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SUMMARY

Infection by rapidly growingMycobacterium absces-

sus is increasingly prevalent in cystic fibrosis (CF), a

genetic disease caused by a defective CF transmem-

brane conductance regulator (CFTR). However, the

potential link between a dysfunctional CFTR and

vulnerability to M. abscessus infection remains un-

known. Herein, we exploit a CFTR-depleted zebra-

fish model, recapitulating CF immuno-pathogenesis,

to study the contribution of CFTR in innate immunity

against M. abscessus infection. Loss of CFTR in-

creases susceptibility to infection through impaired

NADPH oxidase-dependent restriction of intracel-

lular growth and reduced neutrophil chemotaxis,

which together compromise granuloma formation

and integrity. As a consequence, extracellular multi-

plication of M. abscessus expands rapidly, inducing

abscess formation and causing lethal infections.

Because these phenotypes are not observed with

other mycobacteria, our findings highlight the crucial

and specific role of CFTR in the immune control of

M. abscessus by mounting effective oxidative re-

sponses.

INTRODUCTION

Cystic fibrosis (CF) is a lethal genetic disorder caused by dele-

terious mutations in the CF transmembrane conductance

regulator (CFTR) protein (Gadsby et al., 2006), resulting in

compromised mucociliary clearance, chronic bacterial infec-

tions, and subsequent progressive inflammatory lung damage

(Donaldson and Boucher, 2003). CF-related lung infections are

associated with a specific spectrum of colonizing microorgan-

isms: highly prevalent bacteria such as Staphylococcus aureus

and Pseudomonas aeruginosa (Lyczak et al., 2002) and also

emerging bacterial pathogens such as nontuberculous myco-

bacteria (NTM) (Olivier et al., 2003; Roux et al., 2009). Among

the rapidly growing NTM, the Mycobacterium abscessus com-

plex (MABSC) represents the most common species found in

CF airways (Floto et al., 2016) and is emerging as a major CF

pathogen, in part because of indirect person-to-person trans-

mission (Bryant et al., 2013), and progressing into severe pneu-

monia and accelerated inflammatory lung damage (Esther et al.,

2010). Their presence is also a relative contraindication to lung

transplantation (Orens et al., 2006). In particular, pulmonary in-

fections with the multidrug-resistant M. abscessus subspecies

(subsp.) abscessus (Mabs) (Nessar et al., 2012) are extremely

challenging to treat, requiring aggressive and extended thera-

pies with a high rate of therapeutic failure (DaCosta et al.,

2017). To date, Mabs is widely considered to be the most signif-

icant rapidly growing NTM in CF, with a worldwide prevalence

rate of 5%–20% (Floto et al., 2016).

Mabs exhibits two distinct morphotypes, relying on the pres-

ence or absence of surface-associated glycopeptidolipids

(GPLs): a smooth (S) high-GPL producer variant and a rough

(R) low-GPL producer variant (Howard et al., 2006). Both mor-

photypes are recovered from the CF airways during infection,

but case reports indicate that the R form correlates with exacer-

bations of pulmonary disease and rapid decline of lung function

in the patients (Jönsson et al., 2007; Catherinot et al., 2009).

Nevertheless, the specific vulnerability of the CF population to

Mabs, the potential link with CFTR dysfunction, and how these

mycobacteria contribute to progression of lung disease remain

unknown.

Although it is assumed that susceptibility to infections in CF

results from defective mucociliary activity, CFTR dysfunction

may also alter the inflammatory potential of innate immune cells,

contributing to the infectious pathology in this disease. Various

hypotheses have attempted to explain the impairment of innate

defenses in CF, although these await definitive proof. Numerous

mammalian models (Lavelle et al., 2016) have been generated

to investigate the role of CFTR dysfunction in innate immunity

and hypersusceptibility to infections. However, these models

are not suited for direct, real-time imaging of the early processes

leading to disease development. Thus, new animal models that

approximate the human altered immune phenotype and allow

direct visualization of host-pathogen interactions would provide
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much needed tools to establish in vivo how CFTR regulates

innate immunity and controls Mabs infection.

Zebrafish (ZF) larval innate immunity is homologous to that of

human (Renshaw and Trede, 2012), and their optical transpar-

ency allows non-invasive, real-time monitoring of infection

outcomes and host-pathogen interactions. Thus, ZF innate

immune cell behavior and function can be visualized at

sub-cellular resolution in the whole living animal, allowing dis-

secting the innate immune response during infectious diseases

(Torraca et al., 2014). ZF led to new insights into the virulence

of several CF bacteria, especially P. aeruginosa (Clatworthy

et al., 2009), S. aureus (Prajsnar et al., 2008), and Burkholderia

cenocepacia (Vergunst et al., 2010), and provide a useful model

to study the pathophysiology of human Mabs infection (Bernut

et al., 2014, 2016a). Importantly, from a structural perspective,

ZF CFTR closely resembles the human protein (Zhang and

Chen, 2016; Liu et al., 2017), and several reports suggest func-

tional conservation of CFTR between ZF and human (Navis and

Bagnat, 2015; Phennicie et al., 2010), making ZF larvae a

clinically relevant biological system. Indeed, several CF pheno-

types that mirror human CF disease were reported in CFTR-

defective ZF, including pancreatitis (Navis and Bagnat, 2015)

and increased susceptibility to P. aeruginosa (Phennicie et al.,

2010).

Herein, using CFTR-depleted ZF larvae as an innovative verte-

brate model that recapitulates important aspects of the CF

immuno-pathogenesis, we elucidated the role of CFTR in regula-

tion of innate immunity to Mabs infections. We also interrogated

the effects of CFTR ablation on host immunity, inflammation, and

infection independent of the overlapping infection and inflamma-

tion associated with the CF-lungmicroenvironment. Importantly,

our findings emphasize that differential CFTR-dependent ROS

production allows the host to adjust inflammatory responses

by modulating phagocyte bactericidal functions and their life-

span upon infection, which together ensure the maintenance of

a protective granulomatous structure to sequester and control

Mabs infection.

RESULTS

Loss of CFTR Function Increases the Severity of

M. abscessus Infection

To address the role of CFTR in Mabs infection, cftr loss-of-func-

tion experiments were carried out in ZF using a specific morpho-

lino-modified oligonucleotide (MO) (Figures S1A and S1B).

Although cftr is expressed and localized to the apical membrane

or vesicular compartments of cells (Del Porto et al., 2011) (Fig-

ure S1C), cftr-MO injection abrogated production of native

spliced cftr transcripts (Figures S1A and S1B) and altered cftr

expression (Figure S1D). Embryos injectedwith cftr-MO survived

similarly to control-MO injected animals and appeared morpho-

logically similar throughout the observed periods (data not

shown). Additionally, to support the knockdown results, we

took advantage of the cftr ZF mutant (Navis et al., 2013). Upon

intravenous infection, both cftr morphants and cftr mutants

displayed hypersusceptibility to R and S Mabs morphotypes,

correlating with increased larval mortality (Figure 1A) and higher

bacterial burdens, as demonstrated by determination of the fluo-

rescent pixel count (FPC; Figure 1B) and whole-larvae imaging

(Figure 1C). The pronounced increase in bacterial loads in

CFTR-deficient animals correlates with replicating extracellular

bacteria (Figures 1D–1H), translating into larger numbers of

larvae with abscesses and with increased number of abscesses

per larva in the CNS (Figures 1D and 1E). Mabs abscesses repre-

sent a marker of disease severity and uncontrolled infection

caused by extracellular replicating mycobacteria that are often

associated with cellular debris, tissue destruction, and acute

infection in ZF (Bernut et al., 2014). Whereas the S form induces

abscesses only rarely in wild-type (WT) fish (Bernut et al., 2014),

30% of Mabs S-infected larvae exhibited abscesses at 3 days

post-infection (dpi) in the absence of CFTR (Figure 1D). Electron

microscopy (EM) analysis revealed thatMabs S abscesses in cftr

morphant show enhanced replication of extracellular bacilli, pro-

moting rapid bacterial expansion and tissue destruction (Fig-

ure 1F), similar to those reported in Mabs R abscesses found

in WT fish (Bernut et al., 2014). Moreover, hypersusceptibility

to Mabs infection in CF fish is accompanied by increased bacte-

rial cording in Mabs R-infected animals compared with WT

larvae (Figures 1G and 1H). Collectively, these results indicate

that cftr mutants recapitulate phenotypes induced by cftr-MO,

implying that hypersusceptibility to Mabs in cftr morphants is

not ascribed to off-target effects but to the direct consequences

of cftr loss, thus validating the use of cftr-MO to further investi-

gate the role of CFTR in innate immunity to Mabs.

Other MABSC subsp. or the rapid-growing NTM Mycobacte-

rium chelonae, which is closely related to Mabs, can be iso-

lated from CF expectorated sputum (Harris and Kenna, 2014).

Infection of cftr morphants with M. abscessus subsp. massi-

liense (Figure S2A), M. abscessus subsp. bolletii (Figure S2B),

or M. chelonae (Figure S2C) led to increased susceptibility to

infections and larval killing, similarly to Mabs-infected CFTR-

defective animals (Figure 1). In contrast, neither the non-patho-

genic Mycobacterium smegmatis (Figure S2D) nor Mycobacte-

rium marinum, one of the strict pathogenic NTM and closely

related to Mycobacterium tuberculosis (Figure S2E), induced

increased larval killing in the absence of CFTR. These results

indicate that the susceptibility to mycobacterial infections in

CFTR-deficient embryos is specific and restricted to particular

NTM species, such as those belonging to the M. chelonae

complex (MCC), comprising MABSC and M. chelonae, and

emphasize the protective role of CFTR in response to MCC

infection by restricting bacterial pathogenesis and extracellular

multiplication.

CFTR Deficiency Compromises M. abscessus

Granuloma Maintenance by Permitting Rapid

Mycobacterial Extracellular Expansion

Having previously demonstrated the importance of Mabs-

induced granuloma formation and maintenance to prevent

extracellular bacterial expansion and ensure the host defense

(Bernut et al., 2014, 2016a), the increasedmortality and extracel-

lular mycobacterial growth in Mabs-infected CFTR-depleted

animals prompted us to (1) further characterize the granuloma-

tous response to Mabs in the absence of CFTR and (2) ask if

CFTR influences the course of granuloma formation and/or gran-

uloma composition. Mabs-infected WT, cftr mutants, and cftr
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morphants were compared and monitored over time for granu-

loma formation by fluorescent microscopy. In agreement with

previous observations, Mabs-granulomatous lesions were found

in both the presence and absence of CFTR (Figures 2A–2G)

(Tomashefski et al., 1996). However, although nascent granu-

loma appeared at 2 dpi and expanded in most infected WT

A B C

D E F

HG

Figure 1. cftr Deficiency Increases Susceptibility to M. abscessus Infection

(A–H) WT, cftr mutant, and cftr morphant were intravenously (i.v.) infected with either Mabs R or S expressing tdTomato.

(A) Survival analysis of R-infected (top) or S-infected (bottom) larvae. Data are plotted as percentage of surviving animals over 10 days (n = 60, three experiments).

(B) Mean bacterial loads as fluorescence pixel counts (FPCs; average of three independent experiments) of 3 dpi larvae infected by either Mabs R (top) or

S (bottom).

(C) Representative overlay fluorescence microscopy images of Mabs R-infected (top) or S-infected (bottom) larvae at 3 dpi. Scale bars, 200 mm.

(D and E) Percentage of 3 dpi larvae with abscess (D) and associated mean ± SEM number of abscess per infected animal (E) (n = 45, three experiments).

(F) EM showing a sagittal section through a Mabs S abscess in a cftr morphant. Overview image of the abscess into the spinal cord (top; scale bar, 25 mm).

Representative EM image of the abscess lesion with many extracellular bacterial in an area of acellular necrotic debris (bottom; scale bar, 0.5 mm). Closeup

showing bacterial division, with yellow arrows indicating septum of division (scale bar, 0.5 mm).

(G and H) Kinetic of Mabs R cording in whole embryos over 4 days of infection (G) and associated mean ± SEM number of cords per infected animal (H) (n = 45,

three experiments).

See also Figures S1 and S2.
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F

B C D

Figure 2. Absence of CFTR Impairs M. abscessus Infection-Mediated Granuloma Integrity and Maintenance

(A–D) WT, cftr mutants, and cftr morphants were i.v. infected with the S variant of Mabs expressing tdTomato and monitored using confocal microscopy for

granuloma formation, number, and size (n = 35–45; data are plotted as mean ± SEM from three experiments).

(A and B) Kinetics of granuloma formation in whole embryos over 4 days of infection (A) and associated number of granuloma per animal (B).

(legend continued on next page)
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embryos at 4 dpi (Figure 2A) (Bernut et al., 2014, 2016a), time-

lapse microscopy revealed that the granuloma formation in

CFTR-defective larvae remained unchanged, with fewer granu-

lomas observed in about 20%–30% of the animals. No differ-

ences in the proportion of S or R granulomas were noticed in

the context of CFTR impairment (data not shown). Additionally,

confocal imaging showed that early granuloma formation and

cellular aggregation events are maintained in the absence of

CFTR function (Figure 2C), suggesting that granuloma elabora-

tion proceeds regardless whether CFTR is present or not.

Although this difference was not statistically significant, interest-

ingly, at all time points, there was a trend toward increased

average size of granuloma lesions in cftr morphants, which ap-

peared more heavily infected than WT granulomas (Figures 2C

and 2D) and continued expanding concomitantly with a time-

dependent increased bacterial burden. This suggests that

dysfunction of CFTR leads to a persistent acceleration in Mabs

granuloma growth beyond the initial aggregation event. Next,

the late granuloma-like structure in the absence of CFTR was

explored by confocal imaging (Figures 2E and 2G) and EM

(Figures 2F and 2H). Although the structures characterizing WT

granulomas contained organized aggregates of phagocytes

(Figure 2E) consisting of infected and uninfected cells surround-

ing a central necrotic region (Figure 2F), which efficiently control

and sequester Mabs, we confirmed that impaired-CFTR granu-

lomas are degenerated (Figures 2G and 2H), supporting the hy-

pothesis that CFTR deficiency compromises granuloma mainte-

nance. Overall, late CF granulomas appear poorly delimited and

contain dissociated cellular aggregates (Figures 2G and 2H) with

abundant extracellularly replicating bacilli forming abscesses

within tissues, presumably responsible for the pronounced in-

crease in phagocyte death observed in the granulomas (Fig-

ure 2H). In sharp contrast to WT Mabs granuloma, microscopy

revealed the profusion of highly infected phagocytes in CF gran-

ulomatous lesions (Figure 2C), suggestive of impaired bacterial

killing (Bernut et al., 2014, 2016a).

Together, these results indicate that a CFTR defect trig-

gers the breakdown of Mabs granulomas typified by extracel-

lularly growing bacteria released from dying phagocytes. This

implies that CFTR is indispensable for normal granuloma

structure and maintenance by controlling the phagocyte

bactericidal functions and lifespan and preventing extracel-

lular multiplication.

Dysfunction of CFTR Impairs Killing of M. abscessus in

Macrophages

Our previous studies using Mabs-infected ZF highlighted the

crucial role of macrophages for Mabs killing and infection con-

trol (Bernut et al., 2014, 2016a). In CF pathophysiology, the

role of macrophages has been largely overlooked: scant evi-

dence suggests altered macrophage properties in uncontrolled

infection in CF lungs (Döring and Gulbins, 2009). To elucidate

the cellular basis linking CFTR deficiency with susceptibility to

Mabs infection and alteration of the macrophage functions,

expression of cftr was knocked down in reporter lines harboring

labeled macrophages. We first examined if the lack of CFTR

affects chemoattraction of macrophages to the invading bacte-

ria and/or activation of these cells, as potential mechanisms

promoting extracellular bacterial growth. Leucocyte mobiliza-

tion was assessed by injecting fluorescent Mabs into the hind-

brain ventricle (HBV), and their phagocytic capacity was

monitored after intravenous infection of the bacilli. Deficiency

of cftr compromised neither mycobacterial-induced migration

to the infected HBV (Figure 3A) nor phagocytosis (Figure 3B)

at early time points, suggesting that CFTR is not required for

early interactions between Mabs and macrophages. Previous

studies reported that dysfunction of CFTR is associated with

reduced microbicidal capacities of immune cells (Assani et al.,

2017; Di et al., 2006; Duranton et al., 2012). However, recent

studies have shown comparable intracellular Mabs growth in

murine macrophages carrying the CFTRDF508 mutation and in

WT macrophages, suggesting that functional CFTR is not

required for the control of Mabs in murine macrophages in-

fected ex vivo (Roux et al., 2016). Nevertheless, our microscopic

observations show that CFTR ablation leads to hyperinfected

phagocytes in granulomas, presumably relying on altered

immune bacterial killing mechanisms (Figure 2C). Thus, to

interrogate whether CFTR contributes to the macrophage

mycobactericidal capacity in vivo, the number of Mabs in ZF

macrophages was evaluated using confocal microscopy. The

proportion of slightly infected (< 5 bacilli), moderately infected

(5–10 bacilli), or heavily infected (> 10 bacilli) phagocytes

was enumerated at 1 dpi. Compared with the control embryos,

the cftr morphants infected by both R and S variants displayed

a greater percentage of macrophages in the high-burden

category (Figure 3C). This is consistent with a reduced bacteri-

cidal ability and supports the hypothesis that CFTR controls

(C) Confocal images showing a representative early Mabs granuloma in 3 dpi larvae. Scale bars, 10 mm. For a similar number of infected phagocytes (asterisk) in a

granuloma, the CF granuloma contains a higher bacterial burden than the WT granuloma.

(D) Granuloma volume analysis in whole larvae over 4 days of infection.

(E–H) Control larvae or cftr morphants infected with Mabs S expressing tdTomato observed by confocal microscopy and EM for granuloma at 4 dpi.

(E and G) Representative confocal imaging of a granuloma within the spinal cord of an infected animal showing the development of a compact and organized

phagocyte aggregate moderately infected in control fish (E) compared with a cftr morphant harboring a heavily loaded granuloma whose disruption leads to

bacterial spread characterized by abscess formation (G). Scale bars, 10 mm.

(F) EM showing a sagittal section through a WT Mabs granuloma. Overview image of granuloma (arrow) into the brain of infected WT (top; scale bar, 50 mm).

Representative EM image of a compact and well-organizedWT granuloma (bottom and right; processed as stitching of micrographs; scale bars, 2 mm) showing a

stable mycobacterial-containing structure with a central necrotic area and a typical dense region of cellular debris and surrounded by numerous infected

phagocytes (asterisk) and giant cells (arrow).

(H) EM showing a sagittal section through a Mabs granuloma-like lesion in absence of CFTR. Overview image of granuloma in the spinal cord (arrow) of infected

cftrmorphant (top; scale bar, 25 mm). Representative EM image of a CFTR-depleted granuloma (bottom and right; processed as stitching of micrographs; scale

bar, 2 mm) showing a necrotic structure with replicating bacteria and numerous dead infected phagocytes harboring a typical apoptotic nucleus (asterisk) with

chromatin ‘‘superaggregation.’’ Most bacilli stay extracellular.

1832 Cell Reports 26, 1828–1840, February 12, 2019



intracellular growth and killing of Mabs. Because death of Mabs-

infected phagocytes releases and propagates free bacilli in the

extracellular milieu (Bernut et al., 2014), we examined the extent

of macrophage death in infected larvae. Combined confocal

observations and quantification of acridine orange (AO)-positive

infected macrophages shows that infection in cftr morphants is

characterized by the presence of heavily infected phagocytes

with an impaired ability to restrict bacterial growth, occurring

prior to cell death (Figure 3D). Although the basal levels of

dead macrophages were equal between the PBS-injected

control embryos and cftr morphants (data not shown), enumer-

ation of AO-labeled macrophages infected with either R or S

confirms higher yields of dead phagocytes in cftr morphants

at 2 dpi compared with the control embryos at 2 dpi (Figure 3E).

This agrees with the presence of apoptotic immune cells seen in

CF granulomatous lesions (Figure 2). Importantly, the proportion

of dead macrophages was lower in WT embryos infected with

S- compared with R-infected embryos (Bernut et al., 2014;

Roux et al., 2016) but remained equal in the absence of CFTR

(Figure 3E), substantiating the crucial role of CFTR in containing

intracellular Mabs.

Modulation of the Neutrophilic Response to

M. abscessus by CFTR

The chronic infections with a neutrophilic inflammation are a

hallmark of CF lung pathophysiology (Cantin, 1995). Having

reported that Mabs lesions are characterized by an influx of

neutrophils and that these cells are critical in the host defense

against Mabs infections (Bernut et al., 2014, 2016a; Malcolm

et al., 2018), we next addressed whether CFTR ablation influ-

ences the behavior of neutrophils by examining and comparing

the dynamic of leucocyte mobilization in WT and CFTR-defi-

cient larvae using the Tg(mpx:GFP)i114 transgenic line labeling

neutrophils with GFP (Renshaw et al., 2006). Surprisingly,

CFTR deficiency strongly reduced neutrophil mobilization to-

ward the infection sites, upon local injection of either R or S

variants, as revealed by microscopy observations and quanti-

tative analysis of the number of neutrophils at the site of infec-

tion at 4 h post-infection (hpi) in cftr morphant (Figures 4A–4D)

and despite a larger baseline number of neutrophils in the

absence of CFTR (Figures S3A and S3B). These phenotypes

are in line with the impaired neutrophil trafficking in cftr mor-

phants infected with P. aeruginosa (Phennicie et al., 2010).

A B C

ED

Figure 3. cftr Knockdown Diminishes Intracellular Killing of M. abscessus and Promotes Macrophage Death

(A) Control and cftr morphants Tg(mpeg1:NLSmclover)sh436 were infected with Mabs R or S expressing tdTomato into the hindbrain ventricle (HBV). Confocal

microscopy was used to monitor the cell recruitment at 2 hpi. Mean ± SEM number of macrophages recruited to the infected HBV (n = 20, two experiments).

(B)mpeg1:NLSmclover control and cftrmorphants were i.v. infectedwithMabs R or S expressing tdTomato.Mean±SEMnumber of infectedmacrophages in the

caudal hematopoietic tissue (CHT) at 4 hpi (n = 20, two experiments).

(C and D) mpeg1:NLSmclover control and cftrmorphants were i.v. infected with Mabs R or S expressing tdTomato imaged at 1 dpi using confocal microscopy to

quantify the intracellular bacterial loads.

(C) Average proportions of infected macrophages containing fewer than five, five to ten, or more than ten bacteria in the CHT (n = 16, two experiments).

(D) Confocal images showing infected macrophages. Although WT-macrophages efficiently contain intracellular bacilli, CF macrophages fail to control Mabs

growth. Arrow indicates intracellular Mabs R cording. Scale bars, 2 mm.

(E) Control and cftr morphants Tg(mpeg1:mCherry-F)ump2 were i.v. infected with Mabs R or S expressing E2-Crimson and stained with acridine orange

(AO). Dead infected macrophages in the CHT were counted using confocal microscopy at 2 dpi. Data are plotted as mean ± SEM from two experiments

(n = 20–22).
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Additionally, confocal microscopy unraveled impaired neutro-

phil mobilization around and into Mabs-granulomatous lesions

(Figures 4E and 4F) and abscesses (Figure 4G) in the cftr

morphants. We previously established the linear relationship

between the number of recruited neutrophils and the Mabs

granuloma volume in WT ZF (Bernut et al., 2016a). Although

WT granulomas contained numerous neutrophils distributed

into and on the periphery of these cellular structures, CF

granulomas were dominated mostly by macrophages and

contained fewer neutrophils (Figures 4E and 4F).

CF neutrophils remain capable of engulfing bacteria similarly

to WT neutrophils (Figure S4A), suggesting that their phagocy-

tosis activity toward Mabs is independent of CFTR. However,

they fail to control intracellular Mabs (Figure S4B), leading to

increased cell death (Figure S4C), as reported for macrophages

(Figure 3). To determine whether the impaired neutrophilic

response to Mabs infection in cftr-deficient ZF is linked to a

A B

DC

E F G

Figure 4. CFTRDeficiency Reduces Chemo-

attraction of Neutrophils to Infection Sites

(A–G) Controls and cftr morphants Tg(mpx:GFP)

i114 were infected in the otic cavity (A and B), the

muscle (C and D), or the caudal vein (E–G) with

Mabs R or S expressing tdTomato and monitored

using confocal microscopy to follow the neutrophil

behavior toward infection sites.

(A–D) Representative images (A and C) andmean ±

SEM number (B and D) of neutrophils recruited to

infection sites after 3 hpi (n = 30, three experi-

ments). Scale bars, 50 mm.

(E) Number of neutrophils recruited to WT (top) or

CFTR-depleted (bottom) nascent granulomas as a

function of granuloma volume.

(F and G) Confocal images showing the distribution

of a neutrophil-associated granuloma (F) and ab-

scess (G) in a control animal versus a cftr mor-

phant. Scale bars, 25 mm.

See also Figures S3–S5.

possible intrinsic alteration in neutrophil

recruitment, we performed a neutrophil

mobilization assay using fMLP, a syn-

thetic neutrophil chemoattractant. Injec-

tion of fMLP into the otic vesicle induced

similar neutrophil recruitment in cftr mor-

phants and control larvae (Figure S5A).

Previous findings highlighted also the

requirement of IL-8 for neutrophil traf-

ficking during Mabs infections and its

crucial role in elaborating Mabs granu-

loma (Bernut et al., 2016a). That CFTR im-

pairs the early mobilization of neutrophils

intoMabs lesion led us to enquire whether

CFTR depletion influences cxcl8 expres-

sion. qRT-PCR analysis revealed a similar

level of cxcl8 expression in cftrmorphants

and control animals infected with both

S and R variants (Figure S5B), indicating

that impaired neutrophil trafficking is not

caused by an alteration in the Cxcl8 pathway-mediated neutro-

phil mobilization.

Overall, these results suggest CFTR is required for early and

late neutrophil recruitment to localized Mabs infection and to

control the intracellular growth of Mabs.

Intracellular Killing of M. abscessus Is Mediated by

NOX2-Dependent ROS Production

Mabs induces an oxidative stress response with the generation of

intracellular reactive oxygen species (ROS) by macrophages and

neutrophils (Bernut et al., 2016a; Malcolm et al., 2018). Loss of

functional CFTR reduces the macrophage respiratory burst

response and impairs killing of intracellular B. cenocepacia

(Assani et al., 2017). Thus, intracellular ROS generation in

CFTR-deleted larvae was investigated as a plausible mechanism

through which CFTR-mediated oxidative stress controls Mabs in-

fections. Because production of intracellular ROS by professional
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phagocytes reliesmainly on nox2 (Warnatsch et al., 2017), knock-

down experiments abolishing initial NOX2-mediated ROS pro-

duction (Figure 5A) were conducted using a specificMO targeting

nox2 (Roca and Ramakrishnan, 2013). Although injection of nox2-

MO failed to affect early macrophage mobilization into the HBV

(Figure 5B) or macrophage phagocytosis (Figure 5C), it did lead

to larger numbers of heavily infected cells (Figure 5D). Consistent

with these findings, global mycobacterial loads increased in the

absence of NOX2 (Figure 5E). Consistently, the nox2 morphants

developed more abscesses than the control embryos, leading

to the premature larval death (data not shown). This implies that

reduced ROS production in nox2 morphants is deleterious for

the host and that the enhanced susceptibility of these fish to the

infection highlights the key role of the NADPH-mediated intracel-

lular ROS for clearing Mabs.

To determine whether an impaired oxidative defense is

involved in defective CFTR-associated reduced bacterial killing

in early infection stages, we examined whether heat-killed and

intact Mabs induce intracellular ROS production in macrophages

using the CellROX dye. ROS-labeled phagocytes were rapidly

detected, but the number of ROS-positive macrophages

harboring either living or heat-killed R or S variants was lower in

cftr morphant than in control ZF at 2 hpi (Figures 6A and 6B),

consistent with the altered ROS production reported in the CF

context (Assani et al., 2017; Phennicie et al., 2010). Of note, the

larger number of ROS-positive macrophages infected with

heat-killed bacteria suggests that Mabs has developed mecha-

nisms to overcome the host oxidative killing mechanisms.

Moreover, similar results were observed regarding reduced

ROS production in CF-infected neutrophils (Figures S6A and

S6B). To further inquire whether the impaired intracellular ROS

production in absence of CFTR is linked to a possible decrease

in NADPH oxidase activity, the NOX2-mediated ROS signaling

pathway was dissected in defective cftr embryos. Mabs infection

triggers an upregulation of nox2 in control fish and qRT-PCRanal-

ysis confirmed a reduced nox2 expression in cftrmorphants (Fig-

ure 6C), suggesting that CFTR orchestrates the early regulation of

ROS induction bymodulating the NOX2/NADPH oxidase activity.

That the intracellular bacterial profiles were similar in the cftrmor-

phants and in the double cftr/nox2 morphants (Figure 6D)

suggests that the enhanced intracellular bacterial growth in

cftr morphants is directly linked to defective NOX2-NADPH

A B C

D E

Figure 5. NADPH Oxidase-Mediated Intracellular ROS Production Restricts M. abscessus Growth

(A) mpeg1:NLSmclover controls and nox2 morphants were infected with Mabs expressing tdTomato and stained for ROS production using CellROX deep red.

Representative ROS-producing infected macrophages revealed by confocal microscopy in a nox2 morphant versus a WT larvae. Scale bars, 5 mm.

(B) mpeg1:NLSmclover controls and nox2morphants were infected with Mabs expressing tdTomato into the HBV and monitored using confocal microscopy to

analyze cell recruitment. Mean ± SEM number of macrophages recruited to the infected HBV at 2 hpi (n = 20, two experiments).

(C–E) mpeg1:NLSmclover controls or nox2 morphants were i.v. infected with Mabs S (C and D) or R (D) expressing tdTomato.

(C) Mean number of infected macrophages in the CHT at 4 hpi (n = 20, two experiments).

(D) Average proportions of infected macrophages containing fewer than five, five to ten, or more than ten bacteria in the CHT at 1 dpi (n = 16, two experiments).

(E) Mean FPC of 3 dpi larvae i.v. infected by either Mabs R (left) or S (right) expressing tdTomato from three experiments.
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oxidase-related ROS production. Overall, these results demon-

strate that CFTR deficiency alters NOX2/NADPH oxidase-depen-

dent ROS production that, in turn, fails to restrict intracellular

growth of Mabs and that the release of NOX2-derived ROS par-

ticipates in clearing Mabs in both macrophages and neutrophils

(Figures 6 and S6).

Activated macrophages restrict mycobacterial growth through

a TNF-mediated ROS-dependent pathway (Bernut et al., 2016a;

Dewas et al., 2003). Combined with the fact that CFTR dysfunc-

tion is associated with alterations in the innate immune regulation

network and pro-inflammatory cascades (Döring and Gulbins,

2009; Cantin, 1995), we next explored whether abnormal tnf in-

duction could be involved in reduced ROS-mediated bacterial

killing in cftr morphants during the early stages of infection. To

assess the effect of cftr loss of function on tnfa production by

Mabs-infected macrophages, Mabs E2-Crimson were injected

into the muscle of either controls or cftr morphants tnfa:GFP-F/

mpeg1:mCherry-F double transgenic. Microscopy observations

indicate that both WT or CF animals exhibited equal proportions

of GFP-positive infected phagocytes containing either Mabs S

or R at 4 hpi (Figures S7A and S7B), suggesting that the early

impaired ROS generation associated with CFTR ablation is TNF

independent. At later stages, however, CFTR ablation triggers a

hyper-inflammatory response following infection with Mabs,

with qRT-PCR revealing upregulation of tnfa expression, espe-

cially after infection with the R form (Figure S7C), similar to find-

ings reported previously in mice (Catherinot et al., 2009).

Collectively, these data indicate that NOX2/NADPH oxidase-

dependent ROS production by infected phagocytes represents a

A

C D

B
Figure 6. CFTR Modulates NADPH Oxi-

dase-Mediated ROS Production

(A and B) mpeg1:NLSmclover controls or cftr

morphants were infected with either living or heat-

killed Mabs R or S expressing tdTomato into the

muscle and stained for ROS production using

CellROX deep red and analyzed using confocal

microscopy.

(A) Proportion of ROS-positive infected macro-

phages at 2 hpi (n = 16, two experiments).

(B) Distribution of representative ROS-producing

macrophages within the muscle at 2 hpi. Scale

bars, 15 mm.

(C) qRT-PCR measurement in whole embryos i.v.

infected with Mabs and plotted as fold increase

over mock injection for nox2. Mean relative ± SEM

gene expression of three independent replicates.

(D) mpeg1:NLSmclover controls, cftr, nox2, and

double cftr/nox2morphants were i.v. infected with

Mabs expressing tdTomato, and intracellular

bacterial loads were quantified at 1 dpi using

confocal microscopy. Graph represents the

average proportions of infected macrophages

containing fewer than five, five to ten, or more than

ten bacteria in the CHT (n = 15, two experiments).

See also Figures S6 and S7.

critical host defense mechanism against

Mabs and suggest that the inherent

deficit in NOX2-derived oxidative stress

in CF leukocytes is responsible for their defective bacterial killing

responses.

DISCUSSION

Pulmonary disease is the leading cause of morbidity and mortal-

ity in CF and is characterized by a vicious circle of chronic

infections and persistent inflammation. Among the deleterious

bacteria found in CF airway, the fast growing multidrug-resistant

Mabs has emerged as an important respiratory pathogen of

major concern in CF centers worldwide (Parkins and Floto,

2015). However, our understanding of the particular vulnerability

of CF patients to Mabs infection remains limited by the lack of

suitable animal models mimicking the immune abnormalities

found in the CF population. Nevertheless, important insights

into the pathophysiology of Mabs diseases have recently been

obtained in the ZF (Bernut et al., 2014, 2016a), and the very close

structural relatedness between ZF and human CFTR empha-

sizes further the relevance of ZF to study CFTR functions (Zhang

and Chen, 2016; Liu et al., 2017). To address these unmet needs,

we exploited here CF ZF as an innovative vertebrate recapitu-

lating aspects of CF immuno-pathogenesis. Thanks to genetic

and high-resolution imaging approaches, we report the direct

stepwise dissection of Mabs infection in an animal lacking

CFTR to elucidate the biological implication of CFTR in innate

immunity to Mabs.

Mabs-infected CFTR-depleted ZF rapidly succumb to infec-

tion, reflecting a hypersusceptibility to this mycobacterium in

CF, providing a first glimpse into CFTR-mediated host defenses
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to Mabs infection. Mechanisms leading to the formation of

protective Mabs granuloma depend on efficient macrophage

and neutrophil cooperation, orchestrated by fine-tuning innate

immune responses (Bernut et al., 2016a). The spatiotemporal

events associated with CFTR ablation (Figure 7) reveal a mech-

anism whereby CFTR participates in neutrophil chemotaxis to

the infected sites and the adjustment of oxidative host defenses,

conditioning efficient phagocyte-mediated bacterial killing,

together generating a protective granulomatous response.

Infection of ZF with Mabs is characterized by (1) rapid engulf-

ment of the bacilli by macrophages; (2) activation of macro-

phages, resulting in chemotaxis guiding neutrophils to pre-form-

ing granulomas and ROS production by NOX2 for intracellular

killing of Mabs; and (3) homeostatic granuloma formation to

sequester Mabs, containing the infection and favoring the devel-

opment of chronic disease. Conversely, CFTRdeletion promotes

increased susceptibility to Mabs infections, correlating with (1)

deficiency in ROS production altering phagocyte-mediated

Mabs killing, resulting in increased intracellular bacterial loads

and premature cell death, and (2) impaired neutrophil chemo-

taxis toward nascent granulomas. These two factors conspire

to alter the maintenance of protective granuloma with uncon-

trolled extracellular mycobacterial spread, conducting to acute

Figure 7. Critical Role of the CFTR/NADPH

Oxidase Axis for Efficient ROS Production

and Protective Immunity against

M. abscessus Infection

Schematic overview summarizing the CFTR/NOX2

axis-dependent ROS production in Mabs infection

control.

infection and larval death. Other studies

suggested that dysfunction of CFTR

dampens the microbicidal activity of im-

mune cells (Assani et al., 2017; Di et al.,

2006; Duranton et al., 2012), promoting

infectious pathology in CF airways. How-

ever, existing CF models have failed to

reproduce the hypersusceptibility pheno-

type associated with mycobacterial infec-

tions in CF (Roux et al., 2016; Le Moigne

et al., 2015). Using the CF ZF model, we

report here that primary alterations in

innate immunity directly contribute to

increased susceptibility to the infection.

Whereas ROS produced by the NADPH

oxidase during the respiratory burst

participate in the elimination of patho-

gens, Mabs has been reported to with-

stand the hostile oxidative environments

inside phagocytes (Oberley-Deegan

et al., 2010), although this awaits in vivo

confirmation. In ZF, inhibition of the

NOX2/NADPH oxidase pathway en-

hances intracellular growth. Given the

importance of NOX2-derived ROS pro-

duction in Mabs killing, a reduced oxida-

tive response in CF ZF is very likely to explain the increase

susceptibility to Mabs. Of note, the bacterial burden in nox2-

defective macrophages is lower than in CFTR macrophages

(Figure 6D), suggesting that additional CFTR-mediated mecha-

nisms are likely to participate in Mabs clearance.

Overly exuberant neutrophil influx associated with harmful

oxidative stress is a hallmark of the inflammatory CF lungs (Can-

tin, 1995; Hector et al., 2014). The increased number of neutro-

phils in cftr morphants mirrors the neutrophilia seen in CF. Our

results emphasize also the neutrophil chemotaxis impairment

to Mabs, as shown previously in P. aeruginosa-infected ZF

(Phennicie et al., 2010) but raising also controversial questions

regarding inflammatory and infectious CF pathologies. Support-

ing the view that neutrophilic inflammation-mediated Mabs

infection plays a critical role in host defense against this path-

ogen by maintaining granuloma integrity and preventing extra-

cellular bacterial multiplication (Bernut et al., 2016a), we show

that the capacity of neutrophils to migrate in a CFTR-dependent

manner is involved in the formation of protective granulomas.

Release of ROS by epithelial cells through NOX2-NADPH oxi-

dase has been implicated in neutrophil chemotaxis to wounds

(Braunersreuther et al., 2013). We provide here evidence for

CFTR in modulating the NOX2 oxidative pathway, in which a
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local redox imbalance in cftr morphants may account for the

reduced number of infiltrated neutrophils toward Mabs. This

suggests that NOX2-dependent ROS production from acti-

vated leucocytes triggers an oxidative environment sustaining

neutrophilic mobilization to efficiently contain bacteria within

homeostatic granulomas. The NOX/DUOX family NADPH oxi-

dase-mediated oxidative defenses play a critical role to con-

trol invading pathogens by triggering neutrophil chemotaxis

to infected tissues or bacterial killing (Brothers et al., 2013;

Rada and Leto, 2008). In addition to the reduced nox2 expres-

sion in absence of CFTR, presumably contributing to imbal-

anced adjustments of redox signaling, other mechanisms

altering ROS production via other NADPH oxidase complexes

by epithelial or immune cells may also contribute to the impaired

bactericidal function and/or chemotaxis of leucocytes during

Mabs infection.

The clinical relevance of ROS production in host defense,

notably the NOX2/NADPH oxidase in granuloma formation, is

consistent with mutations in nox2 leading to chronic granuloma-

tous disease (CGD) typified by the development of large size

and poorly structured granulomas that are unable to sequester

mycobacteria (Deffert et al., 2014) and associated with severe

inflammation (Rieber et al., 2012). However, although the altered

NADPH oxidase function in CGD can lead to increased disease

severity following infection with M. tuberculosis or vaccination

with M. bovis BCG (Deffert et al., 2014), reports of infection with

NTM remain anecdotal (Ohga et al., 1997; Weening et al., 2000;

Chusid et al., 1975), and no particular link with M. abscessus

has been ascribed yet.

This, together with clinical cases of CF patients heavily in-

fected with Mabs R (Jönsson et al., 2007; Catherinot et al.,

2009), demonstrates that Mabs exacerbates inflammation in

absence of CFTR, implicating a critical inflammatory pathology

associated with tissue damage and persistent Mabs infections.

Thus, at the later stages of infection, it is possible that an imbal-

ance of ROS production or neutrophil chemotaxis could be

caused by CF-mediated hyperinflammation acting as a negative

feedback loop that would undo the fine-tuning of immune

responses.

Our study indicates that cftr is a regulator of host immunity to

MABSC but not to other saprophytic (M. smegmatis) or patho-

genic (M. marinum) NTM, suggesting that species-specific re-

striction mechanisms may exist for these organisms. In fact,

we show that M. marinum-infected cftr morphants succumbed

to infection more slowly than controls, suggesting that inactiva-

tion of cftr triggers a mild protective immunity against tubercu-

losis. Indeed, it has been proposed that the high carrier rate for

CFTR mutations among Caucasians is due to an evolutionary

selective advantage against infectious disease, with candidate

agents including cholera (Gabriel et al., 1994), typhoid fever

(Pier et al., 1998), and tuberculosis (Meindl, 1987), in which the

pandemic in the early 1600s could explain the modern-day CF

incidence rates in European-descendent populations (Poolman

and Galvani, 2007). Recent studies support the hypothesis that

carrying the most common F508del cftr allele protects against

M. tuberculosis infection (Bosch et al., 2017). This species-spe-

cific susceptibility to different mycobacteria is particularly

intriguing and deserves further attention.

In summary, we demonstrate that CFTR dysfunction leads

to hypersusceptibility to Mabs infection in vivo, potentially

explaining the high rates of infection seen clinically in CF pa-

tients. We anticipate that insights obtained from ZF may guide

the development of future therapies targeting innate immune

defects in CF.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Model: Bacterial Strains

Mycobacterium abscessus sensu stricto,

strain CIP104536T, smooth

Laboratoire de Référence des

Mycobactéries (IP, France)

ATCC19977T

Mycobacterium abscessus sensu stricto,

strain CIP104536T, rough

Laboratoire de Référence des

Mycobactéries (IP, France)

ATCC19977T

Mycobacterium abscessus subsp. bolletii,

CIP108541T, smooth

Laboratoire de Référence des

Mycobactéries (IP, France)

CIP108541T

Mycobacterium abscessus subsp. bolletii,

CIP108541T, rough

Bernut et al., 2016b CIP108541T

Mycobacterium abscessus subsp. massiliense,

CIP108297T, smooth

Laboratoire de Référence des

Mycobactéries (IP, France)

CIP108297T

Mycobacterium abscessus subsp. massiliense,

CIP108297T, rough

Laboratoire de Référence des

Mycobactéries (IP, France)

CIP108297T

Mycobacterium marinum strain M Stinear et al., 2008 ATCC BAA-535

Mycobacterium chelonae strain A6 Laboratoire de Référence des

Mycobactéries (IP, France)

N/A

Mycobacterium smegmatis mc2155 Snapper et al., 1990 N/A

Experimental Model: Zebrafish lines

golden mutant Lamason et al., 2005 N/A

cftrpd1049 mutant Navis et al., 2013 N/A

gBAC(cftr-RFP)pd1042 Navis et al., 2013 N/A

Tg(mpx:GFP)i114 Renshaw et al., 2006 N/A

Tg(LysC_DSred)nz5 Hall et al., 2007 N/A

Tg(mpeg1:NLSmclover)sh436 This study N/A

Tg(mpeg1:mCherry-F)ump2 Bernut et al., 2014 N/A

Tg(tnfa:GFP-F)ump5 Nguyen-Chi et al., 2015 N/A

Chemicals, Peptides, and Recombinant Proteins

Hygromycin B Sigma-Aldrich Cat# H3274

Tricaine Sigma-Aldrich Cat# E10521

Difco Middlebrook 7H9 Broth Thermo Fisher Scientific Cat# DF0713-17-9

Middlebrook OADC Growth Supplement Sigma-Aldrich Cat# M0678

Tween-80 Sigma-Aldrich Cat# P1754

f-Met-Leu-Phe (fMLP) Sigma-Aldrich Cat# F3506

Acridine Orange Invitrogen Cat# 93001

CellROX Deep Red Invitrogen Cat# C10422

LR Clonase II Plus Invitrogen Cat# 12538

SuperScript IV First-Strand Synthesis System Invitrogen Cat# 18091050

LightCycler� 480 SYBR Green I Master Roche Cat# 04887352001

Recombinant DNA

pTEC15 Addgene Cat# 30174

pTEC19 Addgene Cat# 30178

pTEC27 Addgene Cat# 30182

pcDNA3.1-Clover-mRuby2 Addgene Cat# 49089

Gateway pDONR221 Vector Invitrogen Cat# 12536017

pCSTP Kawakami et al., 2004 N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Laurent

Kremer (laurent.kremer@irim.cnrs.fr).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Bacterial Strains

Mycobacterial strains carrying pTEC15 (Addgene, plasmid 30174), pTEC27 (Addgene, plasmid 30182) or pTEC19 (Addgene, plasmid

30178) that express green fluorescent protein (Wasabi), red fluorescent protein (tdTomato) or bright far-red fluorescent protein (E2-

Crimson), respectively, were grown under hygromycin B selection in Middlebrook 7H9 supplemented with oleic acid, albumin,

dextrose, catalase (OADC), and 0.05% Tween-80. To prepare heat-killed Mabs, bacteria were incubated at 80�C for 20 min.

Zebrafish Husbandry and Ethic statements

Experimental procedures were performed using the golden mutant (Lamason et al., 2005), the cftrpd1049 mutant (Navis et al., 2013),

the transgenic lines Tg(mpx:GFP)i114 (Renshaw et al., 2006) and Tg(LysC_DSred)nz5 (Hall et al., 2007) to visualize neutrophils;

Tg(mpeg1:NLSclover)sh436 and Tg(mpeg1:mCherry-F)ump2 (Bernut et al., 2014) to visualize MV ; gBAC(cftr-RFP)pd1042 (Navis

et al., 2013) to visualize cftr expression, and Tg(tnfa:GFP-F)ump5 (Nguyen-Chi et al., 2015) to visualize tnf-a expression. ZF were

raised and maintained according to standard protocols (Nusslein-Volhard and Dahm, 2002). Eggs were obtained from pairs of adult

fish by natural spawning and raised at 28.5�C in tank water. The ZF husbandry and all ZF experiments described in the present study

were conducted in accordance with guidelines from the UK Home Office (Bateson Centre, University of Sheffield) and in compliance

with the European Union guidelines for handling of laboratory animals (CNRS, Montpellier) and were approved by the Direction San-

itaire et Vétérinaire de l’Hérault et Comité d’Ethique pour l’Expérimentation Animale de la région Languedoc Roussillon under the

reference CEEA-LR-1145 (Montpellier experiments).

METHOD DETAILS

Creation of theTg(mpeg1:NLSmClover) transgenic line

The Tol2kit multisite Gateway-based transposon system (Kwan et al., 2007) was used to generated a construct from which a stable

transgenic line was raised. mClover was amplified from pcDNA3.1-Clover-mRuby2, a gift fromKurt Beam (Addgene, plasmid 49089),

using forward forward primer 50-GGGGACAAGTTTGTACAAAAAAAGGCTCAATGGCTCCAAAGAAGAAGCGTAAGGTA-30 and

reverse primer 50-GGGGACCACTTTGTACAAGAAAGCTGGGTCTACTTGTACAGCTCGTCCA-30 and cloned into pDONR 221 donor

vector (Invitrogen) to produce pME-NLSmClover. An LR Clonase II Plus (Invitrogen) Gateway reaction was performed with p5E-

mpeg1 (Ellett et al., 2011), pME-NLSmClover and p3E-polyA inserted into pDestTol2pA2 destination vector (Kwan et al., 2007) to

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Nucleospin RNAII kit Macherey-Nagel Cat# 740955

Oligonucleotides

Primers used in this study are listed in Table S1

Software and Algorithms

Prism 7.0 Graphpad https://www.graphpad.com/; RRID:SCR_002798

R 3.5.0 R core team http://www.r-project.org; RRID:SCR_001905

ImageJ NIH https://imagej.nih.gov/ij/; RRID:SCR_003070

TIA Software Thermo Scientific Tecnai https://www.fei.com

Volocity 6.3 PerkinElmer Life and Analytical

Sciences, Cambridge, UK

http://www.perkinelmer.com/fr/lab-products-and-

services/resources/whats-new-volocity-6-3.html

RRID:SCR_002668

LAS-AF Leica Microsystems https://www.leica-microsystems.com/products/

microscope-software.html

Zen (Blue edition) Zeiss https://www.zeiss.com/microscopy/int/products/

microscope-software/zen.html

LightCycler� 480 Software Roche https://lifescience.roche.com/en_gb/products/

lightcycler14301-480-software-version-15.html
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producempeg1:NLSmClover construct. The tol2-transposase mRNA was synthesized from pCSTP (Kawakami et al., 2004) and co-

injected with the mpeg1:NLSmClover construct into one-cell-stage ZF embryos to create the Tg(mpeg1:NLSmClover)sh436 trans-

genic line harboring green fluorescent macrophages.

Morpholino injection

MO were purchased from Gene Tools. cftr splice-blocking morpholino targeting cftr (ZFIN, ZDB-GENE-050517-20) (50-GACA

CATTTTGGACACTCACACCAA-30) was injected into one-cell-stage zebrafish embryos (1 mM, 2 nl). The efficiency of gene knock-

down was confirmed by RT-PCR and sequencing with the following primers for both sides of the MO target sequence (forward

and reverse): CCTGTGGAGGATGCCAACTGCC and TGCATGCCCAGGTGGTGCAG. Total RNA from 2 dpf embryos (pools of 10

each) was isolated and purified with Nucleospin RNAII kit (Macherey-Nagel), following the manufacturer’s instructions. The Super-

Script IV reverse transcriptase (Invitrogen) was used to synthesize first-strand cDNA with oligo(dT) primer from 1 mg of total RNA at

50�C for 50 min. MO for nox2 (cybb, ZFIN, ZDB-GENE-040426-1380) knockdown (50-CATAATCCCGATAGCTTACGATAAC-30) was

prepared and injected as described earlier (Roca and Ramakrishnan, 2013). A standard control-MO was included as a negative con-

trol in all experiments.

Zebrafish infection

Bacterial inoculate were prepared for infection challenges in ZF embryos/larvae, according to procedures described earlier (Bernut

et al., 2015). Briefly, systemic infections were carried out by the injection of single-cell suspensions of known titer (100-200 colony-

forming units) into the caudal vein of 30 hpf embryos. For leucocyte mobilization assays, mycobacteria were locally injected into the

hindbrain ventricle at 30 hpf, the otic vesicle or the muscle compartment of 3 dpf larvae. The number of animals used for each pro-

cedure was guided by pilot experiments or by past results (Bernut et al., 2016a; Bernut et al., 2014).

qRT-PCR

Total RNA was prepared and first-strand cDNA synthesized. Real-time RT-PCRs were performed with an LightCycler� 480 system

instrument using LightCycler� 480 SYBR Green I Master (Roche) and gene expressions were detected with gene-specific primers

listed in Table S1. Reaction mixtures were incubated for 5 min at 95�C, followed by 45 cycles of 5 s at 95�C, 20 s at 65�C, and finally

10 s at 95�C. Each experiment was run in triplicate. qRT-PCRdata are analyzedwith the LightCycler� 480Software, normalized to the

housekeeping gene ef1a and calculated using the DDCt method.

Epifluorescence, Confocal Microscopy and Imaging

To quantify bacterial loads, granulomas (defined as cellular aggregates comprising at least 10 infected cells), cords, leukocyte

mobilization, and evaluate oxidative stress, infected larvae were tricaine-anesthetized and mounted in 0.8% low melting point

agarose with 0.016% tricaine for real-time microscopy observations. To evaluate intracellular mycobacterial growth, phagocytosis,

cellular mortality, and granuloma organization, infected animals were tricaine-anesthetized, fixed overnight at 4�C in 4% paraformal-

dehyde in PBS, washed twice in PBS and then transferred gradually from PBS to 50% glycerol for microscopy observation.

Epifluorescence microscopy was performed using a Zeiss Plan Neo Fluor Z 1x/0.25 FWD objective and equipped with an

Axiocam503 monochrome (Zeiss) camera. Pictures were taken and processed using ZEN 2 (blue edition). Confocal microscopy

was performed using a Spinning disc confocal Perkin Elmer Ultraview VoX inverted Olympus IX81 with a UplanSAPO 20x/0.8 and

a UplanSAPO 40x/1.3 oil objective, equipped with a Hamamatsu C9100-50 EM-CCD camera or with a Leica SPE upright microscope

with a ACS APO 40x/1.15 oil objective. Images were captured and processed using the Velocity or LASAFS softwares.

Transmission Electron Microscopy

For TEM, ZF larvae were tricaine-anesthetized and fixed overnight at 4�C in 2.5% glutaraldehyde in 0.1M phosphate buffer. After a

post-fixation in 1% osmic acid 1 hr at 4�C and 0.5% tanic acid for 30 min at 4�C, animals were dehydrated in successive ethanol

baths, infiltrated with mixes of epon 812/propylene oxide, embedded in epon 812 resin, and then polymerized at 60�C for 48 hr.

Ultrathin sections were cut with a Reichert Ultracut ultramicrotome (Leica) and collected on nickel grids. Finally, the grids were

stained 20 min in 2% uranyle acetate and 3 min in 3% lead citrate, then examined on a Tecnai G2 F20 (200kV, FEG) electron

microscope. Images were captured using TIA imaging software.

Neutrophils Recruitment Assay

Neutrophil mobilization was elicited through injection of 300 nM f-Met-Leu-Phe (fMLP) chemoattractant into the otic cavity of 3 dpf

larvae (Bernut et al., 2016a) and counting the recruited neutrophils at the injection site using fluorescence microscopy.

Cell Death and Reactive Oxygen Species Detection

Leucocyte killing in ZF was detected using Acridine Orange (AO), as previously described (Bernut et al., 2014). Living embryos were

soaked in 10 mg/ml AO in fish water for 30 min at 28.5�C, followed by two washes, then replaced at 28.5�C until observation and
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analyzed by confocal microscopy. For ROS detection, living larvae were soaked in 5 mM CellROX Deep Red Reagent in PBS for

30 min at 28.5�C, rinsed twice with PBS and directly prepared for confocal microscopy observations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis (Prism 7.0; GraphPad Software or R 3.5.0) was performed using c
2Fisher’s exact test, two-tailed unpaired

Student’s t test for comparisons between two groups and one-way or two-way ANOVA (with appropriate post-test adjustment)

for other data. Mantel-Cox Log-rank test was used to compare survival curves. All data are plotted as average of two or three

independent experiments. All error bars indicate standard errors of means (SEM). ns, not significant (p R 0.05); *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001.
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Supplemental Table 1. Primers used in this study, related to STAR Methods. 

Designation Sequences References 

ef1a 
(for qPCR) 

Forward : 5ƍ-TCTGTTACCTGGCAAAGGG-3’ Bernut et al, 2016a 
Reverse : 5ƍ-TTCAGTTTGTCCAACACCCA-3’ Bernut et al, 2016a 

cxcl8a 
(for qPCR) 

Forward : 5ƍ-CCTGGCATTTCTGACCATCAT-3’ Bernut et al, 2016a 
Reverse : 5ƍ-GATCTCCTGTCCAGTTGTCAT-3’ Bernut et al, 2016a 

Tnfa 
(for qPCR) 

Forward : 5ƍ-TTCACGCTCCATAAGACCCA-3’ Bernut et al, 2016a 
Reverse : 5ƍ-CCGTAGGATTCAGAAAAGCG-3’ Bernut et al, 2016a 

nox2 
(for qPCR) 

Forward : 5ƍ-CTTTCGTTATGAAGCGGTGATG-3’ Weaver et al, 2016 
Reverse : 5ƍ-GGTTCTCCTGGACGTGTTTAT-3’ Weaver et al, 2016 

Control-MO 5'-CCTCTTACCTCAGTTACAATTTATA-3' Gene Tools 
cftr-MO 5'-GACACATTTTGGACACTCACACCAA-3' This study 

nox2-MO 5'-CATAATCCCGATAGCTTACGATAAC-3' 
Roca and 
Ramakrishnan, 
2013 

cftr for MO screen 
efficiency 

Forward : 5ƍ-CCTGTGGAGGATGCCAACTGCC-3’ This study 

Reverse : 5ƍ-TGCATGCCCAGGTGGTGCAG-3’ 
This study 

pME NLS Clover 
Forward : 5’-
GGGGACAAGTTTGTACAAAAAAAGGCTCAATGGCT
CCAAAGAAGAAGCGTAAGGTA-3’ 

This study 

Reverse : 5’-
GGGGACCACTTTGTACAAGAAAGCTGGGTCTACTT
GTACAGCTCGTCCA-3’ 

This study 
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Figure S1. Targeted knockdown of cftr using splicing morpholino in ZF embryos, related to Figure 1
(A-B) A splice targeting morpholino was designed against exon3-intron3 boundary within the cftr gene. (A)
Schematic representation and nucleotide sequence corresponding to exon 1 through exon 4 of the ZF cftr
gene with the splice morpholino cftr-MO binding site and locations of primers used to amplify the region
surrounding exon 3 (P1/P2) (left panel). Altered splicing in cftr MO injected-embryos is verified by RT-PCR
(right panel). cftr specific products were amplified from RNA isolated from whole embryos at 2, 4 and 6 dpf.
The cftr-MO effectively blocks the splice donor site at the exon3-intron3 boundary, giving rise to an amplicon
with a reduce size as compared to the size of the normal cftr transcript, suggesting the existence of a cryptic
splice site within exon 3.
(B) Comparison of the sequences shows that cftr-MO blocks normal splicing resulting in 54pb deletion in exon
3, thus confirming the efficacy and specificity of this morpholino.
(C) Confocal images showing the representative cftr expression in Mabs S- induced granuloma in control-MO-
injected gBAC(cftr-RFP)pd104 embryos infected with Mabs expressing Wasabi (5 dpi). Scale bar, 5 ȝm.
(D) Confocal images showing the cftr expression in infected phagocytes in a control or a cftr morphant
gBAC(cftr-RFP)pd104 embryos infected with Mabs S expressing Wasabi (5 dpi). Scale bars, 5 ȝm.
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Figure S2. Cftr MO knockdown results in increased susceptibility to NTM, related to Figure 1
(A-E) Control embryos or cftr morphants were intravenously infected with ≈150 CFU of various mycobacteria
expressing tdTomato. Data are plotted as percentage of surviving animal on each day (n=40, average of two
independent experiments, Mantel-Cox Log-rank test).
(A) Survival analysis of embryos infected with either R (top graph) or S (bottom graph) variants of M.
massiliense.
(B) Survival analysis of embryos infected with either R (top graph) or S (bottom graph) variants of M. bolletii.
(C) Survival analysis of M. chelonae-infected larvae.
(D) Survival analysis of M. smegmatis-infected larvae.
(E) Survival analysis of M. marinum-infected larvae.
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Figure S3. cftr knockdown promotes a basal hyperneutrophilia, related to Figure 4
(A) Representative fluorescence microscopy images of control embryos versus cftr morphants
Tg(mpx:eGFP)i114 embryos at 2 dpf. Scale bars, 200 ȝm.
(B) Basal number of neutrophils in whole embryos at 2 dpf. Graphs represent the mean ±SEM of two

independent experiments (n=10). Significance was assessed by two-tailed unpaired Student’s t test
comparing both infected embryos per category.
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Figure S4, cftr knock-down inhibits M. abscessus killing inside neutrophils, related to Figure 4
(A) Control or cftr morphants Tg(mpx:eGFP)i114 larvae were infected into the muscle with ≈100 CFU Mabs
R or S expressing tdTomato. Proportion of infected neutrophils analyzed using confocal microscopy and
recruited in the infected site at 4 hpi. Data are plotted as mean ± SEM from two independent experiments

(n=20).
(B) Control or cftr morphants Tg(mpx:eGFP)i114 embryos were iv infected with Mabs R or S expressing
dtTomato. Confocal images showing infected neutrophils. While WT-neutrophils efficiently contain
intracellular bacilli, CF-neutrophils appear overloaded with Mabs. Arrow indicates intracellular Mabs R
cording. Scale bar, 2 ȝm.
(C) Control or cftr morphants Tg(LysC_DSred)nz5 embryos were iv infected with ≈100 CFU Mabs R or S
expressing E2-Crimson and stained for dead cells using acridine orange (AO). Proportion of dead infected
neutrophils was evaluated in the CHT at 2 dpi using confocal microscopy. Data are plotted as mean ± SEM

from two independent experiments (n=20).
Significance was assessed by Fisher’s exact test (A and C). 
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Figure S5. cftr knock-down does not impair the neutrophil chemotaxis functions, related to Figure 4
(A) Mean ± SEM number of recruited neutrophils into the otic cavity in response to mock or fMLP injection in

control and cftr morphants Tg(mpx:eGFP)i114 larvae monitored using confocal microscopy at 3 hpi (two
independent experiments, n=14).
(B) qRT-PCR measurement for whole embryos 4 dpi after intravenous infection with ≈150CFU Mabs R or S
and plotted as fold increase over mock injection for cxcl8a. Mean relative ± SEM gene expression of three

independent replicates.
Significance was assessed by two-tailed unpaired Student’s t test comparing both infected embryos per
category (A and B).
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Figure S6, cftr knock-down altered neutrophil ROS production, related to Figure 6
(A-B) Control or cftr morphants Tg(mpx:eGFP)i114 larvae were infected with ≈150 CFU Mabs expressing
dtTomato into the muscle and stained for ROS production using CellRox Deep red.
(A) Confocal imaging showing both ROS+ (arrow) or ROS- (arrow heads) -producing infected neutrophils
(arrow) at the infected site. Scale bar, 5 ȝm.
(B) Proportion of ROS-producing infected neutrophils were evaluated at 4 hpi using confocal microscopy
(from two independent experiments (n=16)). Significance was assessed by Fisher’s exact test.
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Figure S7. M. abscessus infection triggers hyperinflammation in the absence of CFTR, related to
Figure 6
(A-B) Double transgenic larvae Tg(tnfĮ:eGFP-F)ump5 / Tg(mpeg1:mCherry-F)ump2) were infected into the
muscle with ≈100 Mabs R or S variants expressing E2-Crimson or with PBS (mock).
(A) Quantification of tnf + MɎ per infected larvae after 2 hpi. The data are representative of two experiments.
(B) Microscopy showing the representative expression of GFP+ cells at 2 hpi at the injection site. Scale bar,
70 ȝm.
(C) qRT-PCR measurement for whole Mabs R- or S-infected embryos 4 dpi (≈150 CFU) and plotted as fold
increase over mock injection for tnfĮ. Mean relative ± SEM gene expression of three independent replicates.

Significance was assessed by two-tailed unpaired Student’s t test comparing both infected embryos per
category (A and C).
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