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Abstract 

The influence of long-term suspended sediment dynamics on stormwater pond performance 

is not negligible, but often neglected in pond design and performance evaluation.  This paper 

provides systematic simulated quantification of long-term suspended sedimentological effects 

on stormwater pond performance.  Integrated hydrological and two-dimensional hydro-

morphodynamic modelling and simulations were carried over a 32-year-period (1984-2015) 

covering 3896 rainfall events with a wide range of rainfall volumes, durations and intensities.  
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Three event-based hypothetical rainfall scenarios, non-flood condition (5-year), sewer design 

condition (30-year), and river flood condition (100-year) rainfall events with 1-hr duration 

were also simulated for comparison between the traditional event-based approach and the 

novel approach presented in this study.  Simulation results show that the flood peak 

attenuation and delay are more pronounced for small (< 5-year) and medium (< 30-year) 

flood events.  The long-term continuous simulation results indicate that, the pond provides 

positive annual trap efficiencies varying from 2% to 69% for 31 of 32 years, providing, long-

term water quality benefits downstream.  However, rainfall events in year 2012 flush out the 

accumulated sedimentation as a shock load to the downstream river, leading to a negative 

trap efficiency of -11%.  The spatially averaged sediment deposition rate, as predicted by the 

model, varies with mean of 2 (1.34) cm/year over the study period, which resulted in a 24% 

loss in the pond’s volume over 32 years.  The impacts of the loss in storage on pond flood 

attenuation capacity are explored at regular time intervals over the study period.  The results 

indicate that reduction in the pond’s flood attenuation capacity is relatively more pronounced 

for medium (30-year) and extreme (100-year) flood events than the frequent small flood (5-

year) events.  The variation in annual sediment loading with rainfall quantities and patterns 

are also explored. 

 

Keywords: Stormwater ponds, Long-term performance; Urbanisation; Flood resilience; 

Sediment dynamics, Hydro-morphodynamic modelling 
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1. Introduction 

1.1 Background 

In recent years, stormwater ponds (a.k.a. retention ponds, wet ponds, wet extended detention 

ponds) are increasingly being regarded as the promising option for stormwater management 

(Lawrence et al., 1996; Krishnappan and Marsalek, 2002; Biggs et al., 2005) in the UK and 

many other countries.  Stormwater ponds provide a range of benefits including flood 

attenuation, sediment trapping, treatment of diffuse pollution, health and wellbeing, and 

attract a diverse range of water birds and aquatic biota (Lawrence and Breen, 1998; Bishop et 

al., 2000; Persson and Pettersson, 2009; Woods Ballard et al., 2015).  In stormwater quality 

management, sediment control is an essential, integral and dynamic part of the system 

(Persson and Wittgren, 2003).  The catchment’s characteristics and local climate play an 

important role in the amount and timing of sediment delivery to river systems (Ashmore and 

Day, 1988; Asselman et al., 2003; Lawler et al., 2003; Yang et al., 2003; Zhu et al., 2008; 

Bussi et al., 2016).  Sedimentation provides various benefits to river ecosystems by supplying 

necessary nutrients to maintain high floodplain productivity that enables succession and 

transitions between habitats (Ward and Stanford, 1995; Mouw et al., 2009).  However, excess 

sedimentation in urban rivers may lead to a number of adverse ecological and environmental 

consequences as the loading of suspended sediment from an urban environment is 

significantly higher than that in rural catchments (Arias et al., 2013; Poleto et al., 2009).  

This is because increased impermeable surfaces in the urban environment shield and arrest 

sources of coarse material and disproportionally increase fine materials in stormwater runoff 

(Brodie and Dunn, 2009; Savage, 2005).  Fine sediments harbour nutrients, pollutants and 

coliform bacteria which are generated from the urban environment and transported by storm 

runoff (Jartun et al., 2008).  These stresses the biological, chemical and physical integrity of 
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the receiving water through eutrophication, toxification, limited permeability and reduced 

oxygen delivery.  Further siltation reduces the flow capacity of the river channel and 

functional capacity of the stormwater systems (Butler and Karunaratne, 1995) that can 

increase downstream flood risk.  Moreover, contaminants associated with suspended 

sediment particles and dissolved solutes in stormwater runoff are rather difficult to manage 

than coarse particles (Birch et al., 2006).   

 

Stormwater ponds are generally regarded as an effective option for suspended sediment 

trapping which serves as both “nature’s supermarket” and “nature’s kidneys”.  Ponds 

improve urban runoff quality through a series of processes including sedimentation, filtration, 

chemical precipitation, microorganism-degradation and plant-adsorption (Kantrowitz and 

Woodham, 1995; Mitsch and Gosselink, 2007; Su et al., 2009).  Bioremediation, absorption 

and oxidation processes facilitate nutrient and heavy metal removal from the stormwater 

runoff (Sansalone et al., 1998; Peng et al., 2009; Woods Ballard et al., 2015).  Vegetation, or 

varying planting density and emergence, assists in increasing the surface roughness and 

enhancing fine sediment detention (Braskerud, 2001).  Furthermore, stormwater ponds 

provide flood storage through interception, which minimise the downstream flood risk by 

attenuating and delaying the urban runoff (Ellis et al., 1995; Koskiaho, 2003; Woods Ballard 

et al., 2015).  The flood attenuation and improvements in water quality derived from the 

ponds are strongly interrelated and need to be considered together to optimise their potential 

benefits and promote local actions (Lawrence et al.,1996; Wilkinson et al., 2014).  Despite 

the recognised multiple benefits, there are still concerns over the long-term performance of 

ponds in urban catchments as the performance of the ponds varies considerably with rainfall 

and flow conditions.   
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In the UK, most of the guidelines on sustainable drainage systems have come from industry 

research bodies (e.g. CIRIA, Woods Ballard et al., 2015), so there is relatively limited 

academic work exploring the long-term hydrological performance of the ponds over their 

whole life cycle using numerical methods.  This is partly attributed to the complex physical 

processes associated with the flow and sediment dynamics in the ponds and the lack of good 

quality (finer resolution and long-term) spatial and temporal field data sets to calibrate and 

validate numerical models (Hall et al., 1993; Deletic et al., 2000; Willems, 2013).  The long-

term impact of sediment erosion, transport and deposition in ponds on flood attenuation 

capacity is significant but seldom considered in planning urban ponds (Verstraeten and 

Poesen, 1999).  In contrast, there are adequate guidelines on hard engineering measures 

which are generally regarded as mathematically more robust and predictable.  In this context, 

it is essential to develop numerical methods and tools to evaluate the long-term performance 

of the stormwater ponds to bridge the gap between hard engineering approaches and natural 

systems.   

 

1.2 Numerical methods 

Numerical methods which are typically adopted to evaluate the performance of stormwater 

ponds can be categorised as: black box, conceptual and hydrodynamic.  The first two types 

are relatively simple, and demand modest data compared to the third; black box and 

conceptual models are commonly used to predict averaged net annual sediment budget of a 

pond.  However, the empirical equations based on the Hazen surface loading theory 

(Krishnappan and Marsalek, 2002) that is mostly used in the first two types of the model may 

not adequately represent underlying physical processes of the systems.  Furthermore, the 

empirical relationship derived for a specific pond system is not always reliably transferable to 

another due to the uniqueness of each system.  Thus, the black box and conceptual models 
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have limited usefulness in capturing the pond system’s spatial and temporal dynamics, 

particularly under extreme conditions.  Hydrodynamic models, which are based on the 

deterministic solution of hydraulic equations (Bruen and Yang, 2006), can provide more 

insight into the physical processes that occur within the pond system.  

 

A review of previous hydrodynamic studies demonstrates that the effect of a pond on flow 

and sediment dynamics is usually assessed using two or three-dimensional event-based 

simulations (Adamsson et al., 2003; Benelmouffok and Yu, 1989; Persson, 2000; Walker, 

2001).  Pender et al., (2016) adopted a one-dimensional sediment transport model using 

HEC-RAS to evaluate changes in the channel capacity after 50 years of sediment transport.    

However, these approaches inevitably have inherent limitations when fully capturing the 

hydrodynamics of the system are concerned.  Firstly, the lifespan of stormwater ponds is 

typically longer than 25 years (Woods Ballard et al., 2015), whereas deriving plausible 

rainfall and corresponding flood events to represent the diversity in the natural rainfall and 

flow scenarios is often subjective in event-based simulations.  This is because of the 

variability and intermittent nature of stormwater runoff, the runoff duration for different 

events with comparable peak flows can vary considerably (Cristiano et al., 2017; Fletcher et 

al., 2013; Gericke and Smithers, 2014).  Similarly, rainfall exhibits large natural variation in 

amount and duration.  The inherent randomness in rainfall, runoff and consequent 

sedimentation processes results in a wide range of event combinations with various sediment 

loading, durations and frequencies of occurrence of flows (van Buren et al., 1997; Werner 

and Kadlec, 1996).  This leads to practical problems in identifying the critical storm event 

that could yield the highest flow or volume for event-based simulations.  In addition, a 

considerable amount of sediment can accumulate in the retention pond over time and there is 

a potential for future remobilisation of constituents into the river system during larger flood 
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events which may exacerbate flow and pollutant levels downstream (Lawrence et al., 1996).  

Recent field-based research using novel fine sediment tracing methodology has identified that 

sediment is only temporarily detained in Blue-Green features, providing evidence of 

cumulative rainfall-runoff impact on re-suspension and conveyance of sediment within and 

through established Blue-Green features (Allen et al. 2015a, 2015b).  Event-based 

simulations neither capture the processes of sediment accumulation in the pond nor 

remobilisation into the river.  Secondly sediment dynamics in the pond are a three-

dimensional process with eddies and recirculation (Adamsson et al., 1999); one dimensional 

long-term simulation may not fully capture the morphodynamic processes of the pond 

system.   

 

The dominant technical uncertainty in long-term performance limits the likely adaptation of 

stormwater ponds in urban settings.  In this regard, this study aims to provide the first 

systematic and detailed quantification of long-term performance of a retention pond with 

comprehensive consideration of flow and sediment dynamics.  This study focuses on a 

stormwater pond in the Newcastle Great Park, in the upstream part of the Ouseburn 

catchment, Newcastle-upon-Tyne, North-East England.  A conceptual hydrological model is 

used to quantify the urban runoff from the Newcastle Great Park development to the 

stormwater pond, and two-dimensional full hydro-morphodynamic model are applied to the 

study pond for simulations of both event-based scenarios and long-term flow events over a 

32-year period (1984 – 2015), so further investigating the flow and sediment dynamics in the 

pond. 
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1.3  Research Questions 

The study investigates the following research key questions: 

1. How does the stormwater pond influence flow and sediment dynamics during non-

flood conditions (5-yr), designed drainage conditions (30-year) and flood conditions 

(100-year)? 

 

2. What role does historical rainfall play in flow and sediment dynamics in the 

stormwater pond? 

 

3. How does sedimentation evolve in the ponds over time? 

 

4. How does sedimentation affect the flood attenuation capacity of the pond over time? 

 

5. How annual rainfall influences the annual sediment budget of the pond? 
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2. Study Area 

The Ouseburn is a 20 km long urban tributary of the River Tyne, located in North-East 

England, and serves as the study region (Figure 1).   

 

Figure 1 Ouseburn catchment 

The Ouseburn catchment (60.5 km2) covers large areas of urban Newcastle and North 

Tyneside (Figure 1b).  The upper reaches of the Ouseburn catchment are predominately 

agriculture and cultivated grasslands.  The mid and lower catchment occupies a large 

residential area with a population of 166,000 people in 70,000 households (Newcastle City 

Council, 2013) in the Newcastle-upon-Tyne region (Figure 1c).  The catchment geology 
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comprises the Carboniferous Middle Coal Measures (British Geological Survey, 2016).  The 

large proportion of highly developed areas increases the risk of rapid surface water and 

fluvial flooding.  The Ouseburn has a history of flooding (e.g. most recent flooding in June 

and August 2012), which had very serious environment and socio-economic impacts 

(Newcastle City Council (2011, 2013, 2016)).  The standard average annual rainfall (SAAR) 

of the Ouseburn catchment is 666 mm (calculated between 1985 and 2014, with a minimum 

314 mm in 1989 and a maximum of 1053 mm in 2012) (FEH, 2015).  The SAAR is relatively 

lower than other regions at a similar latitude in the world due to warming influence of Gulf 

stream through the North Atlantic drift.  Furthermore, Newcastle is in the rain shadow of the 

northern Pennines which protects the city from heavy rainstorms.  The Ouseburn catchment 

currently fails to comply with the EU Water Framework Directive (WFD) water quality 

targets for Good status, due to high faecal, ammonia and phosphate levels which have an 

adverse impact on the river’s ecological health (Turnbull and Beven, 1995; Baker et al., 

2003; Newcastle City Council, 2016).  Ouseburn is considered as a typical complex and 

challenging UK urban river as a result of a variety of pollution sources and their dispersed 

nature, which are difficult to quantify and address.   

 

The study area focused on the midsection of the Ouseburn and, Newcastle Great Park 

development which is the largest housing and commercial development in the North-East 

England encompassing 2500 residential dwellings, commercial premises and community 

facilities when complete.  The development site covers 4.85 km2 (485 ha), sub-divided into a 

number of development cells. 
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Figure 2 Newcastle Great Park and Study Pond 

 

In order to comply with Environment Agency controls on discharge rates to the watercourse 

based on greenfield equivalent flows, a number of stormwater retention ponds are integrated 

with the development site.  This study focuses on the impact of a specific pond (Figure 2a) on 

long-term flow characteristics and suspended sediment dynamics.  

 

The pond serves a catchment area of 0.4 km2 represented by development cells F and LC 

immediately north of it (Figure 2a) with a total impermeable area of 0.2 km2.  Cell LC 

consists of school, community centre and health centre, and the cell F is primarily for 

residential (850 properties) and transportation land uses. Urban runoff from cells F and LC 

are discharged into the pond through sewer network (Figure 2a).  The pond can be bounded 

within a rectangular shape (67 m x 77 m, length x width), and it has a surface area of about 

2,400 m2 and an average depth of 2.2 m (volume of 6,533 m3).  A 3.5m long concrete apron 

is placed in front of inlet to the pond to ensure the flow entering the pond is evenly 

distributed so that stagnant zones do not develop over time in the pond.  The pond is densely 
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covered with emergent and submerged aquatic vegetation (Figure 2b).  The weir at the 

outfalls regulates the rate of discharge to the Ouseburn River for a range of water levels, 

thereby filling the pond during storm events.  

 

3. Data and Methodology 

The study adopts ReFH rainfall-runoff model to translate historical rainfall series into flow 

series which is then fed into the two-dimensional Layer-based Hydro-Morphodynamic Model 

(LHMM) to understand long-term suspended sedimentological effects on stormwater pond 

geometry.  The methodology adopted in the integrated hydrological and hydro-

morphodynamic model setup and simulation is shown in Figure 3.   

 

 

 

 

 

 

 

 

 

 

 

 



  

13 
 

 

Figure 3 Flow chart for integrated hydrological and hydro-morphodynamic modelling 

procedure 

 

The Ouseburn catchment’s topography, rainfall, land-use and sediment data sets were 

systematically collated from data provided by the Environment Agency and the UK Ordnance 

Survey along with design drawings of the Newcastle Great Park and field investigations.  The 

Digital Terrain Model (DTM) data sets at 1 m resolution were obtained from the 

Environment Agency and represents the topography of the Ouseburn catchment.  To assess 

relative impact of the pond on flood event hydrologic and morphologic responses, two DTM 

data sets were incorporated in LHMM model setup.  
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Figure 4 Predevelopment aerial view (a), topography (b) and current aerial view (c), 

topography (d) 

 

The current DTM represents the existing topography (‘with pond’) condition (Figure 4 c,d) 

and the DTM from the year 2000 represents the predevelopment stage of the terrain (‘without 

pond’) (Figure 4 a,b) scenario in the hydro-morphodynamic model.  In addition, a river 

survey data along the Ouseburn was obtained from the Environment Agency ISIS model.  

The survey data was used to modify the channel and bank elevations in the DTM.  Further, 

design drawings of the retention ponds were obtained from Newcastle City Council which 

were used to incorporate finer details such as design levels of the inlet, outfall weir control 
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elevation and existing links with other ponds in the LHMM model.  As part of the study, a 

number of field visits have been made to assess existing geographic and environmental 

features of the stormwater pond and Newcastle Great Park development.  The field surveys 

allowed verification of the available data sets and maximised their usage by integrating them 

in the model development.   

 

4.  Numerical modelling 

4.1 ReFH - Hydrological Model setup 

The Revitalised Flood Hydrograph (ReFH) model is a physically-based conceptual rainfall-

runoff model (Kjeldsen et al., 2005; Kjeldsen, 2007).  The ReFH model includes three 

subroutines: a loss model, routing model and a base flow model.  The ReFH model allows a 

more direct and transparent quantification of flood-generating mechanisms, and the concept 

of seasonal variation in soil moisture content and design rainfall.   

 

The ReFH rainfall-runoff model provides a basis for hydrological modelling which will 

generate an understanding of the erosion process in the stormwater pond.  Based on field 

assessments, details of the Newcastle Great Park development master plan (Figure 2) and 

Northumbrian Water drainage network drawings, the contributing cells of the development to 

the study pond are identified through flow schematisation.  In the next part, the Newcastle 

Great Park OS Mastermap data sets were used to classify impermeable areas that drain to the 

pond using systematic GIS analysis of land use feature classes.  The soil data and catchment 

characteristics of the study region were obtained from the British Geological Survey and 

Flood Estimation Handbook data respectively.  The catchment land use and geology data sets 

allow establishment of the initial infiltration loss and runoff characteristics in the ReFH 

hydrological model.   
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In the first part of the study, the ReFH rainfall-runoff model is calibrated with the field data 

sets.  The continuous flow measurements from 2015 January to May at the pond’s inlet were 

taken as part of this study (Figure 5).   

 

Figure 5 Measured and simulated flow at the pond inlet 

A major proportion of the measured flows is low except for three larger flow events that 

occurred between 02/05/15 and 11/05/ 2015.  Since the low flows are mainly driven by the 

base flow, the rainfall driven larger flow events are used in the ReFH hydrological model 

calibration (Figure 5).  The drainage length parameter (DPLBAR) which implicitly represents 

the drainage network of the catchment in the model is iteratively adjusted to match the 

measured flow at the inlet as part of the calibration process.  Figure 5 shows that the ReFH 

model produces outflow hydrographs that compare favourably with measured hydrographs.  

However, it should be noted that the limitations of the ReFH approach are the same as those 

in most conceptual rainfall-runoff models.  The ReFH model slightly underestimates the 

magnitude and timing of the flood peak for most of the simulated hydrograph, except the last 

one.  This difference is partly due to pipe networks and ground water levels which are not 
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explicitly included in the ReFH hydrological model and calibration process.  Since the 

primary aim of the study is to extend runoff series to evaluate long-term sediment dynamics, 

this level of variation in the flow input is deemed to be adequate.  In the next stage, the ReFH 

model is used to transform 1-hr duration three hypothetical rainfall events into flood 

hydrographs such as non-flood (5-year), sewer design (30-year) and river flood (100-year) 

conditions (Figure 7), for event-based simulations.   

 

Historical rainfall data sets from Jesmond Dene gauging station (EA #19356) were obtained 

from the Environment Agency.  The rainfall data sets were carefully analysed for anomalies 

and infilled for missing data using the neighboring rain gauge data sets.  The rainfall events 

which last more than 1hr or rainfall depth which exceeds 1mm in a shorter time interval are 

included in the long-term sediment simulation (Figure 7a).  In total 3896 rainfall events were 

identified over the 32-year period (1984 – 2015) from the 15 minutes interval historical 

rainfall records.  Their use allows the incorporation of a wide range of rainfall volumes, 

durations and intensity combinations to be incorporated in the hydrological simulations to 

represent the real-life scenario (Figure 6).   
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Figure 6 Observed rainfall depth-duration-intensity relationship 

 

The rainfall events show considerable variation in rainfall duration (0.25 - 42.75hr) and 

amount (0.6 – 93.8mm) (Figure 6(a)).  The major proportion of historical storm events in the 

study period (1984 - 2015) are small events (< 5 year).  However, they can have considerable 

influence on the urban runoff quality, as the cumulative effect of a large number of small 

storms is critical in stormwater quality management as opposed a few extreme events in flood 

management (Hall et al., 1993; Urbonas and Stahre, 1992).  Furthermore, the more frequent 

flow events (< 5-year) typically cause sediment hotspots whilst larger events (> 25-year) re-
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suspend the accumulated sediments in stormwater ponds and on floodplains (Ahilan et al., 

2016; Pender et al., 2016).  Thus, it is necessary to incorporate a range of potential flood 

events in morphodynamic simulations in order to fully capture the dynamics of sediment 

deposition, erosion and transportation processes.  There is also considerable variation in the 

intensity of the identified rainfall events over the study period Figure 6 (b).  Amongst the 

3896 studied historical storm events, 75% of the rainfall intensity are below 1.6 mm/hr.  The 

long-duration less-intense frontal rainfall events mostly occur in winter months which can 

cause fluvial flooding.  Also, several short-duration high intensity convective rainfall events 

occur in summer months, often leading to pluvial flooding in the urban catchment, such as 

the 20.32 mm/hr event on 28/06/2012, later dubbed the ‘Toon Monsoon’ (Newcastle City 

Council, 2013) and the 20.8 mm/hr event (02/08/2014) which caused flooding in Newcastle 

city (Newcastle City Council, 2015, 2016).  The combination of convective and frontal storm 

events in the data sets enables investigation of the influence of the pond on flow and sediment 

dynamics in detail over long periods of time. 

 

In the next part, the identified historical rainfall events are continuously routed through the 

ReFH hydrological model to generate corresponding flow events.  The flood peak of the 

simulated flow events varies from 0.5 m3/s to 3.6 m3/s.   

 

4.2  LHMM - Hydro-Morphodynamic Model setup 

The Layer-based Hydro-Morphodynamic Model (LHMM) is a two-dimensional (2D) non-

equilibrium sediment transport model (Guan et al., 2014, 2015a, 2015b). The model 

encompasses three modules: hydrodynamic, sediment transport and bed deformation models.  

The hydrodynamic model incorporates the mass and momentum exchange between flow and 

non-cohesive sediment and updates the hydraulic and sediment quantities per grid cell, and 
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per time step.  The sediment transport model controls the sediment mass conservation whilst 

the bed deformation model updates the bed elevation under erosion and deposition.  The 

model solves fully coupled shallow water equations (SWEs) and sediment transport model by 

using a robust Godunov-type finite volume method based on rectangular grids.  The model 

can be used to simulate flow propagation, transport of both bedload and suspended load, as 

well as the resultant morphological change.  The LHMM has been successfully applied in 

modelling sediment transport and morphological changes during flooding in a number of 

laboratory and field-based case studies (e.g. Ahilan et al., 2016, Guan et al., 2016; Guan et 

al., 2018).  The hydro-morphodynamic simulations allow detailed inspection of flow 

velocities, water levels and suspended sediment dynamics in the retention pond for a range of 

flood conditions.   

 

The field evidence in the Newcastle Great Park development shows that suspended load is 

dominant in the stormwater pond.  This study therefore adopts LHMM with a suspended load 

model which is governed by an advection-diffusion equation in the model.  The DTM and 

river survey data is used to represent the topography of the pond and the outlet (Figure 4b, d).  

The pond is densely covered, primarily around the periphery by the native vegetation (Figure 

2b), the Manning roughness (n = 0.04) is used to represent the surface roughness in the 

hydro-morphodynamic model.  Sediment surveys were carried out using sediment traps and 

the particle size distribution (PSD) of samples was determined by laser diffraction using a 

Malvern Mastersizer S (long bench).  The PSDs were obtained from the sampling at the pond 

inlet: D10 = 5.00 µm (fine silt), D50 = 12 µm (fine silt), D90 = 50 µm (silt), and were equally 

distributed as an input in the upstream boundary.  The LHMM model requires a relationship 

between the stream flow, turbidity and suspended sediment concentration at the upstream 

boundary.   
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In the absence of long-term sediment data measurements in the Ouseburn catchment, the 

regression relationships between flow, turbidity and suspended sediment concentration were 

transferred from the analogue catchment (Johnson Creek, Portland), which exhibited similar 

land use patterns to the Ouseburn catchment (Ahilan et al., 2016).  The following regression 

relationships between stream flow (Q), turbidity (T) and suspended sediment concentration 

(SSC) were established based on the continuous stream flow, turbidity and suspended 

sediment concentration measurements over four water years (2007-2010) (Stonewell and 

Bragg (2012)): 

 logଵ ܶ ൌ ͲǤͶͷͷ logଵ ܳ  ͲǤʹͶ͵                                                                    [1] 

 logଵ ܥܵܵ ൌ ͳǤͲʹͶ logଵ ܶ  ͲǤͳͶ͵ logଵ ܳ െ ͲǤͶ                                                [2] 

 

where Q in m3/s, T in Formazin Nephelometric Units (FNU) and SSC in mg/l.  The Eqn. 1 

and Eqn. 2 were used to establish the boundary condition at the pond inlet.  The model 

prediction is initially validated with measured sediment data.  Sediment samples were taken 

in the pond at monthly intervals over six months between 30/01/2015 and 23/06/2015.  

Samples were collected using standard surface measures (British Standards Institution (BSI)) 

and sediment traps and core samples from six locations in the bed of the pond, one at the 

pond outlet and three within the receiving water body (Figure 2c); the samples were collected 

monthly. 

 

The samples represent the total SSC and total bed deposition at each of the six locations.  In 

the model validation, flow events between 23/04/2015 to 26/05/2015 were considered and 
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results compared with observed sediment data of this period.  The other five months are 

largely dominated with low flow and were excluded from the simulation (Figure 5).  The 

simulated and observed sedimentation depth at each of the six locations is shown in Table 1. 

 

Table 1 Simulated and observed sedimentation depth in the pond between 23/04/2015 to 

26/05/2015 

 

Sampling 

location 

Simulated 

depth 

(mm) 

Measured 

depth 

(mm) 

1 10.6 8.7 

2 7.1 7.7 

3 7.8 7.6 

4 4.0 7.4 

5 3.2 2.9 

6 0.1 0.3 

 

The measured and simulated sedimentation depths compare reasonably well for most of the 

locations in the pond.  The discrepancies are mainly because of vegetation on the sediment 

dynamics and approximation in the input sediment data sets.  Since the primary objective of 

this study is to understand long-term sediment dynamics in the pond, this level of variation in 

the model prediction is deemed to be acceptable.
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5. Results and Discussions 

5.1 Hydrodynamics of the pond  

Figure 7 b,c,d illustrates the hydrodynamic performance of the pond for the three 

hypothetical flow events: non-flood condition (5-year), sewer design condition (30-year) and 

flood condition (100-year).   

 

  

  

Figure 7 Inflow and attenuated outflow hydrographs of the 5-year, 30-year and 100-year 

flow events 
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Figure 7 b-d shows that all three flow events experiences attenuation and delay in flood peak 

at the pond outlet.  However, the effects are more pronounced for more frequent flow event 

(5-year) than extreme event (100-year).  The pond provides flood storage of 4.86 x 103 m3 

and 6.25 x 103 m3 for 5 and 100-year flood events which reduces the flood peak by 85% and 

30% respectively.  The pond is originally designed to provide green field runoff for the 30-

year flood event to the Ouseburn river, which is equivalent to 0.73 m3/s.  However, 

simulation results show that attenuated flow for 30-year event is 1.7 m3/s, which is much 

higher than design flow (0.73 m3/s).  This inefficiency in pond flood attenuation capacity is 

partly due to pond design, pond location within a catchment and the land use within the 

contributing catchment.  The pond provides detention times of 0.6hr and 0.2hr for 5-year and 

100-year events respectively which is a measure of how much time water is retained in the 

stormwater pond before being discharged into the river.  The detention time is estimated by 

the time lag between the centroid of the inflow and outflow hydrographs.  The detention time 

is one of the critical parameters which influences the sedimentation and associated water 

quality benefits from the pond.  Longer detention times allow sediment to settle in the pond 

and yield higher water quality benefits.  To investigate impact of the stormwater pond on 

historical flow events similar analysis is carried out for the largest 39 historical events from 

the 3896 events. 
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Figure 8 Peak flows at the inlet and outlet of the pond 

 

The flood peak and volume of the identified historical events vary from 0.3 m3/s to 3.8 m3/s 

and 1,950 m3 to 40,632 m3 respectively.  Figure 8 shows the maximum inflow and outflow of 

the 39 historical events at the pond inlet and outlet respectively.  It indicates that, more 

frequent small (< 5-year) and medium (< 30-year) flow events experience relatively higher 

flood peak attenuation, e.g. up to 77% (June 6, 1990), as a significant proportion of the small 

and medium flow contributes to filling up the available storage in the stormwater pond.  

Analysis is also shown that, stormwater pond provides minimum volume of 967m3 (15 % of 

pond volume) for these 39 historical events. In the higher flow events, flood attenuation on 

inflow hydrographs are diminished as most of the detention storage of the pond is filled with 

a relatively smaller proportion of flow.  The largest historical event occurred on September 5, 

2012 where 15% reduction in the flood peak magnitude at the pond outlet was experienced.   

 

5.1.1  Variation in detention efficiency and practical implications 

Further analysis is carried out to investigate the impact of the pond on detention efficiency 

(Equation 3) of three hypothetical and 39 historical flow events.   
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 Detention efficiency ሺΨ Ψሻ ൌ Peak discharge reduction ሺΨሻArea controlled by detention ሺΨሻ                                      ሾ͵ሿ   
 

where ‘peak discharge reduction (%)’ refers attenuation in inflow peak with respect to its 

peak and ‘area controlled by detention (%)’ is the ratio between pond surface area and 

contributing drainage area respectively.  Figure 9 (a) and (b) explore the influence of flow 

peak and flow volume on detention efficiency of the stormwater pond, whereas Figure 9 (c) 

and (d) investigate their impacts on the detention time.   

 

 

  

  

Figure 9 Variation of the detention efficiency and detention time with flow peak and volume 
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The detention efficiency exponentially decreases with flood magnitude, Figure 9 (a) and (b).  

Small and medium flow events experience higher detention efficiency than larger flow 

events.  However, detention efficiency varies considerably for small and medium flow events 

due to the stochastic nature of rainfall and its influence on runoff peak and volume 

combinations.  This is partly due to a mixture of different flood types in the historical events 

which reduces the consistency of the regression relationships between the detention 

efficiency, flow peak and flood volume.  In the UK, the long-duration less-intense frontal 

storm events occurring in winter months mostly generate flood events with higher volumes 

and lower peaks, while short-duration high intensity convective rainfall events in summer 

months result in runoff with lower volume and higher peak discharge.   

 

Figure 9 (c) and (d) shows the variation in the detention time with flow peak and volume 

respectively for this pond.  The detention time exponentially reduces with the flood 

magnitude (fitted with logarithmic distribution).  The higher flow peak and volume events 

experience relatively shorter detention time compared with small and medium events.  The 

flow volume and flow peak exhibit a relatively stronger relationship with detention efficiency 

and detention time respectively.  Since detention efficiency and detention time are strongly 

associated with flood attenuation and sedimentation capacity of the stormwater pond, the 

design of detention basins where attenuation storage is involved should consider both the 

flood peak and volume of a number of potential flood events (Gaal et al., 2015).  Given the 

inherent variability and presence of intrinsic relationships between detention efficiency, 

detention time and hydrograph properties (peak, volume and duration), the design 

hydrographs of the stormwater pond should be derived from the multivariate joint distribution 

rather than univariate functions.  Using the joint probability distribution function of rainfall 

volume and duration together with catchment characteristics, a number of studies (Shiau, 
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2003; De Michele et al., 2005; Chen et al., 2010; Zegpi and Fernandez, 2010; Graler et al., 

2013; Requena et al., 2013, Serinaldi and Kilsby, 2013; Gaal et al., 2015) have made an 

attempt to establish a deterministic relationship in hyetograph and hydrograph properties.  

This kind of approach should be integrated with pond design guidelines that will enable the 

calculation of the effect of inflow on storage, and the efficient design of the stormwater pond 

system. 

 

5.2 Morphodynamics of the stormwater pond 

The morphodynamic simulation results for three flow events for both the ‘with’ and ‘without’ 

pond scenario (Figure 10). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 5-year without Pond (b) 5-year with Pond 

  

(c) 30-year without Pond (d) 30-year with Pond 
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(e) 100-year without 

Pond 

(f) 100-year with Pond 

Figure 10 Sediment deposition for 5-year, 30-year, 100-year events for ‘with’ and ‘without’ 

pond scenarios   

 

As expected, a considerable proportion of the sediment from the Newcastle Great Park is 

trapped in the pond under all three event-based scenarios when compared ‘with’ and the 

‘without’ pond scenario.  In the pond scenario, the flow depth increases and velocity 

decreases which causes settling of coarse sediment at the pond inlet.  Density currents during 

larger flood events transport finer sediment particles closer to the outlet.  The amount of 

sediment detained in the pond is 4.24 m3 and 7.04 m3 for 5-year and 100-year event 

respectively.  The sediment hotspots in east and west sides of the pond are partly due to 

localised depression storage and presence of dense vegetation in these regions.  To 

proactively increase retention time and facilitate sedimentation, the design of the pond could 

be improved by use of inlet that dissipates inflow energy to reduce mixing, create an island in 

front of inlet and install porous baffles with native vegetation which spreads the flow across 

the pond and lengthen the flow path east-west direction before reach to the pond outlet. 
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However, under the ‘without’ pond scenario, the volume of sediment deposited is 0.63m3 and 

3.73m3 for 5-year and 100-year flood events.  This indicates the significant benefit of the 

pond on sediment trapping.  The proportion of the incoming sediment that is captured by the 

retention pond is called the trap efficiency (Heinemann, 1984).  Table 2 compares the 

cumulative amount of sediment deposited into the pond with the total suspended sediment 

load (SSL) input at the outfall for different flood events for the ‘with pond’ scenario. 

 

Table 2 Sediment mass balance for different isolated flood events 

 5-year 30-year 100-year 

Input (SSL m3) 7.35 16.71 28.41 

Deposited in the Pond (SSL m3) 4.58 7.29 7.50 

% SSL deposit 62.03 43.63 26.40 

 

A significant proportion of the suspended sediment that comes from the development site is 

deposited in the retention pond for smaller (5-year) and medium (30-year) flow events.  UK 

CIRIA and U.S. EPA reported removal of suspended solids by stormwater ponds as high as 

67 - 81% (Woods Ballard et al., 2015) and 60 - 90% (U.S. EPA 1983).  In addition, 

Australian guidelines recommended the suspended sediment removal rate for the similar 

drainage area ratio (pond surface area/contributing catchment area) is around 80% (Healthy 

Waterways, 2006; Water by Design, 2010).  In this case the removal rate is lower because the 

short residence times and flow conditions unfavourable for settling.  The amount of sediment 

deposition increases with flood magnitude, but the percentage of the sediment trapped in the 

pond reduces when compared with total suspended sediment input for this pond over these 

simulated flood events.  This is because the larger flood event creates high energy and a 

turbulent environment in the pond which increases the degree of mixing of the fine sediment 
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material in suspension and transports this towards the outlet and subsequently, the river.  The 

largest event also has the lowest detention time which limits the sediment settling in the pond. 
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(31) year 30 (32) year 31 (33) year 32    
Figure 11 Cumulative annual sediment deposition from 1984 to 2015 
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Figure 11 shows the simulated temporal and spatial variation of the sediment deposition in 

the pond over the 32-year study period (1984-2015).  It indicates that over time, sediment 

deposition non-linearly increases and moves towards the pond outlet direction.  Most of the 

historical events with small and medium magnitude lead to temporary sediment detention and 

sediment aggradation in the pond.  However, an extreme rainfall event in Year 2012 - 29, that 

influences the overall sediment budget by flushing out the accumulated sediment as a shock 

load to the river system.  On one hand, this process considerably reduces the sedimentation, 

enabling the pond volume and flood resilience capacity to re-establish.  On the other hand, 

the shock load could lead to elevated concentrations of sediment and pollutants, resulting in 

dissolved oxygen depressions due to oxidation of contaminants.  This can have adverse 

impact on water quality and biodiversity.  However, it is difficult to establish the water 

quality standard for the stormwater systems due to the stochastic nature of rainfall events and 

the non-linear relationship between flow and sediment transport rate.  The wastewater quality 

standards are thus unable to be adopted to a stormwater system due to randomness of rainfall 

events.   

 

According to the model prediction at the end of the 32 years long-term simulation, 1575 m3 

of sediment was deposited in the pond which is equivalent to 34% of the total sediment input.  

This resulted in a 24% loss in the pond’s volume which is equivalent to a sedimentation depth 

of 0.65 m throughout the pond.  The sediment aggradation could diminish the storage 

capacity while increasing the concentration of contaminants in the pond and eventually the 

groundwater beneath the pond.  The temporal and spatial average rate of sediment 

accumulation of 2 cm/year is estimated as the average sedimentation depth divided by the 

pond cross sectional area and the period of accumulation (32 years).  This low accumulation 



  

34 
 

rate is supportive of temporary sediment detention within the pond and continuous 

conveyance of fine urban sediment pollution through the pond over cumulative events 

(indicated by fine sediment tracer studies undertaken within this pond illustrating <5% long-

term fine sediment detention).   

 

5.3  Accumulation rates and their comparison with other studies 

These findings on sediment dynamics in the pond are similar to previous few field-based 

studies (e.g. Yousef et al., 1994; Marsalek et al., 1997).  For example, based on a field survey 

of the Kingston stormwater pond in Ontario (Canada).  Marsalek et al. (1997) indicated 

sediment accumulation with an average rate of 2 cm/year.  This was estimated by dividing the 

average length of sediment cores by the period of accumulation (10 years), and it resulted in a 

13% loss in the permanent pond volume.  Yousef et al. (1994) indicated a sediment 

accumulation rate varying from 1 cm/year to 4 cm/year based on the in-situ field 

measurements of sediment accumulation in nine highway wet ponds in central and south 

Florida, USA.   

 

The analysis undertaken by Yousef et al. (1994) indicates that the sediment accumulation rate 

has a negative geometrical correlation with the drainage area ratio; there is a negative 

exponential trend in the sediment accumulation rate, with a sharp decline for drainage ratios 0 

- 2% and shallow decline for ratios > 2%.  In the Yousef et al. (1994) study ponds, a drainage 

area ratio of 1% and 12% yield corresponds to the maximum (4 cm/year) and minimum (1 

cm/ year) sediment accumulation rate.  For our case study, the drainage area ratio is 0.6% and 

the simulated average sediment accumulation rate vary from 0.2 cm/year to 5 cm/ year, lower 

bound of the simulation results is slightly smaller than field results presented in Yousef et al. 

(1994).  A number of factors could have contributed to this difference.  Firstly, the results 
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presented in Yousef et al. (1994) are for ponds that have been operational for 7-28 years.  The 

modelling undertaken for this pond has extended past this duration, to 32 years.  Fine 

sediment tracing experiments have illustrated the temporary nature of urban sediment 

detention (Allen et al., 2015b, 2017) and thus it could be expected that the long-term 

sediment detention efficiency (accumulation rate relative to drainage ratio) would be smaller 

due to ongoing temporary detention and conveyance.  Secondly, the differences in the two 

sets of results might have in part resulted from limitations in the input data for the hydro-

morphodynamic model; these data are obtained from the analogue catchment and are used to 

establish the regression relationships between suspended sediment concentration, turbidity 

and flow.   

 

Thirdly, inherent limitations in the hydro-morphodynamic model may hinder accurate 

representation of the effects of emergent and submerged aquatic vegetation on flow and 

sediment dynamics in the study pond (Figure 2b).  In the model, vegetation is represented by 

a higher roughness (Manning’s n); however, this representation may not fully capture the 

interaction of the vegetation in flow processes and sedimentation patterns in the pond.  The 

porous vegetation block exerts a drag resistance and alters the streamwise velocity which 

creates complex 3D flow patterns around them (Clarke, 2002).  The vegetation markedly 

reducing flow velocity and turbulence across the pond and, subsequently increasing sediment 

deposition and trapping by localised advection and porosity.  The vegetation also hinders 

scouring and resuspension during heavy rainfall events.  Fourthly, climatic variations 

between Newcastle-upon-Tyne, UK and Florida, U.S.A may result in variations in event 

occurrence and sediment wash off. The influence of a few extreme rainfall events in the study 

period in Newcastle-upon-Tyne could significantly influence the overall sediment 

accumulation rate and the comparison.  Fifthly, associated turbulence resulting from wind 
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shear stress can influence flow fields and sediment dynamics.  Wind influence was not 

included in this modelling study.  

 

Finally, the short circuiting of the flow to the eastern and western boundaries of the study 

pond to adjacent ponds (Figure 2a) is expected to occur during extreme rainfall events.  The 

case study pond and west side pond 1 (Figure 2a) are connected by an overflow pipe (~ 

300mm diameter) allowing high flows to be directly diverted into this western pond.  This 

diversion and the adjacent connected pond(s) were not included in this modelling.  The above 

factors could influence hydraulic performance and the annual sedimentation rate in the study 

pond at the Newcastle Great Park development.   

 

5.4  Overall sediment budget and implications for maintenance schedule, water 

quality and residence time 

Figure 12 shows the cumulative sediment accumulation in the pond over the 32-year study 

period (1984- 2015).  Sediment continuously accumulates in the pond from 1984 to 2015 

(except a small reduction in 2012) with an average sediment aggregation rate of 2 cm/year.   

 

Figure 12 Cumulative sediment accumulation in the pond 
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However, a extreme rainfall event occurred in June 2012 resulting in sediment erosion of 16 

m3.  The 2012 flash flooding in Newcastle-upon-Tyne was caused by the ‘Toon Monsoon’. 

On 28th June the highest rainfall with a total of 51 mm was recorded, of which 26 mm fell in 

30 minutes, 32 mm in 1 hour and 49 minutes (Figure 6).  The recorded rainfall within the 2-

hour period is equivalent to the expected rainfall for the whole month of June in the summer 

of 2012, which is regarded as the wettest summer in 100 years (Newcastle City Council, 

2013).  The rainfall return period of the June 2012 events was estimated at up to 130-year for 

periods between 1 and 2 hours.  Figure 12 also emphasis that loss of pond storage volume and 

benefit of sedimentation cannot be co-maximised.  The pond could build up with 20 cm 

sedimentation over 10 years period with the sediment accumulation rate of 2 cm/year as 

happened between 1984 – 2015 which lead to a 7.5% reduction in pond storage.  Although 

the timing of the sediment dredging is dictated by the actual depth of silt build up, it would be 

necessary to carry out major maintenance on a regular 8 to 10-year cycle to maintain efficient 

pond operation.  Sediment dredging should be organised and timed to minimise disturbance 

to freshwater habitats.  
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Figure 13 Annual sedimentation and trap efficiency of the pond 

 

Figure 13 shows the annual variation in sediment input and deposition in the pond, and the 

annual trap efficiency of the pond over the period.  It indicates that sedimentation occurs in 

the pond during 31 years of the 32-year study period (1984-2015), resulting in a positive 

overall trap efficiency.  During this 31-year period, trap efficiency varies from 69% in 1985 

to 2% in 2014.  However, in the year 2012, scouring occurred which resulted in a negative 

trap efficiency of 11%.  In other words, the range in annual sediment trap efficiency over the 

32-year study period is quite large (-11 to 69%) with the mean value of 34% (17%).  The 

large variations in the trap efficiency due to the randomness in the rainfall emphasises the 

fact that it is difficult to comprehensively model or set water quality standards for stormwater 

ponds.  Figure 14 explores the influence of annual rainfall on annual suspended sediment 

input into the pond and sediment output from the pond over the 32-year study period.   
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Figure 14 Variation of annual sediment input and output from the pond with annual rainfall 

Figure 14 (a) shows a positive correlation between annual rainfall and annual suspended 

sediment input into the pond as expected.  This is because of inherent relationships between 

rainfall, flow and turbidity as described in Equations 1 and 2, which were used to develop 

inputs for the hydro-morphodynamic model.  Since the annual runoff is a product of the 

annual rainfall, both the annual rainfall and the annual runoff depth have been used as a 

surrogate measure to estimate the annual sediment yield in a number of empirical models 

such as the Hydro-Physical model, Carson and Kirkby model (Carson and Kirkby, 1972), and 

Douglas model (Douglas, 1999).  Figure 14 (b) shows a reasonably good correlation between 
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the annual suspended sediment yields from the pond with annual rainfall.  In a typical year, a 

major proportion of the rainfall events are small (< 5-year) or medium (< 30-year), which 

generally result in causing sedimentation within the pond.  However, a few extreme rainfall 

events in a particular year could significantly increase rates of erosion, even though the 

change in annual rainfall is slight.  The annual rainfall is not always sensitive enough to 

capture the influence of extreme events on sediment dynamics as it does not delineate the 

individual event intensity or duration or the time interval between successive events.   

In order to investigate the long-term impact of sediment aggradation in the pond on flood 

attenuation capacity, hydrodynamic simulations are carried out after a simulated operational 

period of 5 years, 10 years, 20 years and 30 years for the pond, with a simulation of three 

isolated flood events after each operational duration.  Table 2 shows the impact of sediment 

accumulation in the pond on flow dynamics for the 5-year, 30-year and 100-year flood 

events.   

Table 2 Impact of sedimentation on flood attenuation and hydraulic residence time 

 

As expected flood storage reduction in the pond as a result of sediment aggradation increases 

the peak of the outflow hydrographs and reduces the relative attenuation and hydraulic 

residence time for all three events.  As shown in Table 2, at the end of the 30-year simulation 

period, the 5-year and 100-year flood events experienced reductions in flood attenuation 

given as 8% (85% to 77%) and 4% (30% to 26%) respectively due to sediment aggradation.  

In other words, the effects are more pronounced for medium (30-year) and extreme (100-

Relative Attn 

(%)

HRT      

(hr)

Relative Attn 

(%)

HRT      

(hr)

Relative Attn 

(%)

HRT      

(hr)

Pre-sedimentation 85.45 0.59 45.75 0.40 29.95 0.29

Post-sedimentation

After 5 years 84.68 0.58 45.28 0.40 28.46 0.28

After 10 years 81.41 0.58 42.26 0.40 28.20 0.28

After 20 years 75.15 0.51 36.64 0.34 25.59 0.25

After 30 years 77.47 0.54 38.11 0.36 26.35 0.26

5-year 30-year 100-year
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year) flood events than in more frequent small flood events (5-year).  The reduction in flood 

attenuation capacity does not linearly increase over time as sediment dynamics primarily 

depend on inflow which considerably varies over time.  For instance, the extreme flood 

events which occur in the intervening period between the 20 to 30 years of the simulation 

period flush out part of the accumulated sediment (major event in 2011-2012), offsetting the 

loss in flood storage and improving the flood peak attenuation capacity of the pond.   

 

6. CONCLUSIONS 

This paper examines long-term suspended sedimentological effects on stormwater pond, NE 

England by adopting integrated hydrological and a two-dimensional hydro-morphodynamic 

modelling approach.  The main conclusions of this paper are as follows: 

 Simulation results indicate that flow attenuation and sediment trapping in the 

stormwater pond are more pronounced for more frequent small (< 5-year) and 

medium (< 30-year) flow events.  This is beneficial in regulating urban stormwater 

quality as major proportion of the historical events encompass small and medium 

events. 

 
 The annual sediment trap efficiency considerably varies (-11 to 69%) over the 32-year 

study period with the mean value of 34% (17%) which reflects the fact that it is 

difficult to set water quality standards for stormwater pond due to randomness in the 

rainfall events. 

 

 The spatially averaged sediment accumulation rate varies from 0.2 cm/year to 5 

cm/year with the mean value of 2 (1.34) cm/year.  Long-term sedimentation could 

have negative implications on flood attenuation capacity of the stormwater pond.  The 

reduction in flood attenuation because of sediment aggradation is relatively more 
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experienced in medium (< 30-year) and large (< 100-year) flood events.  Regular 

maintenance would be required to over the 8 to 10 years period to maintain the 

efficient hydraulic performance of the pond and to reduce the risk of water quality 

deterioration due to remobilisation of pollutants accumulated in sediments. 

 

 The annual rainfall exhibits a reasonably strong relationship with annual sediment input 

and output and could be used to estimate the annual sediment budget in the pond.  

However, the annual rainfall may not be sensitive enough to capture the influence of 

extreme rainfall events on sediment dynamics, suggesting caution when estimating the 

annual sediment budget when there are extreme rainfall events in the historical records.   

 

The overall contribution of this paper has been to improve understanding of the flow and 

sediment dynamics of a stormwater pond, which ultimately may provide guidance to define 

maintenance needs, long-term design efficiencies and best practice for pond designers and 

operators.   
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Highlights 

 Provides systematic simulated quantification of long-term impact of stormwater pond 
on managing urban runoff and sediment loading into an urban river. 

 Adopts a detailed two-dimensional hydro-morphodynamic modelling to evaluate 
long-term suspended sediment dynamics in a stormwater pond 

 Using a case study, illustrates influence of stormwater pond on flood attenuation and 
sediment trapping 

 Explain the benefits of sediment trapping in the stormwater pond on water quality 

 Explores the variation in annual sediment loading with rainfall quantities and pattern  

 

 


