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Thinned Coprime Array for Second-Order

Difference Co-Array Generation with Reduced

Mutual Coupling
Ahsan Raza, Wei Liu, Senior Member, IEEE, and Qing Shen

Abstract—In this work, we present a new coprime array
structure termed thinned coprime array (TCA), which exploits
the redundancy in the structure of existing coprime array and
achieves the same virtual aperture and degrees of freedom
(DOFs) as the conventional coprime array with much fewer
number of sensors. In comparison to other sparse arrays, thinned
coprime arrays possess more unique lags (total number of
difference co-arrays) than the nested arrays, while the number
of consecutive lags (connected co-arrays) generated is close to 75
percent of the consecutive lags of the nested arrays with hole-
free co-arrays. The resulting structure is much sparser and the
number of sensor pairs with small separation is significantly
reduced. Theoretical properties and proofs are provided and
simulations are presented to demonstrate its robustness against
heavy levels of mutual coupling using compressive sensing (CS)
based direction of arrival (DOA) estimation as well as certain
additional desirable characteristics.

Index Terms—Mutual coupling, thinned coprime array, DOA
estimation, degrees of freedom, difference co-array.

I. INTRODUCTION

As well known already, higher number of degrees of free-

dom (DOFs) can be achieved by exploiting sparse arrays

through the equivalent model of difference co-array [1–3].

These DOFs resulting from the difference in positions among

different sensors represent the different lags at which the

autocorrelation can be computed from the received data.

Two classic sparse array structures are the minimum re-

dundancy array (MRA) [4, 5], and the minimum hole array

(MHA) [6]. However, MRA and MHA do not possess closed-

form expressions for the array geometry and the sensor posi-

tions are normally extracted from tabulated entries. To counter

this deficiency, nested arrays are proposed [7], where exact

expressions are available for sensor locations and number of

DOFs achieved. Moreover, the hole-free property gives them

an edge in their DOA estimation performance especially in

the application of subspace based methods which rely on

consecutive lags, but due to a densely packed subarray, they

are prone to the effect of mutual coupling [8]. Another class of

sparse arrays called coprime arrays can address this problem

through a much sparser array design [9, 10]. Coprime and

nested arrays offer certain advantages over MRAs and some
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other sparse array geometries. For example, depending on how

they are processed, coprime arrays allow one to reduce peak

sidelobe height by extending aperture, a property not found in

most other common sparse arrays like MRAs or MHAs [11].

A coprime array consists of two uniform linear subarrays

where one subarray has M sensors with Nd inter-element

spacing, while the other subarray has N sensors with Md
inter-element spacing, with M and N being coprime integers

and d the unit spacing set to be λ
2 (λ corresponds to the

wavelength of the impinging signal) [9]. This structure is

referred to as the prototype coprime array with M + N−1

sensors and provides 2(M + N) − 1 consecutive lags. To

increase the number of consecutive lags, a modification was

proposed in [10] by increasing the number of elements in

one subarray from M sensors to 2M sensors. This structure

of 2M + N − 1 sensors termed as conventional coprime

array resulting in 2MN + 2M − 1 consecutive lags can be

exploited using subspace based DOA estimation methods such

as MUSIC [10, 12–15].

Two generalized coprime array configurations were recently

proposed in [16] based on the prototype coprime array, where

the first is based on compressing the inter-element spacing of

the N -element subarray by a factor of M , resulting in a co-

prime array with compressed inter-element spacing (CACIS).

The minimum inter-element spacing in CACIS remains unit

spacing with considerable overlapping between self lags and

cross lags. To counter this, a second type of array was

proposed with a larger minimum inter-element spacing, larger

aperture and higher number of unique lags, which is termed

as coprime array with displaced subarrays (CADiS). It was

shown that the CADiS structure performed much better than

the CACIS structure for DOA estimation, and the compressive

sensing (CS) based method can be employed without knowing

the number of sources by forcing the sparsity across the

potential incident angles [3, 16–18].

One factor not considered in many of the sparse array

design schemes is the mutual coupling effect [19, 20]. Since

most DOA estimation methods do not consider the effect,

performance degradation will result when this effect is strong.

Two approaches can be adopted to tackle this problem. The

first one tends to incorporate the effect of mutual coupling and

estimates the mutual coupling parameters along with the DOAs

at the cost of extra computation and reduced DOFs [21–24].

The second route tries to reduce mutual coupling by designing

sparser arrays. In this direction, super nested arrays were

developed recently which hold all the advantages of nested
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arrays [25, 26]. It was shown that the third order super nested

array was most robust to the effects of mutual coupling and

performed better than the second order super nested array and

other sparse arrays using MUSIC based DOA estimation meth-

ods. Most recently, an augmented nested array structure was

proposed with enhanced DOF and reduced mutual coupling

[27]. However, the mutual coupling of this structure could

increase significantly with the increasing sensor number and

even cause more mutual coupling than the super nested arrays.

Concatenated nested array (CNA) has been recently proposed

for active sensing with reduced mutual coupling [28]. A new

nested multiple input multiple output (MIMO) array based on

difference co-array of sum co-array has been proposed with

careful design of interelement spacings of the transmitting

and the receiving arrays [29]. It was shown that the array

generates hole free difference co-arrays with enhanced DOFs

for DOA estimation. A generalized nested array (GNA) with

two flexible coprime factors for enlarging the interelement

spacing of two concatenated uniform linear subarrays has been

proposed which has the same DOFs as the nested array but

with reduced mutual coupling [30].

As illustrated in [31], redundancy reduction in array struc-

tures require more snapshots to achieve a similar performance.

Therefore, tradeoff has to be made between these two factors.

In this paper, we focus on reducing the redundancy to improve

the number of DOFs with reduced mutual coupling for a given

number of sensors, and propose a new structure called thinned

coprime array (TCA) by exploiting the redundancy in the

difference co-array model of the conventional coprime array.

As proved later in the paper, the lag contribution from some

of the sensors in the 2M -element subarray of the conventional

coprime array is generated by the rest of the sensors in the

array and these sensors can therefore be removed without

affecting the properties of the parent array. The proposed TCA

holds the same number of consecutive lags, unique lags and

aperture as the conventional coprime array, but with
⌈

M
2

⌉

fewer sensors, where ⌈x⌉ returns the least integer greater than

or equal to x. In comparison to other sparse arrays, for a

fixed number of sensors, TCA achieves more unique lags

than the total lags (hole free coarray) of a nested array, while

generating about 75 percent consecutive lags of a nested array,

producing a much larger and sparser aperture than the nested

array. The work presented here is a further extension of our

conference publication [32] and investigates the performance

of the new structure from the perspective of mutual coupling.

As an indication of the mutual coupling effect, the weight

functions are also derived along with the proof and some

new properties, which shows that the proposed TCA is robust

against high level mutual coupling. The performance of TCA

is thoroughly investigated in comparison to MRA, super nested

arrays and CADiS for DOA estimation in the presence of

mutual coupling using CS-based DOA estimation method and

spatial smoothing (SS)-MUSIC.

This paper is organized as follows. The conventional co-

prime array is reviewed in Sec. II, followed by the proposed

TCA in Sec. III. A comparison in terms of DOFs and mutual

coupling between the TCA and other sparse arrays is provided

in Sec. IV and Sec. V, respectively. Simulations results are

provided in Sec. VI, with conclusions drawn in Sec. VII.

II. CONVENTIONAL COPRIME ARRAY

Consider a conventional coprime array with 2M + N − 1
sensors as shown in Fig. 1, where M and N are coprime

integers. The array sensors are positioned at

P = {Mnd | 0 ≤ n ≤ N − 1} ∪ {Nmd | 0 ≤ m ≤ 2M − 1}.
(1)

The positions of the sensors are given by the set p =
[p0, ..., p2M+N−2]

T where pi ∈ P, i = 0, ..., 2M + N − 2.

The zeroth sensor in both subarrays is co-located at the zeroth

position with p0 = 0.

Consider the scenario where Q uncorrelated signals are

impinging on the array from angles Θ = [θ1, ..., θQ] and

their sampled baseband waveforms are expressed as sq(t), t =
1, ..., T , for q = 1, ..., Q. Then, the data vector received by the

coprime array is given by

x(t) =

Q
∑

q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) = [1, e−j
2πp2

λ
sin(θq), ...., e−j

2πp2M+N−1

λ
sin(θq)]T (3)

is the steering vector of the array corresponding to θq , A =
[a(θ1), ..., a(θQ)] and s(t) = [s1(t), ...sQ(t)]

T . The entries of

the noise vector n(t) are white Gaussian with a covariance

matrix σ2
nI2M+N−1 , where σ2

n is the noise variance. The

covariance matrix of data vector x(t) is given by

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nI2M+N−1

=

Q
∑

q=1

σ2
qa(θq)a

H(θq) + σ2
nI2M+N−1, (4)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , ..., σ

2
Q]) is the source

covariance matrix, with σ2
q denoting the signal power of the

qth source. In practice, the covariance matrix is estimated by

R̂xx =
1

T

T
∑

t=1

[x(t)xH(t)]. (5)

From the antennas located at the mth and nth positions in p,

the correlation E[xm(t)x∗
n(t)] results in the (m,n)th entry in

Rxx with lag pm − pn. All the values of m and n, where

0 ≤ m,n ≤ 2M +N − 2, yield the lags or virtual sensors of

the following difference co-array:

CP = {z | z = u− v, u ∈ P, v ∈ P} . (6)

III. THINNED COPRIME ARRAY

In this section we will show that all of the sensors in the

2M -element subarray enclosed within the dashed rectangle in

Fig. 1 are redundant and therefore can be removed without

affecting the DOFs of the difference coarray, leading to the

proposed thinned coprime array structure.
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Fig. 1: Conventional coprime array.

A. The Proposed Thinned Coprime Array

Theorem 1. The number of redundant sensors in a conven-

tional coprime array with M ≥ 2 for even M and M ≥ 5 for

odd M respectively are given by

Sred =

⌈

M

2

⌉

, (7)

where the starting index of these Sred contiguous redundant

sensors in the (2M−1)-element subarray is given by
⌊

M
2

⌋

+1.

Proof: The structure of the difference co-array can be

divided into self difference i.e. diff(A, A) and diff(B, B) and

cross difference i.e. diff(A, B) and diff(B, A), where A and B

contain the sensor positions Mnd and Nmd respectively for

the two subarrays with 0 ≤ n ≤ N− 1 and 0 ≤ m ≤ 2M− 1,

while the diff operator stands for the difference between the

positions of the sensors contained in the second set from the

first set. In detail,

diff(A,A) = {Mn1d−Mn2d | 0 ≤ n1, n2 ≤ N − 1},

diff(B,B) = {Nm1d−Nm2d | 0 ≤ m1,m2 ≤ 2M − 1},

diff(A,B) = {(Mn−Nm)d

| 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1},

diff(B,A) = {(Nm−Mn)d

| 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1},

Since all the self difference coarrays are included in the

cross difference coarrays [33], we only need to check the

redundancies in diff(A, B). For the cross difference diff(A, B),

we use the index (n, m) to represent the lag entry Mn−Nm.

It was shown in [33] that the entries in the cross correlation

matrix associated with indices (n1, m1) and (n2, m2) in diff(A,

B) are complex conjugate of each other when the indices

satisfy the following relationship

(n1 + n2)M = (m1 +m2)N (8)

with the sufficient condition for (8) given by

(n1 + n2 = N) ∩ (m1 +m2 = M). (9)

This condition dictates that if we consider an index (n1,

m1) with 0 ≤ m1 ≤
⌊

M
2

⌋

(⌊x⌋ returns the largest integer less

than or equal to x) and 1 ≤ n1 ≤ N−1, then it will have a

corresponding index (n2, m2) with m2 = M−m1 in the range

M−⌊M
2 ⌋ ≤ m2 ≤ M and n2 = N−n1 from 1 ≤ n2 ≤ N−1

with both indices satisfying (8). The corresponding entries of

cross difference co-arrays with indices (n1, m1) and (n2, m2)

satisfy the following relationship.

diff(A,B)n1,m1 = −diff(B,A)m1,n1 = −diff(A,B)n2,m2

= −diff(A,B)N−n1,M−m1 . (10)

It thus follows that the lag entry corresponding to the index

(n2, m2) of diff(A, B) will be found in lag entry corresponding

to index (m1, n1) of diff(B, A), making the contribution of

these lags from index (n2, m2) redundant.

Note that for index (n1, m1) with m1 =
⌊

M
2

⌋

= M
2 when

M is even, the corresponding redundant index (n2, m2) where

1 ≤ n1, n2 ≤ N−1, will also have m2 = M
2 with indices

satisfying (8) and (10) respectively, and therefore m = M
2 for

even M is not a redundant sensor. As a result, for arbitrary

M and 1 ≤ n ≤ N − 1, the redundant sensor indices in the

second sub-array are φr = {⌊M
2 ⌋+ 1, ...,M}.

Now we discuss the redundant sensors for n = 0 in the

cross difference co-arrays and only the positive coarrays are

analyzed due to its symmetric property. For any even M ≥
2, the lags from (M2 + 1)N to MN associated with φr can

be generated by taking the self difference of the (M + 1)th

sensor from the sensor indices 1 to M
2 in B. Therefore, after

removing the sensors in φr for even M , all the lags can be

generated by the remaining sensors which proves the existence

of
⌈

M
2

⌉

redundant sensors shown by dashed rectangle in Fig.

1.

For the scenario where M is odd, we set n = 0 and to

ensure the set φr still consists of redundant sensors, we assume

that the lags from M+1
2 N to MN , related to the set φr can

be generated by the remaining sensors. Considering the self

difference of the (M + 1)th sensor from sensor indices 1 to
M−1

2 , lags from M+3
2 N to MN can be generated. The M+1

2 N
lag can be generated by taking difference of the (M + 1)th

sensor from the (2M − M−3
2 )th sensor where (2M − M−3

2 )

= 3M+1
2 th sensor. Then the following relationship should be

satisfied to ensure the existence of the 3M+1
2 th sensor:

3
(M + 1)

2
≤ 2M − 1, (11)

which solves for M ≥ 5. This result also proves the existence

of the redundant sensor set φr with ⌈M
2 ⌉ = M+1

2 sensors

shown by dashed rectangle in Fig. 1.

Instead of thinning redundant sensors from the conventional

coprime array as mentioned in the proof, the TCA can be

developed independently by a combination of three uniform

linear subarrays in a straightforward way as follows.

Definition 1 (Thinned coprime array). Assume M and N are

coprime integers with M ≥ 2 for even M and M ≥ 5 for odd

M respectively, then the TCA is specified by the integer set

X, defined by

X = X1 ∪ X2 ∪ X3,

where














X1 = {nMd | 0 ≤ n ≤ N − 1},

X2 = {mNd | 1 ≤ m ≤ ⌊
M

2
⌋},

X3 = {(m+M + 1)Nd | 0 ≤ m ≤ M − 2}.

(12)
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Fig. 2: Thinned coprime sensor array for M = 5, N = 6.

The sets X1, X2 and X3 represent the positions of sensors in

the 1st, 2nd and 3rd subarrays, respectively, which constitute

the TCA. The total number of sensors is given by

Stcsa = M +N + ⌊
M

2
⌋ − 1. (13)

An example of the TCA with parameters M = 5 and N
= 6 is shown in Fig. 2, where X1 = {0, 5, 10, 15, 20, 25}d,

X2 = {6, 12}d and X3 = {36, 42, 48, 54}d. The 3rd subarray

is displaced from the 1st subarray by a spacing of (M +N)d
which in our case is 11d and is composed of M − 1 = 4

sensors separated by Nd = 6d . By combining these three

subarrays, the total number of sensors in the TCA is given by

M +N + ⌊M
2 ⌋ − 1 = 12.

B. Optimal choice of M and N for TCA

For a TCA with T = M+⌊M
2 ⌋−1+N sensors, the number

of consecutive lags is 2MN + 2M − 1 = 2M(N + 1) − 1.

We can maximize the number of consecutive lags by applying

the Arithmetic Mean-Geometric Mean (AM-GM) inequality

to find the optimal choice of M and N [34].

Generally, the number of sensors can be expressed as T =
3
2M +N − 1− mod (M,2)

2 . As a result, we have

2M(N + 1)− 1 =
4

3
[
3

2
M(N + 1)]− 1

≤
4

3

(

T + 1 + mod(M,2)
2

2

)2

− 1 ,

(14)

where the maximum value is obtained when 3
2M = N + 1.

The closer 3
2M and N + 1, the larger value can be achieved.

However, due to the existence of
mod(M,2)

2 , the maximum

value achieved by odd M and even M are different, and it

would be difficult to judge the optimal choice of M and N in

general without the discussing the parity of M .

For odd M , the sub-optimal choice of M and N for a given

T can be obtained by solving the following problem:

min |
3

2
M − (N + 1)| ,

subject to
3

2
M +N = T +

3

2
,

M is odd, M and N are coprime,

(15)

where |·| returns the absolute value of its argument, and the

solutions are given by Mo and No.

Then for even M , we have

min |
3

2
M − (N + 1)| ,

subject to
3

2
M +N = T + 1 ,

M is even, M and N are coprime,

(16)

and the solutions are Me and Ne.

Finally, the maximum number of consecutive lags achieved

is

max (2MoNo + 2Mo − 1, 2MeNe + 2Me − 1) , (17)

and the corresponding M and N are the optimal choice for a

fixed sensor number T .

IV. DOF COMPARISON OF SPARSE ARRAYS

In this section the number of DOFs provided by the pro-

posed TCA, nested arrays, CADiS and its special cases for

a fixed number of total sensors is compared, where DOFs

presented in this paper represent two sided lags generated from

the co-array structure of a sparse array.

Nested arrays for a given N1 and N2, where N1 and

N2 represent the number of sensors in the two constituent

subarrays, provide a hole free coarray of 2N2(N1+1)−1 lags

for a total of N1 + N2 sensors. The CADiS structure in

[16] brings two changes to the existing prototype coprime

array. In the first change, the first subarray of N sensors is

compressed by a factor p where we assume M = pM ′ for

2≤ p ≤ M with 1 ≤ M ′ < M (M ′ = 1 is a special

case for nested CADiS which will be discussed later). The

resulting factors M ′ and N are still coprime. The elements

of the first subarray then possess an interelement spacing of

M ′d, while the second subarray of M sensors retains the

original interelement spacing of Nd. For the second change, it

displaces the two subarrays by a factor Ld. The CADiS con-

figuration for M ′ >1 achieves a maximum number of unique

lags equal to 2MN+2M−5 when L > N (M−2), while

the maximum number of consecutive lags is achieved when

L = M ′ +N with MN−(M ′−1)(N−2)+1 consecutive lags

and 2MN+2M ′−1 unique lags [16]. The number of unique

lags increases with increasing M ′ while the consecutive lags
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Fig. 3: Unique lags capacity comparison for sparse arrays.
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Fig. 4: Consecutive lags capacity comparison for sparse arrays.

decrease. Nested CADiS with M ′ =1 provides a hole-free

co-array of 2MN+1 lags. The proposed TCA retains all the

properties of conventional coprime array, but with
⌈

M
2

⌉

fewer

sensors.

In the next step, we generate the number of DOFs includ-

ing consecutive and unique lags for the sparse arrays under

consideration. To further compare the sparsity of these array

structures, we define the DOF capacity beyond the redundancy

defined in [4] as

γ(S) =
S2

DOFs
(18)

where S represents the total number of sensors in an array and

DOFs represents the number of degrees of freedom measured

by the number of consecutive lags or unique lags. The smaller

the value of γ(S), the higher the DOF capacity with a specific

number of sensors for that particular sparse array. Then the

unique lags capacity for sparsest CADiS (M ′ > 1 with highest

value of M ′ less than M and different cases of L), nested

array, nested CADiS and TCA is plotted in Fig. 3, while the

consecutive lags capacity is plotted in Fig. 4.

One potential problem in generating sparsest CADiS for

any fixed number of sensors lies in the fact that sometimes

the value of M available in combination with N to generate

CADiS is a prime number itself (no factors for M other

than 1), thus only offering the possibility of generating nested

CADiS with M ′ = 1. For the analysis, all the available spars-

est CADiS have been extracted, while nested arrays, nested

CADiS and TCAs all can be generated for the considered

range of sensors. The combinations of parameters have been

chosen to produce the highest possible number of lags. It can

be seen in Fig. 3 that the unique lags of TCA are comparable

to the unique lags of the sparsest CADiS with L = M ′ +N ,

while the sparsest CADiS with L > N (M−2) generates the

highest number of unique lags. The number of unique lags of

TCA are greater than the hole-free structure of nested array

and nested CADiS as depicted in Fig. 3. It is further examined

by taking the ratio of the number of unique lags produced by

thinned coprime array to the lags produced by nested array

for each sensor size scenario and then taking the mean which

comes out as 1.0283. For the case of consecutive lags in Fig. 4,

nested array and nested CADiS produce the highest number of

consecutive lags. The number of consecutive lags of TCA are

around 75 percent to those of nested array, which is calculated

by taking the ratio of consecutive lags for TCA to the number

of lags produced by nested array for each scenario of fixed

number of sensors in the considered range of sensor array size

and then calculating the mean of the ratio. The sparse versions

of CADiS produce the lowest number of consecutive lags in

comparison to the TCA, nested array and nested CADiS.

Another interesting thing is the non-availability of sparsest

CADiS for 4 different cases of fixed number of sensors i.e.

17, 23, 29 and 35 due to reasons mentioned earlier. The points

in the lags curve where there is a spike in the value of γ(S)
corresponds to a relatively lower increase in the DOFs for

that specific number of sensors and is attributed to the value

of M ′. A larger M ′ available for one scenario will generate

lower number of lags with resulting increase in the value of

γ(S). If a smaller M ′ is available for the next sensor array size,

it will generate higher number of lags with a smaller γ(S),
giving the presence of a spike in γ(S) for the former case.

On the whole, sparse versions of CADiS cannot be generated

for any arbitrary number of sensors and possess very low

number of consecutive lags to be exploited by MUSIC based

DOA estimation methods. Their application lies directly in the

CS-based methods, where their unique lags can be utilized.

TCAs can be generated for any arbitrary number of sensors

and the number of unique lags are much higher than most of

the sparse arrays and even the consecutive lags generated by

TCA are on average around 75 percent of the hole-free coarray

generated by nested arrays, which proves their application in

both MUSIC and CS-based DOA estimation methods.

V. MUTUAL COUPLING PERSPECTIVE

A. Mutual Coupling Model

Equation (2) is free of mutual coupling. However, in

practice, this is not avoidable and mutual coupling can be

incorporated into the received signal model as follows.

x(t) = CAs(t) + n(t) (19)

where C is the mutual coupling matrix, which for uniform

linear arrays can be modelled by a B-banded symmetric

Toeplitz matrix [23, 25, 26], where B is chosen to be a

suitable inter-sensor spacing beyond which the effect of mutual



6

coupling can be deemed negligible. The entries of the coupling

matrix C in this case can be written as

〈C〉n1,n2
=

{

c|n1−n2|, if |n1 − n2|≤ B,

0, otherwise
(20)

where n1, n2 ∈ p and coupling coefficients c0, c1, . . . , cB
satisfy 1 = c0 > |c1|> |c2|> . . . |cB |. The magnitudes of

coupling coefficients are inversely proportional to their sensor

separations and one simple model is to assume

|
ck
cl
|=

l

k
(21)

B. Mutual Coupling and Thinned Coprime Array

The effect of mutual coupling can be quantified with the

help of weight function parameter defined in [25]. The weight

function w(m) of an array p refers to the number of sensor

pairs corresponding to a particular value of coarray index

m (which is an indication of the separation between the

underlined sensor pair), and is given by

W (m) = {(n1, n2) ∈ X
2 | n1 − n2 = md} (22)

w(m) = Card(W (m)) (23)

where md ∈ CP and Card(A) returns the cardinality of the set

A. The weight function values corresponding to small values

of m would be of great interest as they contribute primarily

towards mutual coupling in the array due to sensors separated

by small multiples of interelement spacing. In this subsection,

we present the weight functions of TCA along with the proof.

Theorem 2. Let X be a thinned coprime array with M ≥
2 for even M and M ≥ 5 for odd M respectively. Its weight

functions w(m) for m = 1, 2 and 3 are given by














































































w(1) =

{

2, M = 2,

1, M ≥ 4,

w(2) =



















N − 1, if M = 2,
3M−5

2 , if N = 2,

2, if M = 4,

1, otherwise,

w(3) =



















3M−4
2 , if N = 3 for any even M,

3M−5
2 , if N = 3 for any odd M,

2, if (M = 2, N ≥ 5) or M = 6,

1, otherwise,

(24)

Proof: It is clear that the displacement between the third

sub-array of the TCA and the others is at least more than 5d
since M and N are coprime. Then we only consider the case

when ⌊M
2 ⌋ sensors of X2 interact with N sensors of X1. For

any sensor of X2, there will be two sensors of X1 on either

side of this sensor, resulting in 2 interactions per sensor with

2 lags less than the spacing Md for X1. For ⌊M
2 ⌋ sensors of

X2, this will result in a total of 2⌊M
2 ⌋ lags contributing to

the cross-difference set. Consider an arbitrary sensor of X2

located at iNd (d is ignored in the following analysis for

simplification), where 1 ≤ i ≤
⌊

M
2

⌋

, and then the distance of

this sensor relative to the nearest sensor of X1 lesser in value

than iN is given by

Si = mod(iN,M), 1 ≤ i ≤

⌊

M

2

⌋

(25)

where mod refers to the modulo operator and returns the

remainder of iN
M . Likewise, the distance of any arbitrary sensor

of X2 relative to the nearest sensor of X1 greater in value than

iN is given by

Ŝi = M − mod(iN,M), 1 ≤ i ≤

⌊

M

2

⌋

(26)

The lags generated from the interaction of any arbitrary

sensor of X2 relative to two sensors of X1 surrounding it take

the form (Si, Ŝi). It can be shown that the lags in sets Si and

Ŝi repeat with a period of M . Substituting i with i + M in

(25) we have

Si+M = mod((i+M)N,M)

= mod (iN,M) + mod(MN,M) = mod(iN,M) (27)

Similarly for Ŝi,

Ŝi+M = M − mod((i+M)N,M)

= M − mod(iN,M)− mod(MN,M)

= M − mod(iN,M) (28)

As each lag in sets Si and Ŝi repeats with a period M , this

proves the unique nature of lags present within both sets Si

and Ŝi for 1 ≤ i ≤ ⌊M
2 ⌋. To analyze the scenario when the

lag from one set also appears in the other set, we find the

condition when Si = Ŝj given by

mod (iN,M) = M − mod(jN,M), 1 ≤ i, j ≤

⌊

M

2

⌋

(29)

mod (iN,M) + mod(jN,M) = M (30)

Applying modulo on both sides yields

mod(iN + jN,M) = mod(M,M) = 0 (31)

Since M and N are coprime, the solution is given by

(i+ j) = kM, k ∈ Z (32)

Since 1 ≤ i, j ≤
⌊

M
2

⌋

, the condition (i+ j) = kM cannot be

satisfied for odd M . Then for even M , there exists i = j = M
2

that satisifes (32) with only one replicate lag at the M
2 th sensor.

As the lag values are of the form (Si, Ŝi), this corresponds to

values of these lags given as (k,M − k) where 1 ≤ k ≤ M−
1. For k =

⌊

M
2

⌋

, the lag pair will be equal to (
⌊

M
2

⌋

,
⌈

M
2

⌉

).
For even M , i = j = M

2 which implies that the repitition of

lag for even M will occur at index M
2 . To find the repeated

value of lag pair at index M
2 , we assume that this sensor in

X2 is displaced from its corresponding two sensors of X1 by
M
2 . This corresponds to the position of the outer sensor of

X1 relative to the M
2 th sensor of X2 at MN

2 + M
2 = M(N+1)

2 .

Then we find the condition when N+1
2 ≤ N− 1 (the outermost

index of X1), which solves for N ≥ 3. This proves that the
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repeated lag pair for even M occuring at index M
2 has a value

equal to M
2 . This value of repeated lag can also be alternatively

checked by analyzing the case when for even M , lag pair

(
⌊

M
2

⌋

,
⌈

M
2

⌉

) reduces to (M2 , M
2 ). As a result w(M2 ) = 2 for

even M .

Now we discuss the different weight scenarios for even

M ≥ 4 and N > 3. Starting with M = 4, two sensors in

X2 contribute four lags in total with values 1, 3 and two lags

with values 2 proving w(2) = 2 and w(1) = w(3) = 1.

For M = 6, three sensors in X2 contribute six lags in total

with vaules 1, 5, 2, 4 and two lags with values 3 proving

w(3) = 2 and w(1) = w(2) = 1. For M > 6 and N > 3,

w(1) = w(2) = w(3) = 1 as the repeated lag for even M
i.e. M

2 > 3. For odd valued M with N > 3, the resulting lag

pairs are all unique as shown above.

Then we consider some special cases. First when N = 3

and M is even, it is clear that M
2 −1 pairs of sensors in X2

will be separated by a spacing of 3 in addition to M− 2 pairs

of sensors in X3. Adding the one unique lag equal to 3 from

the interaction between the zeroth sensor of X1 and the first

sensor of X2, then for any even M and N = 3, w(3) = 3M−4
2 .

For the case of odd M and N = 3, the only difference is that
M−1

2 −1 = M−3
2 pairs of sensors in X2 separated by 3, which

will give an overall w(3) = 3M−5
2 . The case of odd M with

N = 2 will also have w(2) = 3M−5
2 .

Finally we discuss the weights scenario when M = 2,

resulting in one sensor contained in X2. This sensor through

interaction with two sensors of X1 that are separated by a

spacing of 2, contributes two lags in total with values 1 proving

w(1) = 2. The value w(2) depends on N as N− 1 sensor pairs

in the N -element subarray will be separated by inter-element

spacing of 2 generating w(2) = N− 1. For w(3), we consider

the case when N ≥ 5, and then one sensor in X2 generating

w(1) = 2 by falling in the middle of the two sensors of X1

will always be at a distance of 3 from the outer two sensors

surrounding the two sensors of X1 on each side that generated

w(1), yielding w(3) = 2 for M = 2, N ≥ 5.

As arrays with odd M provide 2
⌊

M
2

⌋

= 2M−1
2 = M−1

unique lags and the even valued M provide M− 2 unique and

two same valued lags with value M
2 , it implies w(1) = 1 for

M ≥ 4. As w(2) = 2 only for M = 4, it proves w(2) = 1

otherwise. Likewise, w(3) = 2 for M = 2, N ≥ 5 and M =
6 while w(3) = 1 otherwise, thus completing the proof. It is

interesting to note that for any M > 5 and N > 3, thinned

coprime arrays possess w(1) = w(2) = w(3) = 1.

C. Array Profile Comparison and Mutual Coupling

In this subsection, a thorough comparison of several well-

known sparse arrays is presented from the perspective of their

sparsity, DOFs and potential to counter mutual coupling. The

sparse arrays considered here include the proposed TCA, super

nested arrays [25, 26], sparse CADiS [16] and MRA [4, 5]1.

First, a comparison of weight functions w(m) for these sparse

1Due to lack of explicit solutions for arrays with large number of sensors
in [4], the MRAs with 12 sensors and 17 sensors employed in this paper are
extracted from [5], which may be considered as a suboptimal solution instead
of the strict MRA in [4].

arrays is provided in Table I. It can be observed that although

super nested arrays (both second order and higher orders) have

smaller w(1) and w(3), their w(2) is dependent on N1 and

thus increases with the array size. Sparse CADiS on the other

hand has a zero-valued w(1) and depending on the value of

M , subsequently M
′

, can have either w(2) or w(3) equal to

N − 1, which will also increase with increasing array size but

overall maintain excellent sparsity. The proposed TCA has its

weights w(1), w(2) and w(3) independent of the array size

and maintains w(1) = w(2) = w(3) = 1 for odd M ≥ 5 and

even M > 6 with N > 3, which makes it a promising array

structure to counter mutual coupling.

Sparse arrays also differentiate themselves from their char-

acteristic DOFs (consecutive and unique). The application of

a certain sparse array in subspace based methods like SS-

MUSIC entirely depends on the consecutive lags, while CS-

based DOA estimation utilizes all the unique lags generated

and is applicable to all kinds of sparse arrays.

Keeping this view, a general character comparison of the

considered sparse arrays is presented in Table II, where certain

characteristics like availability for any array size, compatibility

with CS, SS-MUSIC and relationship of critical weights

functions with array size are provided. It is obvious that

sparse CADiS finds its limitations in the use of SS-MUSIC

as it generates very few consecutive DOFs. It is also not

available for specific cases of array size as mentioned before,

although it is excellent at tackling mutual coupling. Super

nested arrays and MRA are good at SS-MUSIC and CS,

but both have a problem of increasing critical weight w(2)
with array size, even for the sparsest of them, the third

order super nested array as a function of N1, which can

create challenges to tackle heavy levels of mutual coupling.

Suboptimal MRAs proposed by Ishiguro are also limited by

the fact that arrays for more than 20 sensors are still not

defined in [4, 5] due to the increase in complexity of the search

mechanism and longer computation time to obtain MRA. The

proposed TCA is available for any array size, applicable to

both CS and SS-MUSIC as it provides a decent balance of

consecutive and unique lags. This is further complemented

by the sparse structure offered by TCA with consistent low

weights irrespective of array size.

To have a further insight, we consider sparse arrays with

a specific size of 12 sensors, comprised of two second order

super nested arrays for the parameters N1 = N2 = 6 and

N1 = 5, N2 = 7, one third order super nested array for N1 =
5, and N2 = 7, MRA as [0, 1, 6, 14, 22, 30, 38, 40, 42, 45, 47,

49]d [5], sparse versions of CADiS for M = 6, N = 7, p = 2

and 3, and thinned coprime array for M = 5 and N = 6. We

have also incorporated MHA which has a characteristic weight

function w(m) equal to 0 or 1 for m 6= 0. The 12-sensor MHA

considered here has sensor positions given by [0 2 6 24 29 40

43 55 68 75 76 85]d [35, 36]. For analysis, the mutual coupling

model is based on (20) with c1 = 0.4ejπ/3, B = 10 and cl =
c1e

−j(l−1)π/8/l for 2 ≤ l ≤ B. The analysis of these sparse

arrays from different perspectives is provided in Fig. 5, where

the weight functions w(m) are provided in the second and

sixth row of Fig. 5 and |[C]i,j |
2 is shown on log scale in the

third and seventh row. The regions in dark indicate less energy
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Array
SNA Q = 2
N1 ≥ 4, N2 ≥ 3

SNA Q ≥
3, (Odd N1)
N1 ≥ 3 ×

2Q− 1,
N2 ≥ 3Q−

4

SNA Q ≥ 3, (Even
N1)

N1 ≥ 2 × 2Q+ 2,
N2 ≥ 3Q− 4

Sparse CADiS

M = pM
′

, 2 ≤ p ≤ M ,
1 ≤ M ′ < M

TCA
M ≥ 2 (even M ), M ≥ 5 (odd M )

w(1)

{

2, N1 is even,

1, N1 is odd,
1 2 0

{

2, M = 2

1, M ≥ 4,

w(2)

{

N1 − 3, N1 is even,

N1 − 1, N1 is odd,
2 ⌊N1

4
⌋+ 1















N1

2
+ 1, N1 = 8k − 2,

N1

2
− 1, N1 = 8k + 2,

N1

2
, otherwise, k ∈ Z

{

N − 1, if M
′

= 2,

0, otherwise,



















N − 1, if M = 2,
3M−5

2
, if N = 2,

2, if M = 4,

1, otherwise

w(3)











3, N1 = 4, 6,

4, N1 is even, N1 ≥ 8,

1, N1 is odd,

2 5

{

N − 1, if M
′

= 3,

0, otherwise,



















3M−4
2

, if N = 3 for any even M.
3M−5

2
, if N = 3 for any odd M.

2, if (M = 2, N ≥ 5) or M = 6,

1, otherwise,

TABLE I: Weight function comparison for sparse arrays.

Array SNA Sparse CADiS TCA MRA

Availability for any array size Yes
Not available for 17, 23, 29 and

35
Yes

Not available for more than 20
sensors

SS-MUSIC Compatibility Yes No Yes Yes

CS Compatibility Yes Yes Yes Yes

Relationship between critical
mutual coupling coefficients

and array size

w(2)
increases

with array
size

w(2) or w(3) may increase
with array size but w(1) = 0

w(1) = w(2) = w(3) = 1
for odd M ≥ 5 and even
M > 6 with N > 3

w(2) increases with array size for
the suboptimal MRA’s extracted

from Ishiguro’s work

TABLE II: Character comparison for sparse arrays.

for that particular entry and it is important to note that the

off-diagonal entries of the matrix, i.e, the entries showing the

interaction between different sensors, characterize the amount

of mutual coupling for the sparse array. The darker these off-

diagonal entries, the less the mutual coupling experienced by

the particular sparse array. Looking at the coupling matrix

structure, it is visible that the TCA and CADiS have less off-

diagonal energy and more sparsity than the super nested arrays.

The array profile for these arrays is shown in Table III,

highlighting different array characteristics like aperture, unique

and consecutive lags, maximum number of detectable sources

using SS-MUSIC and number of smaller weight functions like

w(1), w(2) and w(3). It is clear that MHA contains the highest

number of unique lags equal to 133 with 95 consecutive lags.

MRA generates the highest number of consecutive lags equal

to 99 with a hole free co-array. Sparsest CADiS for p =
2 and thinned coprime array both attain unique lags equal

to 89, followed by sparse CADiS for p = 3 with 87 lags

and then the super nested arrays with 83 lags for a hole-

free structure. Talking from the SS-MUSIC perspective which

halves the available number of consecutive lags for application

in DOA estimation, the sparsest structure of CADiS with p =
2 results in the lowest number of consecutive lags with only

16 number of sources able to be identified and resolved. As

the segment of consecutive lags for CADiS is not centered

around zero, for application of SS-MUSIC, the largest portion

of consecutive lags is extracted from the available segments

of consecutive lags in the coarray followed by the spatial

smoothing technique to generate the covariance matrix based

on the extracted co-array segment before applying MUSIC.

In comparison to sparse CADiS, thinned coprime array, super

nested arrays, MHA and MRA have a capacity to solve up to

34, 41, 47 and 49 sources respectively.

VI. SIMULATION RESULTS FOR DOA ESTIMATION

In this section, the DOA estimation performance of the

considered sparse arrays is investigated under the effect of

mutual coupling using both the CS-based method and the SS-

MUSIC.

A. CS-based DOA Spectrum Under Heavy Mutual Coupling

To make use of all unique lags provided by each sparse

array, the CS-based DOA estimation method is used as detailed

in [32]. The parameters are 5 dB SNR, 1000 snapshots, 12

uncorrelated sources evenly spaced between −60◦ and 60◦

with ǫ chosen empirically for a clear and fine DOA estimate.

A scenario of heavy mutual coupling is assumed with |c1|=
0.4. A search grid of 3601 angles is formed in the full angle

range with a step size of 0.05◦. The estimation results are

shown in the fourth and eighth rows of Fig. 5.

It can be seen that the second order super nested array with

N1 = N2 = 6 is missing 3 sources while the second and

third order super nested arrays with N1 = 5 and N2 = 7

and MRA are all missing at least one source with the other

two sources at extremely low powers and buried under the

accompanying noise in the spectrum. Sparse CADiS with p =
3 has a noisy spectrum with the power of three sources being

degraded while the sparsest CADiS with p = 2, TCA and

MHA are able to resolve the 12 sources with a fine DOA

spectrum in the presence of mutual coupling.
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Array SNA(6,6,2) SNA(5,7,2) SNA(5,7,3) CADiS(6,7,2) CADiS(6,7,3) TCA(5,6) MRA MHA

Aperture 41 41 41 49 56 54 49 85

Uni. Lags 83 83 83 87 89 89 99 133

Con. Lags 83 83 83 38 33 69 99 95

Max. sources SS-MUSIC 41 41 41 18 16 34 49 47

w(1) 2 1 1 0 0 1 1 1

w(2) 3 4 3 6 0 1 4 1

w(3) 3 1 3 0 6 1 1 1

TABLE III: Sparse array characteristics for 12 sensors.

The three missing peaks for the second order super nested

array with N1 = N2 = 6 are attributed to a higher w(1) i.e.

w(1) = 2 compared to w(1) = 1 for the other two super nested

arrays and MRA which limits the use of this particular super

nested array for lower values of |c1|. The sparser structure of

TCA, sparsest CADiS and MHA hold promising potential to

counter mutual coupling using CS-based estimation method.

To have a better understanding of the benefits of the

proposed TCA, another scenario is considered where a 17-

sensor array receives 20 incoming signals with moderate SNR

and heavy mutual coupling. The parameters set is 10 dB SNR,

1000 snapshots and a mutual coupling coefficient |c1|= 0.4,

while the remaining parameters are the same as above. It is

obvious that for a 17-sensor array we are unable to generate

sparse CADiS as described in Section IV. For other sparse

arrays, we are able to generate second and third order super

nested arrays for the choice of N1 = 9 and N2 = 8, MRA

as [0, 1, 8, 18, 28, 38, 48, 58, 68, 78, 80, 82, 84, 87, 89, 91,

93]d [5], TCA for M = 7 and N = 8 and MHA with sensor

positions given by [0, 5, 7, 17, 52, 56, 67, 80, 81, 100, 122,

138, 159, 165, 168, 191, 199]d [35].

MRA and super nested arrays have hole-free coarrays

with 187 and 159 consecutive lags respectively, while TCA

generates 125 consecutive lags and 167 unique lags. MHA

generates 35 consecutive lags and 273 unique lags. The critical

part of the analysis is the weight functions for these arrays.

The second order super nested array has the highest w(2)
among all the arrays equal to 8 with w(1) = w(3) = 1, while

w(1) = 1, w(2) = 6, w(3) = 1 for MRA, and w(1) = 1,

w(2) = 5, w(3) = 2 for the third order super nested array.

TCA and MHA both provide excellent set of weight functions

with w(1) = w(2) = w(3) = 1. The estimation results are

shown in Fig. 6, where it can be clearly seen that the super

nested arrays and MRA are unable to distinguish all 20 sources

and have a degraded spectrum with missing sources and lots

of spurious peaks, while the TCA and MHA are able to detect

all sources with a fine spectrum showcasing their potential to

counter heavy mutual coupling when other sparse arrays are

simply not available or not able to cope with the conditions.

To investigate the performance of these sparse arrays under

the effect of mutual coupling, the root mean square error

(RMSE) curves are calculated for varying intensity of mutual

coupling coefficient |c1|, varying number of snapshots T and

across a range of different values of SNR.

B. RMSE Curves with Mutual Coupling Under Fixed and

Dynamic Range SNR

Consider 10 narrowband sources with 12-sensor sparse

arrays as presented in the simulation results for Fig. 5.

First we present the CS-based results with varying mutual

coupling intensity, where all the unique lags offered by the

arrays are utilized. The parameters considered are 5 dB SNR,

1000 snapshots and |c1| varied from 0 to 0.7. The results

are presented in Fig. 7, where each point is an average of

200 independent simulation runs. It can be observed that

although MRA and super nested arrays possess lower error

than CADiS and TCA, they are only capable of detecting all

the sources in low to medium level of mutual coupling. For

higher levels of mutual coupling, super nested arrays suffer

heavily from missing sources, spurious peaks and degraded

spectrum. MHA, sparsest CADiS and TCA are able to tolerate

severe mutual coupling with minimum loss to the spectrum.

TCA detects all sources till |c1|= 0.7, while sparsest CADiS

suffers from two source peaks degraded by the severe mutual

coupling. MHA due to its very high unique lags and sparse

structure has the lowest error of all. However, it has been

observed that some extra peaks start appearing very close to

an actual detected source, due to which peak detection gets

complicated and estimation error for that source is influenced

by the close proximity of the extra peak. This phenomenon

happens from |c1|= 0.5 onwards. As a result, the RMSE for

MHA is shown till |c1|= 0.45.

The RMSE results against the number of snapshots and SNR

for |c1|= 0.3 with remaining parameters same as before are

shown in Figs. 8 and 9, respectively, where it can be seen

that the MHA possesses the lowest RMSE due to high DOFs.

MRA and super nested arrays with w(1) = 1 are able to

tolerate medium levels of mutual coupling and achieve better

estimation performance compared to sparse CADiS and the

TCA. Next, we present the SS-MUSIC based results. Fig. 10

shows the RMSE for varying mutual coupling intensity in the

range of |c1|= 0 to 0.2 with 10 dB SNR and 1000 snapshots.

The shorter range of mutual coupling is assumed relative to

the CS case keeping in mind the corresponding reduction in

the DOFs when using SS-MUSIC. It can be observed that

the TCA, despite having lower DOFs compared to MRA and

super nested arrays, matches their performance as the mutual

coupling level rises, due to the excellent sparsity offered

by this structure. Sparse CADiS suffers from an increased

error due to a dramatic reduction in the available number

of DOFs for SS-MUSIC with only 18 and 16 for the sparse

versions of CADiS considered. MHA with high consecutive

lags maintains the lowest RMSE just like the CS case. For
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Array (a) SNA(6,6,2) (b) SNA(5,7,2) (c) SNA(5,7,3) (d) MRA
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Fig. 7: RMSE versus mutual coupling coefficient |c1| for CS.

RMSE curves against the number of snapshots and SNR, we

consider |c1|= 0.1 and the results are presented in Figs. 11 and

12, respectively. It is seen that TCA is able to perform better

than super nested arrays and MRA as the SNR is increased

while MHA has the lowest error of all the sparse arrays.

From a practical point of view, assuming equal SNR for

all the sources is unrealistic. In real world, different sources

impinging on an array are coming from different directions

and from different distances with varying channel conditions,

resulting in different SNR values for each of the sources. The

way forward is to assume a 10 dB dynamic SNR range for

the considered sources in the presence of mutual coupling,

where the SNR of each source is uniformly distributed in the

range [0, 10] dB. Then each source signal has a varying SNR

in the range [0, 10] dB for each independent simulation run.

The RMSE curves against varying mutual coupling for CS

and SS-MUSIC in Figs. 7 and 10 are reproduced for dynamic

SNR range in Figs. 13 and 14, respectively. Analyzing Fig.

13, due to the 10 dB dynamic range of SNR with more noisy

conditions compared to fixed 5 dB in the previous case, the

overall operational range of mutual coupling in the new results

has reduced from |c1|= 0.7 to 0.6. The results again show

the robust nature of the proposed TCA. Although the array

incurs increased error compared to super nested arrays, MRA

and MHA, it is able to outperform all other sparse arrays in

tackling heavy levels of mutual coupling. Furthermore, even

the sparsest among sparse CADiS loses its application at |c1|
= 0.5. MHA has the lowest error but with extra peaks just like

the fixed SNR case has its RMSE limited to |c1|= 0.45. In Fig.

14, it is clear that the error for sparse CADiS has increased a

lot. It is directly in line with the use of dynamic range SNR as

the low SNR for certain sources increases the overall error in

the estimates and this effect is magnified by the lower number

of DOFs available for sparse CADiS for SS-MUSIC. TCA is

able to have a comparable performance to super nested arrays

and MRA in this case.

C. RMSE Curves with Mutual Coupling for Large Array Size

Now we consider a larger array size with 17 sensors utilized

in Fig. 6. For this array size, all the sparse arrays are available

except for the sparse CADiS. For CS based scenario, we
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Fig. 8: RMSE versus number of snapshots for CS with |c1|=
0.3.
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Fig. 9: RMSE versus SNR for CS with |c1|= 0.3.
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Fig. 13: RMSE versus mutual coupling coefficient |c1| with

10 dB dynamic range SNR for CS.
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Fig. 14: RMSE versus mutual coupling coefficient |c1| with

10 dB dynamic range SNR for MUSIC.
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17 sensors for MUSIC.

consider 20 sources, 10 dB SNR and 1000 snapshots with

|c1| varying from 0 to 0.45. The result is shown in Fig. 15.

It can be seen that MHA with very high number of unique

lags equal to 273 has the lowest error among all the sparse

arrays. TCA achieves a lower RMSE compared to MRA and

super nested array with increasing levels of mutual coupling

and is also able to tolerate high levels of mutual coupling.

In comparison the operation range of super nested arrays and

MRA is limited to |c1| = 0.3, where the third order super

nested array has the lowest error compared to the second

order super nested array and MRA due to its sparsity. This

result shows that the error performance trend in the presence

of mutual coupling varies significantly with increasing array

size. As the DOFs rise in accordance with the array size, so do

the critical weights for super nested arrays, suboptimal MRA’s

and even sparse CADiS. TCA due to its consistent critical

weights of w(1) = w(2) = w(3) = 1 being independent

of the array size is able to estimate sources with improved

performance as the array size increases, while relatively higher

errors are incurred by the super nested arrays and MRA due

to a significant increase in w(2).

A consequence of increased mutual coupling is the degra-

dation of DOA spectrum. As the mutual coupling increases,

source power reduces significantly till it appears as a missing

source. For the result in Fig. 15, super nested arrays and

MRA suffer from increased mutual coupling with their sources

missing. The upper limit of their operation range is reduced

to |c1| = 0.3, beyond which all independent simulation runs

generate missing sources. A probability of detection curve is

generated to show the probability p with which all sources

are detected over a total number of independent simulation

runs for a certain level of mutual coupling. It is worth noting

that the RMSE results presented in Fig. 15 are based on

the probability of detection shown in Fig. 16 against varying

mutual coupling. It can be seen that the third order super

nested array has 100 percent detection probability at |c1| =

0.3 compared to 66 and 46 percent for MRA and second order

super nested array, respectively. Furthermore, TCA and MHA

have 100 percent detection probability over the considered

range of mutual coupling.

Then we investigate the performance of these arrays for SS-

MUSIC. We consider 10 sources, 10 dB SNR, 1000 snapshots,

|c1| varied from 0 to 0.375 with the result presented in Fig. 17.

It can be seen again that the TCA despite having 63 DOFs to

estimate 10 sources in comparison with 80 and 94 for super

nested arrays and MRA respectively, is able to estimate the

sources with the lowest error with increasing mutual coupling

levels. MHA in this instance of 17 sensors is only able to

generate 35 consecutive lags thereby suffering from a very

high RMSE, which shows the limited applicability of MHA

for SS-MUSIC for different array sizes. Moreover, MHAs are

not defined for more than 26 sensors. In comparison, TCA

with reasonable aperture, decent contribution of consecutive

and unique lags and availability for any array size provides

more application. This result achieved with SS-MUSIC com-

plements the result achieved with CS and shows the real

application of TCA with increasing array size and high mutual

coupling.

Overall, the results have shown that the proposed TCA

offers a set of excellent properties compared to other sparse

arrays. Most important of all, the TCA is able to tolerate heavy

levels of mutual coupling compared to super nested arrays,

MRA and sparse CADiS. Due to a consistent sparse structure

irrespective of array size, the TCA provides better performance

than super nested arrays and MRA with increasing array size.

Among all the extensions based on coprime array proposed

till now, the proposed TCA is a better solution that can be

effectively used with both CS and SS-MUSIC based DOA

estimation in the presence of mutual coupling.

VII. CONCLUSION

In this paper, a new sparse array termed thinned coprime

array has been proposed, which retains all the properties of

the conventional coprime array, but with ⌈M
2 ⌉ fewer sensors.

For the same number of sensors, they possess greater number

of unique lags than the hole-free structure of the nested array

and nested CADiS, and comparable number of unique lags

to the sparsest CADiS. The number of consecutive lags of

the TCAs are around 75 percent to those of nested arrays

which showcases their application in both subspace and CS-

based DOA estimation methods. Moreover, they can be easily

constructed for an arbitrary number of sensors. TCAs have

a significantly sparser array structure with robustness against

severe mutual coupling especially when using CS based DOA

estimation. With increasing array size, TCAs also offer better

performance in parameter estimation than super nested arrays

and MRA for both CS and SS-MUSIC based methods in the

presence of mutual coupling.

REFERENCES

[1] S. Pillai, Array Signal Processing. New York, NY, USA:

Springer, 1989.

[2] H. L. Van Trees, Optimum Array Processing, Part IV of

Detection, Estimation, and Modulation Theory. New

York: Wiley, 2002.

[3] Q. Shen, W. Liu, W. Cui, and S. Wu, “Underdetermined

DOA estimation under the compressive sensing frame-



14

work: A review,” IEEE Access, vol. 4, pp. 8865–8878,

2016.

[4] A. Moffet, “Minimum-redundancy linear arrays,” IEEE

Transactions on Antennas and Propagation, vol. 16,

no. 2, pp. 172–175, March 1968.

[5] M. Ishiguro, “Minimum redundancy linear arrays for a

large number of antennas,” Radio Science, vol. 15, no. 6,

pp. 1163–1170, 1980.

[6] G. Bloom and W. Golomb, “Application of numbered

undirected graphs,” Proc. IEEE, vol. 65, no. 4, pp. 562–

570, April 1977.

[7] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel

approach to array processing with enhanced degrees

of freedom,” IEEE Transactions on Signal Processing,

vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[8] I. Gupta and A. Ksienski, “Effect of mutual coupling on

the performance of adaptive arrays,” IEEE Transactions

on Antennas and Propagation, vol. AP-31, no. 5, pp.

785–791, Sep 1983.

[9] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-

prime samplers and arrays,” IEEE Transactions on Signal

Processing, vol. 59, no. 2, pp. 573–586, Feb. 2011.

[10] P. Pal and P. P. Vaidyanathan, “Coprime sampling and

the MUSIC algorithm,” in Proc. IEEE Digital Signal Pro-

cessing Workshop and IEEE Signal Processing Education

Workshop, Sedona, US, January 2011, pp. 289–294.

[11] F. S. Rawnaque and J. R. Buck, “Comparing the effect

of aperture extension on the peak sidelobe level of

sparse arrays,” Journal of the Acoustic Society of America

Express Letters, vol. 142(5), pp. 467–472, 2017.

[12] R. Schmidt, “Multiple emitter location and signal pa-

rameter estimation,” IEEE Transactions on Antennas and

Propagation, vol. 34, pp. 276–280, March 1986.

[13] C. L. Liu and P. P. Vaidyanathan, “Remarks on the spatial

smoothing step in coarray MUSIC,” IEEE Signal Pro-

cessing Letters, vol. 22, no. 9, pp. 1438–1442, September

2015.

[14] K. Han and A. Nehorai, “Wideband gaussian source

processing using a linear nested array,” IEEE Signal

Processing Letters, vol. 20, pp. 1110–1113, Nov 2013.

[15] K. Han and A. Nehorai, “Improved source number de-

tection and direction estimation with nested arrays and

ULAs using jackknifing,” IEEE Transactions on Signal

Processing, vol. 61, pp. 6118–6128, Nov 2013.

[16] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized co-

prime array configurations for direction-of-arrival estima-

tion,” IEEE Transactions on Signal Processing, vol. 63,

no. 6, pp. 1377–1390, March 2015.

[17] Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-

based DOA estimation using co-prime arrays,” in Proc.

IEEE ICASSP, Vancouver, Canada, May 2013, pp. 3967

–3971.

[18] Q. Shen, W. Liu, W. Cui, and S. Wu, “Extension of

co-prime arrays based on the fourth-order difference co-

array concept,” IEEE Signal Processing Letters, vol. 23,

pp. 615–619, May 2016.

[19] M. I. Skolnik, Introduction to Radar Systems. New York,

NY, USA: McGraw Hill, 2001.

[20] C. A. Balanis, Antenna Theory: Analysis and Design.

New York, NY, USA: Wiley, 2016.

[21] B. Friedlander and A. J. Weiss, “Direction finding in

the presence of mutual coupling,” IEEE Transactions on

Antennas and Propagation, vol. 39, no. 3, pp. 273–284,

1991.

[22] T. Svantesson, “Modeling and estimation of mutual cou-

pling in a uniform linear array of dipoles,” in Proc.

IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 5, 1999, pp. 2961–2964.

[23] T. Svantesson, “Mutual coupling compensation using

subspace fitting,” in Proc. IEEE Sensor Array Multichan-

nel Signal Process. Workshop, 2000, pp. 494–498.

[24] E. BouDaher, F. Ahmad, M. G. Amin, and A. Hoorfar,

“DOA estimation with coprime arrays in the presence of

mutual coupling,” in Proc. Eur. Signal Process. Conf.,

2015, pp. 2830–2834.

[25] C. Liu and P. P. Vaidyanathan, “Super nested arrays:

Linear sparse arrays with reduced mutual coupling Part I:

Fundamentals,” IEEE Transactions on Signal Processing,

vol. 64, no. 15, pp. 3997–4012, August 2016.

[26] C. Liu and P. P. Vaidyanathan, “Super nested arrays

linear sparse arrays with reduced mutual coupling Part II:

Higher order extensions,” IEEE Transactions on Signal

Processing, vol. 64, no. 16, pp. 4203–4217, August 2016.

[27] J. Liu, Y. Zhang, S. Ren, and S. Cao, “Augmented nested

arrays with enhanced DOF and reduced mutual cou-

pling,” IEEE Transactions on Signal Processing, vol. 65,

pp. 5549–5563, 2017.

[28] R. Rajamki and V. Koivunen, “Sparse linear nested array

for active sensing,” in 2017 25th European Signal Pro-

cessing Conference (EUSIPCO), Aug 2017, pp. 1976–

1980.

[29] M. Yang, L. Sun, X. Yuan, and B. Chen, “A new nested

MIMO array with increased degrees of freedom and hole-

free difference coarray,” IEEE Signal Processing Letters,

vol. 25, no. 1, pp. 40–44, Jan 2018.

[30] J. Shi, G. Hu, X. Zhang, and H. Zhou, “Generalized

nested array: Optimization for degrees of freedom and

mutual coupling,” IEEE Communications Letters, vol. 22,

no. 6, pp. 1208–1211, June 2018.

[31] K. Adhikari and J. R. Buck, “Spatial spectral estimation

with product processing of a pair of colinear arrays,”

IEEE Transactions on Signal Processing, vol. 65, pp.

2389–2401, May 2017.

[32] A. Raza, W. Liu, and Q. Shen, “Thinned coprime arrays

for DOA estimation,” in Proc. of the European Signal

Processing Conference, 2017, pp. 395–399.

[33] Q. Shen, W. Liu, W. Cui, S. L. Wu, Y. D. Zhang, and

M. Amin, “Low-complexity direction-of-arrival estima-

tion based on wideband coprime arrays,” IEEE Trans-

actions on Acoustics, Speech, and Language Processing,

vol. 23, pp. 1445–1456, Sep 2015.

[34] Q. Shen, W. Liu, W. Cui, and S. Wu, “Extension of

nested arrays with the fourth-order difference co-array

enhancement,” in 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP),

March 2016, pp. 2991–2995.



15

[35] D. A. Linebarger, I. H. Sudborough, and I. G. Tollis,

“Difference bases and sparse sensor arrays,” IEEE Trans-

actions on Information Theory, vol. 39, no. 2, pp. 716–

721, March 1993.

[36] Golomb Rulers and Costas Arrays. [Online]. Available:

http://datagenetics.com/blog/february22013/


