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Abstract

The advanced train-to-train and train-to-ground communication technologies equipped in high-speed railways

have the potential to allow trains to follow each with a steady headway and improve the safety and performance

of the railway systems. A key enabler is a train control system that is able to respond to unforeseen disturbances

in the system (e.g., incidents, train delays), and to adjust and coordinate the train headways and speeds. This

paper proposes a multi-train cooperative control model based on the dynamic features during train longitude

movement to adjust train following headway. In particular, our model simultaneously considers several practical

constraints, e.g., train controller output constraints, safe train following distance, as well as communication

delays and resources. Then, this control problem is solved through a rolling horizon approach by calculating

the Riccati equation with Lagrangian multipliers. Due to the practical communication resource constraints and

riding comfort requirement, we also improved the rolling horizon approach into a novel self-triggered model

predictive control scheme to overcome these issues. Finally, two case studies are given through simulation

experiments. The simulation results are analyzed which demonstrate the effectiveness of the proposed approach.

Keywords: Cooperative Train Control; Headway Adjustment; High-Speed Railways; Self-triggered Control.

1 Introduction

High-speed railway (HSR) is a type of rail transport that operates significantly faster than traditional rail traffic.

Typically, the maximum speed of high-speed train is over 200 kilometers per hour(km/hr) for existing line and

250 km/hr for new lines. To operate such a HSR system safely and efficiently, several train control systems

were developed around world, for instance the European Train Control System (ETCS) in Europe, Automatic

Train Control (ATC) in Japan, Positive Train Control (PTC) in America and Chinese Train Control System

(CTCS) in China. One of the most important features of these train control systems is the bi-directional train-

to-ground communication technology that enables the frequent exchange of information between way-side control

center and trains (Dong et al., 2016). Building upon this communication technology, the moving-block system can

be implemented to enhance the system capacity, in which each train can follow the preceding train with a minimum

head-to-head headway to the preceding train (see Fig. 1). With these new advanced communication and signalling

technologies, the high-speed trains are operated evenly according to the planned timetable (Hansen and Pachl,

2014; Wang and Goverde, 2016).

∗
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Figure 1: Illustration of train control systems with train-to-ground communication

In practice, train operations can be affected by unexpected disturbances, such as adverse to extreme weather,

unsteady driving behaviors and infrastructure failures, etc. These lead to the irregularity in train following head-

way, deviation to schedule and reduced line capacity (Cacchiani et al., 2014). As an effective way to keep the line

capacity under disturbances, headway adjustment is an effective train control to maintain a safe train following

headway. For example, train following headway optimization can be utilized to enhance the system performance

though:(i)improved the capacity at bottleneck area(i.e. junction area), and further on increased line capacity;(ii) ab-

sorbing the secondary delay and reduced delay propogation; and (iii) avoiding unnecessary train braking, decreased

traction energy and reduced energy consumption (Xun et al., 2013).

Headway optimizing methods, as those commonly adopted in urban transit operations, typically involve holding

control and station skipping (Osuna et al., 1972; Wegele et al., 2004; Sanchez-Martinez et al., 2016). Holding

control was applied when a train is ahead of schedule, while station skipping strategy was applicable when a train

fell behind schedule or was over crowded. Due to the short distance between stations in urban rail transit, these

headway regulation methods essentially adjust the arrival and departure time of trains at stations (Yin et al., 2016,

2017). However, the distance between two stations in high-speed railway can be as long as 100 kilometers, much

longer than that in urban rail transit. Therefore, there is scope in headway controls in HSR that capture not only

the arrival & departure time at stations, but also the speed of trains between successive stations. As illustrated in

Fig. 2, when a train runs from station i to station i + 1, a buffer time is usually planed to allow small deviation

from the schedule. Within the scope of buffer time, the train could run along one of several time-space (T-S) curves

which correspond to different speed curves and running times. The decision on which T-S curve for train i to follow

needs also to consider its headway to the train j +1 in front to ensure safety and passenger comfort. In this paper,

we consider the train cooperative control problem for headway adjustment in HSR, i.e., the headway adjustment

problem with train cooperative control is to coordinate train operations by proper train accelerating & braking to

optimize train running headway with constrains of safety, punctuality and comfort.

Existing literature on real-time train headway control in HSR is limited. This may be due to the following

two reasons. First, HSR operations are subjected to many complex constraints arising from the railway signalling

systems, for example the moving-block and train speed limitation, minimum train following distance by train

protection, etc. Due to these influencing factors, the traditional feedback controller is very difficult to guarantee
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Figure 2: Train following scenario

the stability and performance of HSR train headway regulation problem. Second, the communication resources

between control center and trains are usually very limited in HSR systems, making implementing most of the

feedback controllers unpractical. The problem is more pronounced in CBTC systems, where the communication

environment is complex between a fast moving HSR and ground. Therefore, it is a challenging task to realize

efficient train control performance with complex signalling constraints and limited communication resources. To

overcome these problems, this paper proposes a new cooperative train control, a self-triggered cooperative control.

The method allows determining the optimal control output of trains (in our case the tractive and braking force of

the trains), while taking account of the signalling constraints, as well as information update time. This is achieved

by considering the next update time in advance based on the information at the current sampling instant. The

method also allows smooth transition of control outputs, between sampling instants, which results in enhanced

riding comfort for the passengers and improved the life time of the train’s accelerating and braking systems.

The rest of this paper is organized as follows. In Section 2, we briefly review the literatures on the dynamic

headway adjustment methods for rail traffic. In Section 3 and 4, we present the train cooperative control model

with consideration of minimum headway which is a strict limitation for safety, and we design a self-triggered control

scheme the considered problem. Then, the simulation and analyses are given in Section 5. This paper concludes in

Section 6.

2 Literature review

Headway adjustment, also called automatic train regulation in metro, has attracted increased attention since

1990s (Van Breusegem et al., 1991; Lin et al., 2008; Li et al., 2016). Van Breusegem et al. (1991) proposed a state

feedback control method for metro, which adopts a linear quadratic (LQ) regulator with Gaussian distribution. Ding

et al. (2001) proposed a real-time headway control model which minimizes total headway variance at all stations.

To describe the nonlinear characteristics of train control models, fuzzy expert system and genetic algorithm (GA)

were applied to find the optimal regulation actions of the metro line in Wegele et al. (2004). Membership functions

were developed to represent human expert experience for the regularity, headway, and congestion levels of a train

platoon in metro system. The limitation of this method, however, is the computation inefficiency of getting the GA
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solutions for real-time operations. Lin et al. (2008) proposed dual heuristic dynamic programming (DHP) method

to develop the adaptive critic automatic train regulation system. Moreover, to overcome the sensitivity of DHP

with model errors, an adaptive optimal control (AOC) scheme was presented in Lin et al. (2009). Based on these

previous studies, issues regarding energy saving were further considered and a DHP method for designing automatic

train regulation with energy saving via coasting and station dwell time control was proposed in Lin et al. (2011).

More recently, Sanchez-Martinez et al. (2016) considered the dynamic running time of trains and passenger demand

in an urban transit line, and proposed a mathematical model for holding control optimization to regulate the train

following headway. A set of simulation experiments verified the effectiveness of headway regulation for decreasing

the passenger waiting time at transit stations.

For mainline railways, the dynamic headway adjustment is originally applied to change dispatching headway at

railway terminals. In Zhao and Ioannou (2015), a dynamic headway regulation framework for positive train control

system (PTC) was proposed. Based on its active communications between trains and ground equipment, this system

could improve track capacity and safety in railway operation with the integration of a dynamic dispatching model.

Recent studies have begun to address the headway adjustment on open tracks between two stations. For example,

Emery et al. (2009) discussed the safe conditions for running with the shortest headway based on the emergency

braking, which paves the way to reduce headways and increase capacity for high-speed railway lines. Wang and

Goverde (2016, 2017) proposed an optimization approach that determines the trajectories of multiple trains under

fixed-block signalling system for balancing tractive energy consumption and train delay time. Ye and Liu (2016,

2017) developed optimal train speed controls of multiple trains under both fixed-block and moving-block systems.

In Takagi et al. (2012), a synchronization control of a train platoon was developed under moving block system.

This synchronization control scheme could keep the successive trains following with a certain distance to ensure the

minimum train following headway.

In practice, the train following headway varies due to some unexpected disturbances or the changing of line

condition. An example of this is illustrated in Fig. 3(a) where irregular train following headway occurs when two

rail lines merge into a single line, leading to the uneven distances S3, S4 and S5 among these four trains. This kind

of rail segment is called the critical block section (or bottleneck), which may significantly reduce line capacity (DB,

2008). Cooperative control approach has the potential to keep the consistency of trains in complex situations and

improve the line capacity of bottlenecks(see Fig.3(b)), by keeping the trains operated in a regular distance S6 with

their former trains. Xun et al. (2015) proposed a cooperative control of multi-trains to solve headway adjustment

problem. Dong et al. (2016) discussed the cooperative control synthesis and stability properties. However, such

cooperative control systems are found to be difficult to implement in practice due to the constraints of train controller

output limitation and train following safety headway. Furthermore, the practical train-to-ground communication

resources are very limited that imposes more constraints on the control frequency of HSR trains. In this paper,

we will formally address the above problems by firstly constructing a state-space model motivated by Cooperative

Adaptive Cruise Control (CACC) form the field of automatous vehicles (Wang et al., 2014), and further developing a

self-triggered control scheme to synchronize the running trains in a high-speed railway line. For balancing modelling

complexity and practical usability, we first make the following assumptions throughout this paper:

Assumption 1. Our model simplifies the influencing factors of track gradient and track bends by using track

speed limits to represent the affects of track gradients and track bends.

Assumption 2. The safe distance between each two adjacent trains is simplified as a set of linear functions

associated with the positions and velocities of trains.
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3 State-Space Formulation for Train Cooperative Control

3.1 Symbols and notations

The relevant notations are listed below to describe and understand the problem more conveniently.

i Train index, i = 0, 1, 2, · · · , I

si(t) Position of train i at time t;

di(t) Distance headway between train i and train i− 1;

vi(t) Running velocity of train i at time t;

ui(t) Controller output (i.e., acceleration and braking) of train i;

h∗ Desired train following headway time;

c0, c1, c2 Resistance parameters;

Here, the first leading train is indexed by i = 0, and the following trains are respectively indexed by i = 1, · · · , I.

Essentially, the cooperative train control problem is to design a control scheme that treats these trains as a central-

ized platoon and determine the optimal controller output of each train i ∈ {1, · · · , I} in order to regulate the train

following headway among the platoon and enhance the HSR line capacity.

Remark 3.1: In railway systems, the train control module and traction/braking motor are typically separate,

where the train speed controller outputs a traction/braking acceleration u. Then, the traction/braking motor

transfers the acceleration command to a traction/braking force F based the train mass. Since our study focuses

the aspect of train control, our model implements u as the controller output in the following content, as shown in

Figure 4.

Remark 3.2: In practice, the sequence of trains is determined by a high-level centralized train dispatching system.

With the given sequence of trains, we can determine the leading train and the order of following trains for imple-

menting the cooperative control approach. Especially, our modelling approach is highly suitable for train control

systems with the emerging virtual coupling technology, where the vehicles are controlled by virtual couplers and

cooperative control methods.
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Figure 4: Illustration of railway train control model

3.2 State-space Formulation of Multiple trains

Following (Yin et al., 2017), the general dynamic state-space formulation of a single high-speed train can be

represented by the following equations .







ṡi(t) = vi(t), i = 0, 1, 2, · · · , I

miv̇i(t) = miui(t)− (c0 + c1vi(t) + c2v
2
i (t)), i = 1, 2, · · · , I.

(1)

where mi is the weight of train i , and c0 + c1vi(t) + c2v
2
i (t) is the Davis equation that represents the resistances

which typically involves track resistance, air resistance, etc. Here, we note that, for the cooperative train operations,

the running speed profile of the first train (i.e., the first train i = 0) is pre-determined and is given as v0(t), and the

desired train cruise speed is the equilibrium state when v0(t) = v1(t) = · · · = vI(t). According to (1) and Taylor’s

expansion, the linearized dynamic equation around the equilibrium state is obtained by







ṡi(t) = vi(t), i = 0, 1, 2, · · · , I

v̇i(t) = ui(t)−
1
mi

(c0 + c1vi(t) + 2c2(vi(t)− v0(t))v0(t) + c2v
2
0(t)), i = 1, 2, · · · , I.

(2)

The state-space equation (2) can be rewritten as







ṡi(t) = vi(t), i = 0, 1, 2, · · · , I

v̇i(t) = biui(t) + aivi(t) + pi, i = 1, 2, · · · , I.
(3)

in which ai = −
1
mi

(c1 + 2c2v0), bi = 1 and pi = −
1
mi

(

c0 − c2v
2
0

)

for each i = 1, 2, · · · , I. For simplicity, we assume

that, the trains are with identical mass m, and we use a = − 1
m
(c1 + 2c2v0), b = 1 and p = − 1

m

(

c0 − c2v
2
0

)

in terms

of ai, bi and pi here after.

In general, the class of longitudinal driving control problems can be described by the following general ordinary

differential equation:

ẋ = f(x(t),u(t)), with x(0) = x0, (4)

in which x(t) ∈ R
n and u(t) ∈ R

m denote the vector of state and control input, respectively (Pontryagin et al.,

1962; Wang et al., 2014). Since the aim of this study is to realize cooperative high-speed train operations in a

train-to-train communication environment, we need to guarantee that each train i automatically keep constant

headway with its former train i − 1. Similar the cooperative vehicle control problems in Wang et al. (2014) and

Wang et al. (2014), we define xi(t) = (di(t) − vi(t) ∗ h
∗ − d0, vi(t) − vi−1(t)) for each i = 1, 2, · · · , I, in which the
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first term denotes the position deviation from the desired gap, and the second term represents the relative speed

with the preceding train. h∗ is the desired time headway between adjacent trains, di(t) is the spacing of train i with

its leading train i− 1 at time t, and d0 is the minimum safe distance. Hence, the system state for the cooperative

train control problem is given as follows.

x(t) =(x1(t), x2(t), · · · , xI(t))

=(d1(t)− v1(t) ∗ h
∗ − d0, v1(t)− v0(t),

· · · , dI(t)− vI(t) ∗ h
∗ − d0, vI(t)− vI−1(t))

T .

(5)

For the operation HSR trains, the control input vector is consisting of the accelerating/braking of each train, i.e.,

u(t) = (u1(t), u2(t), · · · , uI(t)), (6)

which is subject to constraints

ui(t) ∈ [umin, umax], ∀1 ≤ i ≤ I. (7)

Here, umin and umax represent the maximum train braking and maximum acceleration, respectively. From Eqs.

(3)-(7), the deviation of system state x(t) is replaced by

ẋ(t) =(v1(t)− v0 − v̇1(t)× h∗, v̇1(t)− v̇0, · · · , vI(t)− vI−1(t)− v̇I(t)× h∗, v̇I − v̇I−1)
T

=
(

v1(t)− v0 − (bu1(t) + a1v1(t) + p1)h
∗, bu1(t), · · · ,

vI(t)− vI−1(t)− (buI(t) + aIvI(t) + pI)h
∗, buI(t)− buI−1(t)

)T

=(â1v1(t)− v0 − u1(t)bh
∗ − p1h

∗, bu1(t), · · · ,

âIvI(t)− vI−1(t)− uI(t)bh
∗ − pIh

∗, buI(t)− buI−1(t))
T

(8)

where âi = 1− a×h∗ for each i = 1, 2, · · · , I. Therefore, the state-space formulation for a cooperative train control

system can be summarized as:

ẋ(t) = Ax(t) +Bu(t) +W (t), (9)

where the coefficient matrices A ∈ R
2I∗2I , B ∈ R

2I∗I , and W ∈ R
2I∗1, which are respectively defined as:

A =































0 â1 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 â2 − 1 0 â2 · · · 0 0

0 0 0 0 · · · 0 0
...

. . .
...

0 âI − 1 0 âI − 1 · · · 0 âI

0 0 0 0 · · · 0 0































, (10)

B =































−bh∗ 0 · · · 0 0

b 0 · · · 0 0

0 −bh∗ · · · 0 0

−b b · · · 0 0
...

...
. . .

...

0 0 · · · 0 −bh∗

0 0 · · · −b b































, (11)
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W =































(a1 − 1)v0 − p1h
∗

0

(a2 − 1)v0 − p2h
∗

...

(aI−1 − 1)v0 − pI−1h
∗

0

(aI − 1)v0 − pIh
∗































. (12)

4 Self-Trigger Model Predictive Control Scheme

We can see that, the cooperative train control system in Eqs. (9)-(12) is essentially a multiple-input multiple-

output (MIMO) linear time-invariant system. Note that, we also need to discretize to represent the continuous

state-space system (9) in order to represent the control frequency of high-speed trains,. In this study, the minimum

sampling time is set as ts = 1s, and the matrices that describe the cooperative train control systems are discretized

correspondingly, as:

As = eAts (13)

Bs =

∫ ts

0

eAτdτ ×B (14)

Ws = ts ×W. (15)

For simplicity, we also use A, B and W to represent the discretized state-space matrices in the following description.

4.1 LQ optimal control problem

As we have shown that the cooperative train control problem can be formulated into a typical discrete-time

state-space model with finite time-horizon, the standard optimal control problem is formulated as follows:

min J0(x, u) =
1

2

kN
∑

k=k0

[

xT
kQkxk + uT

kRkuk

]

(16)

s.t., xk+1 = Axk +Buk +W, k0 ≤ k ≤ kN−1 (17)

uk ∈ [umin, umax], k0 ≤ k ≤ kN (18)

qik × xk ≤ disafe, ∀1 ≤ i ≤ I, k0 ≤ k ≤ kN (19)

rik × xk ≤ visafe, ∀1 ≤ i ≤ I, k0 ≤ k ≤ kN (20)

in which [k0, kN ] is the control time horizon defined by set N (i.e., a set of discrete time units from k0, k0 + ts,

· · · , kN ), constraint (18) is the output limitation constraint that determines the lower and upper bound of train

controller, constraint (19) guarantees the train following distance, and constraint (20) ensures that the speed for

each train is under the speed limit. For simplify, let Xf and Uf denote the feasible region of state x and control

variable u, respectively. Here, we note that, both qik and rik for each 1 ≤ i ≤ I, k0 ≤ k ≤ kN are 2I × 1 vectors.

8



It can be seen that the above problem is a linearly constrained LQ control problem that can be solved by a

Lagrangian-relaxation method combined with dynamic programming (see Lim et al. (1996)). Using this method,

the linear constraints are first relaxed into the objective function by introducing a set of Lagrangian multipliers

λ = (λ1, λ2, · · · , λmc
), in which mc = 4× I ×N represents the number of linear constraints in this optimal control

problem. The constrained LQ control problem is transformed into an unconstrained LQ problem

min J(λ, x, u) = J0(x, u) +

mc
∑

1

λili(x, u), (21)

in which

li(x, u) =

kN
∑

k=k0

((aik)
Txk + (bik)

Tuk−1) (22)

for each 1 ≤ i ≤ mc. It is clear that the reformulated (21) aims to find a control process that minimizes the cost

function and satisfies li(x, u) ≤ qi for each 1 ≤ i ≤ mc.

After introducing the Lagrangian multipliers λ, the original problem (9)-(12) is transformed into an unconstrained

LQ problem. Given a set of Lagrangian multipliers λ ≥ 0, the optimal controller output can be calculated by

u(λ) = argmin
u

J(λ, x, u).

As is indicated in Lim et al. (1996), this unconstrained LQ optimal control problem can be solved as follows.

uk =− (Rk+1 +BTSk+1B)−1 × [BTSk+1Axk +BThk+1(λ
∗) + bk+1(λ

∗)] (23)

where matrix S is the solution of the Riccati equation that is calculated backwardly by

Sk =Qk +ATSk+1A− (BTSk+1A)
T [Rk +BTS(k + 1)B]−1BTSk+1A,

SI =QI .
(24)

In addition, hk is calculated by

hk(λ) =ak(λ) +AThk+1(λ)−ATSk+1B(Rk+1 +BTSk+1B)−1 × (BThk+1(λ) + bk(λ))

hI(λ) =aI(λ),
(25)

in which the constraint matrix are calculated from Eq. (22) as follows

ak(λ) =

mc
∑

i=1

λia
i
k, ∀k ∈ [k0, kN ]

bk(λ) =

mc
∑

i=1

λib
i
k, ∀k ∈ [k0, kN ].

Since the LQ control problem with Lagrangian multipliers guarantees the Kuhn-Tuck (KKT) condition (i.e., u∗ =

u(λ∗), see Lim et al. (1996)), the optimal Lagrangian multipliers λ∗ is given by

λ∗ = argmax(xT
k Sk0

xk + 2hT
k0
(λ)xk + pk(λ)− λT q). (26)

Here, we note that, the optimal λ∗ yields the optimal control law u∗ for the cooperative train control problem.

Since the probelm (26) is essentially a quadratic programming problem that can be solved efficiently by many

optimization methods (Lim et al., 1996).

Remark 4.1 Here we note that several improvements are implemented in the developed LQ optimal control problem
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for cooperative train control compared with Dong et al. (2016). First, the speed limits from signalling systems are

embedded into the constraints of mathematical model, which are then transformed into the objective function with

Lagrangian multipliers. In particular, the setting of speed limits can embed the information of track gradients and

track bends, for example restrict to lower speed limitation on up-gradient segments and also at bends. Second,

the moving-blocking system that separates the moving trains is handled by the constant time headway h∗ and the

minimum train following distance disafe in the mathematical model. Specifically, by setting vectors q1k = {−1, 0, · · · },

q2k = {0, 0,−1, 0 · · · }, etc, the safe following distance under a relative-speed moving block system can be properly

handled. In addition, our model can also be extended into relative-distance moving block systems by setting another

set of qik, and fixed (or quasi-moving) block systems by introducing a new sets of quadratic constraints.

4.2 Self-triggered MPC for efficient use of communication resources

With the development of advanced communication technologies in railway systems, many newly constructed HSR

systems have been equipped with communication-based train control (CBTC) systems. Typically, a CBTC system

involves Global System for Mobile communications - Railway (GSM-R) and Wireless Local Area Networks (WLANs)

that provide the bidirectional train-ground communication for the safe and efficient operations of railway trains

(Zhu et al., 2012). A practical issue of CBTC system is the limited wireless communication resources, especially for

a complex environment like railway transportation networks.In addition, the end-to-end communication delay for

transmitting an information is about 1.2 s with 99% confidence and at most 2.4 s with 99.9% confidence. Due to the

limited bandwidth in wireless communications, it is actually impractical to receive the feedback information of trains

and change the controller output within each second. To compensate on the above practical communication delay

problem, we present an improved control method: the transformation of the LQ controller into a self-triggered model

predictive control (SMPC) scheme to handle the communication delay issue (Dai et al., 2018). More specifically,

SMPC simultaneously determines the actuator value as well as the next update time in advance based on the

information at the current sampling instance (Mazo et al., 2009). For cooperative train control problem, SMPC has

the following two main advantages. First, this kind of control scheme does not require wireless communications at

all times resulting in a lower required sampling frequency. Second, the control scheme has the potential to improve

the riding comfort of passengers as it does not change the controller output as frequently, making it similar to the

manual driving by experienced drivers.

In the self-triggered scheme, the states xk are only measured and transmitted to the controller at sample instants

{tl|l ∈ N} ⊆ N, which satisfy tl+1 > tl, and

ut = ūl, t ∈ N[tl,tl+1) (27)

for all l ∈ N. In each update time tl, the aim of self-triggered control is to choose both the next control value

ūl and the next update time tl+1 such that tl+1 is as large as possible while the system can still achieve the sub-

optimality. In particular, the same control value ūl is used at times tl, tl + 1, · · · , tl+1 − 1, and no communication

nor computation are required on times tl+1, · · · , tl+1−1. In order to guarantee the sub-optimality of self-triggered

control, the following inequalities are appended

tl+1−1
∑

t=tl

(xT
t Qtxt + ūT

l Rtūl) ≤ β
[

J(xtl)− J(xtl+1
)
]

(28)

where β ≥ 1 is denoted to balance sub-optimality and the obtained saving in communication resources. In particular,

when β = 1, the self-triggered control is degraded into a standard LQ optimal control problem defined in (16). Let

N denote the prediction horizon in the MPC scheme, the SMPC for our problem is defined as follows.
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Problem 4.1: At sample time tl and state xtl = x, find the maximum M∗, such that

min
u∈ŪM

(

M−1
∑

k=0

(xT
k (x,u)Qxk(x,u) + uT

kRuk)+

M+N
∑

k=M

β(xT
k (x,u)Qxk(x,u) + uT

kRuk)

)

≤ βJ(x)

(29)

where

ŪM (x) ,

{

u ∈ U
M |∃ū ∈ Uf , ui = ū, ∀i = 0, · · · ,M, and (xi(x,u) ∈ Xf )

}

. (30)

(a) Control output for LQ

(b) Self-triggered control

...

...

ut

ut+1

ut ut+j

ut+j

ut+j
0

ut+j
00

ut+j+3

Time (Unit: second)

Time (Unit: second)

Control output (Unit: )2m s

Control output (Unit: )2m s

Figure 5: Control output illustration by SMPC

In the self-triggered setup, the goal at each sampling instant tl is to decide not only ū but also the next sampling

instant tl+1. To efficiently reduce the computation and communication, we need to find the largest M∗ such that

the sub-optimality is still satisfied. Define the SMPC problem on state xtl as

M∗
l = max{M ∈ N[1,Mmax]|ŪM ̸= ∅}. (31)

Example 4.1 We illustrate the working of this in Fig.5. Fig. 4 shows example controller outputs under LQ control

and using self-triggered control, where the x-axis refers to the time units in the considered time horizon and y-axis

refers to the controller outputs on each time unit. With LQ control (Fig.4a), the controller outputs (in this study,

the train’ acceleration) is updated at every time interval (e.g. ts = 1 sec), which could result in large variations

in train accelerations and discomfort of passengers. With self-triggered control (Fig. 4b), however, the update of

controller outputs is only made at required time units, and the controller outputs keep constant at other times.

Moreover, SMPC still guarantees a good control performance.

Remark 4.2 For the standard model predict control of linear system with constraints, if the predict horizon is

assumed to be infinity enough, i.e., N =∞, the asymptotical stability can be guaranteed. Otherwise, the terminal

state at k+N should be selected to satisfy the terminal state constraint keep the stability of the closed-loop control

(see proofs in Mayne et al. (2001, 2000); Cortes et al. (2012)). In that case, it guarantees that J(x) ≤ α∥x∥.

Theorem 4.1 Recursive Feasibility and Constraint Satisfaction. If state xt0 is feasible at time t0, then the feasibility

of xtl can be ensured at every sampling instant tl, l ∈ N by SMPC.

Proof. Consider two successive sampling instant tl and tl+1. Assume that xtl is a state with feasible solution Ml
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and ūl at time tl. It is obvious that Ml+1 = 1 is a feasible solution of xtl+1
at time tl+1 since Ml+1 = 1 actually

transforms the self-trigger MPC into a standard LQ optimal control problem and the constraints (17) to (20) are

trivially satisfied. Further by induction, xtl are feasible at all sampling instants tl for l ∈ N.

Theorem 4.2 Quadratic Stability. The SMPC scheme for the consider closed-loop linear system is asymptotically

stable in Xf .

Proof. As our considered problem is a discrete-time linear system, we can proof the theorem similar to Berglind

et al. (2012). According to (28) for l ∈ N, we have the following inequalities

t1−1
∑

t=t0

(

∥xt∥
2
Q + ∥ut∥

2
R

)

≤ β[J(xt0)− J(xt1)] (32)

t2−1
∑

t=t1

(

∥xt∥
2
Q + ∥ut∥

2
R

)

≤ β[J(xt1)− J(xt2)] (33)

· · ·

By summing above these above inequalities for l = 0, 1, · · · ,+∞, we obtain the following inequality

∞
∑

t=t0

(

∥xt∥
2
Q + ∥ut∥

2
R

)

≤ β[J(xt0)]. (34)

In addition, there exists some γ1 > 0 that satisfies

∞
∑

t=t0

(

∥xt∥
2
Q + ∥ut∥

2
R

)

>= γ1

∞
∑

t=0

∥xt∥

and thus, we have limt→∞ xt = 0. As our problem has limited the lower and upper bound of feasible region of the

state and control variables Xf and Uf (e.g. as given in inequalities (18) - (20)), we can easily derive the upper

bound of J(x). Let J(x) be the Lyapunov function and the asymptotical stability can be proved.

Remark 4.3 By employing the self-trigger control method in Eqs. (29) and (30), parameter β can be used to

realise trade-off between the control performance and the frequency of control updates. In particular, if we choose

β = 1, the optimal value function of SMPC can be no more than the value by MPC without self-trigger scheme. In

such cases, the time sampling variable M∗ would become very small. In contrast, M∗ can be a larger one while the

control performance might be decreased.

Based on the above descriptions, we summary the implementation procedure of SMPC for cooperative train

control problem. In the self-triggered algorithm, the goal at each sampling instance tl is to determine not only

vector ūl but also the next sampling instance tl+1. Moreover, the time sampling interval tl+1 − tl is the maximum

value that guarantees the system performance by Eq. (28). Nevertheless, the minimization problem in (30) is not

expressed in a convenient form that is typically hard to be solved directly. Therefore, in the algorithm implementing

procedure, we initially set M = 2 at each sampling instance tl and solve the resulted quadratic programming (QP)

in (30). Then, we incrementally increases M until feasibility of (28) ceases to hold, and output M−1 as the optimal

sampling interval that guarantees the system performance. The implementing procedure of self-triggered MPC is

summarized in Algorithm 1.

5 Numerical Experiments

In order to verify the effectiveness of the proposed approach, we present two sets of numerical experiments in

this section based on the operation data from Bejing-Shanghai high-speed railway. We consider the frequently
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Algorithm 1 SMPC for the cooperative train operation

Step 1. Input the model parameters and coefficient matrices A, B and W . Initialize k = k0 and t0 = k.

Step 2. Measure the real-time train state xk, including the positions and velocities of considered trains.

Step 3. Do for M = 2, · · · ,Mmax;

Step 3.1 Solve the QP problem in (29);

Step 3.2 If an optimal solution is obtained, let ū and M̄ be the optimal solution;

Step 3.2 Otherwise, if no feasible solution is returned, set

M∗ ←M − 1

k ← k +M∗

u∗ ← ū

and break;

Step 4. Output u∗ and M∗ as the controller output and decision holding time interval.

Step 5. If k < kN , go to Step 3; otherwise terminate the algorithm.

used EMU along the route, the CRH3 whose Davis parameters are listed as follows: c0 = 0.7550, c1 = 0.00636,

c1 = 0.000115 (unit: N/kN) with respect to the train velocity unit Km/h. Each CRH3 consists of 16 vehicles,

and the total weight is set as 980t. The maximum accelerating and braking are set as 1.0m/s2 and −1.0m/s2,

respectively. In the following experiments, we first conduct a set of experiments for the stability analysis of headway

adjustment for the LQ controller. Then, we conduct more experiments to verify the effectiveness of self-triggered

control scheme for the cooperation train operations in HSRs.

5.1 Experiment 1: Performance of CACC

In this experiment, we first consider a total number of 3 trains, where the first and leading train (i.e., train 1)

is cruising at a speed 100m/s. The cooperative control methods are applied the following two trains. The initial

positions of trains 1,2 and 3 are randomly generated from a range [3950, 4050], [6950, 7150], [9950, 10000] (unit:

meter) respectively using a Monte Carlo simulation method. Since the length of a high-speed train is about 200m,

parameter d0 is set as 500m in our experiments, and the minimum train following distance disafe is set as 1000m.

The desired train following time headway h∗ is defined as 30 (unit: second). The initial speeds of train 2 and train

3 are set as 80m/s and 120m/s, respectively. It is clear that, these three trains are not operated in a stable state

with this intial condition since the second train (i.e., train 2) is much slower and the third train (i.e., train 3) is

faster with respect to the leading train (i.e., train 1).

The LQ train control based on the state-space formulation of Section 3 is applied to the two following trains

here. Fig. 6 shows the resulted relative distance following errors and velocity following errors between train 1, 2

and train 2, 3 for five test instances. First, we can see from Fig. 6a and Fig. 6b that, for all these five tests, the

distance following error and velocity following error between train 1 and train 2 gradually converge to nearly zero.

This indicates that, by using the headway adjustment, train 2 increases its speed, and these two trains are in stable

state after about 400 seconds, which is very efficient and effective. Meanwhile. for train 2 and train 3, we can see

from Fig. 6c and Fig. 6d that, the distance following error and velocity following error converge to the values that

are nearly to be zeros. The velocity tracking error between train 2 and train 3 in Fig. 6d is a little larger than

other performance indicators in Fig. 6a to Fig. 6c, which is possibly due to the limited predictive time horizon as

well as the settings of matrices Q and R, although this does not affect the overall control performance. The results
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(a) Distance tracking error between train 1 and train 2
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(b) Velocity tracking error between train 1 and train 2
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(c) Distance tracking error between train 2 and train 3
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(d) Velocity tracking error between train 2 and train 3

Figure 6: Distance and velocity tracking errors in the time-horizon
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by this group of experiments suggest that, the headway adjustment method by train cooperative control can keep

the high-speed trains into a stable state with fixed train following distance and coordinated velocities.

Then, we particularly consider a practical scenario to test the effectiveness of headway adjustment to improve

the line and rail traffic capacity. In this case study, there are totally 14 trains running in a bottleneck segment with

the speed of 100m/s in Beijing-Shanghai HSR. The headway time between adjacent trains is 120s and the train

following distance is 1.2× 104m. Consider that the railway dispatcher wants to increase the traffic capacity at this

bottleneck such that more trains can pass the section in a given time period due to some temporal requirements.

Using the proposed headway adjustment method, we shall decrease the speed of the first train, and then compress

the headway time among the trains in order to increase the line capacity.
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Figure 7: Illustration of time-space diagram of multiple trains
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Figure 8: Time-velocity curves with train cooperative control

Fig. 7 illustrates the space-time diagram of these 14 trains after using the headway adjustment method. We

can see that, with proper headway adjustment, all the trains follow the former train much closer with the identical

speed, which illustrates the effectiveness of our proposed approach. In addition, Fig. 8 and Fig. 9 demonstrates

the running speeds and accelerating & braking rates of these trains. We can see that, the speeds of these trains

are decreased gradually to the convergence value, i.e., the speed of the first leading train. Moreover, the maximum

accelerating rate is about 0.5m/s2 and the minimum braking rate is about −0.3m/s2, which are proper values that

guarantee the riding comfort and satisfy the output constraints.

In Table 1, the train following distance, train velocity, headway time, traffic flow volume and line capacity are

recorded through the simulation experiments. Here, the traffic flow volume is essentially the number of trains that
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Figure 9: Curves of accelerating and braking rates

go through this segment in each 10 min. The line capacity is indicated by the number of trains in each 20 km

segment. We can see that the traffic volume and line capacity are improved by 20% and 100% through headway

time adjustment.

Table 1: Performance comparison with headway adjustment

Performance comparison Initial status Stable status

Train following distance (m) 12000 6000.1

Train velocity (m/s) 100.0 60.0

Headway time (s) 120 100

Traffic flow volume (tph) 5 6

Line capacity 1.67 3.33

5.2 Experiment 2: Performance of LQ and SMPC controllers

In Experiment 1, we use LQ controller to verify the effectiveness of cooperative train operation to regulate the

train following headway and increase the line capacity. We note that the LQ controller requires that the trains are

entirely connected where the communication data among these trains are transformed during each time interval

(i.e., 1 second). As can be seen from Fig. 9, the accelerating and braking rates of trains are continuous curves in

the considered time horizon, which is not good for passengers’ riding comfort. Thus, in this set of experiments, we

conduct numerical experiments to test the performance of SMPC compared to the standard LQ controller. The

parameter settings of trains, including the resistance coefficients, speed limit, controller output bounds, are the

same as those in Experiment 1. Two cases with different train numbers are considered in this experiments. And

the initial states (i.e., number of considered trains in the platoon, the position and velocity of each train) for the

train platoon in these experiments are presented in Table 2.

Figure 10 and 11 presents the computational results for Instance 1 and Instance 2, respectively. Specifically,

the results for SMPC with four trains are shown in Figure 10a, Figure 10b and Figure 10c, which present the

distance following error and velocity tracking with respect to the leading Train 1, and the controller output of each

following train. For comparison, the results for LQ controller are presented in Figure 10d to Figure 10f. From these

experiments, we can see that the train following states are gradually converged to the equilibrium state by both LQ

and SMPC, as the distance tracking error and velocity tracking error are finally reduced to nearly 0 at the end of
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Table 2: Initial states of each experiment

Instance Number of trains Initial positions

states (unit: km)

Initial speed states

(unit: m/s)

1 4 4, 13, 22, 36 100, 120, 110, 120

2 6 6, 13, 22, 36, 51, 67 100, 120, 110, 120,

130, 140
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(d) Distance tracking error

0 500 1000 1500 2000
−40

−30

−20

−10

0

10

20

30

40

50

60

Time horizon (s)

V
el

oc
ity

 tr
ac

ki
ng

 e
rr

or
 (

m
/s

)

 

 

Train 2
Train 3
Train 4

(e) Velocity tracking error
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(f) Controller output

Figure 10: Comparison between the performance of SMPC (a-c) and LQ (d-f) for Instance 1.
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(b) Velocity tracking error
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(c) Controller output
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(d) Distance tracking error
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(e) Velocity tracking error
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(f) Controller output

Figure 11: Comparison between the performance of SMPC (a-c) and LQ (d-f) for Instance 2.
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time horizon. The maximum accelerating and braking rates of trains by LQ and SMPC are strictly under (or equal

to) 1.0m/s2. These observations indicate that these two control methods can realize the cooperative operation of

high-speed trains for headway regulation. Meanwhile, the distance and velocity tracking errors by LQ controller are

nearly equal to zero after about 1000 seconds, while it takes longer time but acceptable by SMPC. This indicates

that the convergence rate of SMPC is not as good as LQ controller. Even though, we can see from Figure 10c and

Figure 10f that, the controller output is very steady by SMPC, which only changes the controller output a few times,

and the maximum accelerating rate is less than 0.6m/s2. This indicates that, the cooperative train operation with

SMPC can be implemented in practice by using very few communication resources. For LQ controller, however,

the accelerating and braking rates vary very frequently, and the maximum accelerating and braking rates reach

1.0m/s2 before time 400. These observations are consistent with our expectations by employing self-trigger control

for the cooperative train operation problem to realize a trade-off between control performance and communication

resources.

We also test these two control schemes by considering more trains in the platoon. The obtained results are

presented in Figure 11a to Figure 11f. We can see from these figures that similar results are returned that verify

the effectiveness of the proposed approaches.

6 Conclusion

In this paper, we developed a multi-train cooperative control method for dynamic headway adjustment in high-

speed railways. We formulated the multi-train cooperative control problem as a time-invariant MIMO state-space

system with a set of practical constraints, e.g., train controller output constraints, safe train following distance

constraints. To solve the problem efficiently, a rolling horizon approach by calculating the Riccati equation with

Lagrangian multipliers was developed. Due to the practical communication resource constraints and riding comfort

requirement, we also improved the rolling horizon approach into a novel self-triggered model predictive control

scheme to overcome these issues. Finally, two case studies based on the real-world data in Beijing-Shanghai HSR

are given through simulation experiments that verify the effectiveness of self-triggered control scheme.

As more advanced communication and computer devices being deployed in railway systems, how to effectively

use these new technologies to improve the performance of train control systems is an emerging issue from both

theoretical and engineering aspects. Along this line, our further studies will address the following aspects. First

although the practical influencing factors, e.g., track resistance and speed limits are considered in this paper, the

real-world train dynamics in high-speed railway systems can be even more complex, for example the varying track

gradients, track bends, and uncertainty of model parameters due to extreme weather and communication losses.

Thus, further analysis of these nonlinear and random features of train control models, and consequently extending

our work to a general framework with more accurate safe distance calculations can be one of future research

directions. Second as the computational results have shown that, an appropriate scale of self-triggered time-interval

can achieve better trade-off between train platoon control quality and communication resources, more analyzes on

the performance indexes can be taken into consideration in the future researches. Third in this study, we have only

considered the cooperative train control problem around a single bottleneck under the assumption that the train

sequence is pre-determined. Our further research will also focus on the coordinated train control problem for a

high-speed railway network, in which some other important indicators, such as the network capacity and resilience,

can be also considered to realize a network-optimization-based operation strategy.
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