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Abstract—The method of symmetrical components is not 

effective for fault location in the case of untransposed lines, due 

to potential couplings between the sequence circuits. This paper 

proposes a non-iterative algorithm in the phase-coordinates for 

wide-area fault location on untransposed transmission networks. 

In doing so, first, an improved two-terminal method is suggested 

to accurately locate faults on untransposed lines. Next, an 

algorithm is proposed to infer voltage and current phasors at the 

faulted line ends without direct measurements, by taking 

advantage of the data provided by phasor measurement units 

(PMUs). Accordingly, the adverse effect of close instrument 

transformers transients on the estimation accuracy is minimized. 

Being highly nonlinear in terms of fault distance and impedance, 

the fault equations are derived and made linear in this paper by 

defining six suitable auxiliary variables. The resulting system of 

equations is solved using the least-squares method to obtain 

three-phase voltages and currents at the faulted line ends. A main 

feature of the proposed algorithm is that it only requires a 

limited number of current and voltage synchrophasors. An 

additional advantage of the proposed algorithm is that the 

faulted line is not required to be known a-priori. The proposed 

algorithm is validated using extensive simulation studies on the 

New England 39-bus test system, accounting for different fault 

locations, types and resistances. 

 
Index Terms—Fault location, least-squares method, short-

circuit faults, synchrophasors, untransposed lines. 

I. INTRODUCTION 

 LECTRIC power networks are always prone to faults. 
Protection systems, and subsequent fault location 

processes are exploited to detect and isolate the smallest 
possible area including the faulted component, and restore the 
normal operating condition. In this respect, accurate fault 
location is necessary to improve the system reliability by 
reducing the outage and service restoration time [1], [2].  

In general, conventional fault location methods can be 
classified into two major categories. The first one, which is 
more popular in real applications, utilizes the fundamental-
frequency components of voltage and current signals [3]-[8]. 
The second category involves methods taking advantage of the 
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fault-generated traveling waves [9]-[14]. Moreover, artificial 
intelligence has been used for fault location in a number of 
research works such as [15]-[19].  

A common characteristic of conventional methods is the use 
of sufficiently independent information that might be inexact 
(or unavailable) during faults. Indeed, instrument transformers 
may lose their accuracy or, in extreme cases, their capability 
to correctly transduce post-fault signals for a transient period 
subsequent to the fault inception. This is more likely to 
happen, and lasts longer, for close instrument transformers to 
the fault point [1]. However, conventional methods formulate 
the problem based on the quantities measured at the faulted 
line ends, which are also the closest ones to the fault. In this 
context, wide-area fault location is a viable alternative that 
provides the possibility of using more reliable measurements, 
which, in general, are not close to the fault [20]-[36]. Among 
these methods, the impedance-based ones have been 
essentially developed for transposed transmission networks, or 
lower voltage levels where the line shunt admittances can be 
neglected [20]-[33]. Accordingly, none of such methods are 
suitable for transmission networks comprised of untransposed 
and/or not completely transposed lines. In practice, however, 
many transmission lines are left untransposed along their 
routes due to technical and/or economic reasons [37]-[40].  

To overcome the above-mentioned deficiencies, a general 
fault location algorithm is proposed in this paper. This 
algorithm is developed so as to take advantage of the phasor 
measurement units (PMUs) already available in the system. 
The reason is because it is not rational to expect that PMUs 
are installed merely for maximizing the performance of wide-
area fault location. An improved two-terminal method is 
proposed to pinpoint the fault on an untransposed transmission 
line. Next, the concept of wide-area fault location provided by 
synchrophasors is used to infer voltage and current phasors at 
the faulted line ends without direct measurements. To do so, 
the nonlinear three-phase fault equations relating the available 
synchrophasors are derived. These equations are made linear 
by defining six suitable auxiliary variables to guarantee a 
closed-form solution of the problem. By solving the resulting 
system of equations, three-phase voltage and current phasors 
at the faulted line ends are readily obtained. Once the current 
and voltage synchrophasors have been rigorously obtained, 
any suitable one- or two-terminal fault location methods can 
be applied for fault location. In this paper, the proposed two-
terminal method has been applied to further improve the fault 
location accuracy on untransposed lines. 

The salient features of the proposed algorithm can be 
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outlined as follows: 
 Use of a restricted number of synchrophasor 

measurements to pinpoint the fault location and type, 
 Applicability to untransposed transmission networks, 
 Capability of locating symmetrical/asymmetrical faults, 
 Computational efficiency in addition to high accuracy.  
The rest sections of this paper are organized as follows. 

Section II sets forth an accurate two-terminal fault location 
method for untransposed transmission lines. Afterwards, a 
technique is proposed to infer three-phase voltage and current 
phasors at the faulted line ends using the phasor measurement 
units (PMUs) data. These two techniques are then merged to 
derive the proposed wide-area fault location algorithm. 
Section III is devoted to performance evaluation of the 
proposed algorithm and the associated discussions. Finally, 
Section IV concludes the paper with final remarks. 

II. PROPOSED ALGORITHM 

In the first subsection, a two-terminal technique is proposed 
to locate generic faults (symmetrical and asymmetrical) on an 
untransposed transmission line. This method needs 
synchronized voltage and current phasors at the faulted line 
ends similar to other methods proposed in the literature. In the 
next subsection, an algorithm is set forth to use the data of a 
restricted number of PMUs for obtaining voltage and current 
phasors at the faulted line ends. This enables applying the 
proposed two-terminal method without direct measurement of 
the related input signals, which can be inexact due to 
measurement transformers transients.  

A. Accurate Fault Location on Untransposed Multi-

Conductor Transmission Lines 

Equating the voltage at the fault point derived from both 
sides of the faulted line, gives three equations in terms of 
hyperbolic functions of 3×3 line parameter matrices and fault 
distance. In the transposed lines case, these equations are 
independent in the sequence domain and can be individually 
solved. However, in the case of untransposed lines, it is not 
possible to separate these equations and obtain a closed-form 
solution for the fault location since matrices multiplication 
does not commute [40]. This is why conventional two-
terminal methods use some simplified assumptions to locate 
faults on untransposed transmission lines. Typical ones use the 
linear approximation of faulted line parameters and/or neglect 
the line shunt capacitances [5]. Such assumptions may 
introduce considerable error especially in the case of long 
lines. To provide more accurate results, an improved two-
terminal fault location method is proposed in this part of the 
paper.  

Let z and y denote the 3×3 per-unit length, series impedance 
and shunt admittance matrices of transmission line i-j. The 
equivalent π model of this line can be obtained using the 
derivations provided in the literature (e.g., [40]). Let the series 
impedance and shunt admittance matrices of that line be 
denoted by z and y  . Given the line length L, z and y  could 

be linearly approximated by zL  and yL  . Although this 

approximation may work well for short and medium-length 
lines, a more accurate approximation is needed for long lines 
[40]. To accomplish this, the Taylor series expansion of the 

distributed-model line parameters should be used. 
Let 3×1 column vectors V i and ,J i j  respectively denote 

the three-phase voltages at bus i, and sending-end currents of 
line i-j. From the transmission line theory, the known link 
between the line two ports can be derived as 

, ,
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The first matrix on the right hand side of (1) is the 
transmission matrix of a length L of line i-j and is denoted by 

 ,i j LT , hereinafter.  

By defining 2A B zy  and 1
Z B z

c  , it is possible to 

write elements of , ( )Ti j L  in terms of hyperbolic functions as 
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 (2) 

The Taylor series expansions of the above sub-matrices are 
provided in Appendix A. 

Let consider the circuit shown in Fig. 1. It illustrates a 
short-circuit fault at point f on line i-j. The transmission 
matrices of the two sections of this line with lengths αL and 
[1-α]L can be easily calculated using (2). Regardless of the 
fault type and its current, voltage at the fault point can be 
obtained by applying KVL from either end of the line. From 
(1) and (2), the voltage phasors at the fault point can be 
derived as  

   
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 (3) 

The above equation can be expanded as below 
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 (4) 
where an, bn, cn and dn are 3×1 vectors whose elements are 
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Fig. 1. General post-fault circuit of a multi-conductor transmission line
represented by equivalent π model. 
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provided in Appendix B. 
Both sides of (4) have infinite number of terms. However, 

the higher the degree of α, the lower the magnitude of its 
coefficient. The reason is the factorial terms in the 
denominators. Equation (4) is expanded only to the fourth 
degree of α, in this study. Simulation results show that further 
developments of (4) do not result in significant improvement 
of the fault location accuracy. As will be shown later, the 
estimated fault location for long lines would remain quite 
accurate despite truncating the higher order terms. 
Accordingly, a system of three polynomial equations of order 
four, is obtained for the unknown variable α as below 

  2 3 4
0 1 2 3 4

3 5

1 0
T

   


   h h h h h , (5) 

where the derivations of h0 to h4 are provided in Appendix C. 

B.  Extension to Meshed Transmission Networks  

As proposed by Fortescue, the fault analysis of a three-
phase power system could be much simpler in sequence 
domain, if the matrices of internal impedances of all system 
components are circular [41]. In this respect, the bus 
impedance matrices of sequence circuits can be used to obtain 
the current and voltage signals at different locations. 
Nonetheless, the sequence domain analysis of untransposed 
transmission networks is not of great help since the resulting 
sequence circuits would remain coupled. On the other hand, 
the pre-fault system unbalances of such networks could result 
in considerable amount of error, if neglected.  

For untransposed networks, hence, the bus impedance 
matrix should be constructed in the phase-coordinates. The 
unknowns of the problem (fault location and impedances) 
have to be considered in constructing the bus impedance 
matrix. The elements of this matrix, and thus the resulting 
circuit equations, are highly nonlinear in terms of these 
unknowns. The technique firstly proposed in [31] is 
generalized here to make the pre-fault impedance matrix 
applicable even for the faulted network. 

Let denote the pre-fault and post-fault variables by the 
superscripts “pre” and “post”, respectively. Considering a 
linear behavior of the grid before and after the fault, the nodal 
equations for the untransposed three-phase power network 
prior to the fault can be written in the matrix form as  
   

3 3 3 13 1

pre pre pre

N N NN  
V Z I , (6) 

where Vpre is the vector of pre-fault bus voltage phasors and 

Zpre is the bus impedance matrix in the normal operating 

condition. Besides, 1 1 1, , , , ,
T

pre a b c a b c
N N NI I I I I I   I is 

the vector of nodal injected currents, and N is the number of 
system buses.  

As shown in Figs. 2 and 3, line i-j in the pre-fault condition 
can be replaced with six equivalent current sources injecting 
the same amounts of currents as the replaced line. This is 
possible in virtue of the substitution theorem. Let the 
superscript (i,j) denote the bus impedance matrix and vector of 
nodal injected currents after the faulted line is replaced with 
current sources. Therefore, 

 
( , ) ( , )

3 1 3 3 3 1

V Z Ipre i j i j pre

N N N N  
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 
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N N N N  
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Assume buses 1 to n are equipped with PMUs. The 
superscript “meas” is used to denote synchrophasors obtained 
from PMUs. Subtracting pre-fault voltages from their post-
fault values at a PMU-equipped bus, say bus k, yields 
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p qR denotes the entry in the pth row and qth column 

of matrix ( , )R k i j , it is obtained from 
( , )
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where the integer number p varies from 1 to 3. 
If the voltage phasors of both ends of a non-faulted line is 

known, the equivalent π model of that line can be used to 
determine the sending- and receiving-end current phasors of 
the line [40]. Let J(k) be the vector of sending-end three-phase 
currents of line u-w. Given c

u ,wZ is the line characteristic 

impedance, the superimposed sending-end current of this line 
can be expressed as 
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Fig. 2. General short-circuit fault on line i-j. 
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It should be noted that (11) is written with the assumption 
that line u-w is not faulted. Expressing the faulted line 
terminal currents as a function of its terminal voltages is 
unfeasible unless the fault type, location and its impedance are 
known. Nevertheless, the flowing current from each side can 
be directly measured if the corresponding bus has been 
equipped with a PMU, as well. In case bus i is equipped with a 
PMU, the faulted line sending-end current can be written as 

 , , ,J J emeas
i j i j i j    , (13) 

where ,ei j denotes the error between the measured and true 

values of the sending-end current of line i-j. A similar 
equation could be also derived for the receiving-end current of 
that line, in case bus j has been equipped with a PMU.  

Let l be the number of transmission line ends whose current 
phasors are measured by PMUs. Additionally, lh is considered 
to be the number of non-faulted line ends whose current 
phasors are measured by PMUs. Let Ns denote the number of 
synchrophasor measurements provided by PMUs, i.e., n+l. 
Considering all constructible equations in any form of (9), 
(11) and (13), a system of Ns linear equations for six 
unknowns can be developed as 
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If any of the faulted line ends is not equipped with a PMU 
to measure that line currents, the corresponding equations 
should be excluded from the last six equations of (14). 

It should be emphasized that the fault equations in (14) are 
not just limited to the synchrophasor measurements at the 
faulted line terminals.  Conversely, the equations associated 
with measurements farther from the fault point are also 
included in this system. By doing so, the adverse effect of 
erroneous instrument transformers at the faulted line terminals 
on the fault location accuracy would be decreased. In virtue of 
the redundancy provided by the proposed formulation, bad 

data detection can also be deployed to achieve more accuracy. 
Accordingly, the erroneous fault equations would be readily 
identified and removed from the equations set of (14).  

This system of equations would have a matrix form of 
  M HX e , (15) 
where M and H are the measurement and coefficient matrices, 
respectively. Besides, X is the matrix of unknowns that 
represents the six current sources substituted for the faulted 
line.  

After calculation of ,J i j and ,J j i from (15), the three-

phase voltage synchrophasors at buses i and j can be 
calculated using (9) as 
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.  (16) 

Now, the three-phase currents and voltages at both ends of 
the faulted line have been obtained from (15) and (16). 
Therefore, it is possible to readily locate the fault distance on 
the line using the improved two-terminal method described in 
the previous subsection. 

Over-determined systems of equations have, in general, no 
solution. However, the superimposed current synchrophasors 
at the faulted line terminals is a solution for (15). This system 
can be solved using the linear least-squares method to obtain 
the values of the best six fitting current sources for each 

suspected line, denoted by X̂ . The hat symbol on X implies 
that the estimated unknowns are not exactly the same as true 
unknowns X due to existence of the error vector e on the right 
hand side of (15). Nevertheless, such a solution ensures that 
the sum of squared residuals is minimal, where a residual is 
defined as the difference between the measurement in M and 

its corrected value obtained from ˆHX . The sum of squared 
residuals corresponding to the faulted line i-j is obtained from 

 ,
ˆ ˆM HX M HX

T

i jE          . (17) 

It should be pointed out that the current sources substituted 
for the actual faulted line are the unknowns for which (15) 
holds true. It means that Ei,j is expected to take a negligible 
value for the faulted line, and large values for the other ones. 
Thus, the faulted line can be specified by comparing the 
calculated Ei,j’s for examined transmission lines, since the 
smallest one corresponds to it. 

The superimposed current and voltage at the faulted line 
ends, along with the faulted sections transmission matrices 
T(αL) and T((1-α)L) can be used to obtain the fault path 
current on that line. Let a

f ,iJ , b
f ,iJ and c

f ,iJ denote the 

faulted line currents at the fault point, estimated from the bus i 

side. Similarly are defined a
f , jJ , b

f , jJ and c
f , jJ . A phase is 

inferred to be faulted, if the sum of its two side currents at the 
fault point is non-zero. 

III. PERFORMANCE EVALUATION 

The performance of the proposed algorithm has been 
assessed via offline simulations. In particular, this section 
illustrates separately the performance assessment of proposed 
two-terminal fault location and its extension to wide-area  
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process. The untransposed two-terminal transmission system, 
and the untransposed New England 39-bus system [42] are 
selected as test systems. The single-line diagrams of these two 
systems are shown in Figs. 4 and 5, respectively. The 
parameters of the transmission lines used to construct these 
test systems are provided in Appendix D. The two-terminal 
transmission system is used to specifically compare the 
proposed two-terminal method with the conventional 
transposed and untransposed methods, and justify its 
superiority over those methods. Afterward, the 39-bus test 
system has been used to demonstrate the effectiveness of the 
proposed wide-area fault location algorithm. 

Appropriate software is used to model the two-terminal 
[43], and 39-bus [44] test systems operating at nominal 
frequency of 50 Hz. To imitate the synchrophasor extraction 
process, the generated signals are passed through an anti-
aliasing Butterworth filter with cutoff frequency of 400 Hz 
and then, sampled with a sampling frequency of 2500 Hz. In 
order to extract the fundamental-frequency component of 
signals, the discrete Fourier transform (DFT) along with a 
digital mimic filter is used. Next, the obtained signals are 
averaged from 1.5 to 3 cycles after the fault inception. As a 
commonly used metric to show the fault location accuracy, the 
relative estimation error is finally calculated as follows [1]: 

 
Error (%) 100

Actual location-Estimated location

Faulted line lenght
   . (18) 

All calculations have been carried out in the MATLAB 
environment on a 2.4 GHz dual-core processor with 4 GB of 
RAM. A single complex multiplication takes around 

5mT s  in this platform. For the improved two-terminal 

fault location algorithm proposed in this paper, the 
construction and subsequent solution of (5) take around Tp=25 
ms using the trust-region algorithm called by “fsolve” 
MATLAB function. The 11 PMUs installed in the 39-bus test 
system provides 135 synchrophasor measurements (three-
phase current and voltage phasors) and all 34 lines are 
examined to identify the faulted line. The total computational 
time for each fault case is about 1.05 second on average, 
which agrees with the 1.15 second upper boundary obtained 
from the theoretical formula given in Appendix E.  

A. Proposed Two-Terminal Fault Location Method 

The key point in the proposed two-terminal method is to use 
a sufficiently accurate model of unbalanced transmission line 
parameters. In this part, the performance of this method is 
compared with that of the conventional transposed [4] and 
untransposed [1], [5], [45]-[47] fault location methods. To 
apply the conventional transposed method to untransposed 
lines, the mutual couplings between sequence circuits are 
ignored. Thus, three distinct estimations are obtained for the 
fault location corresponding to the zero, positive and negative 
sequence circuits. These estimations are not, in general, real 
numbers but complex. The estimation demonstrated for the 
conventional transposed method in Fig. 6 is obtained by 
averaging the absolute value of estimations in the three 
sequence networks.  

Contrary to the conventional transposed method which 
assumes the line is ideally transposed, the conventional 
untransposed method takes into account the line being 
untransposed. In this method, series impedances of the two 
sections of faulted line are set equal to their linear 
approximations. However, as explained earlier, the proposed 
method uses a more accurate approach which results in the 
solution of a system of three quartic equations. 

The untransposed two-terminal transmission system shown 
in Fig. 4 is used to evaluate the proposed and the conventional 
transposed [4] and untransposed [5] two-terminal fault 
location methods. The associated data and parameters of this 
345 kV system are provided in Appendix F. By setting the line 
length equal to 400 km, a number of 1-ph-g faults are applied 
at eleven locations along this line. Fig. 6 illustrates the 
estimation errors resulting from the various methods. The 
proposed method provides the most accurate results compared 
to the other ones. It can be also concluded that the 
conventional untransposed method might even give less 
accurate result than that of methods basically developed for 
transposed lines such as [4].  

To better compare the performance of the proposed method 
and conventional untransposed method in fault location on 
untransposed transmission lines, a number of 1-ph-g and 2-ph 
fault cases are simulated on 75% of several lines with various 
lengths. Although the fault resistance in transmission levels 
mostly lies between 0 to 10 Ω, it might exceed this range in 
some cases [1]. Therefore, larger values for fault resistance are 
commonly examined in the literature to verify the algorithm 
robustness against this important parameter. In this respect, 
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Fig. 4. Single-line diagram of the untransposed two-terminal transmission 
system. 
 

Fig. 5. Single-line diagram of the untransposed 39-bus test system. 
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two fault resistances of 0 and 50 Ω are examined. Figs. 7 and 
8 show the relative estimation error for different line lengths 
from 100 to 700 km. As shown, the proposed method provides 
more accurate results especially for long lines. 

Amongst many fault location methods that have been 
proposed so far, few are capable to deal with untransposed 
lines. In fact, existing fault location methods for untransposed 
lines have been developed based on the same simplifications 
that have been made in [5]. Recent works have focused on 
other aspects of the problem such as synchronization of 
measured phasors [46] or line parameters errors [47], and/or 
have extended the conventional method to deal with double-
circuit and series-compensated untransposed lines. In this 
respect, a comparison between the fault location results 
obtained by the proposed method and approaches of these 
research works is performed. For this analysis, faults are 
simulated at four locations on transmission lines with 150, 300 
and 450 km lengths. Besides, the fault resistance is assumed to 
be 10 Ω. The obtained results are summarized in Table I. 

It can be confirmed that the proposed two-terminal method 
over-performs the other approaches for all the considered line 
lengths. The reason for this superiority is the use of more 
accurate approximations of the equivalent π model of the 
faulted line. Deficiency of the linear approximation becomes 
more noticeable in the case of long lines, especially for lines 
with high voltage levels and with large shunt capacitances.  

B. General Evaluation of the Proposed Wide-Area Algorithm 

In this part, the proposed wide-area fault location algorithm 
performance is evaluated with respect to different factors. The 
untransposed 39-bus system shown in Fig. 5 has been chosen 
as the test system. 

1) Deficiency of Impedance-Based Wide-Area Methods 

Amongst the existing wide-area fault location methods, 
some enforce a set of constraints on the PMU installation 
pattern and, in general, use one or two of closest 
measurements to the fault point for fault location [20-22]. 
Therefore, their performance is highly affected by transient 
response of instrument transformers similar to conventional 
methods. Besides, losing one or more PMU would make these 
methods not applicable. A series of other methods [23-26] 
compare the waveforms recorded during the fault with a 
simulation database built offline. Considering all the possible 
fault locations, resistances and fault types, it is not feasible to 
create such a huge database for relatively large-scale power 

systems. For some other methods [27] and [28], not more than 
two measurements can be used at the same time, unless a 
nonlinear optimization problem is solved [29]. A major 
disadvantage of the mentioned wide-area fault location 
methods is that bad data detection techniques cannot be 
readily incorporated in them. Reference [30] pinpoints the 
fault location using a trial-and-error process by examining a 
huge number of possible fault distances and resistances.  

The more recent and effective fault location methods [31] 
and [32], use the available PMU data and give rise to almost 
the same accurate results. Furthermore, bad data detection can 
be readily deployed in these methods to achieve the highest 
possible accuracy. Extensive simulations conducted by the 
authors show that even such effective methods cannot 
properly deal with faults on untransposed transmission 
networks. The reason is quite trivial since these methods are 
inherently designed for transposed transmission lines. Due to 
space limit, only the obtained results by [31] for faults on line 
26-28 has been reported and discussed in this part. It should be 
noted that almost the same inexact results have been obtained 
using the method proposed in [32]. 
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Fig. 6. Fault location on a 400 km untransposed transmission line using the
proposed, conventional transposed and untransposed methods. 
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Fig. 7. Estimation error comparison between the proposed and conventional 
untransposed methods, for a 1-ph-g fault at 75% of lines with different 
lengths. 
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Fig. 8. Estimation error comparison between the proposed and conventional 
untransposed methods, for a 2-ph fault at 75% of lines with different lengths. 
 

TABLE I 
AVERAGE ESTIMATION ERROR FOR 1-PH-G FAULTS WITH A 10 Ω FAULT 

RESISTANCE USING DIFFERENT METHODS  
 

Line Length (km) 150 300 450

Method Average Estimation Error % 

Proposed 0.02 0.03 0.06
[1] and [45] 0.09 0.28 0.57

[46] 0.10 0.30 0.64
[47] 0.08 0.17 0.52
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Table II summarizes the average and maximum estimation 
errors of more than 800 fault cases. Different fault types have 
been applied at various points on line 26-28 by moving the 
fault location along that line with steps of 0.05 pu. The 
effectiveness of the proposed algorithm can be easily 
confirmed by comparing the second and fourth columns of 
Table II. It can be observed that the average estimation error 
of the proposed algorithm is about 0.25%. Nonetheless, 
neglecting the line unbalances results in inexact approximation 
of the current sources replaced for the faulted line. 
Consequently, the voltage at the faulted line ends could not be 
accurately obtained. In some cases, the estimated fault 
location would have up to 6% difference with its actual value. 
In fact, the proposed method provides highly accurate results 
since it rigorously takes into account the untransposed line 
parameters to formulate the problem.  

    

2) Fault Location on the Fully Observable Network  

As shown in Fig. 5, the 39-bus system is equipped with 11 
PMUs making it fully observable [48], [49]. To scrutinize the 
proposed fault location algorithm, a total of more than 2500 
short-circuit cases have been conducted on this system. To 
make the evaluation comprehensive, various fault types with 
different fault resistances from 0 to 50 Ω are simulated at five 
points on each transmission line. Table III summarizes the 
obtained results for the simulated cases. As shown, the 
average estimations error is less than 0.27 % in all cases. Even 
for large fault resistances, the estimation accuracy is quite 
acceptable. The reason is that the proposed algorithm solves 
the fault equations by omitting the fault resistance.  This has 
been realized by using synchrophasors collected from different 
locations of the system.  

In rare cases, the proposed method misdiagnoses a neighbor 
line as faulted instead of the actual faulted one. In more than 
2500 simulations conducted in this part, such a problem has 
happened only in 20 close-in fault cases and in areas sparsely 
covered with PMUs. In these cases, the estimated fault 
location is at the beginning of a neighbor line, which is 
physically very close to the actual fault point. It should be 

noted that the one- or two-terminal methods are not effective 
for such close-in faults, either [1].  Nonetheless, simulation 
results confirm that the proposed method could accurately 
locate these close-in faults if the faulted line is known. 

One of the case studies has been selected to provide a step-
by-step explanation on how to apply the proposed algorithm to 
identify the faulted line and pinpoint the fault distance on it. In 
this case, a 1-ph-g fault occurs at 40% of line 21-22 of the 
system. First, the system of equations (15) is solved for every 
34 line using X=[HTH]-1HTM. This gives an estimate for 
three-phase current at two ends of the substituted transmission 
line. The true and estimated current phasors corresponding to 
the faulted line 21-22 have been tabulated in the first two rows 
of Table VI. These values can be used in (16) to obtain three-
phase voltages of faulted line terminals as given in the last two 
rows of Table VI. 

In the next step, the system of equations (5) is constructed 
and solved for every line based on the voltage and current 
synchrophasors calculated for that line. Amongst all 
transmission lines, only the calculated fault distance for five 
lines is real and lies in the valid range of [0,1]. For the 
remaining lines, the calculated fault distance is either 
complex, or its real part is negative or larger than 1. The sum 
of squared residuals (17) is calculated for the lines whose 
estimated fault distances lie within the acceptable range. The 
least sum of squared residual is 2.4×10-2 which corresponds to 
the faulted line. The next least value amongst the calculated 
ones is 1.56. Subsequently, line 21-22 is identified as being 
faulted and the distance 40 % on it is determined to be the 
fault location. 

 

3) Transient Response of Instrument Transformers  

One of the advantages of the proposed wide-area fault 
location method over the conventional methods is that it 
provides the possibility of identifying and removing erroneous 
measurements in virtue of containing several redundant fault 
equations. While the conventional methods become highly 
inaccurate in case of close-in faults [1], bad PMU data could 
be readily identified and removed in the linear least-squares 
framework of the proposed method, using the Normalized 
Residual bad data detection test [50]. Besides, PMUs that are 

TABLE II 
FAULT LOCATION RESULTS WITH AND WITHOUT CONSIDERING 

TRANSMISSION LINES UNBALANCES  
 

Fault Location Method Proposed  Reference [31]

Line Untransposition Considered  Not Considered  

Fault Type 
Estimation Error %

Ave. Max. Ave. Max.
1-ph-g 0.29 0.71 3.01 6.13
2-ph 0.24 0.58 2.28 5.22

2-ph-g 0.25 0.65 2.45 5.68
3-ph-g 0.21 0.52 1.81 4.86

All in Total 0.25 --- 2.36 ---

TABLE III 
FAULT LOCATION RESULTS IN THE FULLY OBSERVABLE NETWORK 

 

Fault Resistance (Ω) 0 25 50

Fault Type Average Estimation Error % 

1-ph-g 0.24 0.25 0.27
2-ph 0.20 0.20 0.22

2-ph-g 0.21 0.23 0.24
3-ph-g 0.15 0.18 0.19

All in Total 0.20 0.21 0.23

 

TABLE IV 
THREE-PHASE VOLTAGE AND CURRENT SIGNALS AT TERMINALS OF THE 

FAULTED LINE 21-22 CALCULATED BASED ON PMU DATA 
 

Synchrophasor True Values Estimated Values 

21 22J  (kA)

0.661 - 10.262i

0.064 - 0.274i

0.017 - 0.040i

 
 
 
  

 
0.662 - 10.261i

0.065 - 0.273i

0.017 - 0.041i

 
 
 
  

 

22 21J  (kA)

1.098 - 12.553i

-0.065 + 0.270i

-0.0181 + 0.036i

 
 
 
  

 
1.096 - 12.553i

-0.068 + 0.271i

-0.0182 + 0.036i

 
 
 
  

21V (kV) 

-106.58 + 32.307i

 -41.133 + 11.366i

 -39.518 + 11.091i

 
 
 
  

 
-106.65 + 32.31i

  -41.125 + 11.36i

  -39.521 + 11.084i

 
 
 
  

22V (kV) 

-36.257 + 28.121i

-11.560 + 2.834i

-12.066 + 3.249i

 
 
 
  

 
-36.261 + 28.13i

-11.562 + 2.84i

-12.082 + 3.245i

 
 
 
  
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located farther from the fault point would experience smaller 
changes due to the fault compared to measurement devices 
right at the faulted line terminals. This is important because 
the smaller the change an instrument transformer undergoes 
due to a fault, the shorter is its transient response and, thereby, 
the faster it would be in reproducing an exact replica of its 
primary input [51]. 

To investigate the influence of instrument transformers 
transient response on the fault location accuracy, different 
fault types have been examined on line 4-14. This line has 
been selected to be studied since it has a PMU at terminal 14 
making it prone to transient response of instrument 
transformers in the case of close-in faults. Furthermore, the 
Normalized Residual test has been used for bad data detection. 
Table V provides the calculated average errors using the 
proposed and conventional untransposed fault location 
methods [5]. The obtained results confirm that only the 
proposed method could provide accurate results even with the 
inclusion of inexact measurements. 

It should be also pointed out that the proposed method 
needs less number of measurement devices compared to 
conventional fault location methods. This holds in addition to 
its better performance in the case of transient response of 
instrument transformers. Table VI shows the number of 
measurement devices needed for being able to apply one-
terminal, two-terminal and proposed fault location methods to 
all lines of the 39-bus test system. 

 

4) Fault Location with Limited PMU Coverage  

PMU placement can be the objective of several 
optimization problems such as network observability [49], 
state estimation accuracy [52], inter-area oscillation 
monitoring and damping and etc. Therefore, transmission line 
operators might not install PMUs only to maximize the 
performance of a wide-area fault location functionality. What 
we actually have assumed in this paper is to make use of the 

existing PMU set for wide-area fault location without 
enforcing any constraint on the PMU installation pattern. The 
network observability is not a necessary condition for wide-
area fault location [31]. Theoretically, even six synchrophasor 
measurements suffice for (15) to be solvable, and hence, to 
locate the fault using the proposed algorithm. However, it is 
reasonable to expect more accurate results using a larger 
number of PMUs.  

To study the fault location accuracy with limited PMU 
coverage, a new PMU set is considered at buses 2, 11, 14, 17, 
19, 22 and 29 of the 39-bus test system. This set does not 
make the system fully observable. Nevertheless, the faulted 
line is successfully diagnosed in more than 96% of the 
simulated cases. It should be noted that this performance is 
still quite better than the performance of the existing wide-area 
fault location methods. The reason is that all of those methods 
are formulated with the assumption that the network 
transmission lines are completely transposed. Table VII shows 
the summary of fault location for the correctly diagnosed 
cases. As tabulated, the average error is less than 0.7%, even 
for high impedance faults. It can be observed from the table 
that the estimation accuracy slightly decreases due to the 
limited PMU coverage, as expected. However, the results still 
remain more than acceptable from a practical point of view.  

 

5) Robustness Aginst Synchrophasors Errors 

To take into account the synchrophasor estimation errors, a 
maximum total vector error (TVE) of 1% has been considered 
based on the IEEE standard [53]. Accordingly, synchrophasor 
measurements must be synchronized with a maximum time 
error of ±31 μs for a 50 Hz system. The phasors amplitude and 
angle errors are considered to have a normal distribution with 
mean zero. Their corresponding standard deviations have also 
been set based on an error variation range of ±1 % and 
considering a confidence interval of 99.7 %. 

Fig. 9 depicts the obtained results for a total of 10000 1-ph-
g fault cases at 60% of line 15-16. The resulting estimation 
error demonstrates a normal distribution with mean and 
standard deviation of 0.3% and 0.24 %, respectively. From a 
practical point of view, the obtained results are quiet 
acceptable. 

6) Time-Varying Arc Resistance 

To evaluate the proposed method performance in the case 
of time-varying arc resistance, a number of faults with such 
resistances are simulated in this part. To model the time-
varying arc, its dynamic volt-ampere characteristic is taken 
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 Fig. 9. Influence of synchrophasor errors on the fault location accuracy for a 
1-ph-g fault at 60% of line 15-16.  

TABLE V 
 FAULT LOCATION RESULTS ON LINE 4-14 CONSIDERING INSTRUMENT 

TRANSFORMERS TRANSIENT RESPONSE 
 

Fault Distance (%) 5 15 30 50 70 85 95

Fault Location Method Fault Location Percentage Error (%) 

Conventional [5] 3.71 2.58 0.63 0.24 0.48 1.47 2.69
Proposed Wide-Area  0.30 0.26 0.21 0.21 0.25 0.26 0.27

 
TABLE VI 

NUMBER OF REQUIRED MEASUREMENT DEVICES FOR BEING ABLE TO 

LOCATE FAULTS ON EVERY LINE BY DIFFERENT METHODS 
 

Fault Location Method Proposed One-Terminal Two-Terminal

Number of Required 
Measurement Devices 

11 34 68 

 
TABLE VII 

FAULT LOCATION RESULTS IN THE PARTIALLY OBSERVABLE NETWORK 
 

Fault Resistance (Ω) 0 25 50

Fault Type Average Estimation Error % 

1-ph-g 0.59 0.63 0.67
2-ph 0.44 0.46 0.50

2-ph-g 0.55 0.56 0.59
3-ph-g 0.32 0.38 0.41

All in Total 0.48 0.51 0.54
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into account based on the empirical differential equation 
described in [1]. Various distances on line 15-16 of the 39-bus 
test system are examined for 1-ph-g faults with this time-
varying resistance, and also for a constant 25 Ω resistance. 
The obtained results are summarized in Table VIII. As 
expected, the time-varying nature of the arc has slightly 
worsened the fault location accuracy. However, the obtained 
results are quite acceptable from a practical point of view. 

 

CONCLUSIONS 

A wide-area fault location algorithm has been proposed in 
this paper for untransposed transmission networks using 
voltage and current synchrophasors provided by PMUs. 
Despite being inherently nonlinear in terms of fault distance 
and currents, the fault equations are made linear using six 
suitably-defined auxiliary variables. Accordingly, three-phase 
voltages and currents at the faulted line ends are obtained with 
no direct measurements. A two-terminal fault location method 
has been also proposed to take advantage of the calculated 
phasors for locating the fault more accurately. The proposed 
methodology there, i.e., the use of truncated Taylor series to 
model the equivalent π circuit of the line, can be applied to 
other fault location problems related to untransposed lines. For 
example, fault location on double-circuit and series-
compensated untransposed lines can be readily dealt with by 
such an approach in order to improve the estimation accuracy. 

The proposed wide-area fault location algorithm is 
characterized by a low computational complexity. Such 
peculiarity might be an asset that allows, in principle, its 
coupling with real-time operation processes and its adoption 
as a back-up protection if a fast and reliable 
telecommunication infrastructure is available. 

The major features of the proposed algorithm can be 
summarized as follows: 

 The proposed algorithm is general and can be applied to 
transposed or untransposed networks in order to locate 
symmetrical/asymmetrical faults. 

 The algorithm identifies the faulted line and does not 
require it as an input.  

 A limited number of pre- and post-fault synchrophasors 
are sufficient to determine the fault location and type. 

 Obtained fault location estimations are quite accurate 
even for long lines and/or high resistance faults. 

 It is computationally effective and can be used for fast 
fault location.  

 The proposed method is robust against transient 
response of instrument transformers and phasor 
estimation errors. 

APPENDIX 

A) Elements of transmission matrix , ( )Ti j L in (2) are 

obtained from: 
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B) Coefficient vectors of an, bn, cn and dn in (4) are calculated 
from: 

2

2 !

n n

n i
L

n

 
  
  

A
a V ,

2

2 !

n n

n j
L

n

 
   

  

A
b V ,

2 1

,(2 1)!

n n

n i j
L

n

 
  

  

A z
c J  and 

2 1

,(2 1)!

n n

n j i
L

n

 
   

  

A z
d J . 

C) Elements of coefficient matrix in (5) are obtained from: 

0 0 0 0 1 1 2-    h a b d b d b , 

1 0 0 1 1 22 3 4     h c d b d b , 

2 1 1 1 23 6   h a b d b , 

3 1 1 24   h c d b , 

4 2 2 h a b . 

In fact, the complete equation set would have a form of 

0

0k
k

k





 h , where the vector kh is obtained from 

 
   

2 22

1
1 12

2 2

2 2 1
, if  iseven

.2 2 1
, otherwise

k r r

r k r k

k

r rk
k k

r r

r r
k

k k

r r

k k

 

 

 


 

 

    
     

   
              


 

 

a b d

h

-c b d

 

In the above formula, 
n

k

 
 
 

 is used to denote the number 

of k-combinations from a given set of n elements. 
 

D) The per-unit length impedance and admittance matrices of 
the untransposed transmission lines used to construct the test 
systems are respectively as follows: 

0.0957 0.5253 0.0865 0.2600 0.0840 0.2178

0.0865 0.2600 0.1002 0.5226 0.0865 0.2600

0.0840 0.2178 0.0865 0.2600 0.0957 0.5253

( )

      

z=       

      

i i i

i i i

i i

km

i

   
    
  



  
 

0.0100 3.4817 0.0000 0.7247 0.0000 0.2337

0.0000 0.7247 0.0100 3.6881 0.0000 0.7247

0.0000 0.2337 0.0000 0.7247 0.0

(

100 3.4817

)

      

y=       

      

S km

i i i

i i i

i i i

   
    
    


The line lengths in the untransposed 39-bus test system are set 
so that if they are ideally transposed, their impedance 
magnitudes would be equal to those of the corresponding lines 
in the original 39-bus test system [39]. 

TABLE VIII 
FAULT LOCATION RESULTS FOR 1-PH-G FAULTS ON LINE 15-16 WITH FIXED 

RESISTANCE AND TIME-VARYING ARC  
 

Fault Resistance 
Fault Distance % 

10 30 50 70 90

25 Ω 0.28 0.27 0.25 0.30 0.32
Time-Varying Arc 0.75 0.69 0.54 0.73 1.12
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E) In the proposed fault location algorithm, the following 
steps should be followed for every suspected line: 

1-solution of system of equations (15),  
2-calculation of voltage synchrophasors at the faulted 
line ends from (16), 
3-calculation of sum of squared residuals (17),  
4-solution of system of equations (5).  

The solution of (15) would be X=GM where G=[HTH]-1HT. 
The coefficient matrix H and thus G is constant and would be 
calculated and stored offline. Therefore, step 1 turns to 6×Ns 
multiplications. In step 2, voltage synchrophasors at the 
faulted line terminals are calculated from (16) by execution of 
36 multiplications. In step 3, after calculation of HX by 6×Ns 
multiplications, sum of squared residuals could be obtained 
from [M-HX]T×[M-HX] by executing Ns more multiplications. 
Step 4 might take up to tens of ms depending on the solver 
being used. It should be noted that fault location is carried out 
in the offline stage, and contrary to the algorithms deployed in 
protective relays, it does not need to be extremely fast. 

Overall, for a network with NL lines and Ns synchrophasor 
measurements, the maximum time needed for applying the 
proposed wide-area fault location is calculated from: 

   13 36total L p s mt N T N T   , (A-1) 

where Tp is the time for solving (5), and Tm is the execution 
time of a single complex multiplication. It must be added that 
(A-1) gives an upper boundary for the total computational 
time, since it does not consider the possibility of any 
parallelization on the software and/or hardware level. In the 
proposed framework, fault location on each line is completely 
independent of fault location on the other lines. Therefore, the 
faulted line identification process, i.e., the execution of the 
above four steps for all suspected lines, could be highly 
parallelized. This would reduce the total computational time of 
the whole fault location algorithm to Tp+(13Ns+36)Tm. Being 
around several ms, this time is also the same time needed for 
pinpointing the fault using the proposed method, when the 
faulted line is known a-priori. 
 
F) The impedances of the two-terminal test system are as 
below: 

1 1 0 059 89 ( ), 120 84 ( )S R S RZ Z Z Z          , 

Besides, the three-phase voltages of the two sources are 
given below in p.u. 

1 0 , 1.01 120 , 1.015 119 ,

1.015 12 , 1.02 133 , 1.025 108 .

S S S
a b c

R R R
a b c

V V V

V V V

     

     

  

    
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