UNIVERSITY of York

This is a repository copy of *L*-shell spectroscopy of neon and fluorine like copper ions from laser produced plasma.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/143152/</u>

Version: Published Version

Article:

Kaur, Channprit, Chaurasia, S., Singh, Narendra et al. (3 more authors) (2019) L-shell spectroscopy of neon and fluorine like copper ions from laser produced plasma. Physics of Plasmas. 023301. ISSN 1089-7674

https://doi.org/10.1063/1.5051758

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

L-shell spectroscopy of neon and fluorine like copper ions from laser produced plasma

Cite as: Phys. Plasmas **26**, 023301 (2019); https://doi.org/10.1063/1.5051758 Submitted: 12 August 2018 . Accepted: 11 January 2019 . Published Online: 07 February 2019

Channprit Kaur ២, S. Chaurasia, Narendra Singh ២, John Pasley ២, Sunny Aggarwal, and Man Mohan

ARTICLES YOU MAY BE INTERESTED IN

Numerical simulation of magnetized jet creation using a hollow ring of laser beams Physics of Plasmas **26**, 022902 (2019); https://doi.org/10.1063/1.5050924

Micro-dynamics of neutral flow induced dusty plasma flow Physics of Plasmas **26**, 023701 (2019); https://doi.org/10.1063/1.5078866

Self-similar wave breaking in dispersive Korteweg-de Vries hydrodynamics Chaos: An Interdisciplinary Journal of Nonlinear Science **29**, 023106 (2019); https:// doi.org/10.1063/1.5066038

Phys. Plasmas **26**, 023301 (2019); https://doi.org/10.1063/1.5051758 © 2019 Author(s).

ARTICLE

L-shell spectroscopy of neon and fluorine like copper ions from laser produced plasma

Cite as: Phys. Plasmas **26**, 023301 (2019); doi: 10.1063/1.5051758 Submitted: 12 August 2018 · Accepted: 11 January 2019 · Published Online: 7 February 2019

Channprit Kaur,^{1,2} 🗈 S. Chaurasia,^{1,2,a)} Narendra Singh,³ 🕞 John Pasley,⁴ 🕞 Sunny Aggarwal,³ and Man Mohan³

AFFILIATIONS

¹High Pressure and Synchrotron Radiation Physics Division, BARC, Mumbai 400085, India

²Homi Bhabha National Institute, Mumbai 400094, India

³Delhi University, Delhi 110007, India

⁴York Plasma Institute, Department of Physics, University of York, York, YO10 5DQ, United Kingdom

^{a)}Email: shibu@barc.gov.in

ABSTRACT

Ne, F, and O-like Rydberg resonance lines along with some of the inner shell satellite lines of Copper plasma, in the wavelength range of 7.9–9.5 Å, are experimentally observed using a thallium acid phthalate crystal spectrometer. The plasma is produced by the irradiation of a Cu target with a 15 J, 500 ps Nd: Glass laser with a focusable intensity up to 5×10^{14} W/cm². The observed lines result from the transitions among 2p-nd, 2p-ns, and 2s-nd (n = 4–6) levels. Transition wavelengths, transition probabilities, and oscillator strengths of these lines are calculated using the Multi-Configuration Dirac-Fock method. In this computation, the contribution of relativistic corrections such as two-body Breit corrections and QED corrections due to vacuum polarization and self-energy has also been considered. FLYCHK simulations are used to analyze the distribution of the various charge states of the Copper ions and to find the temperature and density of plasma. Moreover, the effect of self-absorption of the plasma (opacity), as well as of suprathermal electrons on charge state distribution of ions, is also studied. The synthetic spectrum provides a best-match with the experimental spectrum at a laser intensity of 1.3×10^{14} W/cm² for T_c = 150 eV, T_h = 1000 eV, f = 0.008, and density 4.5×10^{20} cm⁻³. The temperature and density ranges are also calculated using a radiative hydrodynamic code. The calculated temperature and density range are in agreement with the experimentally determined values. The effect of the change in laser intensity on the L-shell spectrum of Cu is studied which indicates the switching between lower (Cu XX) and higher charge states (Cu XXI and Cu XXII) at higher laser intensities.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5051758

I. INTRODUCTION

The hot dense plasma, produced by high power lasers, has attracted attention in various fields such as high energy density physics and atomic physics and as a source of bright X-rays. The soft and hard X-rays produced from laser-produced plasma are useful for diagnosing conditions in dense plasma experiments.^{1–5} X-rays are produced from plasma via free-free, free-bound, and bound-bound transitions occurring in highly charged ions present in the plasma.⁶ The X-ray line emission from bound-bound transitions from highly charged ions has proven to be an excellent method to obtain a wealth of information about the plasma. K-shell emission can easily be achieved by interacting a moderately intense laser with a low Z target. Extensive studies of K-shell emission spectra from laser-produced plasma have been carried out in the past.^{7–18} The relative ease with which K-shell

spectra can be modelled makes them an obvious target for study. On the other hand, although the L-shell ionization of high Z atoms can be achieved easily, complex models are required to interpret such spectra. L-shell ions are observed in many astrophysical phenomena and in the laboratory. In astrophysics, the radiation produced by highly charged ions is a key observable from the standpoint of diagnosing the physical properties of non-terrestrial sources. L-shell spectroscopy provides a means to study the average ionization of plasma because the spectrum depends upon the abundance of ions from each charge state which is itself a function of the plasma temperature and density. Mid-Z tracers are used in Inertial Confinement Fusion (ICF) experiments¹⁸ as well as in the production of efficient sources of X-rays,¹⁹ in tokomak diagnostics,²⁰ and in astrophysics.^{21–25} In addition, recent astronomical research²⁶ shows the presence of Cu ions in dwarf stars.

scitation.org/journal/php

In the recent past, various efforts have been made to study the L-shell spectroscopy of mid-Z elements, such as line identification from L-Shell copper ions.^{12,24,27-33} However, the L-shell spectroscopy of Cu is still not fully understood. In this paper, analysis of the L-shell spectrum of a laser-produced Cu plasma in the wavelength range of 7.5–9.5 Å is performed. The transition wavelengths, transition probabilities, and oscillator strengths of experimentally observed lines are calculated using a Multiconfiguration Dirac-Fock (MCDF) method. In this computation, the contribution of relativistic corrections such as two-body Breit corrections and QED corrections due to vacuum polarization and self-energy has also been considered. FLYCHK simulations are used to analyze the distribution of various charge states of Copper and to find the temperature and density of the plasma. Moreover, the effect of opacity on charge state distributions of ions is also studied.

II. EXPERIMENTAL PROCEDURE

The experiment was carried out using an Nd: Glass laser with an output energy of 15 J per pulse with a pulse duration of 500 ps. The laser was focused onto a Cu slab to a spot size of $100\,\mu\text{m}$ using an f/5 lens, yielding intensities up to 4×10^{14} W/cm^2 . The experimental chamber was evacuated to a pressure of 4×10^{-5} mbar. An X-ray crystal spectrometer, made up of a Thallium Acid Phthalate (TAP) crystal placed at 45° with respect to the laser axis, was used for the line-emission studies in the spectral range of 7.9-9.5 Å. Two stacked aluminized polycarbonate foils (Alexander Vacuum Research, Inc., trade name: B-10) having a 1/e cut-off of 0.9 keV were used to prevent the scattered visible light from entering the plasma chamber. The TAP crystal spectrally resolves X-ray emission from the laser produced plasma. The reflected X-rays were detected using an X-ray CCD camera (Model VISION 4M, from Rigaku innovative) which has a resolution of 25 mÅ. The schematic of the crystal spectrometer along with the experimental setup is shown in Fig. 1. A sample image of a recorded X-ray spectrum is also shown in Fig. 1.

III. RESULTS AND DISCUSSION

The experimental spectrum consists of transitions corresponding to Oxygen (O–) (Cu XXII), Fluorine (F–) (Cu-XXI), and Neon (Ne–) (Cu-XX) ions. The formation of these multiply charged ions takes place via collision of free electrons with atoms. The highest charge state of Cu in the present experiment

is O-like with an ionization potential of 1.9 keV followed by F-like (1.8 keV) and Ne-like (1.69 keV). The Ne-like ions are easy to produce due to the low energy requirement and the closed shell ground configuration in these ions. The shell configuration of Ne-like ions is $1s^22s^k2p^l$ (k=1, 2; l=1-6). There are in total seven Rydberg series of dipole transitions from $2s^22p^6-2s^22p^5nl'$ and $2s^22p^6-2s^22p^6nl'$. A standard notation for Ne-like lines is followed as provided in the literature³⁴ nA: $2s-np_{3/2}$, nB: $2s-np_{1/2}$, nC: $2p_{1/2}$ -nd_{3/2}, nD: $2p_{3/2}$ -nd_{5/2}, nE: $2p_{3/2}$ -nd_{3/2}, nF: $2p_{1/2}$ -ns, and nG: $2p_{3/2}$ -ns. The procedure followed for the identification of lines and calibration of wavelength is discussed below.

First, identification of the wavelength of the spectral lines is carried out by ray-tracing, considering the location of the crystal and the detector in addition to the dispersion curve of the crystal. Then, the dispersion curve of the crystal is coupled with the two most intense lines of Ne-like (2P-4d) 4C and Ne-like (2p-4d) 2D, which results in a spectrum with an error of 25 mÅ. Further identification is carried out using calculations performed with the General Purpose Relativistic Atomic Structure Package (GRASP) code of Grant et al.,³⁵ which employs the MCDF method. Configuration interaction has been included for O-like, F-like, and Ne-like Cu. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities, and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions from the ground level. First, for the validation of our code, we match our generated data for some very well-known materials such as the Aluminum and Silicon K-shell spectrum and data available in the literature. Then, we use the same model for our calculation of the spectral lines of Ne-, F-, O-, and Na-like ions. Here, we found some new transitions in both the measured spectra and the calculation, which are not reported earlier and may be useful for plasma parameter estimation.

We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with previous results. Furthermore, we predict some new atomic data which may be important for plasma diagnostics.

For Ne-like Cu, in our MCDF calculations, we have included 51 configurations, $2s^22p^6$, $2s^22p^{53l}$ (l=0-2), $2s2p^6$ 3l (l=0-2), $2s2p^6$ 4l (l=0-3), $2s^22p^{54l}$ (l=0-3), $2s^22p^{55l}$ (l=0-3), $2s^22p^{55l}$ (l=0-3), $2s^22p^{57l}$ (l=0-3), $2s^{57l}$ (l=0-3), $2s^{57l}$

For F-like Cu, in our MCDF calculations, we have included 27 configurations, $2s^22p^5$, $2s2p^6$, $2s^22p^43l$ (l=0-2), $2s2p^53l$ (l=0-2), $2p^6 3l$ (l=0-2), $2s^22p^4 4l$ (l=0-3), $2s2p^54l$ (l=0-3), $2s^22p^45l$ (l=0-3), and $2s2p^55l$ (l=0-3), which give rise to 492 fine structural levels.

For O-like Cu, in our MCDF calculations, we have included 54 configurations, $2s^22p^4$, $2s2p^5$, $2p^6$, $2s^22p^33l$ (l=0-2), $2s2p^4$ 3l (l=0-2), $2p^5$ 3l (l=0-2), $2s^22p^3$ 4l (l=0-3), $2s2p^44l$ (l=0-3), $2p^54l$ (l=0-4), $2s^22p^35l$ (l=0-4), $2s2p^45l$ (l=0-4), $2p^5$ 5l (l=0-4), $2s^22p^36l$ (l=0-4), $2s2p^46l$ (l=0-4), and $2p^5$ 6l (l=0-4), which give rise to 1434 fine structural levels. In our calculations, we have also included the contribution of relativistic corrections such as two-body Breit corrections and QED corrections due to vacuum polarization and self-energy.

For Na-like Cu, in our MCDF calculations, we have included 39 configurations, $2s^22p^{6}3l$ (l = 0-2), $2s^22p^{6}4l$ (l = 0-3), $2s^22p^{6}5l$ (l = 0-4), $2s^22p^{6}6l$ (l = 0-4), $2s^22p^{6}8l$ (l = 0-4), and $2s^22p^53l4l'$ (l = 0-2, l' = 0-3), which give rise to 619 fine structural levels. In our calculations, we have also included the contribution of relativistic corrections such as two-body Breit corrections and QED corrections due to vacuum polarization and self-energy.

The transition wavelength, transition rates, and oscillator strengths are calculated. The details of the calculated lines (wavelength, transition rates, and oscillator strength) for Nelike, O-like, F-like, and Na-like Cu transitions are provided in Tables I, II, III, and IV, respectively. For F-like transitions, the configuration details are given in Table V. The wavelength and relative transition rates obtained for different charge states, without considering the ion charge-state populations, are shown in Fig. 2(a) overlaid with the experimentally measured spectrum. All the identified lines are labeled in Fig. 2(b).

Most of the transition lines in the wavelength range under consideration belong to the 2p-nd transition giving rise to nC and nD pairs and the transitions from the 2p-ns and 2s-nd (n = 4–6) levels. The high energy spectral lines are associated with the transition to a $2p_{1/2}$ vacancy in the L-shell and the lower energy spectra result from transitions to fill the $2p_{3/2}$ vacancy.

A. Determination of plasma parameters

These highly charged ions are produced via various ionization processes such as photo-ionization, collisional-ionization, and auto-ionization. The main recombination processes include radiative recombination, three body recombination, and dielectronic recombination. The dominance of collisional or radiative processes decides whether plasma is in complete thermal equilibrium (CTE), local thermal equilibrium (LTE), or collisional radiative (CRE) equilibrium.³⁶ This in turn depends upon the temperature and density ranges present in the plasma. The knowledge of the equilibrium state facilitates the interpretation of spectroscopic data to uncover the charge state distribution and populations of the excited states.

CTE is not possible in lab environments due to the escape of radiation from the plasma. LTE occurs when the collision time between electrons and ions is short relative to that for other processes taking place in plasma. If LTE is present, then the temperature can be determined easily by the Boltzmann plot method.³⁷ The collisional radiative equilibrium is non-LTE in the sense that for this to occur, both collisions and radiation must play dominant roles. The solution of this equilibrium lies in solving the rate equations taking care of rates of all collisional and radiative excitation and de-excitation processes.

The validity of applying the LTE equilibrium approximation can be checked by applying the Mc Whirter criterion³⁸ given by

$$n_e \ge 1.6 \times 10^{12} \mathrm{T}^{1/2} (\Delta \mathrm{E})^3,$$
 (1)

where n_e is the electron density, T is the plasma temperature, and ΔE is the largest electronic transition. In our case, for plasma temperatures greater than 50 eV, the minimum density should be greater than $10^{22}/\text{cm}^3$, for the plasma to be in LTE. The required value is greater than our critical density value. Therefore, we can say that our plasma is not in LTE. We used the CRE based code FLYCHK^{39} for the determination of plasma temperature and density, and the detailed procedure is provided below. In FLYCHK, opacity effects are included by solving radiative transport equations for optically thick plasmas.

In the spectrum shown in Fig. 2, at a laser intensity of 1.3×10^{14} W/cm², the identified lines belong to Ne-, F-, and O-like copper ions. The intensity of Ne-like lines is higher than that of the F-like lines, which indicates that the Ne-like ions are the dominant species. The experimentally observed spectral lines

TABLE I. Calculated wavelength, transition rates, and oscillator strengths of Ne-like transitions along with the corresponding configurations.

Notation	Lower level (i)	Upper level (j)	λ (in Å) (MCDF)	A_{ji} (s ⁻¹) (MCDF)	f _{ij} (MCDF)	S _{ij} (a.u.) (MCDF)	Туре	λ _{FLYCHK} (Å)
4D	2s ² 2p ⁶¹ S ₀	2s ² 2p ⁵ 4d ¹ P ₁	9.2443	1.12×10^{13}	$4.30 imes 10^{-1}$	1.31×10^{-2}	E1	9.2673
4C	$2s^22p^{61}S_0$	2s ² 2p ⁵ 4d ³ D ₁	9.1144	$1.06 imes 10^{13}$	$3.97 imes 10^{-1}$	$1.19 imes 10^{-2}$	E1	9.1254
	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 5s ¹ P ₁	8.5723	$3.89 imes 10^{11}$	$1.29 imes 10^{-2}$	$3.63 imes 10^{-4}$	E1	
	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 5d ³ P ₁	8.4708	$7.86 imes 10^{10}$	$2.54 imes 10^{-3}$	$7.08 imes 10^{-5}$	E1	
5D	$2s^22p^{61}S_0$	2s ² 2p ⁵ 5d ¹ P ₁	8.4562	$6.14 imes10^{12}$	$1.97 imes 10^{-1}$	$5.50 imes 10^{-3}$	E1	
	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 5s ³ P ₁	8.4507	1.23×10^{12}	$3.96 imes 10^{-2}$	$1.10 imes 10^{-3}$	E1	
4A, 4B	$2s^22p^{61}S_0$	2s2p ⁶ 4p ³ P ₁	8.3899	1.12×10^{12}	$3.55 imes 10^{-2}$	$9.80 imes10^{-4}$	E1	8.3823
	$2s^{2}2p^{61}S_{0}$	2s2p ⁶ 4p ¹ P ₁	8.3763	$3.14 imes10^{12}$	$9.91 imes 10^{-2}$	$2.73 imes10^{-3}$	E1	
5C	$2s^{2}2p^{61}S_{0}$	$2s^{2}2p^{5}5d^{3}D_{1}$	8.3419	$3.98 imes 10^{12}$	1.24×10^{-1}	3.42×10^{-3}	E1	8.344
	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 6s ¹ P ₁	8.1413	2.02×10^{11}	$6.03 imes 10^{-3}$	$1.62 imes 10^{-4}$	E1	
	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 6D ³ P ₁	8.0893	$3.26 imes 10^{10}$	$9.60 imes 10^{-4}$	$2.56 imes 10^{-5}$	E1	
6D	$2s^{2}2p^{61}S_{0}$	$2s^{2}2p^{5}6D^{1}P_{1}$	8.0809	$4.51 imes 10^{12}$	1.32×10^{-1}	3.52×10^{-3}	E1	8.0844
6F	$2s^{2}2p^{61}S_{0}$	2s ² 2p ⁵ 6S ³ P ₁	8.032	$6.84 imes10^{10}$	$1.99 imes 10^{-3}$	$5.25 imes 10^{-5}$	E1	
6C	2s ² 2p ⁶¹ S ₀	2s ² 2p ⁵ 6D ³ D ₁	7.9761	2.56×10^{12}	7.32×10^{-2}	$1.92 imes 10^{-3}$	E1	7.975

TABLE II. Calculated wavelength, transition rates, and oscillator strengths of O-like transitions along with the corresponding configurations.

Transition					
Lower level (i)	Upper level (j)	λ (in Å)	A_{ji} (s ⁻¹)	f _{ij}	S _{ij} (a.u.)
2s ² 2p ⁴³ P ₂	2s ² 2p ³ (⁴ S)4d ⁵ D ₁ ^o	8.3059	$4.192 imes 10^{11}$	2.601×10^{-3}	3.557×10^{-4}
2s ² 2p ⁴³ P ₂	2s ² 2p ³ (⁴ S)4d ³ D ₂ ⁰	8.2904	$2.819 imes 10^{12}$	$2.905 imes 10^{-2}$	$3.964 imes10^{-3}$
2s ² 2p ⁴³ P ₂	2s ² 2p ³ (⁴ S)4d ³ D ₁ ⁵	8.2793	$3.002 imes 10^{11}$	$1.851 imes 10^{-3}$	2.522×10^{-4}
$2s^{2}2p^{43}P_{2}$	$2s^22p^3$ (⁴ S)4d ³ D ₃ ⁰	8.2782	1.002×10^{13}	$1.441 imes 10^{-1}$	$1.963 imes 10^{-2}$
2s ² 2p ⁴³ P ₀	2s ² 2p ³ (² D)4d ³ D ₁ ⁰	8.2540	$8.167 imes 10^{11}$	2.502×10^{-2}	$6.800 imes10^{-4}$
2s ² 2p ⁴³ P ₀	2s ² 2p ³ (² D)4d ³ P ₁ ^o	8.2352	$1.196 imes 10^{12}$	$3.649 imes 10^{-2}$	$9.893 imes10^{-4}$
$2s^{2}2p^{43}P_{0}$	2s ² 2p ³ (² D)4d ¹ P ₁ ^o	8.2034	$3.572 imes 10^{10}$	$1.081 imes 10^{-3}$	2.920×10^{-5}
2s ² 2p ⁴³ P ₁	2s ² 2p ³ (⁴ S)4d ³ D ₃	8.2875	$7.137 imes 10^{9}$	$7.349 imes 10^{-5}$	$6.015 imes10^{-6}$
2s ² 2p ⁴³ P ₁	2s ² 2p ³ (² D)4d ³ F ₂ ^o	8.2878	$6.513 imes 10^{11}$	$1.118 imes 10^{-2}$	$9.150 imes10^{-4}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ${}^1S_0^{5}$	8.2848	$6.691 imes 10^{11}$	$2.295 imes 10^{-3}$	$1.878 imes10^{-4}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ¹ P ₁ ^o	8.2686	4.147×10^{12}	4.251×10^{-2}	$3.471 imes10^{-3}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ³ D ₂ ⁰	8.2690	$5.075 imes 10^{12}$	$8.670 imes 10^{-2}$	$7.081 imes10^{-3}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ³ P_0^5	8.2400	4.412×10^{12}	$1.497 imes 10^{-2}$	$1.218 imes 10^{-3}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ³ P ₂ ^o	8.2377	$4.716 imes 10^{11}$	$7.995 imes 10^{-3}$	$6.505 imes10^{-4}$
$2s^{2}2p^{43}P_{1}$	2s ² 2p ³ (² D)4d ³ F ₂ ⁵	8.2365	$2.960 imes 10^{12}$	$3.010 imes 10^{-2}$	$2.449 imes10^{-3}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ³ S ₁ ⁵	8.2290	$7.566 imes 10^{11}$	$7.681 imes 10^{-3}$	$6.243 imes10^{-4}$
$2s^{2}2p^{43}P_{1}$	$2s^22p^3$ (² D)4d ¹ D ₂	8.2256	$9.513 imes 10^{11}$	$1.608 imes 10^{-2}$	$1.307 imes10^{-3}$
$2s^22p^{41}D_2$	$2s^22p^3$ (² D)4d ³ P ₂ ⁵	8.2984	$2.688 imes 10^{9}$	$2.775 imes 10^{-5}$	$3.791 imes 10^{-6}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² D)4d ¹ P_1^{2}	8.2972	$8.351 imes 10^{11}$	$5.172 imes 10^{-3}$	$7.063 imes10^{-4}$
$2s^{2}2p^{41}D_{2}$	2s ² 2p ³ (² D)4d ³ S ₁	8.2895	$3.687 imes 10^{12}$	$2.279 imes 10^{-2}$	$3.110 imes 10^{-3}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² D)4d ¹ D ₂	8.2861	$8.344 imes 10^{12}$	$8.589 imes 10^{-2}$	$1.171 imes 10^{-2}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² D)4d ${}^{1}F_{2}^{5}$	8.2836	$9.957 imes 10^{12}$	$1.434 imes 10^{-1}$	$1.955 imes 10^{-2}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² P)4d ³ F ₀ ⁹	8.2430	$1.309 imes 10^{12}$	$1.333 imes 10^{-2}$	$1.809 imes 10^{-3}$
$2s^22p^{41}D_2$	$2s^22p^3$ (² P)4d ³ P_2^{0}	8.2363	$8.564 imes10^{11}$	$8.709 imes 10^{-3}$	$1.181 imes 10^{-3}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² P)4d ³ F_2^{5}	8.2348	$3.616 imes 10^{12}$	$5.147 imes 10^{-2}$	$6.977 imes 10^{-3}$
$2s^{2}2p^{41}D_{2}$	$2s^22p^3$ (² P)4d ³ D_1^{0}	8.2276	$2.239 imes 10^{11}$	$1.364 imes 10^{-3}$	$1.847 imes10^{-4}$
$2s^{2}2p^{41}S_{0}$	$2s^{2}2p^{3}$ (² P)4d ³ P ₁ ⁰	8.3074	$6.048 imes10^{11}$	$1.877 imes 10^{-2}$	$5.134 imes10^{-4}$
$2s^{2}2p^{41}S_{0}$	$2s^{2}2p^{3}$ (² P)4d ¹ P ₁ ⁰	8.2791	$1.639 imes 10^{13}$	$5.053 imes 10^{-1}$	$1.377 imes 10^{-2}$
2s2p ⁵³ P ₂ ⁰	$2s2p^{4}(^{2}D)4d^{3}G_{3}$	8.2069	$8.830 imes 10^{10}$	$1.248 imes 10^{-3}$	$1.686 imes10^{-4}$
2s2p ⁵³ P ₁ ⁵	$2s2p^{4}(^{2}D)4d^{3}F_{2}$	8.2635	$5.205 imes10^{10}$	$8.880 imes 10^{-4}$	$7.247 imes10^{-5}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{3}D_{1}$	8.2602	3.602×10^{12}	$3.684 imes 10^{-2}$	$3.006 imes 10^{-3}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{3}D_{2}$	8.2551	$4.838 imes 10^{12}$	8.238×10^{-2}	$6.716 imes 10^{-3}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{3}P_{1}$	8.2536	$2.240 imes 10^{12}$	$2.287 imes 10^{-2}$	$1.865 imes 10^{-3}$
2s2p ⁵³ P ₁ ^o	2s2p ⁴ (² D)4d ³ S ₁	8.2397	1.092×10^{9}	1.111×10^{-5}	$9.043 imes10^{-7}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{3}P_{2}$	8.2378	$6.660 imes 10^{10}$	$1.129 imes 10^{-3}$	$9.188 imes10^{-5}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{1}D_{2}$	8.2260	$7.385 imes 10^{11}$	$1.249 imes 10^{-2}$	$1.014 imes10^{-3}$
2s2p ⁵³ P ⁰	2s2p ⁴ (² D)4d ¹ P ₁	8.2247	$1.734 imes 10^{12}$	$1.759 imes 10^{-2}$	$1.428 imes10^{-3}$
2s2p ⁵³ P ₁ ⁰	$2s2p^{4}(^{2}D)4d^{1}S_{0}$	8.2210	$2.454 imes 10^{12}$	8.288×10^{-3}	$6.729 imes10^{-4}$
2s2p ⁵³ P ₀	2s2p ⁴ (² D)4d ³ P ₁	8.3086	$8.701 imes 10^{12}$	$2.701 imes 10^{-1}$	$7.389 imes10^{-3}$
2s2p ⁵³ P ₀ ⁰	2s2p ⁴ (² D)4d ³ S ₁	8.2945	$2.293 imes 10^{11}$	$7.094 imes 10^{-3}$	$1.937 imes10^{-4}$
2s2p ⁵³ P ₀	2s2p ⁴ (² D)4d ¹ P ₁	8.2793	$2.470 imes 10^{11}$	$7.613 imes 10^{-3}$	$2.075 imes10^{-4}$
2s2p ⁵³ P ₀ ⁰	$2s2p^4(^2S)4d^3D_1$	8.2048	3.162×10^{11}	$9.575 imes 10^{-3}$	$2.586 imes10^{-4}$
2s2p ⁵¹ P ₁ ⁰	2s2p ⁴ (² P)4d ¹ P ₁	8.3052	5.363×10^{12}	$5.546 imes 10^{-2}$	$4.549 imes 10^{-3}$
2s2p ⁵¹ P ₁ ⁰	$2s2p^{4}(^{2}P)4d^{1}D_{2}$	8.3046	$1.026 imes 10^{13}$	1.767×10^{-1}	$1.450 imes 10^{-2}$
2s2p ⁵¹ P ₁ ⁰	$2s2p^{4}(^{2}P)4d^{3}D_{1}$	8.2150	$4.069 imes 10^{12}$	$4.117 imes 10^{-2}$	3.340×10^{-3}
2s2p ⁵¹ P ₁ ⁰	$2s2p^{4}(^{2}P)4d^{3}P_{2}$	8.2145	$5.453 imes10^{11}$	$9.194 imes 10^{-3}$	$7.459 imes 10^{-4}$
2s2p ⁵¹ P ₁ ^o	2s2p ⁴ (² P)4d ³ D ₂	8.2094	7.559×10^{12}	1.273×10^{-1}	1.032×10^{-2}

consist of 2p-4d, 2p-5d, and 2p-6d transitions. These lines exist in pairs corresponding to resonance lines (nC) with transition $2s^22p^5nd_{3/2}{}^1P_1-2s^22p^6 {}^1S_0$ and intercombination (IC) (nD) for $2s^22p^5nd_{1/2}{}^3D_1-2s^22p^6 {}^1S_0$ (n = 4-6 in our case). The ratio nC/nD is a strong function of the ion abundance which is a function of

plasma temperature and density.⁴⁰ Our experimentally observed spectrum is time integrated, but it should be borne in mind that the plasma has strong temperature and density gradients which are a function of time. The Ne-like spectra of Cu dominate for a range of temperatures and densities.

TABLE III. Calculated wavelength, transition rates, and oscillator strengths of F-like transitions along with the corresponding configurations.

TABLE III. (Continued.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_		1 (° Å)	(-1)	(0 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I	J	λ (in A)	A _{ji} (s ⁻ ')	t _{ij}	S _{ij} (a.u.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	434	8.08	$1.75 imes 10^{10}$	1.71×10^{-4}	$9.12 imes 10^{-6}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	424	8.08	6.09×10^{7}	1.19×10^{-6}	6.33×10^{-8}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	253	8.08	9.10×10^{11}	1.78×10^{-2}	9.47×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	246	8.08	9.51×10^{11}	9.31×10^{-3}	4.95×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	209	8.09	3.27×10^{12}	3.20×10^{-2}	3.41×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	410	8.09	7.95×10^{12}	7.79×10^{-2}	4.15×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	208	8.09	1.39×10^{12}	2.05×10^{-2}	2.18×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	200	8.09	3.71×10^{11}	7.28×10^{-3}	3.88×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	241	8.09	1.11×10^{12}	1.09×10^{-2}	5.83×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	240	8.09	3.72×10^{11}	7.31×10^{-3}	3.89×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	407	8.09	3.28×10^{12}	6.44×10^{-2}	3.43×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	182	8 59	5.30×10^{12}	8.81×10^{-2}	9.97×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	371	8 59	7.30×10^{11}	1.62×10^{-2}	9.15×10^{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	370	8.60	7.00×10^{11} 7.27×10^{11}	8.05×10^{-3}	4.56×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	180	8.60	7.27×10^{12} 7.49×10^{12}	0.00×10^{-2} 8 30 $\times 10^{-2}$	9.00×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	170	8.60	9.02×10^{12}	5.00×10^{-2}	5.40×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	178	8.60	1.02×10^{11}	7.35×10^{-3}	3.00×10^{-4} 8.32 × 10 ⁻⁴
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	160	8.65	1.62×10^{11}	0.14×10^{-4}	1.04×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	109	8.65	1.03×10^{11}	9.14×10 5.80 $\times 10^{-3}$	1.04×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	165	8.66	3.24×10^{12}	5.09×10^{-2}	0.71×10 8.43 $\times 10^{-3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	163	8.66	4.30×10^{12}	7.33×10^{-2}	0.43×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	103	0.00	2.09×10	3.33×10^{-3}	4.03×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	104	0.07	4.91×10^{12}	0.29×10^{-2}	9.40×10 1.24 $\times 10^{-3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	102	0.07	1.04×10 2.64 $\times 10^{11}$	1.10×10 2.09×10^{-3}	1.34×10 2.40 × 10 ⁻⁴
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	100	0.07	2.04×10 2.70×10^{11}	2.90×10^{-3}	3.40×10^{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	109	0.00	2.70×10^{10}	1.52×10^{-4}	1.74×10 2.59 $\times 10^{-5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ა ი	246	0.70	1.90×10 5.01 $\times 10^8$	4.30×10^{-5}	2.30×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ა ი	340	0.70	5.01×10^{10}	1.14×10	0.01×10^{-5}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ა 1	343	0.70	1.90×10^{12}	2.24×10^{-2}	1.20×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ו ר	100	0.70	1.93×10 1.45 $\times 10^{13}$	3.20×10^{-1}	3.70×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	104	0.71	1.43×10 7.49 $\sim 10^{11}$	1.03×10^{-3}	9.47×10^{-4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	102	0.71	7.40×10 0.77 $\times 10^{12}$	0.01×10^{-1}	9.75×10^{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	100	0.71	0.77×10 1.00 × 10 ¹²	1.99×10	1.14×10 2.40 × 10 ⁻³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	100	0.72	1.90×10^{11}	4.34×10^{-3}	2.49×10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1/9	0.72	0.49×10^{12}	1.41×10 1.42×10^{-1}	4.23×10^{-2}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	140	0.70	0.29×10 1.60 × 10 ¹²	1.43×10	1.03×10 2.24 × 10 ⁻³
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ა ⊿	320	0.70	1.09×10 7.04 $\times 10^{12}$	3.00×10^{-2}	2.24×10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	139	8.76	7.21 × 10	8.30×10^{-7}	9.58×10^{-8}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	320	8.76	5.94×10^{12}	0.84×10^{-2}	3.95×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	319	8.77	1.32×10	3.05×10	1.76×10^{-3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	130	8.77	3.32×10	1.92×10	2.22×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	318	8.77	3.09×10^{-10}	8.52×10^{-6}	4.92×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	310	8.78	1.27×10^{-11}	2.93×10^{-2}	1.09×10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	169	8.78	8.99×10^{12}	1.04×10^{-1}	6.01×10^{-3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	100	8.78	4.48×10^{12}	1.04×10^{-4}	5.99×10^{-5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	131	8.79	3.03×10^{10}	1.75×10^{-4}	2.03×10^{-5}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	305	8.79	4.01×10^{10}	4.64×10^{-5}	2.69×10^{-6}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	130	8.79	$3.16 \times 10^{\circ}$	3.66×10^{-5}	4.23×10^{-6}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	128	8.79	$3.22 \times 10^{\circ}$	5.60×10^{-4}	6.48×10^{-5}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	160	8.80	2.83×10^{10}	0.50×10^{-3}	3.81×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	162	8.80	3.46×10^{11}	8.04×10^{-3}	4.66×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	297	8.80	2.90×10^{11}	6.74×10^{-3}	3.90×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	159	8.80	3.89×10^{10}	4.52×10^{-3}	2.62×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	126	8.81	2.77×10^{10}	3.23×10^{-4}	3.75×10^{-3}
3 293 8.83 5.72×10^{12} 1.34×10^{-1} 7.76×10^{-3}	1	125	8.81	8.54×10^{11}	1.49×10^{-2}	$1./3 \times 10^{-3}$
	3	293	8.83	5.72×10'2	1.34×10^{-1}	/./b×10 ⁻³

-					
I	J	λ (in Å)	$A_{ji}(s^{-1})$	f _{ij}	S _{ij} (a.u.)
3	289	8.84	2.35×10^{12}	2.75×10^{-2}	$1.60 imes10^{-3}$
2	152	8.84	$7.94 imes10^{10}$	$1.86 imes 10^{-3}$	$1.08 imes 10^{-4}$
3	287	8.84	$1.23 imes 10^{12}$	$2.89 imes 10^{-2}$	$1.68 imes10^{-3}$
3	285	8.84	$4.73 imes10^{11}$	$5.54 imes10^{-3}$	$3.22 imes 10^{-4}$
3	283	8.84	$1.28 imes 10^{11}$	$3.00 imes 10^{-3}$	$1.74 imes10^{-4}$
3	282	8.85	$1.40 imes 10^{11}$	$3.28 imes10^{-3}$	$1.91 imes 10^{-4}$
3	277	8.85	$7.27 imes10^{10}$	$8.54 imes10^{-4}$	$4.98 imes10^{-5}$
3	266	8.88	$1.92 imes10^9$	$4.53 imes 10^{-5}$	$2.65 imes 10^{-6}$
3	269	8.88	$5.86 imes 10^{12}$	$6.92 imes 10^{-2}$	$4.05 imes10^{-3}$
1	121	8.88	$4.84 imes10^{11}$	$2.86 imes 10^{-3}$	$3.34 imes10^{-4}$
3	264	8.88	$8.37 imes 10^{11}$	$1.98 imes 10^{-2}$	$1.16 imes 10^{-3}$
3	257	8.88	$3.46 imes10^9$	$8.19 imes10^{-5}$	$4.79 imes10^{-6}$
3	247	8.88	2.43×10^{12}	$2.88 imes 10^{-2}$	$1.68 imes10^{-3}$
1	120	8.88	$3.07 imes10^{11}$	$3.63 imes10^{-3}$	$4.25 imes10^{-4}$
3	245	8.89	$3.56 imes 10^{12}$	$4.22 imes 10^{-2}$	$2.47 imes 10^{-3}$
2	139	8.89	$3.80 imes10^{11}$	$9.01 imes10^{-3}$	$5.28 imes10^{-4}$
3	243	8.90	3.29×10^{12}	$7.82 imes 10^{-2}$	$4.58 imes10^{-3}$
2	136	8.90	$2.04 imes10^{11}$	$2.42 imes 10^{-3}$	$1.42 imes 10^{-4}$
2	131	8.92	$1.24 imes 10^{11}$	$1.48 imes10^{-3}$	$8.68 imes10^{-5}$
2	130	8.92	$5.71 imes 10^{10}$	$1.36 imes10^{-3}$	$8.00 imes 10^{-5}$
1	114	8.92	$3.81 imes 10^{11}$	$2.27 imes 10^{-3}$	$2.67 imes 10^{-4}$
3	226	8.93	$2.23 imes10^{10}$	$5.32 imes10^{-4}$	$3.13 imes10^{-5}$
3	225	8.93	$1.14 imes 10^{10}$	$1.37 imes10^{-4}$	$8.05 imes 10^{-6}$
2	126	8.94	$6.65 imes 10^{11}$	$1.60 imes 10^{-2}$	$9.40 imes10^{-4}$
3	221	8.95	$4.53 imes10^{10}$	$1.09 imes10^{-3}$	$6.41 imes 10^{-5}$
3	218	8.96	$1.12 imes 10^{10}$	$1.35 imes10^{-4}$	$7.95 imes 10^{-6}$
3	215	8.97	$1.39 imes10^{6}$	$3.36 imes10^{-8}$	$1.98 imes 10^{-9}$
3	213	9.00	6.07×10^{11}	$7.36 imes 10^{-3}$	$4.36 imes 10^{-4}$
1	111	9.00	1.12×10^{12}	$1.35 imes 10^{-2}$	$1.60 imes 10^{-3}$
1	110	9.01	$6.73 imes10^{10}$	$1.23 imes10^{-3}$	$1.46 imes 10^{-4}$
2	121	9.01	$7.52 imes 10^{11}$	$9.15 imes10^{-3}$	$5.43 imes 10^{-4}$

To get a more accurate temperature and density for the most strongly radiating portion of the plasma generated at $1.4 \times 10^{14} \text{ W/cm}^2,$ we compare 4C and 4D lines and the ratio of 4D with the Na-like IS satellite with the synthetic spectra generated by the FLYCHK code. The Na-like satellite lines originated from doubly excited Ne-like ions are observed and are reported by a few authors^{41–43} with very high precision. The energy level scheme for Ne-like and Na-like Cu is shown in Fig. 3(a). The 4D resonance line consists of a Na-like satellite line whose identification is provided in Ref. 42 with accuracy on the order of 0.001 Å. In Ref. 42, 4C and 4D lines along with several Na-like satellite transitions are given. Due to the comparatively low resolution of our crystal spectrometer, we are not able to distinguish all IS (inner shell) satellite lines. In Fig. 3(b), the experimentally observed satellite transitions are plotted. These consist of transitions from 3s-4d_{3/2}, 4p_{3/2}, 3p_{3/2}-4d_{5/2,3/2}, 4d_{3/2}-3s_{1/2}, 3p_{1/2}, and 3d_{3/2,5/2}. This satellite emission is also shown by FLYCHK. To match this experimental spectrum, we have run simulations over a wide range of temperatures and densities. Temperature is varied from 100 eV to 400 eV, and the density is varied from 1×10^{20} cm⁻³ to 1×10^{21} cm⁻³. The effect of varying temperature and density on the ratios (4C/4D and Na-like satellite/4D) is

TABLE IV. Calculated wavelength, transition rates, oscillator strengths, and line strengths of Na-like transitions along with the corresponding configurations.

Transitions					
I	J	λ (in Å)	A_{ji} (in s ⁻¹)	f _{ij}	S _{ij} (in a.u.)
2s ² 2p ⁶ 3s ² S _{1/2}	2p ⁵ 3p (¹ D) 4p ² D ^o _{3/2}	9.338	$4.4701 imes 10^{10}$	$1.1687 imes 10^{-3}$	$7.1853 imes 10^{-5}$
2s ² 2p ⁶ 3s ² S _{1/2}	2p ⁵ 3s (³ P) 4d ⁴ F _{3/2}	9.338	$2.1180 imes 10^{11}$	$5.5376 imes 10^{-3}$	$3.4047 imes10^{-4}$
2s ² 2p ⁶ 3s ² S _{1/2}	$2p^{5}3s$ (¹ P) 4d $^{2}P_{2/2}^{0}$	9.324	7.3068×10^{10}	$9.5227 imes 10^{-4}$	$5.8459 imes 10^{-5}$
$2s^22p^6$ 3s $^2S_{1/2}$	$2p^{5}3p(^{1}P) 4p^{2}S_{1/2}^{0/2}$	9.327	$1.1345 imes 10^{11}$	$2.9590 imes 10^{-3}$	$1.8171 imes 10^{-4}$
2s ² 2p ⁶ 3s ² S _{1/2}	$2p^{5}3p(^{1}P) 4p^{2}D_{0}^{1/2}$	9.318	1.1527×10^{12}	3.0006×10^{-2}	1.8408×10^{-3}
$2s^22p^6 3s^2S_{1/2}$	$2p^{5}3p(^{1}P) 4p^{2}P_{0}^{3/2}$	9.314	5.6739×10^{12}	1.4760×10^{-1}	9.0517×10^{-3}
$2s^22p^6 3s^2S_{1/2}$	$2n^{5}3s$ (³ P) 4d $^{2}P_{0}^{2}$	9.311	1.5616×10^{12}	4.0591×10^{-2}	24884×10^{-3}
$2s^22p^6 3s^2S_{1/2}$	$2p^{5}3s(^{1}P) 4d^{2}P_{2}^{0}$	9.313	9.0861×10^{12}	1.1813×10^{-1}	7.2433×10^{-3}
$2s^2 2n^6 3s^2 S_{4/2}$	$2p^{5}3n ({}^{3}S) 4n {}^{2}P_{1}^{0}$	9.307	71495×10^{10}	92834×10^{-4}	5.6886×10^{-5}
$2s^2 2p^6 3s^2 S_{1/2}$	$2p^{5}3n (^{1}P) 4n ^{2}P_{1}^{0}$	9.301	12043×10^{11}	1.5620×10^{-3}	9.5661×10^{-5}
$2s^2 2p^6 3s^2 S_{4/2}$	$2p^{5}3n^{(3}P) 4n^{4}P^{0}$	9.300	1.2010×10^{11} 1.6389×10^{11}	4.2500×10^{-3}	2.6023×10^{-4}
$2s^2 2p^6 3s^2 S_{1/2}$	$2p^{5}3p^{(1)}4p^{4}D^{9}$	9 292	7.5641×10^{10}	9.7909×10^{-4}	5.9901×10^{-5}
$2s^2 2p^6 3s^2 S_{1/2}$	$2p^{5}3p^{(1)}4p^{2}D_{7/2}$	0.268	3.4377×10^{10}	$8.85/1 \times 10^{-4}$	5.001×10^{-5}
$2s^2 2p^6 3s^2 S_{1/2}$	$2p^{5}3p(^{3}P) 4p^{2}D^{0}$	0.255	9.5807×10^9	2.631×10^{-4}	1.5010×10^{-5}
$2s^2p^6 3n^2D^0$	$2p 3p (1) 4p 7_{3/2}$ $2p^5 3p (^3D) 4d ^4F$	0.337	5.3037×10^{12}	1.4940×10^{-1}	0.1844×10^{-3}
$25 2p^{6} 3p^{2} D^{0}$	$2p^{5}2p (D) + d^{2}P_{13/2}$	0.320	3.7134×10^{12}	1.4340×10^{-1}	5.1044×10^{-3}
$25 2\mu 5\mu F_{1/2}$	$2p 3p (r) 4d r_{1/2}$	9.529	0.2100×10^{-11}	1.0719×10^{-3}	0.3030×10^{-4}
$25 2\mu 3\mu P_{1/2}$	$2p 3p (r) 4u r_{3/2}$	9.309	3.3101×10 7.5999 $\sim 40^{10}$	0.3990×10^{-3}	3.2707×10
$25 2p^{\circ} 3p^{\circ} P_{1/2}$	$2p^{3}p(D) 4d^{3}G_{7/2}$	9.301	7.000 × 10 5.5500 × 40 ¹¹	1.9000×10^{-3}	1.2000×10^{-4}
$2s 2p 3p P_{1/2}^{2}$	$2p^{3}3p(P) 40 D_{1/2}$	9.299	5.5502×10	7.2022×10^{-4}	4.4094×10
$2s^{-}2p^{-}3p^{-}P_{1/2}^{-}$	2p ⁻ 3p (⁻ P) 4d ⁻ D _{3/2}	9.290	3.5322×10^{12}	9.1399×10^{-3}	5.5905×10^{-4}
$2s^{-}2p^{\circ} 3p^{-}P_{1/2}^{\circ}$	$2p^{\circ}3p(^{\circ}D) 4d^{2}P_{1/2}$	9.287	1.2769×10^{10}	1.6512×10^{-3}	1.0097×10^{-5}
$2s^{-}2p^{\circ} 3p^{-}P_{1/2}^{\circ}$	$2p^{3}3p(D) 4d^{2}P_{3/2}$	9.286	4.2848×10^{10}	1.1079×10^{-3}	6.7740×10^{-4}
$2s^{2}2p^{3}3p^{2}P_{1/2}^{3}$	2p ^o 3d (°P) 4p ⁻ D _{1/2}	9.278	1.7559×10^{11}	2.2660×10^{-6}	1.3843 × 10 ⁴
$2s^{2}2p^{0} 3p^{2}P_{1/2}^{0}$	2p ³ 3p (³ D) 4d ⁴ P _{1/2}	9.274	6.0317×10^{00}	7.7770 × 10 ⁻⁶	4.7487×10^{-7}
$2s^{2}2p^{\circ} 3p^{2}P_{1/2}^{\circ}$	$2p^{\circ}3d$ (³ P) $4p^{\circ}D_{3/2}$	9.266	6.3656×10^{67}	1.6386×10^{-6}	9.9961 × 10 ⁻⁶
$2s^{2}2p^{0} 3p^{2}P_{1/2}^{0}$	2p ³ 3d (³ P) 4p ⁴ P _{1/2}	9.262	3.1616×10^{00}	4.0656×10^{-3}	$2.4/92 \times 10^{-6}$
2s ² 2p ^o 3p ² P ^o _{1/2}	2p ³ 3d (³ P) 4p ⁴ P _{3/2}	9.257	2.3225×10^{10}	5.9677×10^{-4}	3.6374×10^{-5}
2s ² 2p ^o 3p ² P ^o _{1/2}	2p ³ 3d (³ P) 4p ² P _{1/2}	9.253	2.4053×10^{10}	3.0871×10^{-4}	1.8807×10^{-3}
2s ² 2p ^o 3p ² P ^o _{1/2}	2p ⁵ 3d (³ D) 4p ⁴ D _{3/2}	9.251	2.1206×10^{10}	5.4414×10^{-4}	3.3143×10^{-5}
2s ² 2p ⁶ 3p ² P ⁰ _{3/2}	2p ⁵ 3p (¹ D) 4d ² G _{7/2}	9.333	8.3347×10^{09}	1.0883×10^{-4}	1.3374 × 10 ⁻⁵
2s ² 2p ⁶ 3p ² P ⁰ _{3/2}	2p ⁵ 3p (³ P) 4d ⁴ D _{1/2}	9.330	2.7063×10^{11}	1.7658×10^{-3}	2.1695×10^{-4}
2s ² 2p ⁶ 3p ² P ^o _{3/2}	2p ⁵ 3p (¹ D) 4d ² D _{5/2}	9.330	3.8666×10^{06}	7.5692×10^{-8}	$9.2997 imes 10^{-9}$
2s ² 2p ⁶ 3p ² P ^o _{3/2}	2p ⁵ 3p (³ P) 4d ² D _{3/2}	9.321	4.9627×10^{12}	$6.4639 imes 10^{-2}$	$7.9340 imes 10^{-3}$
2s ² 2p ⁶ 3p ² P ^o _{3/2}	2p ⁵ 3p (³ P) 4d ² D _{5/2}	9.320	7.7799×10^{12}	$1.5197 imes 10^{-1}$	1.8652×10^{-2}
2s ² 2p ⁶ 3p ² P ^o _{3/2}	2p ⁵ 3p (³ D) 4d ² P _{1/2}	9.319	5.9580×10^{10}	$3.8780 imes 10^{-4}$	4.7587×10^{-5}
2s ² 2p ⁶ 3p ² P ^o _{3/2}	2p ⁵ 3p (¹ D) 4d ² P _{3/2}	9.318	2.0452×10^{12}	$2.6619 imes 10^{-2}$	3.2661×10^{-3}
2s ² 2p ⁶ 3p ² P ^{o'} _{3/2}	2p ⁵ 3d (³ P) 4p ⁴ D _{1/2}	9.309	8.2370 × 10 ¹²	$5.3508 imes 10^{-2}$	$6.5595 imes 10^{-3}$
2s ² 2p ⁶ 3p ² P _{3/2}	2p ⁵ 3p (³ D) 4d ⁴ P _{1/2}	9.305	$6.5583 imes 10^{9}$	$4.2564 imes 10^{-5}$	$5.2155 imes 10^{-6}$
2s ² 2p ⁶ 3p ² P ^{o'} _{3/2}	2p ⁵ 3d (³ P) 4p ⁴ D _{3/2}	9.297	$1.5688 imes 10^{8}$	$2.0327 imes 10^{-6}$	$2.4884 imes 10^{-7}$
2s ² 2p ⁶ 3p ² P ^{o'} _{3/2}	2p ⁵ 3d (³ P) 4p ⁴ P _{1/2}	9.293	$7.3148 imes 10^{9}$	$4.7347 imes 10^{-5}$	$5.7938 imes 10^{-6}$
$2s^22p^6 3p {}^2P_{3/2}^{0/2}$	2p ⁵ 3d (³ P) 4p ⁴ P _{3/2}	9.288	$8.7983 imes 10^{8}$	$1.1379 imes 10^{-5}$	$1.3918 imes10^{-6}$
$2s^22p^6 3p {}^2P_{3/2}^{0}$	2p ⁵ 3d (³ P) 4p ⁴ D _{5/2}	9.284	$1.1237 imes 10^{10}$	$2.1781 imes 10^{-4}$	$2.6629 imes 10^{-5}$
$2s^22p^6 3p {}^2P_{3/2}^{0}$	2p ⁵ 3d (³ P) 4p ² P _{1/2}	9.284	$3.5936 imes 10^{10}$	$2.3216 imes 10^{-4}$	$2.8382 imes 10^{-5}$
$2s^22p^6 3p {}^2P_{2/2}^{0/2}$	$2p^{5}3d$ (³ D) $4p^{4}D_{3/2}$	9.282	$9.1824 imes 10^{9}$	$1.1860 imes 10^{-4}$	$1.4496 imes 10^{-5}$
$2s^22p^6 3p {}^2P_{3/2}^{0/2}$	$2p^{5}3d$ (³ F) $4p^{4}F_{7/2}$	9.279	$5.7375 imes 10^{10}$	$1.1109 imes 10^{-3}$	$1.3575 imes 10^{-4}$
$2s^{2}2p^{6} 3p^{2}P_{3/2}^{0/2}$	$2p^{5}3d$ (³ F) $4p^{4}F_{5/2}$	9.274	6.1208×10^{10}	$1.1838 imes 10^{-3}$	$1.4457 imes 10^{-4}$
$2s^{2}2p^{6} 3p^{2}P_{2/2}^{0/2}$	$2p^{5}3d$ (³ P) $4p^{4}P_{5/2}$	9.271	8.2346×10^{6}	1.5915×10^{-7}	1.9429×10^{-8}
$2s^{2}2p^{6} 3p^{2}P_{0/2}^{0}$	$2p^{5}3d$ (³ F) $4p^{4}F_{0/2}$	9,269	3.1637×10^{8}	4.0745×10^{-6}	4.9730×10^{-7}
$2s^22n^6 3n^2P_{0}^{0}$	$2p^{5}3d$ (¹ D) $4p^{2}D_{3/2}$	9,266	1.6423×10^{10}	2.1137×10^{-4}	2.5789×10^{-5}
$2s^22n^6 3n^2P_{0}^{0}$	$2p^{5}3d$ (¹ F) $4p^{2}F_{r/2}$	9 262	3.5491×10^{10}	6.8462×10^{-4}	8.3499×10^{-5}
$2s^22n^6 3n^2D_0^0$	2p od (1) p $15/22n^{5}3d (1D) 4n ^{2}F_{-1}$	9 258	2 3296 × 10 ⁹	44902×10^{-5}	5.0703×10^{-6}
$2s^22n^6 3n^2D^0$	$2p \frac{50}{2} (2) \frac{4}{2} p \frac{1}{5/2}$	0.200 0.251	6.2200×10^{10}	-1.702×10 7 0035 $\sim 10^{-4}$	0 7221 ~ 10
$2s^2 2n^6 3n^2 D^0$	$2\mu 30 (1^{-}) 4\mu D_{3/2}$ $2n^{5}3n (1^{-}) 4f^{2}E^{0}$	0.201	0.2233×10^{10}	6 0702 \langle 10 ⁻⁴	7.1001×10 7.1010×10^{-5}
2020 00 F 3/2	$2\mu 5\mu (D) + \Gamma_{7/2}$	0.243	2.5352 ~ 10 ¹⁰	1 6555 \langle 10 ⁻⁴	7.4040×10 20217 $\sim 10^{-5}$
25 ZP 30 D _{3/2}	2μ 3u (P) 4u $F_{7/2}$	3.333	2.0002 × 10	1.0000×10	2.0341 × 10 °

TABLE IV. (Continued.)

Transitions						
I	J	λ (in Å)	A_{ji} (in s ⁻¹)	f _{ij}	S _{ij} (in a.u.)	
2s ² 2p ⁶ 3d ² D _{3/2}	2p ⁵ 3d (¹ F) 4d ² P ^o _{3/2}	9.330	$8.4570 imes 10^{10}$	$1.1036 imes 10^{-3}$	$1.3559 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d$ (³ D) 4d $4S_{3/2}^{5/2}$	9.328	$4.3146 imes 10^{9}$	$5.6281 imes 10^{-5}$	$6.9131 imes 10^{-6}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d({}^{1}F) 4d {}^{2}D_{5/2}^{0/2}$	9.324	$4.3145 imes 10^{9}$	$8.4355 imes 10^{-5}$	$1.0358 imes 10^{-5}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d({}^{3}F) 4f^{4}l_{11/2}$	9.302	$9.2469 imes 10^{10}$	$5.9969 imes 10^{-4}$	$7.3453 imes 10^{-5}$	
2s ² 2p ⁶ 3d ² D _{3/2}	2p ⁵ 3d (¹ F) 4f ² I _{13/2}	9.292	$4.9919 imes 10^{12}$	$9.6927 imes 10^{-2}$	$1.1860 imes 10^{-2}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d$ (¹ P) 4d $^{2}D_{5/2}^{0}$	9.284	$6.8304 imes 10^{10}$	$1.3239 imes 10^{-3}$	$1.6186 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d(^{3}F) 4f^{4}H_{7/2}^{3/2}$	9.280	$1.8932 imes 10^{12}$	$2.4442 imes 10^{-2}$	$2.9868 imes 10^{-3}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d$ (¹ P) 4d $^{2}P_{2/2}^{0}$	9.272	$7.2929 imes 10^{11}$	$9.3999 imes 10^{-3}$	$1.1477 imes 10^{-3}$	
2s ² 2p ⁶ 3d ² D _{3/2}	$2p^{5}3d(^{1}D) 4f^{2}P_{1/2}^{3/2}$	9.264	$2.0114 imes 10^{11}$	$1.2939 imes 10^{-3}$	$1.5784 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (¹ D) 4d ${}^{2}S_{1/2}^{0}$	9.337	7.0642×10^{12}	1.2311×10^{-1}	$2.2706 imes 10^{-2}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (³ P) 4d ${}^{2}F_{7/2}^{b/2}$	9.335	$6.4597 imes 10^{12}$	$5.6257 imes 10^{-2}$	$1.0373 imes 10^{-2}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d({}^{1}F) 4d{}^{2}P_{2/2}^{0/2}$	9.333	1.7046×10^{11}	$1.4839 imes 10^{-3}$	$2.7354 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (³ D) 4d ${}^{4}S_{3/2}^{0/2}$	9.329	$1.0654 imes 10^{9}$	$1.3901 imes 10^{-5}$	$2.5615 imes 10^{-6}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d({}^{1}F) 4f^{2}I_{13/2}$	9.297	2.0000×10^{11}	$2.5916 imes 10^{-3}$	$4.7591 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (¹ P) 4d $^{2}D_{5/2}^{0}$	9.289	8.7382×10^{11}	$1.1303 imes 10^{-2}$	$2.0738 imes 10^{-3}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d(^{3}F) 4f^{4}H_{7/2}^{3/2}$	9.285	1.9302×10^{11}	$1.6629 imes 10^{-3}$	$3.0498 imes10^{-4}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (³ F) 4f $^{2}D_{3/2}$	9.284	$4.4543 imes 10^{10}$	$7.6750 imes 10^{-4}$	$1.4075 imes 10^{-4}$	
2s ² 2p ⁶ 3d ² D _{5/2}	$2p^{5}3d$ (¹ P) 4d $^{2}P_{3/2}^{0}$	9.277	$2.9984 imes 10^{11}$	$2.5791 imes 10^{-3}$	$4.7262 imes 10^{-4}$	

TABLE V. Table for the configuration of F-like lines.

Level	Label	J	Level	Label	j	Level	Label	j
1	2s ² 2p ^{5 2} P	3/2	179	2s ² 2p ⁴ 4d ^{1 4} P	1/2	282	2s ² 2p ⁴ 5p ¹² P	3/2
2	2s ² 2p ⁵ ² P	1/2	180	2s ² 2p ⁴ 4d ¹ ⁴ D	3/2	283	2s ² 2p ⁴ 5p ¹² D	3/2
3	2s ¹ 2p ⁶² S	1/2	182	2s ² 2p ⁴ 4d ^{1 4} P	5/2	284	2s ¹ 2p ⁵ 4d ¹² D	5/2
110	2s ² 2p ⁴ 4s ¹ ² D	5/2	183	2s ² 2p ⁴ 4d ^{1 4} P	3/2	285	2s ² 2p ⁴ 5p ¹² P	1/2
111	2s ² 2p ⁴ 4s ¹ ² D	3/2	184	2s ² 2p ⁴ 4d ^{1 4} D	1/2	286	2s ¹ 2p ⁵ 4d ¹² F	7/2
114	2s ² 2p ⁴ 4s ¹ ² S	1/2	208	2s ¹ 2p ⁵ 4p ¹ ⁴ P	5/2	287	2s ¹ 2p ⁵ 4d ¹² P	3/2
120	2s ² 2p ⁴ 4s ¹ ² P	3/2	209	2s ¹ 2p ⁵ 4p ¹ ² D	3/2	288	2s ¹ 2p ⁵ 4d ¹² F	5/2
121	2s ² 2p ⁴ 4s ¹ ² P	1/2	210	2s ² 2p ⁴ 5s ¹² D	3/2	289	2s ¹ 2p ⁵ 4d ¹² P	1/2
125	2s ² 2p ⁴ 4s ¹ ⁴ P	5/2	213	2s ¹ 2p ⁵ 4s ¹² P	1/2	293	2s ¹ 2p ⁵ 4d ¹² D	3/2
126	2s ² 2p ⁴ 4s ¹ ⁴ P	3/2	215	2s ² 2p ⁴ 5p ¹² P	3/2	297	2s ¹ 2p ⁵ 4s ¹⁴ P	3/2
128	$2s^22p^44d^{12}D$	5/2	218	2s ² 2p ⁴ 5p ¹² P	1/2	305	2s ¹ 2p ⁵ 4s ¹⁴ P	1/2
130	2s ² 2p ⁴ 4d ¹ ² P	3/2	221	$2s^22p^45p^{12}D$	3/2	316	$2s^{2}2p^{4}5p^{14}S$	3/2
131	$2s^{2}2p^{4}4d^{1}$ ² S	1/2	225	2s ¹ 2p ⁵ 4d ¹² P	1/2	317	$2s^{2}2p^{4}5p^{14}D$	5/2
136	2s ² 2p ⁴ 4d ¹ ² P	1/2	226	2s ¹ 2p ⁵ 4d ¹² P	3/2	318	2s ¹ 2p ⁵ 4d ¹⁴ P	3/2
139	2s ² 2p ⁴ 4d ¹ ² D	3/2	240	2s ² 2p ⁴ 5s ¹² P	3/2	319	2s ² 2p ⁴ 5p ¹⁴ P	3/2
140	$2s^{2}2p^{4}4d^{1}{}^{2}F$	5/2	241	2s ² 2p ⁴ 5s ¹² P	1/2	320	2s ² 2p ⁴ 5p ¹⁴ P	1/2
152	$2s^22p^44d^{12}D$	3/2	242	$2s^22p^45d^{12}D$	3/2	328	$2s^22p^45f^{12}D$	5/2
155	2s ² 2p ⁴ 4d ¹ ² D	5/2	243	2s ¹ 2p ⁵ 4d ¹² D	3/2	345	2s ² 2p ⁴ 5f ¹⁴ D	1/2
159	$2s^22p^44d^{12}P$	1/2	245	2s ² 2p ⁴ 5p ¹² P	1/2	346	2s ² 2p ⁴ 5f ¹⁴ F	3/2
160	2p ⁶ 3d ¹ ² D	3/2	246	2s ¹ 2p ⁵ 4p ¹² P	1/2	351	2s ² 2p ⁴ 5f ¹⁴ D	3/2
162	2s ² 2p ⁴ 4d ¹ ² P	3/2	253	2s ¹ 2p ⁵ 4p ¹⁴ S	3/2	370	$2s^{2}2p^{4}5p^{14}D$	1/2
163	2p ⁶ 3d ¹ ² D	5/2	257	2s ² 2p ⁴ 5f ¹² D	3/2	371	$2s^{2}2p^{4}5p^{14}D$	3/2
164	2s ² 2p ⁴ 4d ¹ ² F	5/2	264	2s ² 2p ⁴ 5f ¹² P	3/2	407	2s ¹ 2p ⁵ 5d ¹² D	3/2
165	2s ² 2p ⁴ 4d ¹ ² D	5/2	266	2s ² 2p ⁴ 5p ¹² P	3/2	408	2s ¹ 2p ⁵ 5p ¹² P	3/2
169	2s ² 2p ⁴ 4s ¹ ⁴ P	1/2	269	2s ² 2p ⁴ 5f ¹² P	1/2	410	2s ¹ 2p ⁵ 5d ¹⁴ P	1/2
178	2s ² 2p ⁴ 4d ^{1 4} D	5/2	277	2s ² 2p ⁴ 5p ¹² S	1/2	424	2s ¹ 2p ⁵ 5g ¹⁴ F	3/2
						434	2s ¹ 2p ⁵ 5s ¹² P	1/2

observed by comparing spectra from FLYCHK keeping one parameter (either temperature or density) fixed. The synthetic spectrum is plotted for a temperature range of 150–210 eV [Fig. 4(a)] and for a density range of $3 \times 10^{20}-5 \times 10^{20}/\text{cm}^3$ [Fig. 4(b)]. Figure 5 (dotted line) shows the best match regarding the ratio 4C/4D and Na-like satellite/Ne-like resonance at a plasma temperature of 170 eV and a density of $6.5 \times 10^{20}/\text{cm}^3$. Fournier *et al.*³⁰ in their work have shown the effect of varying the escape factor and the fraction of suprathermal electrons on the spectral lines. We included the effect of opacity in our simulation as the level population gets altered with the effects of collisions and photon re-absorption in the plasma. The intensity of a line is a function of the relative abundance of ions and their radiative transition rates and can be written as

$$I_{j,i} = n_j A_{j,i}, \tag{2}$$

which is a function of both the density of ions and the radiative transition rates. In the presence of plasma self-absorption, radiative decay rates are modified $A^{\rm eff} = \epsilon A_{j,i}$, with ϵ being the opacity. In our experiment, the plasma is considered to be spherical with a diameter of 100 μm . This influences the distribution of charge states of Cu as shown in Fig. 8(c). Also, the contribution of hot electrons also needs to be taken into account.

So, to accurately determine the ratio of resonance lines which are sensitive to plasma temperature and density, the influence of plasma opacity and the fraction of suprathermal electrons (f) have to be taken into account. This also shifts the ionization balance slightly higher. The effect of opacity in the plasma is already introduced in the simulation. The selfabsorption results in a reduction of intensities of the nD lines in comparison to the nC lines. The intensity of our 6C line is more than the 6D resonance line. This indicates a higher opacity in

FIG. 2. (a) The experimental spectrum with theoretical predicted line intensity in the spectral range of 7.8 Å–9.4 Å recorded for Ne-, F-, and O-like ions of copper. The relative transition rates are drawn. (b) The labeled experiment spectrum at a laser intensity of 1.3×10^{14} W/cm².

our experimentally produced plasma. But, again, it should be borne in mind that this is a time and space integrated spectrum coming out from different regions of the plasma.

The effect of suprathermal electron temperature and fraction on the spectrum on the spectra is considered as follows. Matching between the synthetic and experimental spectra is performed keeping the thermal electron temperature to be around 170 eV, while the suprathermal electron population temperature is varied from 0.5 to 1.5 keV and the ratio of suprathermal to thermal electron temperature is also varied from 0.005 to 0.1. An increase in the suprathermal electron temperature results in an alteration of the satellite to the resonance intensity ratio, and an increase in the fraction of suprathermal electrons raises the abundance of F-like ions and hence corresponding intensity ratios. The increase in the f-value also results in a lowering of the intensity of the Na-like satellite line. The F-like lines are not distinguishable in FLYCHK because it follows the superconfiguration approach, causing these lines to merge together. After several trials using different combinations of T_c , T_h , and f the best match of experimental and stimulated spectra at T_c = 150 eV, T_h = 1000 eV, f = 0.008, and density $4.5 \times 10^{20} \, {\rm cm}^{-3}$ is shown in Fig. 6.

FIG. 3. (a) Energy level diagram of resonance lines from Ne-like Cu and their Na-like satellites. (b) Na-like satellite corresponding to a Ne-like resonance line.

FIG. 4. Dependence of the ratio of 4C to 4D lines and Na-like satellite to 4D line on (a) plasma temperature and (b) electron density as calculated by FLYCHK.

B. Effect of laser intensity on abundance of charge states in plasma

The laser intensity is changed to see the effect on the abundance of ions of different charge states. The spectrum at different laser intensities has been plotted in Fig. 7(a). The intensity of all lines increases with an increase in the intensity of the laser. However, the extent of the change of the intensity of lines from different charge states differs. This is due to the direct dependence of ion charge state populations on the plasma temperature and density. In Figs. 7(b) and 7(c), the zoomed part of the

FIG. 5. The experimental spectrum (at 1.3×10^{14} W/cm² laser intensity) overlaid with a synthetic spectrum at a plasma temperature of 170 eV and a density of 6.5×10^{20} /cm³.

highlighted region is drawn. Four pairs of charge states (labeled as I, II, III, and IV) are compared at varying laser intensities. The first two pairs indicate the increase in O-like Cu ions in comparison to Ne-like and F-like ions and pairs of lines in Secs. III and IV show comparison of F-like with Ne-like ions. When the laser intensity is low $(1.3 \times 10^{14} \text{ W/cm}^2)$, the intensities of Ne-like ion related emission are enhanced in comparison to F-like and O-like emission indicating the abundance of Cu XX ions in comparison to Cu XXI and Cu XXII ions in the plasma. When the laser intensity increases, the intensity ratio of Ne-like ions to F-like ions (shown in circles III and IV) decreases and the intensity of the F-like line at 8.27 Å has exceeded the intensity of the Ne Like

FIG. 6. Best match of the experimental spectrum with the synthetic spectrum at $T_c=150\,eV,\,T_h=1000\,eV,\,f=0.008,$ and density $4.5\times10^{20}/cm^3.$

FIG. 7. (a) Experimental spectrum at various laser intensities (b) and (c) zoom of part a to show comparison of population of Ne-like, F-like, and O-like ions at different laser intensities.

line at 9.12 Å at a laser intensity of 2.4×10^{14} W/cm², whilst it is lower at a laser intensity of 1.3×10^{14} W/cm². These observations indicate that with increased laser intensity, the population of F-like ions relative to Ne-like ions increases. At the same time, it can also be seen that, on further increase in laser intensity, O-like ions become increasingly prominent until O-like emission dominates at 4.0×10^{14} W/cm². This indicates that the population of F-like and

Ne-like ions at this intensity. The difference in intensity from O-like ions as compared to Ne-like ions is large in the circled zone II as compared to zone I. This may be due to the fact that in the circled zone I, the Ne-like line is accompanied by an F-like line and by increasing the laser intensity, the population of both F-like and O-like ions increases which results in the intensity of both lines being increased. At 3.2×10^{14} W/cm², O-like emission starts to dominate Ne-like and F-like emission.

FIG. 8. Distribution of charge states of copper for different temperatures at an electron density of 5×10^{20} /cm³as obtained from FLYCHK simulations (a) without opacity and (b) with opacity. Distribution of Cu XXII (O-like), Cu-XXI (F-like), and Cu-XX (Ne-like) ions at the same electron density as obtained from FLYCHK simulations (c) without opacity and (d) with opacity. Distribution of charge states of Cu at 1×10^{21} /cm³ as obtained from FLYCHK simulations (e) without opacity and (f) with opacity.

Phys. Plasmas **26**, 023301 (2019); doi: 10.1063/1.5051758 Published under license by AIP Publishing

To validate our measurements, we performed FLYCHK simulations to evaluate the charge state distribution and abundance of the charge state of Cu ions at different plasma temperatures and densities with and without the effect of opacity. In the first case, we fixed the plasma density to $5 \times 10^{20} \text{ cm}^{-3}$ keeping the opacity off and changing the plasma temperature. The charge state distribution and relative population of the main contributing ions (Ne, F, and O-like Cu ions) at different temperatures are shown in Figs. 8(a) and 8(b). Without opacity, it is observed that the population of Ne-like ions starts dominating at temperatures greater than 150 eV and this continues up to 400 eV. This is against our experimental observation where it has been clearly seen that by increasing the laser intensity (plasma temperature), higher charge states have come to dominate the emission. When the effect of opacity is included, the abundance of F-like ions rises abruptly and their relative population becomes more than the Ne-like Cu above 200 eV as shown in Figs. 8(c) and 8(d). Above 210 eV, the population of O-like lines starts dominating and becomes equal to Ne-like at 280 eV. On further increase in temperature, O-like ions are dominating even over F-like ions at 350 eV.

We have measured plasma temperature and density at a laser intensity of 1.3×10^{14} W/cm². For the measurement of temperature and density, we have used only Ne-like lines. FLYCHK is not showing the transitions corresponding to F-like and O-like ions which could otherwise be used for further investigation of plasma temperature and density. The presence of O-like lines for the laser intensity of 1.3×10^{14} W/cm², as per Figs. 8(b) and 8(c), indicates that the plasma temperature is 250 eV (where O-like ions start to become apparent).

As already mentioned our integrated spectrum comes from plasma that has large temperature and density gradients. So, X-ray emission is taking place from hotter regions as well as from colder regions. So, at a laser intensity of 1.3×10^{14} W/cm², our plasma temperature is in the range of 150–250 eV. When the laser intensity increases, the plasma temperature increases and with it the populations of higher charge states. Dominance of O-like ions over Ne-like and F-like at a laser intensity of 4×10^{14} W/cm² indicates that the plasma temperature is of the order of 350 eV from Fig. 8(d) (where O-like starts dominating). So, for the laser intensity 1.3×10^{14} W/cm²- 4×10^{14} W/cm², we can say that the plasma temperature ranges from 150 to 350 eV in the region responsible for the bulk of the emission.

To better understand our results, simulations were performed using the 1-D Lagrangian radiation hydrodynamics simulation code HYADES.⁴⁴ These simulations used the tabulated SESAME equation of state and a multi-group diffusion approximation for radiation transport based on an average atom LTE ionization model. Electron transport was handled by a fluxlimited diffusion approximation. The HYADES results show that there is a region of the plasma that corresponds to the combination of temperature and density conditions that have been estimated above. These simulations further highlight the extremely broad range of plasma density and temperature conditions present, showing temperatures ranging from keV in the lowdensity corona to below 10¹⁹ in the corona (Note that since this is a 1-D code the densities will be significantly overestimated in the extremities of the corona.) to above 10^{24} in the shock wave that is propagating into the solid target. Summing over these many different conditions, with appropriate weighting for optical depths, would be required to more accurately reproduce the experimental spectra.

IV. CONCLUSIONS

In summary, we have measured copper spectra from laser irradiated copper targets in the intensity range of 1.3×10^{14} W/cm² to 4×10^{14} W/cm². The identification of spectral lines and atomic calculations were performed using a Multi-configuration Dirac-Fock (MCDF) method. Lines generated using this simulation are in good agreement with the data available and our experimental results. The average temperature and density of the most strongly radiating portion of the plasma are 150-350 eV and $4.5 \times 10^{20}/\text{cm}^3$ for laser intensities in the range of $1.3 \times 10^{14}-4 \times 10^{14}$ W/cm². We have performed simulations using the FLYCHK code and performed hydrodynamic simulations which are in good agreement with our experimental results.

ACKNOWLEDGMENTS

The authors from BARC are thankful to Dr. A. K. Mohanty, Director, Physics Group, and Dr. M. N. Deo, Head, LS&FTSS, for their consistent support. The authors are thankful to Shri D. S. Munda, Mr. Ritesh Sable, and Mr. Krishna Bangre for smooth operation of the laser system and for providing support in the data acquisition during the experiment.

REFERENCES

- ¹A. Benuzzi-Mounaix, F. Dorchies, V. Recoules, F. Festa, O. Peyrusse, A. Levy, A. Ravasio, T. Hall, M. Koenig, and N. Amadou, Phys. Rev. Lett. **107**(16), 165006 (2011).
- ²J. Zhang, Y. Xu, J. Yang, G. Yang, H. Li, Z. Yuan, Y. Zhao, G. Xiong, L. Bao, and C. Huang, *Phys. Plasmas* **18**(11), 113301 (2011).
- ³A. Rossall, L. Gartside, S. Chaurasia, S. Tripathi, D. Munda, N. Gupta, L. Dhareshwar, J. Gaffney, S. Rose, and G. Tallents, J. Phys. B: At., Mol. Opt. Phys. 43(15), 155403 (2010).
- ⁴L. Antonelli, S. Atzeni, A. Schiavi, S. D. Baton, E. Brambrink, M. Koenig, C. Rousseaux, M. Richetta, D. Batani, P. Forestier-Colleoni, E. Le Bel, Y. Maheut, T. Nguyen-Bui, X. Ribeyre, and J. Trela, Phys. Rev. E **95**(6), 063205 (2017).
- ⁵J. Lindl, Phys. Plasmas 2(11), 3933-4024 (1995).
- ⁶D. Giulietti and L. A. Gizzi, La Riv. Nuovo Cimento (1978-1999) **21**(10), 1–93 (1998).
- ⁷C. Kaur, S. Chaurasia, A. Poswal, D. Munda, A. Rossall, M. Deo, and S. M. Sharma, J. Quant. Spectrosc. Radiat. Transfer **187**, 20–29 (2017).
- ⁸L. P. Presnyakov, Sov. Phys. Usp. 19(5), 387 (1976).
- ⁹C. Biedermann, R. Radtke, and K. B. Fournier, Phys. Rev. E **66**(6), 066404 (2002).
- ¹⁰D. Porquet, J. Dubau, and N. Grosso, Space Sci. Rev. **157**(1-4), 103–134 (2010).
- ⁿL. Presnyakov and A. Urnov, J. Phys. Colloq. **40**(C7), C7-279-C277-288 (1979).
- ¹²V. Boiko, A. Y. Faenov, and S. Pikuz, J. Quant. Spectrosc. Radiat. Transfer 19(1), 11–50 (1978).
- ¹³U. Safronova, M. Safronova, R. Bruch, and L. Vainshtein, Phys. Scr. 51(4), 471 (1995).

- ¹⁴F. Bely-Dubau, A. Gabriel, and S. Volonté, Mon. Not. R. Astron. Soc. **186**(3), 405–419 (1979).
- ¹⁵S. Glenzer, K. Fournier, C. Decker, B. Hammel, R. Lee, L. Lours, B. MacGowan, and A. Osterheld, Phys. Rev. E 62(2), 2728 (2000).
- ¹⁶O. Renner, M. Šmíd, D. Khaghani, and F. B. Rosmej, J. Phys.: Conf. Ser. 688(1), 012091 (2016).
- ¹⁷C. Keane, B. Hammel, D. Kania, J. Kilkenny, R. Lee, A. Osterheld, L. Suter, R. Mancini, C. Hooper, Jr., and N. Delamater, Phys. Fluids B: Plasma Phys. 5(9), 3328–3336 (1993).
- ¹⁸C. Keane, B. Hammel, A. Osterheld, and D. Kania, Phys. Rev. Lett. 72(19), 3029 (1994).
- ¹⁹C. Back, J. Grun, C. Decker, L. Suter, J. Davis, O. Landen, R. Wallace, W. Hsing, J. Laming, and U. Feldman, Phys. Rev. Lett. 87(27), 275003 (2001).
- ²⁰J. Rice, K. Fournier, M. Graf, L. Terry, M. Finkenthal, F. Bombarda, E. Marmar, and W. Goldstein, Phys. Rev. A 51(5), 3551 (1995).
- ²¹G. Brown, P. Beiersdorfer, D. Liedahl, K. Widmann, and S. Kahn, Astrophys. J. **502**(2), 1015 (1998).
- ²²N. Brickhouse, A. Dupree, R. Edgar, D. Liedahl, S. Drake, N. White, and K. Singh, Astrophys. J. **530**(1), 387 (2000).
- ²³E. Träbert, S. Hansen, P. Beiersdorfer, G. Brown, K. Widmann, and H.-K. Chung, Rev. Sci. Instrum. **79**(10), 10E313 (2008).
- ²⁴K. Fournier, C. Constantin, C. Back, L. Suter, H.-K. Chung, M. Miller, D. Froula, G. Gregori, S. Glenzer, and E. Dewald, J. Quant. Spectrosc. Radiat. Transfer **99**(1–3), 186–198 (2006).
- ²⁵M. Shahzad, G. Tallents, A. Steel, L. Hobbs, D. Hoarty, and J. Dunn, Phys. Plasmas **21**(8), 082702 (2014).
- ²⁶A. Ecuvillon, G. Israelian, N. Santos, M. Mayor, V. Villar, and G. Bihain, Astron. Astrophys. **426**(2), 619–630 (2004).
- ²⁷J. Larour, L. E. Aranchuk, Y. Danisman, A. Eleyan, and M. F. Yilmaz, Phys. Plasmas **23**(3), 033115 (2016).
- ²⁸M. Swartz, S. Kastner, E. Rothe, and W. Neupert, J. Phys. B: At. Mol. Phys. 4(12), 1747 (1971).

- ²⁹D. Batani, A. Giulietti, L. Palladino, G. J. Tallents, and I. C. E. Turcu, in paper presented at the ECO4 (The Hague'91) (1991).
- ³⁰K. B. Fournier, A. Y. Faenov, T. A. Pikuz, I. Y. Skobelev, V. S. Belyaev, V. I. Vinogradov, A. S. Kyrilov, A. P. Matafonov, I. Bellucci, S. Martellucci, G. Petrocelli, T. Auguste, S. Hulin, P. Monot, and P. D'Oliveira, Phys. Rev. E 67(1), 016402 (2003).
- ³¹H. Gordon, M. Hobby, and N. Peacock, J. Phys. B: At. Mol. Phys. **13**(10), 1985 (1980).
- ³²K. Fournier, A. Y. Faenov, T. Pikuz, I. Y. Skobelev, F. Flora, S. Bollanti, P. Di Lazzaro, D. Murra, A. Grilli, and A. Reale, J. Phys. B: At., Mol. Opt. Phys. 35(15), 3347 (2002).
- ³³R. Hutcheon, L. Cooke, M. Key, C. Lewis, and G. Bromage, Phys. Scr. 21(1), 89 (1980).
- ³⁴J. Parkinson, Astron. Astrophys. **24**, 215 (1973).
- ³⁵I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comput. Phys. Commun. 21(2), 207–231 (1980).
- ³⁶J. Cooper, Rep. Prog. Phys. **29**(1), 35 (1966).
- ³⁷V. Unikrishnan, K. Alti, V. Kartha, C. Santhosh, G. Gupta, and B. Suri, Pramana 74(6), 983–993 (2010).
- ³⁸T. Fujimoto and R. W. P. McWhirter, Phys. Rev. A **42**(11), 6588–6601 (1990).
- ³⁹H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, High Energy Density Phys. 1(1), 3–12 (2005).
- ⁴⁰G. Brown, P. Beiersdorfer, H. Chen, M. Chen, and K. Reed, Astrophys. J. Lett. 557(1), L75 (2001).
- ⁴¹A. Osterheld, J. Nilsen, S. Y. Khakhalin, A. Y. Faenov, and S. Pikuz, Phys. Scr. 54(3), 240 (1996).
- ⁴²S. Bollanti, P. Di Lazzaro, F. Flora, T. Letardi, L. Palladino, A. Reale, D. Batani, A. Mauri, A. Scafati, and A. Grilli, Phys. Scr. **51**(3), 326 (1995).
- ⁴³R. Bruch, U. Safronova, A. Shlyaptseva, J. Nilsen, and D. Schneider, Phys. Scr. 57(3), 334 (1998).
- ⁴⁴p. c. l. c. c. HYADES is a commercial product of Cascade Applied Sciences.