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Summary

Bacteriophage possess a variety of auxiliary meta-

bolic genes of bacterial origin. These proteins enable

them to maximize infection efficiency, subverting

bacterial metabolic processes for the purpose of viral

genome replication and synthesis of the next genera-

tion of virion progeny. Here, we examined the enzy-

matic activity of a cyanophage MazG protein – a

putative pyrophosphohydrolase previously impli-

cated in regulation of the stringent response via

reducing levels of the central alarmone molecule

(p)ppGpp. We demonstrate, however, that the purified

viral MazG shows no binding or hydrolysis activity

against (p)ppGpp. Instead, dGTP and dCTP appear to

be the preferred substrates of this protein, consistent

with a role preferentially hydrolysing deoxyribonucle-

otides from the high GC content host Synechococcus

genome. This showcases a new example of the fine-

tuned nature of viral metabolic processes.

Introduction

Cyanophage that infect the marine cyanobacterial genera

Synechococcus and Prochlorococcus are widespread

and abundant in oceanic systems (Suttle and Chan,

1994; Sullivan et al., 2003; Baran et al., 2018) where they

play important ecosystem roles including releasing

organic matter through cell lysis (Suttle, 2007), transferring

genes horizontally between hosts (Zeidner et al., 2005)

and structuring host communities (Mühling et al., 2005).

Cyanophage can also influence ocean biogeochemistry

by modifying host metabolism during the infection process,

such as the shutdown of CO2 fixation whilst maintaining

photosynthetic electron transport (Puxty et al., 2016). This

subversion of host metabolism is facilitated by the expres-

sion of cyanophage genes that appear to have a bacte-

rial origin, so-called auxiliary metabolic genes (AMGs)

(Breitbart et al., 2007). These include genes involved in

photosynthesis (Mann et al., 2003; Lindell et al., 2005;

Fridman et al., 2017) and photoprotection (Lindell et al.,

2004; Millard et al., 2004; Sullivan et al., 2005; Roitman

et al., 2018), pigment biosynthesis (Dammeyer et al.,

2008), central carbon metabolism (Millard et al., 2009;

Thompson et al., 2011), nucleotide biosynthesis (Enav

et al., 2014), phosphorus metabolism (Sullivan et al.,

2010; Zeng and Chisholm, 2012; Lin et al., 2016) and

other stress responses (Sullivan et al., 2010; Crummett

et al., 2016).

Amongst the cyanophage AMGs MazG is a core gene

in cyanomyoviruses (Millard et al., 2009; Sullivan et al.,

2010) and of particular interest since it has been pro-

posed to play a more general role in regulating host

metabolism (Clokie and Mann, 2006; Clokie et al., 2010).

In Escherichia coli, MazG has been implicated in regulat-

ing programmed cell death by interfering with the function

of the MazEF toxin-antitoxin system, through lowering of

cellular (p)ppGpp levels (Gross et al., 2006). This latter

molecule guanosine 30,50 bispyrophosphate, together with

guanosine pentaphosphate also known as magic spot

nucleotides, is a global regulator of gene expression in

bacteria (Traxler et al., 2008) synthesized by RelA under

amino acid starvation. Since MazG can potentially regu-

late levels of (p)ppGpp in E. coli, a similar role has been

proposed for the cyanophage encoded MazG (Clokie and

Mann, 2006). This is pertinent given that picocyanobacterial

hosts like Synechococcus and Prochlorococcus occupy

oligotrophic conditions (see Scanlan et al., 2009; Biller

et al., 2015) where nutrient starvation is likely and (p)ppGpp

may be involved in adapting to this stressed state. By regu-

lating (p)ppGpp levels the cyanophage encoded MazG
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may trick the host into mimicking a nutrient replete cellular

state so that host cell physiology is optimized for macromo-

lecular synthesis and hence cyanophage replication. The

MazG protein belongs to the all-nucleoside triphosphate

pyrophosphohydrolase (NTP-PPase, EC 3.6.1.8) super-

family that hydrolyzes in vitro all canonical nucleoside

Fig. 1. Maximum likelihood phylogenetic tree comprising 44 bacterial and 38 viral MazG sequences.

The tree was generated using the LG + G4 substitution model, automatically chosen by the Iqtree script (Nguyen et al., 2015), with ultrafast boot-

strap (Minh et al., 2013). Bootstrap values of >70% are shown as closed circles (of 1000 iterations). The scale bar represents 0.5 sub-

stitutions/amino acid position. Syn: Synechococcus; Pro: Prochlorococcus. The red asterisks indicate the Synechococcus and cyanophage
proteins used here.
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triphosphates into monophosphate derivatives and pyro-

phosphate (PPi) (Moroz et al., 2005; Galperin et al., 2006;

Lu et al., 2010). Here, we set out to purify the cyanophage

S-PM2 MazG protein as well as a Synechococcus host

MazG to assess their activity and ability to hydrolyse

(p)ppGpp, canonical and noncanonical nucleotides.

Results

Picocyanobacterial host and cyanophage MazG proteins

are phylogenetically distinct (Fig. 1) and with an origin of

the cyanophage MazG outside the cyanobacteria since

the closest proposed homologue to date is a Chloroflexus

protein (Bryan et al., 2008; Sullivan et al., 2010).

Picocyanobacteria encode two genes annotated as

MazG, a ‘large’ MazG version similar to that found in

most bacteria, and a ‘small’ version which is similar in

size to the cyanophage gene (Fig. 2). The ‘large’ MazG

version has two predicted catalytic regions functionally

annotated as MazG family domains (IPR004518) whilst

the ‘small’ MazG and cyanophage proteins have only

one (Fig. 2). In order to assess the hydrolytic activity of

the host and cyanophage MazG proteins we cloned into

E. coli, over-expressed and purified the host Syn-

echococcus sp. WH7803 MazG, using the ‘large’ MazG

version (Syn_WH7803_02449) as a proxy for other host

bacterial MazG proteins, and the cyanophage S-PM2

MazG (Fig. 3; for experimental details see Supporting

Information). The activity of the cyanophage and Syn-

echococcus host MazG proteins was assessed using

increasing concentrations of a range of nucleotide and

deoxyribonucleotide substrates using 1 μg of the purified

protein, and the amount of free phosphate resulting from

enzyme activity measured using the PiPER pyrophos-

phate assay kit (ThermoFisher Scientific; see Supporting

Information). This allowed determination of Km, Vmax and

Fig. 2. A. InterProScan5-predicted (Jones et al., 2014) pyrophosphatase catalytic domains in cyanophage S-PM2 MazG, ‘small’ Synechococcus

sp. WH7803 MazG (Syn_WH7803_01219), ‘large’ Synechococcus sp. WH7803 MazG (Syn_WH7803_02449) and E. coli MazG orthologues.
Numbers above each domain represent the position of amino acids in each of the domains.

B. ClustalW pairwise alignment of E. coli, ‘large’ Synechococcus sp. WH7803, ‘small’ Synechococcus sp. WH7803 and cyanophage S-PM2

MazG orthologues.

© 2019 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Kcat values for each protein across a range of substrates

(Table 1). Km values of the Synechococccus sp. WH7803

‘large’ MazG and cyanophage S-PM2 MazG proteins

were generally in the low mM range for a range of nucle-

otides and deoxyribonucleotides, similar to MazG Km

values reported from other bacteria for these substrates

(Lu et al., 2010). The measured Vmax of the Syn-

echococcus host MazG was highest when incubated

with dTTP, whilst the viral MazG exhibited highest activity

when incubated with the deoxyribonucleotides dGTP and

dCTP (Fig. 4). In addition to these standard nucleotides,

the viral MazG protein was also incubated with the ‘aber-

rant’ nucleotides dUTP, 2-hydroxy-dATP and 8-oxo-

dGTP. dUTP is one of the most common of these muta-

genic nucleotides, produced as a by-product of thymine

biosynthesis (Galperin et al., 2006), whilst 2-hydroxy-

dATP and 8-oxo-dGTP are mutagenic nucleotides pro-

duced as a result of intracellular oxidative stress (Kamiya

and Kasai, 2000; Galperin et al., 2006). Interestingly, the

Vmax values of the viral MazG when incubated with

dUTP, 2-hydroxy-dATP and 8-oxo-dGTP were not signifi-

cantly different to those of the canonical nucleotides

(Table 1; Fig. 4), whilst the Km values for these sub-

strates were higher (Table 1), suggesting that dGTP and

dCTP are the preferred substrates of the cyanophage

MazG protein.

In order to directly assess whether the Synechococcus

and cyanophage MazG proteins play a role in (p)ppGpp

metabolism we performed both hydrolysis and DRaCALA

binding assays (Corrigan et al., 2016), using 32P-labelled

GTP, ppGpp and pppGpp. In both assays, neither the

Synechococcus nor cyanophage MazG showed any
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Fig. 3. A. SDS-PAGE analysis of E. coli whole cell lysates expressing Synechococcus sp. WH7803 ‘large’ MazG (lanes 1 and 3) and

cyanophage S-PM2 MazG proteins (lanes 2 and 4). L: Protein molecular weight marker ladder. Lanes 1 and 2 un-induced, lanes 3 and 4 IPTG-

induced. Arrows indicate the positions of the overexpressed proteins.

B. SDS-PAGE analysis showing purification of the cyanophage S-PM2 MazG protein from E. coli. L: Protein molecular weight marker ladder. UB:
The unbound fraction (proteins that did not bind to the column). W1–W5: fractions washed off the column with binding buffer. E1–E6: Fractions

eluted with increasing concentrations of imidazole (30 mM, 50 mM, 100 mM, 150 mM, 200 mM and 300 mM respectively). SB – stripping buffer.

The arrow indicates the position of the over-expressed cyanophage S-PM2 MazG protein.

Table 1. Kinetic parameters of enzymatic activity of Synechococcus WH7803 and cyanophage S-PM2 MazG protein.

Vmax (nmol/μg/min) Km (mM) Kcat (min−1)

Synechococcus

sp. WH7803

Cyanophage

S-PM2

Synechococcus

sp. WH7803

Cyanophage

S-PM2

Synechococcus

sp. WH7803

Cyanophage

S-PM2

dATP 1.8 (�0.28) 1.62 (�0.19) 0.3 (�0.09) 1.2 (�0.21) 126.12 (�19.35) 62.97 (�7.44)
dCTP 3.81 (�0.36) 8.86 (�0.2) 0.14 (�0.03) 1.16 (�0.04) 267.68 (�25.02) 344.68 (�7.72)

dTTP 6.57 (�0.19) 5.68 (�0.2) ND 1.23 (�0.06) 461.04 (�13.43) 221.00 (�7.78)

dGTP 0.64 (�0.25) 10.29 (�0.25) 0.85 (�0.07) 0.14 (�0.01) 45.16 (�17.6) 400.35 (�9.91)

ATP 2.55 (�0.35) 2.28 (�0.24) 0.63 (�0.23) 1.43 (�0.36) 179.27 (�24.4) 88.7 (�9.41)
CTP 1.96 (�0.14) 2.51 (�0.17) 1.2 (�0.21) 0.85 (�0.11) 137.81 (�9.81) 97.48 (�6.68)

GTP 0.7 (�0.13) 0.3 (�0.02) 0.26 (�0.02) ND 49.46 (�9.19) 11.67 (�0.6)

UTP 3.02 (�0.2) 3.31 (�0.18) 1.33 (�0.3) 0.6 (�0.37) 221.07 (�6) 128.75 (�7.12)

dUTP - 4.22 (�0.34) - 3.24 (�1.55) - 296.42 (�23.72)
2-hydroxy d-ATP - 1.65 (�0.06) - 4.86 (�1.13) - 115.65 (�3.95)

8-oxo-dGTP - ND - ND - ND

The values in brackets represent SE based on three replicates. ND – not detected; − not measured.

© 2019 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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binding or hydrolysis activity against (p)ppGpp (Fig. 5A),

whilst hydrolysis activity was confirmed for both

orthologues against 32P-labelled GTP (Fig. 5B).

Discussion

Although, the presence and identity of AMGs in bacterio-

phage genomes is widely appreciated (Millard et al.,

2009; Sullivan et al., 2010; Crummett et al., 2016) the

specific role of many of these genes has not been

resolved. Here, we sought to elucidate the activity of the

cyanophage MazG protein given its hypothesized role as

a more general modulator of the host stringent response,

and with previous data suggesting cyanophage can mod-

ulate intracellular levels of (p)ppGpp in infected freshwa-

ter cyanobacteria (Borbély et al., 1980).

Our results showed, however, that neither the Syn-

echococcus nor cyanophage MazG protein demon-

strated detectable hydrolytic activity towards ppGpp or

pppGpp (Fig. 5), suggesting these two proteins do not

actively modulate the stringent response via direct hydro-

lysis of magic spot nucleotides. Nevertheless, we cannot

rule out a role for these proteins in regulating the strin-

gent response indirectly through hydrolysis of other

nucleotide substrates, for example GTP. Whilst the role

of the ‘small’ Synechococcus host MazG also requires

clarification in this respect, it is potentially the predicted

bifunctional Synechococcus sp. WH7803 SpoT

orthologue (SynWH7803_2342) that serves the role of

regulating alarmone levels during the stringent response

in these organisms, a protein known to both synthesize

and hydrolyse (p)ppGpp in other bacteria (see,

e.g. Murray and Bremer, 1996; Hogg et al., 2004). Inter-

estingly, there were distinct differences in the hydrolytic

activities of the Synechococcus host and cyanophage S-

PM2 MazG proteins towards other canonical and non-

canonical nucleotides (Fig. 4 and Table 1) with much

higher Vmax values of the viral MazG towards dGTP and

dCTP coupled with a much higher affinity of the viral

MazG for dGTP compared to its host counterpart. Such

different kinetic parameters mirror differences in %GC

content between the cyanophage and Synechococcus

host genomes, with the former possessing a GC content

of 37.7% (Mann et al., 2005) and the latter a GC content

of 60.2% (Dufresne et al., 2008). With this in mind, we

suggest that the substrate specificity of the viral MazG

allows it to preferentially hydrolyse dGTP and dCTP

deoxyribonucleotides from the high GC content host Syn-

echococcus genome allowing for their recycling and ulti-

mately facilitating replication of the AT-rich cyanophage

genome. Whether such a mechanism is applicable to,

or modified in, Prochlorococcus infecting cyanophage
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sp. WH7803 ‘large’ MazG and cyanophage S-PM2 MazG proteins. MBP – maltose binding protein, used as a negative control. RsgA –purified
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echococcus sp. WH7803 ‘large’ MazG. Viral MazG: cyanophage S-PM2 MazG. Error bars represent the standard deviation of three experimental

replicates.
B. Hydrolysis assay using purified Synechococcus sp. WH7803 ‘large’ MazG (Syn MazG), cyanophage S-PM2 MazG (Viral MazG), MBP and

RsgA proteins with 32P-labelled GTP, ppGpp and pppGpp. The arrow highlights the absence of hydrolysis of 32P-labelled ppGpp and pppGpp

substrates.
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whose genomes generally possess a similar %GC con-

tent (Sullivan et al., 2005; Limor-Waisberg et al., 2011)

remains to be determined. Certainly, it is well known that

following infection with cyanophage, the host genome is

rapidly degraded (Doron et al., 2016). Moreover, analysis

of viral metagenomes has shown an enrichment of meta-

bolic pathways involved in pyrimidine and purine metabo-

lism as well as in DNA replication (Enav et al., 2014),

emphasizing the importance of these pathways during

viral infection.

Our work with the viral MazG thus highlights that

cyanophage genomes appear exquisitely suited to pro-

mote degradation of the host genome in order to reuse

its building blocks to replicate the viral genome.
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