union between A and the added patients have the same cardinality
as N∗(M). That is, there exists some A′ ⊂N∗(M)\(A∪{j}) such that A∪A′ ∪{j}∈I and |A∪A′ ∪{j}|=|N∗(M)|.
Since A∪A′ ∪{j}∈I, there exists some M2 ∈M such that A∪A′ ∪{j}⊆N∗(M2) by the definition of I. Since
M is a maximum matching, A∪A′ ∪{j}=N∗(M2). Note that N∗(M2)\N∗(M)={j} and N∗(M)\N∗(M2)={j′′}

for some j′′ ∈N∗(M)△N∗(M1). Since M2 is a maximum matching such that M2 ≻π M (as π (j)>π (j′′)) and
|N∗(M)△N∗(M2)|=2, this is identical to the case discussed above and, consequently, results in the same
contradiction. Thus, j /∈N∗(M1).

(b) Suppose that j∈N∗(M). As before, let A=N∗(M)∩N∗(M1) and note that A∪{j}∈I. By the same logic as in
case (a), there exists some A′ ⊂N∗(M1)\N∗(M) such that A∪A′ ∪{j}∈I by (possibly repeated application of)
the augmentation property. Moreover, there exists some M2 ∈M such that N∗(M2)=A∪A′ ∪{j}. Since π (j)>
π (i) for the unique patient i∈N∗(M1)\(A∪A′ ∪{j}), it follows that M2 ≻π M1. Note that |N∗(M)△N∗(M2)|=
|N∗(M)△N∗(M1)|−2, since j is matched at M and M2 but not at M1 and, furthermore, since i is matched at M1 but
not at M or M2. Now, |N∗(M)△N∗(M1)|>2 and |N∗(M)△N∗(M2)|>0 imply that N∗(M) �=N∗(M2). Suppose
that the highest priority patient j′ in |N∗(M)△N∗(M2)| (which does not contain j) belongs to N∗(M). Then a
matching M3 ∈M containing j′ can be constructed in the same way as above such that M3 ≻π M2 ≻π M1 and
|N∗(M)△N∗(M3)|=|N∗(M)△N∗(M3)|−2. This process can continue until some Mt (possibly identical to M3) is
found such that either |N∗(M)△N∗(Mt)|=0 or the highest priority patient in N∗(M)△N∗(Mt) belongs to N∗(Mt).
If |N∗(M)△N∗(Mt)|=0, then N∗(M)=N∗(Mt), implying that M ∼π Mt . Since M ∼π Mt ≻π ···≻π M1, it follows
that M ≻π M1 by transitivity. This contradicts M1 ≻π M. The process can thus continue until some Mt ∈M is
found such that |N∗(M)△N∗(Mt)|>0 and the patient with highest priority in N∗(M)△N∗(Mt) belongs to N∗(Mt).
Then, either |N∗(M)△N∗(Mt)|=2 or |N∗(M)△N∗(Mt)|>2. Since Mt is a maximum matching such that Mt ≻π M

and the highest priority patient in N∗(M)△N∗(Mt) belongs to N∗(Mt), both cases have already been shown to
result in contradictions. Hence, j /∈N∗(M).

As explained above, cases (a) and (b) provide the desired contradiction. Consequently, there exists no M ′ ∈M and no
priority preference relation �π such that M ′ ≻π M. ‖

Lemma 4. Consider any priority preference relation �π and any matching M ∈M such that M �π M ′ for all M ′ ∈M.
Then N∗(M)=N∗(M ′) for any M ′ ∈En.

Proof. Consider some priority preference relation �π and some M1 ∈M such that M1 �π M ′ for all M ′ ∈M. First note
that En �=∅ as M �=∅. Since �π is a priority preference relation, Lemma 3 implies that M �π M ′ for all M ∈En and all
M ′ ∈M. This implies that M1 ∼π M ′ for all M ′ ∈En. This, in turn, requires that |N∗(M1)|=|N∗(M ′)| for all M ′ ∈En. To see
why, first note that since priority matchings are maximal by construction and since (N,I) is a matroid by Proposition 11,
every priority matching is a maximum matching by the augmentation property. Hence, |N∗(M1)|≤|N∗(M ′)| for all
M ′ ∈En. To reach a contradiction, suppose that |N∗(M1)|< |N∗(M)| for some M ∈En. Since N∗(M1),N∗(M)∈I and
since (N,I) is a matroid by Proposition 11, there exists some patient i∈N∗(M)\N∗(M1) such that N∗(M1)∪{i}∈I by
the augmentation property. Thus, there exists a feasible matching M2 such that N∗(M1)∪{i}⊆N∗(M2). Then, M2 ≻π M1

since N∗(M1)⊂N∗(M2). Therefore, M2 ≻π M1 ∼π M which implies that M2 ≻π M by transitivity. This contradicts M ∈En,
since M �π M ′ for all M ′ ∈M (including M2) by Lemma 3. Hence, |N∗(M1)|=|N∗(M ′)| for all M ′ ∈En.

Next, it will be shown that N∗(M1)=N∗(M ′) for all M ′ ∈En. Assume that N∗(M1) �=N∗(M) for some M ∈En to
reach a contradiction. Note that |N∗(M1)|=|N∗(M)| implies that |N∗(M1)\N∗(M)|=|N∗(M)\N∗(M1)|. As before, let
N∗(M1)△N∗(M) be the symmetric difference between N∗(M1) and N∗(M). That is, the set of patients matched at either
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1123

M1 or M, but not both. Again, note that the symmetric difference always contains the same number of patients from
N∗(M1) and N∗(M) and that its cardinality is at least 2, since N∗(M1) �=N∗(M) by assumption.

First, suppose that |N∗(M1)△N∗(M)|=2. Then there exist j,j′ ∈N such that N∗(M1)\N∗(M)={j} and N∗(M)\
N∗(M1)={j′}. Since �π is a priority preference relation, M1 ≻π M if π (j)>π (j′), and M ≻π M1 if π (j′)>π (j). Both
cases contradict M1 ∼π M. Hence, |N∗(M1)△N∗(M)|>2.

Let j be the patient in N∗(M1)△N∗(M) with highest priority. Without loss of generality, suppose that j∈N∗(M1).
Let A=N∗(M1)∩N∗(M) be the (possibly empty) set of patients matched at both M1 and M. Since A∪{j}⊂N∗(M1) and
N∗(M1)∈I, A∪{j}∈I by the hereditary property. As |N∗(M1)△N∗(M)|>2, it follows that |A∪{j}|< |N∗(M)|. Hence,
there exists some j′ ∈N∗(M)\(A∪{j}) such that A∪{j,j′}∈I by the augmentation property. Patients can continue to be
added like this until the union between A and the added patients has the same cardinality as N∗(M). That is, there exists
some A′ ⊂N∗(M)\(A∪{j}) such that A∪A′ ∪{j}∈I and |A∪A′ ∪{j}|=|N∗(M)|. Since A∪A′ ∪{j}∈I, there exists some
M2 ∈M such that A∪A′ ∪{j}⊆N∗(M2). Furthermore, since |A∪A′ ∪{j}|=|N∗(M)| and M is a maximum matching by
M ∈En, it follows that A∪A′ ∪{j}=N∗(M2). Note that N∗(M)\(A∪A′)={j′} for some j′ ∈N∗(M) and N∗(M2)\(A∪A′)=
{j}. Then, since A∪A′ is a subset of both N∗(M2) and N∗(M), N∗(M2)\N∗(M)={j} and N∗(M)\N∗(M2)={j′}. As
j′ ∈N∗(M1)△N∗(M) and j is the patient in N∗(M1)△N∗(M) with the highest priority, it follows that π (j)>π (j′). Hence,
M2 ≻π M. This violates the assumption that M �π M ′ for all M ′ ∈M. Thus, N∗(M1)=N∗(M). Since M is an arbitrary
priority matching, N∗(M1)=N∗(M) for any M ∈En. ‖

Lemma 5. For any priority preference relation �π and any M ∈M, if M �π M ′ for all M ′ ∈M, then M ∈En.

Proof. Consider some M ∈M such that M �π M ′ for all M ′ ∈M. If M ′ ∈En and N∗(M)=N∗(M ′), then M ∈En by the
definition of En. To see this, note that whether or not a matching M ∈M belongs to En is exclusively determined
by the patients matched at M, i.e., the patients in N∗(M). By Lemma 4, N∗(M)=N∗(M ′) for all M ′ ∈En. Hence,
M ∈En. ‖

B. PROOFS OF THE THEORETICAL RESULTS

This Appendix contains the proofs of all theoretical results except Propositions 11 and 7. The Proof of Proposition 11 is
found in Appendix A.1 and the Proof of Proposition 7 is found in Section 5.1. Many proofs make use of results from other
lemmas and propositions. For this reason, the proofs are not necessarily presented in the same order as their corresponding
results in the main text. To make it easier for the reader to find the proofs, this Appendix is divided into four parts that are
named after the specific sections where the results are presented in the main text. As in Appendix A, the graph theoretical
definition of matchings will be adopted in this Appendix as well (see Section 4.2).

B.1. Proofs of the results in Section 4.1

Proposition 2. For a given problem (N,C,π ), every half-compatibility priority matching is a priority matching.

Proof. Consider some priority matching M ∈M∗. Then M �π M ′ for all M ′ ∈M and all priority preference relations
�π by Lemma 3. Note that if M ≻π M ′ for some M ′ ∈M and all priority preferences �π , then M ≻B M ′ for all half-
compatibility priority preferences �B. To see this, first note that if M is preferred to M ′ by all priority preference relations,
then this preference does not depend on the choice of priority preference relation. Thus, the preference is induced by
the properties of priority preferences, i.e., the restrictions imposed on priority preference relations. Note that the same
restrictions are imposed on both priority preference relations and half-compatibility priority preference relations when
considering matchings M,M ′ ∈M for which N∗(M) �=N∗(M ′). Since M �∼π M ′, it follows that N∗(M) �=N∗(M ′). The
restrictions imposed on half-compatibility priority preference relations will therefore induce the same preferences over
M and M ′. Then, because M ≻π M ′ for all M ∈M∗, all M ′ ∈M\M∗ and all priority preference relations �π , it follows
that M ≻B M ′ for all M ∈M∗, all M ′ ∈M\M∗ and all half-compatibility priority preference relations �B. That is,
half-compatibility priority preference relations prefer all priority matchings to all non-priority matchings. Consequently,
MB ⊆M∗, i.e., every half-compatibility priority matching is a priority matching. ‖

Proposition 3. For a given problem (N,C,π ), every half-compatibility priority matching is a Pareto efficient maximum
matching.

Proof. Consider any M ∈MB. It follows immediately from Lemma 2 and Proposition 2 that M is a maximum matching.
Suppose that M is not Pareto efficient to reach a contradiction. Then there exists some M ′ ∈M that Pareto dominates M.
First, suppose that N∗(M) �=N∗(M ′). Note that N∗(M) �⊂N∗(M ′) since M is a maximum matching. Hence, there exists
some i∈N∗(M)\N∗(M ′), which implies that M ≻i M ′. This contradicts the assumption that M ′ Pareto dominates M. It
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1124 REVIEW OF ECONOMIC STUDIES

must therefore be the case that N∗(M)=N∗(M ′). Furthermore, since N∗(M)=N∗(M ′) and since M ′ Pareto dominates M,
it must be the case that B(M ′)>B(M). To see this, note that each patient must weakly prefer the kidney she receives at
M ′ to the kidney she receives at M with strict preference for some patients. Since M ∈MB, it follows by the construction
of MB that B(M)≥B(M ′). This contradicts B(M ′)>B(M). Hence, every half-compatibility priority matching is a Pareto
efficient maximum matching. ‖

Proposition 4. For a given problem (N,C,π ), N∗(M)=N∗(M ′) for all M,M ′ ∈M∗.

Proof. The proof follows directly from Lemma 4 and the fact that the set of priority matchings defined in this article is
equivalent to the set of priority matchings defined by Roth et al. (2005b). ‖

Proposition 1. For a given problem (N,C,π ), all half-compatibility priority preference relations induce the same set of
half-compatibility priority matchings.

Proof. Consider any half-compatibility priority preference relation �B. Note that for any M,M ′ ∈M, either B(M)>
B(M ′),B(M)<B(M ′) or B(M)=B(M ′). Since N∗(M)=N∗(M ′) for all M,M ′ ∈M∗, by Proposition 4, all half-
compatibility priority preference relations will rank all priority matchings in the same way. That is, for any M,M ′ ∈M∗,
M �B M ′ for some half-compatibility priority preference relation �B if and only if M �′

B M ′ for all half-compatibility
priority preference relations �′

B. By Proposition 2, MB ⊆M∗. This implies that N∗(M)=N∗(M ′) for all M,M ′ ∈

MB as well. Hence all half-compatibility priority preferences induce the same set of half-compatibility priority
matchings. ‖

B.2. Proof of Proposition 5

The Proof of Proposition 5 is divided into two main parts. In the first part (Lemmas 7–10), a specific problem, denoted by
(N,Ĉ,πM ), plays an important role. More specifically, a number of equivalences are derived between an arbitrary problem
(N,C,π ) and a specific problem (N,Ĉ,πM ), which has a simple corresponding compatibility graph ĝ. For any problem
(N,C,π ), the corresponding compatibility graph g is a simple graph whenever it contains no loops, i.e., whenever NH =∅.
While Lemma 1 is only applicable in problems with corresponding compatibility graphs that are simple graphs, this is
not a sufficient requirement. It also requires that no transplantation over the blood group barrier be possible, i.e., that
the compatibility structure is binary in the sense that any patient i and donor dj are either incompatible or compatible.
The main idea in the second part of the proof (Lemma 11 to the end of Appendix B.2) is therefore to use the findings
from the first part of the proof to demonstrate that an arbitrary problem (N,C,π ) can be translated into an equivalent
specific problem (N,Č,π ) with a corresponding simple graph, where Č is a compatibility structure at which no patients
are half-compatible with any donors. Once this has been established, the proof of Proposition 5 follows from Lemma 1
and the findings in this Appendix. Note that this section (Appendix B.2) involves multiple compatibility structures (e.g.

C, Ĉ, Č), each of which may induce a different set of matchings M. For this reason, the notation M(C) will be used
throughout the section to denote the set of all matchings for a given compatibility structure C. The sets M∗(C) and
MB(C) are defined analogously.

Before introducing the problem (N,Ĉ,πM ), it is first proved that all patients in NH are matched at any maximal
matching and, by extension, at any maximum weight matching or priority matching.

Lemma 6. Consider a problem (N,C,π ) with corresponding compatibility graph g, where NH �=∅. Then each patient
in NH is matched at each maximal matching.

Proof. By construction, ii∈E(g) for all i∈NH . To obtain a contradiction, suppose that there exists some patient i∈NH who
is unmatched at some maximal matching M. Then M ′ :=M ∪{ii}∈M(C) since i∈NH . This contradicts the assumption
that M is a maximal matching. Hence, each patient in NH is matched at each maximal matching. ‖

Consider a problem (N,C,π ) with corresponding compatibility graph g and let M ∈M(C). As mentioned above, the
construction of the problem (N,Ĉ,πM ) is key in the first part of the proof of Proposition 5. For any compatibility structure
C′, let NH (C′) denote the set of patients that are half-compatible with their own donors at C′ and define NI (C′) analogously,
i.e., NI (C′)=N \NH (C′). The priority function πM is defined by:

πM (i) = π (i) for all i∈NI (C), (B.1)
∑

i∈NH (C)
πM (i) < min{πM (j) | j∈NI (C)}, (B.2)

∑

i∈�M

πM (i) < min{πM (j) | j∈NH (C)\�M }, (B.3)
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1125

where �M is the set containing each patient in NH (C) not matched to any patient in NI (C) at matching M. Moreover, the
compatibility structure Ĉ is defined by the following two conditions:

• For any i,j∈NH (C), i and j are incompatible at Ĉ. This includes the cases when i= j.
• Consider two patients i,j∈N such that i /∈NH (C) or j /∈NH (C). Then i and j are compatible (half-compatible) at

Ĉ if and only if they are compatible (half-compatible) at C.

Note that the first condition removes all the loops at patients in NH . Consequently, the resulting compatibility graph
ĝ is a simple graph. Furthermore, for each matching in M(Ĉ), a patient in NH (C) is either unmatched or matched to a
patient in NI (C). Let L(g) :={ij∈E(g) | i,j∈NH (C)} be the set of edges between patients in NH (C), including all loops.
Then E(ĝ) and L(g) constitute a partitioning of E(g), i.e., E(g)=E(ĝ)∪L(g) and E(ĝ)∩L(g)=∅. A final observation is
that if NH (C)=∅, then C = Ĉ and π =πM . In that case, the proofs of Lemmas 7–10, below, follow immediately. Hence,
in the proofs of these four lemmas, it is assumed that NH (C) �=∅. Let w(π ) be defined by wii(π )=π (i) for all i∈N and
wij(π )=π (i)+π (j) for all i,j∈N such that i �= j.

Lemma 7. Consider two problems (N,C,π ) and (N,C,πM ) with corresponding compatibility graph g and let M ∈

M(C). Then M is a maximum weight matching in (g,w(π )) if and only if M is a maximum weight matching in (g,w(πM )).

Proof. Consider some patient i∈NH (C) such that M is a maximum weight matching in (g,w(π )). By definition, M

is a maximum weight matching in (g,w(π )) whenever S(M,w(π ))−S(M ′,w(π ))≥0 for all M ′ ∈M(C). Since each
maximum weight matching is a maximal matching, patient i is matched at M by Lemma 6. Consider an arbitrary
matching M ′ where, without loss of generality, patient i is matched. Then the term π (i) is found in both the sum
S(M,w(π )) and the sum S(M ′,w(π )). Thus, π (i) cancels out in the difference S(M,w(π ))−S(M ′,w(π )). Consequently,
S(M,w(π ))−S(M ′,w(π ))≥0 for all M ′ ∈M(C) and all values of π (i). That is, M is a maximum weight matching in
(g,w(π )) for all values of π (i). Since this argument can be repeated for all i∈NH and since π (j)=πM (j) for all j∈NI , it
follows that M is a maximum weight matching in (g,w(πM )) as well. The same argument can be used in reverse to show
that if M is a maximum weight matching in (g,w(πM )), then it is a maximum weight matching in (g,w(π )). ‖

Lemma 8. Consider two problems (N,C,π ) and (N,C,πM ) with corresponding compatibility graph g and let M ∈

M(C). Then M is a priority matching at (N,C,π ) if and only if it is a priority matching at (N,C,πM ).

Proof. Since almost identical arguments can be used in both directions of the proof, it is only shown that if M is a
priority matching at (N,C,π ), then it is a priority matching at (N,C,πM ). To reach a contradiction, suppose that M is a
priority matching at (N,C,π ) but not at (N,C,πM ). As M is a priority matching at (N,C,π ), it is a maximum matching
by Proposition 3. Furthermore, since the priority function does not impact whether a matching is a maximum matching,
M is a maximum matching at (N,C,πM ) as well. Then there exists some pair of patients i,j∈N and some maximum
matching M ′ such that N∗(M)\N∗(M ′)={i}, N∗(M ′)\N∗(M)={j} and πM (j)>πM (i). First, suppose that i∈NH . This
means that i can feasibly be self-matched. Hence, M ′ ∪{ii}∈M(C). N∗(M)⊂N∗(M ′ ∪{ii}) contradicts the observation
that M is a maximum matching. Hence, i∈NI . Since πM (j)>πM (i), condition (B.2) in the definition of πM implies that
j∈NI as well. As πM (i)=π (i) and πM (j)=π (j), this contradicts the assumption that M is a priority matching at (N,C,π ).
Consequently, if M is a priority matching at (N,C,π ), then it is a priority matching at (N,C,πM ). ‖

Now recall that L(g) :={ij∈E(g) | i,j∈NH (C)} is defined to be the set of edges between patients in NH (C), including all
loops.

Lemma 9. Consider two problems (N,C,πM ) and (N,Ĉ,πM ) with corresponding compatibility graphs g and ĝ,
respectively. Let M ∈M(C) be a maximal matching. Then M is a maximum weight matching in (g,w(πM )) if and
only if M ′ :=M \L(g) is a maximum weight matching in (ĝ,w(πM )).

Proof. It will first be shown that M is a maximum weight matching in (g,w(πM )) only if M ′ :=M \L(g) is a maximum
weight matching in (ĝ,w(πM )). Suppose that M is a maximum weight matching in (g,w(πM )). Since M ⊆E(g) and
E(g)\L(g)=E(ĝ), by construction, it follows that M ′ ∈M(Ĉ). As L(g) only contains edges between patients in NH (C),
it is clear that N∗(M)∩NI (C)=N∗(M ′)∩NI (C). Now, to reach a contradiction, suppose that M ′ is not a maximum
weight matching in (ĝ,w(πM )). By definition of πM , it must be the case that πM (j)>

∑

i∈NH (C)πM (i) for any j∈NI (C).

Consequently, any maximum weight matching at (N,C,πM ) or (N,Ĉ,πM ) must match all patients in N∗(M)∩NI (C)
since M is a maximum weight matching at (N,C,πM ) and all patients in N(M)∩NI (C) are simultaneously matchable at
(N,Ĉ,πM ) by N∗(M)∩NI (C)=N∗(M ′)∩NI (C) and M ′ ∈M(Ĉ).

If M ′ is not a maximum weight matching at (N,Ĉ,πM ), then there must exist some maximum matching
M̂ ∈M(Ĉ) such that N∗(M)∩NI (C)=N∗(M̂)∩NI (C) and some i∈ (N∗(M ′)∩NH (C))\N∗(M̂) such that π (i)<
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1126 REVIEW OF ECONOMIC STUDIES

∑

j∈(N∗(M̂)∩NH (C))\N∗(M ′)π (j). Next, note that i∈NH (C)\�M for all i∈ (N∗(M ′)∩NH (C))\N∗(M̂), since all patients in

�M are unmatched at M ′ by construction. Moreover, every patient in NH (C) matched to a patient in NI (C) at M is still
matched to the same patient at M ′ and every patient in NH (C) that is matched at M ′ or M̂ is matched to some patient in
NI (C) since ĝ contains no loops or edges between patients in NH (C). Thus, j∈�M for all j∈ (N∗(M̂)∩NH (C))\N∗(M ′).
This contradicts condition (B.3). Hence, M is a maximum weight matching in (g,w(πM )) only if M ′ is a maximum weight
matching in (ĝ,w(πM )).

It is next proved that M is a maximum weight matching in (g,w(πM )) if M ′ is a maximum weight matching in
(ĝ,w(πM )). Suppose that M ′ is a maximum weight matching in (ĝ,w(πM )). Then condition (B.2) implies that there exists
no M̂ ∈M(Ĉ) such that

∑

i∈N∗(M̂)∩NI (C)π (i)>
∑

i∈N∗(M ′)∩NI (C)π (i). Recall that N∗(M)∩NI (C)=N∗(M ′)∩NI (C). These
two findings together with the observation that L(g) only contains loops and edges between patients in NH (C) imply
that there exists no M̃ ∈M(C) such that

∑

i∈N∗(M̃)∩NI (C)π (i)>
∑

i∈N∗(M)∩NI (C)π (i). To reach a contradiction, suppose

that M is not a maximum weight matching in (g,w(πM )). Then there exists some M̃ ∈M(C) such that S(M̃,w(πM ))>
S(M,w(πM )). Considering that

∑

i∈N∗(M̃)∩NI (C)π (i)≤
∑

i∈N∗(M)∩NI (C)π (i), it must be the case that
∑

i∈N∗(M̃)∩NH (C)π (i)>
∑

i∈N∗(M)∩NH (C)π (i). However, this is a contradiction as all patients in NH (C) are matched at M by Lemma 6. Hence, M

is a maximum weight matching in (g,w(πM )) if M ′ is a maximum weight matching in (ĝ,w(πM )). ‖

Some definitions related to paths are helpful in some of the coming proofs.

Definition 2. An ordered list of (not necessarily unique) patients (i1,...,it) is a path of length t in a graph g if:

• ij ij+1 ∈E(g) for all j∈{1,...,t−1},

• ij ij+1 �= ij′ ij′+1 for all distinct j,j′ ∈{1,...,t−1}.34

A path is a maximal path if it is not contained in a longer path.

Lemma 10. Consider a problem (N,C,πM ) with corresponding compatibility graph g and let M ∈M(C) be a maximal
matching. Then M is a priority matching at (N,C,πM ) if and only if M ′ :=M \L(g) is a priority matching at (N,Ĉ,πM ).

Proof. It will first be shown that M is a priority matching at (N,C,πM ) only if M ′ is a priority matching at (N,Ĉ,πM ).
Suppose that M is a priority matching at (N,C,πM ). Since M ⊆E(g) and E(g)\L(g)=E(ĝ), by construction, it follows
that M ′ ∈M(Ĉ). To reach a contradiction, suppose that M ′ is not a priority matching at (N,Ĉ,πM ). Then there exists some
M̂ ∈M(Ĉ) such that M̂ ≻πM

M ′. Furthermore, since M ′ is a maximal matching, there must exist some matching M̂ ∈M(Ĉ)
such that N∗(M̂)\N∗(M ′)={i} and N∗(M ′)\N∗(M̂)={j} for some i,j∈N , where πM (i)>πM (j). By the definitions of
NI (C) and NH (C) and by the existence of patient i, it must be the case that i∈NI (C) or i∈NH (C). Two different cases
must be considered to reach the desired contradiction:

(i) Suppose that i∈NI (C). Since N∗(M)∩NI (C)=N∗(M ′)∩NI (C), it must then be the case that i /∈N∗(M) and
j∈N∗(M). Let M̃ :=M̂ ∪{kk |k ∈NH (C)\N∗(M̂)} be an amended version of M̂, where all patients in NH (C) that
are unmatched at M̂ are self-matched at M̃. Note that M̃ ∈M(C). If j∈NH (C), then N∗(M)⊂N∗(M̃). If j∈NI (C),
then N∗(M)\N∗(M̃)={j} and N∗(M̃)\N∗(M)={i}, where πM (i)>πM (j). However, this in implies that M̃ ≻πM

M

in both cases, which contradicts the assumption that M is a priority matching at (N,C,πM ). Hence, i /∈NI (C).

(ii) Suppose that i∈NH (C). Then condition (B.2) implies that j∈NH (C) as well. Furthermore, i∈�M and j∈NH (C)\
�M by construction. This is a contradiction, since πM (i)<πM (j) by condition (B.3). Hence, i /∈NH (C).

In conclusion, i /∈NI (C) and i /∈NH (C), which contradict the existence of patient i. Thus, M is a priority matching at
(N,C,πM ) only if M ′ is a priority matching at (N,Ĉ,πM ).

Finally, it will be shown that M is a priority matching at (N,C,πM ) if M ′ is a priority matching at (N,Ĉ,πM ). To reach
a contradiction, suppose that M ′ is a priority matching at (N,Ĉ,πM ) and that M is not a priority matching at (N,C,πM ).
Then there exists some M̂ ∈M(C) such that M̂ ≻πM

M. Furthermore, since all patients in NH (C) are matched at all maximal
matchings given the priority structure C, there exists some M̂ ∈M(C) such that N∗(M̂)\N∗(M)={i} and N∗(M)\N∗(M̂)=
{j} for some i,j∈NI (C) such that π (i)>π (j). Note that M̃ :=M̂ \L(g)∈M(Ĉ) and that (N∗(M̃)∩NI )\(N∗(M ′)∩NI )={i}

and (N∗(M ′)∩NI )\(N∗(M̃)∩NI )={j}.
Let i := i1 and note that there must exist a maximal path (i1,...,it) in (N,M̃ ∪M ′), where i1 �= it . Hence, t ≥2. To

establish the contradiction, it will next be demonstrated that it cannot be the case that t ≥2.

34. In the case when ii∈E(g) for some i∈N , the list (i1,i2) is a path of length 2 where i1 = i2, i.e., every path has a
length of at least 2.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1127

(i) Suppose that t =2. Since it is matched at M while i is not, this implies that it it ∈M and consequently that it ∈�M .
Then M̌ :=M ′ ∪{i1it}∈M(Ĉ). Since N∗(M ′)⊂N∗(M̌), this contradicts the assumption that M ′ is a priority
matching at (N,Ĉ,πM ).

(ii) Suppose that t =3. Then either it ∈NI (C)\N∗(M̃) and it = j, or it ∈NH (C). Note that M̌ := (M ′ \{i2it})∪{i1i2}∈

M(Ĉ). Furthermore, by π (i)>π (j) and condition (B.2), π (i1)>π (it) both in the case when it = j and the case
when it ∈NH (C). This implies that M̌ ≻πM

M ′, which contradicts the assumption that M ′ is a priority matching
at (N,Ĉ,πM ).

(iii) Suppose that t ≥4. Recall that there are no edges between patients in NH (C) or loops in M ′ or M̃. Two different
cases arise:

• If t is even, then it ∈�M . Define γ :={ik ik+1 |k ∈{2,...,t−2}⊂2N} and γ ′ :={ik ik+1 |k ∈{1,...,t−1}⊂

N\2N}. Note that M̌ := (M ′ \γ )∪γ ′ ∈M(Ĉ). Since N∗(M ′)⊂N∗(M̌), M̌ ≻πM
M ′. This contradicts the

assumption that M ′ is a priority matching at (N,Ĉ,πM ).
• If t is odd, then either it ∈NI (C)\N∗(M̃) and it = j, or it ∈NH (C)\�M . Define γ :={ik ik+1 |k ∈{2,...,t−

1}⊂2N} and γ ′ :={ik ik+1 |k ∈{1,...,t−2}⊂N\2N}. Note that M̌ := (M ′ \γ )∪γ ′ ∈M(Ĉ). Furthermore,
N∗(M̌)\N∗(M ′)={it} and N∗(M ′)\N∗(M̌)={i}. By π (i)>π (j) and condition (B.2), it follows that
π (i1)>π (it) both in the case when it = j and the case when it ∈NH (C)\�M . This implies that M̌ ≻πM

M ′,
which contradicts the assumption that M ′ is a priority matching at (N,Ĉ,πM ).

Hence, M is a priority matching at (N,C,πM ) if M ′ is a priority matching at (N,Ĉ,πM ). ‖

The next result (Lemma 11) finds an equivalence between priority matchings and maximum weight matchings for any
given problem (N,C,π ). The problem (N,Ĉ,πM ) has a corresponding simple compatibility graph ĝ, since all the loops
have been removed. However, while no patients are half-compatible with their own donors at Ĉ, they may still be half-
compatible with other donors. Therefore, the key idea in the proof of Proposition 5 will be to demonstrate that for any
problem (N,C,π ), there exists an equivalent problem (N,Č,π ) with a corresponding simple graph ǧ, in which no patients
are half-compatible with any donors. That is, Č is binary, in the sense that any pair of patients and donors is either
compatible or incompatible at Č. Gather all compatibility structures at which no patients are half-compatible with any
donors in the set C02. Note that the compatibility structures considered by Okumura (2014) belong to C02. Lemma 1
is only applicable in problems with compatibility structures belonging to C02. To understand Lemma 11, note that the
problem (N,C,π ) need not correspond to the conditions in Lemma 1 by Okumura (2014). Any problem (N,C,π ) in
which NH =∅ has a corresponding simple compatibility graph. However, NH =∅ does not guarantee the requirement in
Lemma 1 that no patients and donors are half-compatible to be satisfied. Lemma 11 is therefore not implied by Lemma
1, since there are compatibility structures not belonging to C02 with corresponding compatibility graphs that are simple
graphs.

Lemma 11. For any problem (N,C,π ) with corresponding simple compatibility graph g, a matching M is a priority
matching at (N,C,π ) if and only if M is a maximum weight matching in (g,w(π )).

Proof. It will first be demonstrated that for any problem (N,C,π ) with corresponding simple compatibility graph g, there
exists a compatibility structure Č such that no patients and donors are half-compatible, a matching M is a priority matching
at (N,C,π ) if and only if it is a priority matching at (N,Č,π ) and M∗(C)=M∗(Č). The corresponding compatibility
graph of Č is denoted by ǧ.

Let C be a compatibility structure for which each patient is incompatible with her own donor and compatible with
every other donor. Then C ∈C02 and the corresponding compatibility graph, g, is a complete graph. Consider some
arbitrary set of edges E′ ⊆E(g). Let Ĉ′ be a compatibility structure for which each patient i∈N is compatible with some
donor dj if and only if idj ∈E(g)\E′ and let ĝ′ be its corresponding compatibility graph. Then Ĉ′ ∈C02, E(ĝ′)⊂E(g)
and E(g)\E(ĝ′)=E′. Since C ∈C02, g is a complete graph and E′ is an arbitrary set of edges, there exists some C′ ∈C02

with corresponding compatibility graph g′ = (N,E) for any E ⊆E(g). Hence, for any compatibility structure C /∈C02 with
corresponding simple compatibility graph g, there exists some Č ∈C02 with corresponding simple compatibility graph
ǧ such that ǧ=g. If ǧ=g, then M∗(C)=M∗(Č) since the set of priority matchings for a given compatibility structure
only depends the priority function, which is fixed, and on information contained in its corresponding compatibility graph.
Hence, for any problem (N,C,π ) with corresponding simple compatibility graph g, there exists some Č ∈C02 such that
a matching M is a priority matching at (N,C,π ) if and only if it is a priority matching at (N,Č,π ).

To conclude the proof, note that since Č ∈C02, Lemma 1 implies that M is a priority matching at (N,Č,π ) if and only
if it is a maximum weight matching in (ǧ,w). Since ǧ=g, M is a maximum weight matching in (ǧ,w) if and only if it is
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1128 REVIEW OF ECONOMIC STUDIES

a maximum weight matching in (g,w). Hence, for any problem (N,C,π ) with corresponding simple compatibility graph
g, M is a priority matching if and only if M is a maximum weight matching in (g,w). ‖

Proposition 5. Consider a problem (N,C,π ) with corresponding compatibility graph g. If wii =π (i) for all ii∈E(g) and
wij =π (i)+π (j) for all ij∈E(g) whenever i �= j, then M is a priority matching if and only if M is a maximum weight
matching in (g,w).

Proof. Let (N,C,π ) be a problem with corresponding, not necessarily simple, compatibility graph g and suppose that M

is a maximum weight matching in (g,w). Since M is a maximal matching in g, Lemmas 7 and 9 imply that there exists a
compatibility matrix Ĉ with corresponding simple compatibility graph ĝ such that M is a maximum weight matching in
(g,w) if and only if M ′ :=M \L(g) is a maximum weight matching in (ĝ,w(πM )). Since ĝ is a simple compatibility graph,
it follows from Lemma 11 that M ′ :=M \L(g) is a priority matching at (N,Ĉ,πM ) if and only if it is a maximum weight
matching in (ĝ,w(πM )). This implies that M is a maximum weight matching in (g,w) if and only if M ′ :=M \L(g) is a
priority matching at (N,Ĉ,πM ). This conclusion together with Lemmas 8 and 10 implies that for any problem (N,C,π ),
M is a maximum weight matching in (g,w) if and only if M is a priority matching. ‖

B.3. Proof of Proposition 6

Proposition 6. Consider a problem (N,C,π ) with corresponding compatibility graph g. Then a matching is a half-
compatibility priority matching if and only if it is a maximum weight matching in (g,wε).

Proof. (⇒) It is first proved that any maximum weight matching in (g,wε) is a half-compatibility priority matching, i.e.,
if a matching M is a maximum weight matching in (g,wε), then M ∈MB. Let M be a maximum weight matching in
(g,wε). The first step in this part of the proof is to show that M is also a maximum weight matching in (g,w), where w is
defined as in Proposition 5. To obtain a contradiction, suppose that M is not a maximum weight matching in (g,w). This
means that there is some other matching M ′ ∈M such that S(M ′,w)>S(M,w). By the construction of w, it is clear that:

S(M ′,w)−S(M,w)≥
1

q

⇐⇒ S(M ′,w)≥S(M,w)+
1

q
. (B.4)

Next, note that wε
ij −wij ∈[0,2ε] for all ij∈E(g) by the construction of w and wε . Hence:

S(M,wε)−S(M,w) ≤ |N∗(M)|ε≤nε<
n

2qn
=

1

2q
<

1

q

⇐⇒ S(M,wε) < S(M,w)+
1

q
. (B.5)

Inequalities (B.4) and (B.5) imply that:
S(M ′,w)>S(M,wε). (B.6)

Since wε
ij −wij ∈[0,2ε] for all ij∈E(g), it follows that:

S(M ′,wε)≥S(M ′,w). (B.7)

Inequalities (B.6) and (B.7) then imply that S(M ′,wε)>S(M,wε). But this contradicts the assumption that M is a maximum
weight matching in (g,wε), i.e., that S(M,wε)≥S(M ′,wε) for all M ′ ∈M. Hence, M is a maximum weight matching in
(g,w) and, consequently, a priority matching by Proposition 5.

To complete this part of the proof, it will next be shown that M ∈MB. To obtain a contradiction, suppose that
M /∈MB. Consider a matching M ′ that belongs to MB. As MB ⊆M∗, M ′ is a maximum weight matching in (g,w)
by Proposition 5. However, as demonstrated above, M is also a maximum weight matching in (g,w). Hence, S(M,w)=
S(M ′,w). Furthermore, note that:

S(M ′,wε)−S(M ′,w)=εB(M ′) (B.8)

S(M,wε)−S(M,w)=εB(M). (B.9)

Since M ∈M∗ \MB and M ′ ∈MB, it must be that B(M ′)>B(M). This implies that εB(M ′)>εB(M), as ε>0. It then
follows from the conclusion that S(M,w)=S(M ′,w) and from equations (B.8) and (B.9) that:

S(M ′,wε)−S(M ′,w)>S(M,wε)−S(M,w) ⇐⇒ S(M ′,wε)>S(M,wε).

This contradicts the assumption that M is a maximum weight matching in (g,wε). Hence, M ∈MB.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1129

(⇐) It will now be proved that any M ∈MB is a maximum weight matching in (g,wε). To obtain a contradiction,
consider a matching M ∈MB and assume that M is not a maximum weight matching in (g,wε). Then there exists some
other matching M ′ ∈M such that:

S(M ′,wε)>S(M,wε). (B.10)

From Proposition 5, it follows that S(M ′,w)≤S(M,w) since M ∈M∗. It is next demonstrated that S(M ′,w)=S(M,w).
To reach a contradiction, suppose that S(M ′,w)<S(M,w). Then:

S(M,w)−S(M ′,w)≥
1

q

⇐⇒ S(M,w)≥S(M ′,w)+
1

q

�⇒ S(M,wε)≥S(M ′,w)+
1

q
. (B.11)

As before, wε
ij −wij ∈[0,2ε] for all ij∈E(g) ensures that:

S(M ′,wε)−S(M ′,w)<
1

q

⇐⇒ S(M ′,w)+
1

q
>S(M ′,wε). (B.12)

Inequalities (B.11) and (B.12) imply that S(M,wε)>S(M ′,wε), which contradicts inequality (B.10). Hence, S(M ′,w)=
S(M,w).

Next, note that M is a maximum weight matching in (g,w) by Proposition 5 since M ∈M∗. But then, M ′ is
also a maximum weight matching in (g,w) because S(M ′,w)=S(M,w) by the conclusion above. Hence, M ′ ∈M∗ by
Proposition 5. Recall that:

S(M ′,wε)−S(M ′,w)=εB(M ′), (B.13)

S(M,wε)−S(M,w)=εB(M). (B.14)

Now, the conclusion that S(M ′,w)=S(M,w) together with inequality (B.10) and equations (B.13) and (B.14) imply that:

ε(B(M ′)−B(M))=S(M ′,wε)−S(M,wε)>0. (B.15)

Condition (B.15) and ε>0 imply that B(M ′)>B(M). But this contradicts the assumption that M ∈MB as M ′ ∈M∗. That
is, M cannot be an element in MB if there exists another priority matching M ′ at which the number of patients receiving
a compatible kidney is larger. Hence, M is a maximum weight matching in (g,wε). ‖

B.4. Proofs of the results in Section 5.1

Proposition 9. Consider a problem (N,C,π ) and suppose that µ′ and µ′′ contain all patients that receive transplants in
Model (a) and Model (b), respectively. Then µ′ ⊆µ′′.

Proof. Consider a problem (N,C,π ) with corresponding compatibility graph g and let g̃ be the compatibility graph
corresponding to the reduced problem (NI ,CI ,π ). That is, let g̃= (NI ,E(g̃)) where ij∈E(g̃) for all i,j∈NI such that
ij∈E(g). Suppose that M is a maximum weight matching in (g,wε) and M̃ is a maximum weight matching in (g̃,wε). By
Proposition 6, M corresponds to a matching selected in Model (b) and M̃ corresponds to a matching selected in Model (a).
Moreover, µ′′ =N∗(M) and µ′ =N∗(M̃)∪NH . Note that while Model (a) and Model (b) only select a single matching each
from a set of half-compatibility priority matchings in their corresponding problems, the selection is inconsequential since
any half-compatibility priority matching is a maximum weight matching in the corresponding weighted compatibility
graphs.

To prove the result, it will be demonstrated that any patient contained in a maximal path (see Definition 2) in the
graph (N,M ∪M̃) belongs to N∗(M).35 The result mentioned above is first proved for maximal paths of length t =2, i.e.,
paths of the type (i1,i2) in (N,M ∪M̃).

35. Recall that a matching is defined as a set of non-incident edges in a compatibility graph g (or g̃). M ∪M̃ ⊆E(g)
is therefore a subset of the edges in the compatibility graph g, constituting the edge set in the graph (N,M ∪M̃). Maximal
paths in (N,M ∪M̃) are of interest since any patient corresponding to an interior element (non-end point) in such a
maximal path will be matched at both M and M̃. Thus, attention can be restricted to the end points of such maximal paths.
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1130 REVIEW OF ECONOMIC STUDIES

Now consider a maximal path of the type (i1,i2) and suppose first that i1 = i2. Since i1 belongs to a path in (N,M ∪M̃),
i1 must be matched at either M or M̃. Furthermore, since i1 = i2 and (i1,i2) is a maximal path in (N,M ∪M̃), i1 must be
self-matched at M or M̃. This implies that i1 ∈NH and consequently that that i1 is matched at M, as all patients in NH are
matched at M. Hence, i1 ∈N∗(M). Suppose next that i1 �= i2 and that i1 is matched to i2 at M̃ but that both i1 and i2 are
unmatched at M. Then M ′ :=M ∪{i1i2}∈M, which contradicts the assumption that M is a maximum weight matching in
(g,wε). Hence, i1,i2 ∈N∗(M). In summary, any patient contained in a maximal path of length t =2 in (N,M ∪M̃) belongs
to N∗(M).

In the remaining part of the proof, maximal paths of length t ≥3 are considered, i.e., paths of the type (i1,...,it)
in (N,M ∪M̃). Suppose first that i1 = it . Then all patients in {i1,...,it} are matched at both M and M̃. Hence, i∈N∗(M)
for all i∈{i1,...,it}. The more difficult case is when i1 �= it .36 Now consider all interior elements in the path, i.e., each
i∈{i2,...,it−1}. To be an interior element in a maximal path, i must be matched at both M and M̃. This implies that i∈NI

and i∈N∗(M) for all i∈{i2,...,it−1}. Hence, for any patient i∈NH , i∈ (i1,...,it) only if i∈{i1,it}. That is, if a patient in
NH is an element in a maximal path, then the patient is a starting point or an end point of that path. Now define:

γ := {ik ik+1 |k ∈{2,...,t−2}⊂2N},

γ ′ := {ik ik+1 |k ∈{1,...,t−1}⊂N\2N},

γ̂ := {ik ik+1 |k ∈{2,...,t−1}⊂2N},

γ̂ ′ := {ik ik+1 |k ∈{1,...,t−2}⊂N\2N}.

To complete the proof, three distinct cases, called (a)–(c), are considered. These cases are also divided into a number of
subcases.

(a) Suppose that i1,it ∈NI . The following three subcases illustrate that this always results in a contradiction.

(a.1) Suppose that t =3, i1 ∈N∗(M)\N∗(M̃), and it ∈N∗(M̃)\N∗(M). Since M ′ := (M \{i1i2})∪{i2it} is a
feasible matching in g̃ and since M̃ is a maximum weight matching in (g̃,wε), it must be the case
that π (i1)<π (it). Next, because M ′′ := (M̃ \{it it})∪{i1i2} is a feasible matching in g and since M is a
maximum weight matching in (g,wε), it must be the case that π (i1)>π (it). This is a contradiction.

(a.2) Suppose that t ≥4 and that t is even. Then i1 and it are either both unmatched at M or both unmatched
at M̃. Suppose that both are unmatched at M̃. Then M ′ := (M̃ \γ )∪γ ′ is a feasible matching in g̃. Since
N∗(M̃)⊂N∗(M ′), this contradicts the assumption that M̃ is a maximum weight matching in (g̃,wε).

(a.3) Suppose that t ≥4, that t is odd, that i1 ∈N∗(M)\N∗(M̃) and that it ∈N∗(M̃)\N∗(M). Then M ′ := (M̃ \

γ̂ )∪ γ̂ ′ is a feasible matching in g̃, which implies that π (i1)<π (it). Furthermore, M ′′ := (M \ γ̂ ′)∪ γ̂

is a feasible matching in g, which implies that π (i1)>π (it). This is a contradiction.

(b) Suppose that i1 ∈NH and it ∈NI . Since i1 /∈N(g̃) and i1 ∈N∗(M)\N∗(M̃), it follows that it ∈N∗(M̃)\N∗(M)
whenever t is odd and it ∈N∗(M)\N∗(M̃) whenever t is even.

(b.1) Suppose that t =3. Then M ′ := (M \{i1i2})∪{i2it,i1i1} is a feasible matching in g. This contradicts the
assumption that M is a maximum weight matching in (g,wε). Hence t ≥4.

(b.2) Suppose that t ≥4 and that t is odd. Then M ′ := (M \ γ̂ ′)∪ γ̂ ∪{i1i1} is a feasible matching in g where
N∗(M)⊂N∗(M ′). This contradicts the assumption that M is a maximum weight matching in (g,wε).
Hence, t is even.

(b.3) Suppose that t ≥4 and that t is even. Then i∈N∗(M) for all i∈{i1,...,it}.

(c) Suppose that i1,it ∈NH . Then i1,it ∈N∗(M)\N∗(M̃). Hence, i∈N∗(M) for all i∈{i1,...,it}.

From cases (a)–(c), it can be concluded that any patient contained in a maximal path of length t ≥3 in (N,M ∪M̃) belongs
to N∗(M).

It has thus been shown that every patient contained in a maximal path of any length is matched at M. Since every
patient in NI who is matched at M̃ is contained in some maximal path, it must be the case that N∗(M̃)⊆N∗(M). Recall
that µ′′ =N∗(M), µ′ =N∗(M̃)∪NH and note that NH ⊆µ′′ by Lemma 6 and the maximality of M. Hence, µ′ ⊆µ′′. ‖

36. No maximal paths (N,M ∪M̃) of lengths strictly greater than 2 may contain loops. A loop ii∈M ∪M̃ implies
that i∈NH and that i is self-matched at M. Since i /∈NI , there exists no j∈N such that ij∈M̃.
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ANDERSSON & KRATZ PAIRWISE KIDNEY EXCHANGE 1131

Proposition 8. Consider a problem (N,C,π ) and suppose that µ, µ′, and µ′′ contain all patients that receive transplants
in the Benchmark Model, Model (a), and Model (b), respectively. Then |µ′′|≥|µ| and |µ′′|≥|µ′|.

Proof. Consider some problem (N,C,π ). Let M, M ′, and M ′′ be the matchings selected in the Benchmark Model, Model
(a), and Model (b), respectively. By Proposition 3, |N∗(M ′′)|≥|N∗(M̂)| for all M̂ ∈M. Since M ∈M, it follows that
|N∗(M ′′)|≥|N∗(M)|. That is, |µ|≤|µ′′|. By Proposition 9, |µ′|≤|µ′′|. ‖

Proposition 10. Consider a problem (N,C,π ) and a matching M selected in Model (b) (Model (a)). Suppose that a patient
i∈N is either unmatched or matched to a compatible donor at M. Then, in Model (b) (Model (a)), patient i cannot benefit
by declaring half-compatible donors unacceptable.

Proof. Consider a problem (N,C,π ) with corresponding weighted compatibility graph (g,wε). First note that no patient
can affect the weights by declaring half-compatible donors unacceptable by Assumption (ii). This means that a patient i

may only influence the outcome of the maximum weight matching problem by removing edges incident to i in g. Let M

be a maximum weight matching in (g,wε) and consider a patient i∈N . Furthermore, let Ĉ be the resulting compatibility
structure when i removes some edges incident to i and let (ĝ,ŵε) be the corresponding weighted compatibility graph.
Note that, given ŵε , all edges in ĝ are assigned the same weights as in (g,wε).

First, if i is unmatched at M, then there are no edges incident to i in M. Thus, M is still a feasible matching at Ĉ.
Since ĝ is a subgraph of g (i.e. it contains the same vertices and a subset of the edges) and both ŵε and wε assign the same
weights to the edges in ĝ, if M is a maximum weight matching in in (g,wε), it must also be a maximum weight matching
in (ĝ,ŵε). Thus, by Propositions 4 and 6, exactly the same patients are matched at both (N,C,π ) and (N,Ĉ,π ) in Model
(b) and i remains unmatched. Since (N,C,π ) is an arbitrary problem, the same arguments apply to the reduced problem
considered in Model (a) as well.

Finally, suppose that i is matched to a compatible donor dj at M. Then there exists no donor in the exchange pool
that i strictly prefers to dj . Consequently, i can only be made weakly worse off by declaring half-compatible donors
unacceptable. ‖
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