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Long-distance continuous-variable quantum key distribution with quantum scissors
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The use of quantum scissors, as candidates for non-deterministic amplifiers, in continuous-variable quantum

key distribution systems is investigated. Such devices rely on single-photon sources for their operation and

as such, they do not necessarily preserve the Guassianity of the channel. Using exact analytical modeling for

system components, we bound the secret key generation rate for the system that uses quantum scissors. We

find that for non-zero values of excess noise such a system can reach longer distances than the system with no

amplification. The prospect of using quantum scissors in continuous-variable quantum repeaters is therefore

emboldened.

PACS numbers: 03.67.Dd, 03.67.Hk

I. INTRODUCTION

Quantum key distribution (QKD) [1, 2] addresses the prob-

lem of sharing secret keys between two users. Such keys

can then be used for secure communications. While origi-

nal QKD protocols [1–4] rely on encoding data in discrete

quantum states, such as the polarization of single photons, one

can also exploit continuous-variable QKD (CV QKD) proto-

cols, in which data is encoded on the quadratures of the light

[5–8]. In particular, the recent progress in CV QKD systems

has placed them in a competitive position with their conven-

tional discrete-variable counterparts [9, 10]. For instance,

contrary to discrete-variable QKD protocols, which require

single-photon detectors, CV QKD uses coherent measurement

schemes, such as homodyne and/or heterodyne detection, to

measure light quadratures, without relying on photon count-

ing devices [11–13]. Moreover, CV QKD protocols can be the

better choice over short distances [10]. Once it comes to long

distances, however, CV QKD has its own challenges to com-

pete with discrete-variable QKD [14]. This paper examines

how the security distance can be enhanced in CV QKD sys-

tems by using realistic non-deterministic amplification [15].

One of the proposed solutions to improve the rate-versus-

distance performance of CV QKD protocols is to use noiseless

linear amplifiers (NLAs) [15, 16]. It is known that determinis-

tic amplification cannot be noise free [17]. An NLA can only

then work probabilistically. This inevitably reduces the key

rate by a factor corresponding to the success rate of the NLA,

which implies that, at short distances, the use of NLAs may

not be beneficial. The key rate may, however, increase at long

distances because of the improvement in the signal to noise

ratio. That is, while the number of data points we can use

for key extraction is less, the quality of the remaining points

could be such high that a larger number of secret key bits can

be extracted. This has been shown theoretically by treating the

NLA as a probabilistic, but noiseless, black box and assum-

ing that the NLA achieves its theoretically maximum possible

success rate for all possible inputs [15].

The story can be quite different when we replace the above

ideal NLA with realistic systems that offer NLA-like func-

tionality. For instance, one of the most basic structures for an

NLA is a quantum scissor (QS), which combines the incom-

ing light with a single photon [18]. While under weak signal

assumptions, a QS can be approximated as an NLA, more pre-

cise analysis reveals that its operation is not necessarily noise-

less. This is particularly important because in many CV QKD

protocols the transmitted signal does not have a fixed power,

and realistic NLAs often treat different input signals differ-

ently. This is more or less true for other proposals that imple-

ment the NLA operation [19–24].

In this paper, we provide a realistic account of what a QS

can offer within a CV QKD setup. In particular, using an ex-

act model for the QS setup, we analyze the secret key rate of a

Gaussian modulated protocol, whose receiver unit is equipped

with a QS. One of the implications of our exact modeling for

the QS is the inapplicability of standard key rate calculation

techniques that rely on the Gaussianity of the output states.

This will make the exact calculation of the key rate cumber-

some. We manage this problem by using relevant bounds for

certain components of the key rate. We find that by using the

QS we can exchange secret keys over longer distances. Our

work also provides insights into the practicality of the recent

proposals for CV quantum repeaters [25, 26].

The manuscript is structured as follows. In Sec. II, we de-

scribe details of the proposed system. In Sec. III, by analyz-

ing input-output characteristic functions of a single QS, we

calculate the exact output state and success probability of the

QS NLA in Ref. [18]. We further study the non-Gaussian be-

havior of the system. In Sec. IV, we present the key rate analy-

sis of the CV QKD link with a single QS as part of its receiver.

In Sec. V, we discuss the numerical results. Finally, Sec. VI

concludes the paper.

II. SYSTEM DESCRIPTION

In this section, we describe our proposed setup for the QS-

amplified CV QKD protocol. We assume that the sender, Al-

ice (A), is connected to the receiver, Bob (B), via a quan-

tum channel; see Fig. 1(a). The protocol runs along the same

lines as proposed by Grosshans and Grangier in 2002 (GG02)

[5, 6, 27, 28]. That is, in every round, Alice transmits a co-
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FIG. 1. (a) Schematic view of CV QKD link with an additional

quantum scissor at the receiver. A beam splitter with transmittiv-

ity T characterizes the quantum channel, with excess noise at the

input represented by ε. (b) Entanglement-based CV QKD protocol

equivalent to (a). QS, Hom and Het boxes represent, respectively, a

non-deterministic quantum scissor, the homodyne detection and het-

erodyne detection modules.

herent state |α〉, where α = xA + ipA, to Bob, with real pa-

rameters xA and pA being chosen randomly according to the

following Gaussian probability density functions:

fXA
(xA) =

e
− x2

A
VA/2

√
πVA/2

and fPA
(pA) =

e
− p2A

VA/2

√
πVA/2

, (1)

where VA is the modulation variance in the shot-noise units.

At the receiver, however, we equip Bob with a single QS be-

fore the homodyne module used in GG02. Upon a success-

ful QS operation, Bob randomly chooses to measure x̂B =

âB + â†B or p̂B = (âB − â†B)/i, where âB represents the

annihilation operator for the output mode of the QS. During

the sifting stage, Bob would then publicly declare his mea-

surement choices as well as the rounds in which the QS has

been successful. Alternatively, one can use the equivalent

entanglement-based (EB) scheme of Fig. 1(b), where Alice’s

source is replaced with an EPR source followed by heterodyne

detection. In either case, we assume that Bob can reconstruct,

in an error-free way, the phase reference for the local oscilla-

tor used in his homodyne detection. By using post-processing

techniques, Alice and Bob extract a key from the subset of

data for which the QS has been successful.

Quantum scissors are the main building blocks in the NLA

proposed by Ralph and Lund [18]. At the core of a QS,

there is a partial Bell-state measurement (BSM) module, with

a balanced beam splitter followed by two single-photon de-

tectors, in the space spanned by number states |0〉 and |1〉.
This BSM module is driven by an asymmetric entangled state

|ψ〉 = √
µ |1〉c|0〉b3 +

√
1− µ |0〉c|1〉b3 , generated by a single

photon that goes through a beam splitter with transmittance µ;

see Fig. 2. For an input state in the |0〉-|1〉 space, the QS could

then offer an asymmetric teleportation functionality, whenever

the BSM operation is successful, i.e., when only one of D1 or

D2 detector in Fig. 2 clicks. For instance, in the particular case

of a weak coherent state input |α〉a1
≈ |0〉a1

+ α|1〉a1
, with

|α| ≪ 1, a single click could come from the single-photon

component in the entangled state |ψ〉 and/or the input state.

In that case, the output state, after renormalization, can be ap-

proximated by |0〉b3 +αg|1〉b3 ≈ |αg〉b3 , for |gα| ≪ 1, where

g =
√
(1− µ)/µ represents the amplification gain of the QS.

FIG. 2. The schematic diagram of a quantum scissor. Here, we as-

sume that an on-demand ideal single-photon source (SPS) is in use,

and that the single-photon detectors have unity efficiencies.

Under these assumptions, the success probability for the QS

operation is given by PRL
succ(α) ≈ µ+ (1− µ)|α|2. Note that,

in the above description, the essential assumption for a QS to

possibly operate as an NLA is that |α| ≪ 1.

There are two reservations in using the above asymptotic

approach for analyzing a QS-based CV QKD system. First,

note that the output state of a QS is always in the space

spanned by single-photon and vacuum states. By approxi-

mating the output state as a coherent state, we are introduc-

ing some errors, which can affect the security of the system.

More precisely, the transition from a coherent state to a single-

photon state is a non-Gaussian one, whose effect must be care-

fully considered in the security analysis. Secondly, in the

GG02 protocol, the coherent states are chosen randomly via

Gaussian distributions; hence, the input states to the QS may

not necessarily satisfy the assumption |α| ≪ 1.

In order to resolve the above issues, in our work, we find

the exact output state and probability of success for an arbi-

trary coherent state at the input of a QS. This will be detailed

in Sec. III. We then apply our findings to the key rate analysis

of a QS-equipped CV QKD system. For simplicity, we as-

sume that the required single-photon source (SPS) in the QS

is ideal and on-demand. Single-photon detector efficiencies

are also assumed to be unity. Our analysis can, nevertheless,

be extended to account for the imperfections in the source and

detectors.

III. QUANTUM SCISSORS: INPUT-OUTPUT

RELATIONSHIP

In this section, we first obtain an exact input-output rela-

tionship for a QS driven by a coherent state. We use charac-

teristic functions to model the input and output states. For a

joint, M -mode, state ρ̂, where each mode j is represented by

an annihilation operator âj , the anti-normally ordered charac-

teristic function is given by

χρ̂
A(ξ1, . . . , ξM ) =

〈 M⊗

j=1

D̂A(âj , ξj)
〉

ρ̂
, (2)
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where 〈◦〉ρ̂ ≡ Tr[ρ̂◦] and D̂A(â, ξ) = e−ξ∗âeξâ
†

is the anti-

normally ordered displacement operator with ξ∗ being the

complex conjugate of the complex number ξ = ξr + iξi,
where ξr and ξi are real numbers. The density matrix ρ̂ and its

anti-normally ordered characteristic function are related via a

Fourier-like transformation relationship as follows

ρ̂ =

∫
d2ξ1
π

· · ·
∫
d2ξM
π

χρ̂
A(ξ1, . . . , ξM )

M⊗

j=1

D̂N(b̂j , ξj),

(3)

where D̂N(â, ξ) = eξâ
†
e−ξ∗â is the normally-ordered dis-

placement operator and
∫
d2ξ =

∫ +∞
−∞ dξr

∫ +∞
−∞ dξi.

In the following, we use the above formalization, to char-

acterize a QS driven by an arbitrary coherent state.

A. Pre-measurement state

For the QS in Fig. 2, we can use the well-known relation-

ships for beam splitters to relate the three input modes of the

linear circuit, represented by â1, â2 and â3, to the three out-

put modes, represented by b̂1, b̂2 and b̂3. In fact, we have

[b̂1 b̂2 b̂3]
T = ΓQS[â1 â2 â3]

T, where

ΓQS =
1√
2




1
√
µ −√

1− µ
−1

√
µ −√

1− µ

0
√

2(1− µ)
√
2µ


 . (4)

The output anti-normally ordered characteristic function

can then be expressed in terms of the input one by

χout
A (ξ1, ξ2, ξ3) =〈D̂A(b̂1, ξ1)D̂A(b̂2, ξ2)D̂A(b̂3, ξ3)〉

=〈D̂A(â1, λ1)D̂A(â2, λ2)D̂A(â3, λ3)〉
=χin

A (λ1, λ2, λ3), (5)

where [λ1 λ2 λ3]
T = ΓT

QS[ξ1 ξ2 ξ3]
T with ΓT

QS being the

transpose of ΓQS. In above, we made use of the facts that

D̂A(sâ, ξ) = D̂A(â, sξ), where s is a real number, and

〈D̂A(â, ξ1)D̂A(â, ξ2)〉 = eξ1ξ
∗
2 〈D̂A(â, ξ1 + ξ2)〉. Note that

ΓQS is unitary, i.e., ΓT
QS = Γ−1

QS. Hence, we have
∑

j |ξj |2 =∑
j |λj |2.

Next, for the particular input state |α〉â1
|1〉â2

|0〉â3
the out-

put characteristic function can be found as follows

χout
A (ξ1, ξ2, ξ3) =Tr

[
|α〉â1

〈α| ⊗ |1〉â2
〈1| ⊗ |0〉â3

〈0|
D̂A(â1, λ1)D̂A(â2, λ2)D̂A(â3, λ3)

]

=e−|λ1|2−|λ2|2−|λ3|2eᾱλ1−αλ̄1(1− |λ2|2),
(6)

which can be re-written as the following:

χout
A (ξ1, ξ2, ξ3) =e

−|ξ1|2−|ξ2|2−|ξ3|2e
√
2 iIm[ᾱ(ξ1−ξ2)]

× (1− µ

2
|ξ1 + ξ2 +

√
2(1− µ)

µ
ξ3|2),

(7)

with Im[ξ] being the imaginary part of the complex number ξ.

Using Eq. (3), the output state of the system is then given by

ρ̂out =

∫
d2ξ1
π

∫
d2ξ2
π

∫
d2ξ3
π

χout
A (ξ1, ξ2, ξ3)

D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3). (8)

B. Post-selected state

Following Ref. [18], we consider a QS successful only if

one detector in Fig. 2 clicks. In order to model such mea-

surements we use the following non-resolving measurement

operator

M̂ = (✶− |0〉1〈0|)⊗ |0〉2〈0|, (9)

which corresponds to the case where detector D1 clicks while

D2 does not. The post-selected state, ρ̂PS
out, is then given by

[29]:

ρ̂PS
out =

Trb̂1b̂2(M̂ρ̂out)

Tr(M̂ρ̂out)

=
1

PPS

∫
d2ξ1
π

∫
d2ξ2
π

∫
d2ξ3
π

χout
A (ξ1, ξ2, ξ3)

× [πδ2(ξ1)− 1]D̂N(b̂3, ξ3), (10)

where δ2(ξ) = δ(ξr)δ(ξi) and PPS = Tr(M̂ρ̂out) is the cor-

responding (success) probability to measurement M̂ , which

will be calculated in Sec. III C. In Eq. (10), we used the iden-

tities 〈0|D̂N(â, ξ)|0〉 = 1 and 〈1|D̂N(â, ξ)|1〉 = 1− |ξ|2.

Because the truncated post-measurement state lives in the

qubit subspace spanned by number states {|0〉b3 , |1〉b3}, the

output state has the form

ρ̂PS
out =ρ00|0〉b3〈0|+ ρ01|0〉b3〈1|+ ρ10|1〉b3〈0|+ ρ11|1〉b3〈1|,

(11)

where ρjk = b3〈j|ρ̂PS
out|k〉b3 , for j, k = 0, 1. We then obtain





ρ00(α) = e−
|α|2
2

µ
2 (1 +

|α|2
2 )/PPS

ρ01(α) =
α∗

2 e
− |α|2

2

√
µ(1− µ) /PPS

ρ10(α) =
α
2 e

− |α|2
2

√
µ(1− µ) /PPS

ρ11(α) = e−
|α|2
2 (1− µ)(1− e−

|α|2
2 )/PPS.

(12)

We remark that in the case that detector D2 clicks and D1

does not, the QS is still considered successful. After working

out the post-selected output state, we find that the result has

the same form as in Eq. (11), but we only need to replace α
with −α in Eq. (12). In practice, in a QKD setup, Bob can

negate its measurement results whenever this happens. One

can also use a unitary operation to correct the output state so

that we always end up with Eq. (11) as the post-selected state.

We note that the post-measurement state is Hermitian and

positive-semidefinite, as expected. In addition, in the limit of

|gα| ≪ 1, we can verify that the post-selected state of the

single QS approaches the weak coherent state |gα〉.
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FIG. 3. (a) The exact success probability of a single QS (lower red),

Psucc, and that based on approximations in Ref. [18] (upper blue),

PRL

succ. (b) The exact success probability of a single QS (red), Psucc,

and that of an ideal NLA (grey), 1/g2, versus average photon number

and amplification gain.

C. Probability of success

The probability of success for measurement M̂ , PPS, is

given by

PPS =Tr(M̂ρ̂out)

=

∫
d2ξ1
π

∫
d2ξ2
π

χout
A (ξ1, ξ2, 0)[πδ

2(ξ1)− 1]. (13)

By substituting Eq. (7) into the above expression, we obtain

Psucc(α) = 2PPS(α)

=
[
2− µ(1− |α|2

2
)
]
e−|α|2/2 − 2(1− µ)e−|α|2 ,

(14)

where Psucc(α) is the total probability of success for the QS

module, i.e., when either of D1 or D2 detector clicks. As ex-

pected, Psucc(α) approaches, to first-order approximation, to

PRL
succ(α) = µ + (1 − µ)|α|2 = (1 + |gα|2)/(1 + g2), when

|α| ≪ 1. This approximation is, however, invalid even when

we slightly deviate from the condition on |α|, as can be seen

in Fig. 3(a). Here, we have plotted the exact probability of

success, Psucc(α), versus |α|2 and g, and compared it with

the asymptotic value obtained by Ralph and Lund, PRL
succ(α).

It can be seen that the exact probability of success is always

lower than the asymptotic value, and the difference is visi-

ble at all values of g. The success probability also increases

with the decrease in g. For |α| ≪ 1, the success probability

approaches its maximum possible value of 1/g2 [17]. But,

again, as can be seen in Fig. 3(b), we quickly deviate from

this ideal regime when |α| increases. This indicates that we

cannot operate at maximum possible success probability for

all possible inputs, as assumed in Ref. [15], if we use a QS as

an NLA.

In Fig. 3(b), the maximum possible success probability,

1/g2, divides the plot into two regions. There is a region in

which the success probability is above the maximum possi-

ble for an NLA. This implies that the QS operation should be

very noisy in this region, hence breaking the assumption on

the noise-free operation of the NLA. If we want to work in the

region that Psucc(α) < 1/g2, we will then have to deal with

limitations on the maximum gain that we can choose for the

range of input states we may expect. This indicates a trade-off

between the amount of noise that the QS may add to the signal

versus its gain and success probability. We will later address

this issue, in the context of CV QKD, in our numerical results

when we optimize the secret key generation rate over system

parameters.

D. Non-Gaussian behavior of the QS

Before calculating the secret key generation rate of a QS-

equipped CV QKD system, it is necessary to better understand

the nature of a quantum channel that includes a QS module.

This is important because majority of results on the secret key

rate of CV QKD systems rely on Gaussian characteristics of

the channel [27, 30]. This is not, however, the case for a QS

module as we see in this section.

In order to examine the non-Gaussian behavior of the QS

output, let us focus on the distribution of homodyne measure-

ment results on quadrature x̂B . Let us also consider a loss-less

noise-free channel, which provides an input coherent state |α〉,
with α = xA + ipA as distributed by Eq. (1), at the QS port

â1. The case of lossy and noisy channels will be considered in

Appendix A. The probability distribution for obtaining a real

number xB after measuring x̂B , conditional on the transmis-

sion of |α〉 and the success of the QS, is then given by

fXB
(xB |α) = Tr[|xB〉〈xB |ρ̂PS

out(α)]

=
[
ρ00(α) +

√
2
(
ρ01(α) + ρ∗01(α)

)
xB

+ 2ρ11(α)x
2
B

]e−x2

B

√
π
, (15)

where x̂B |xB〉 = xB |xB〉. In above, we substituted ρ̂PS
out(α)

from Eq. (11). Now, by averaging over all possible input
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FIG. 4. The output distribution at the receiver side (solid-black),

which comprises Gaussian (dashed blue) and non-Gaussian (dot-

dashed red) parts. Here, g = 3 and VA = 0.04.

states, we obtain

fXB
(xB) =

∫
dxA

∫
dpA fXA

(xA)fPA
(pA)fXB

(xB |α).
(16)

In the above expression, because fXA
(xA) and fPA

(pA)
have zero-mean Gaussian distributions, the term ρ01(α) +
ρ∗01(α) is averaged out after the integration in Eq. (16). The

expression for fXB
(xB) will then have two components: one

is a Gaussian term in xB proportional to the average of

ρ00(α), and the other is a non-Gaussian term proportional to

the average of ρ11(α). Figure 4 shows the contribution of

each of these components in making fXB
(xB) for g = 3 and

VA = 0.04. We notice that even for such a small modula-

tion variance, which corresponds mostly to small values of

|α|, the non-Gaussian term is quite distinct. Higher amplifica-

tion gains could even result in more deviation from a Gaussian

state. This non-Gaussian behavior would have ramifications

on the key rate analysis of a QS-based system as we see next.

IV. SECRET KEY RATE ANALYSIS

In this section, we use the results in Sec. III to determine the

secret key rate of the GG02 protocol when Bob uses a single

QS before his homodyne measurement. We find the secret key

rate in a nominal operation condition when no eavesdropper is

present. We assume a thermal loss channel with trasmissivity

T , modeled by a beam splitter, and an excess noise, ε, at the

input of the channel. The secret key rate of CV QKD proto-

cols in the asymptotic limit of infinitely many signals is given

by

K = βI
AB

− χ
BE
, (17)

where β, I
AB

, χ
BE

are, respectively, the reconciliation effi-

ciency, the mutual information between Alice and Bob, and

eavesdroppers accessible information when reverse reconcili-

ation is used.

In our proposed setup, since the QS operation is non-

deterministic, the whole key rate formula should be multiplied

by the average success probability of the QS, P succ, where the

averaging is performed over all possible inputs. Therefore, the

secret key rate reads

KQS ≥ P succ(βI
⋆
AB

− χ⋆
BE

), (18)

where ‘⋆’ indicates that the mutual and Holevo information

terms are calculated for the post-selected data when the QS is

successful. The measurement results corresponding to unsuc-

cessful QS events will be discarded at the sifting stage.

The fact that we only use the post-selected data for key

extraction implies that we have to account for the non-

Gaussianity of the QS output states. Unfortunately, the non-

Gaussian behavior of the QS makes conventional methods for

key rate calculation inapplicable. In order to take the non-

Gaussian effects into account, we calculate the exact mutual

information by directly using the conditional distribution of

the QS output. Ideally one could also look for the exact cal-

culation of the Holevo information term as well. But, this

turns out to be extremely cumbersome. Instead, in this paper,

we find an upper bound for the Holevo information term by

finding the covariance matrix (CM) of the actual channel and

then calculate the Holevo information for a Gaussian channel

with the same CM. The reason is that Gaussian collective at-

tacks for a given CM is proven optimal in the sense that they

maximize the Holevo quantity [30]; hence, providing a lower

bound on the key rate.

In the following, we provide more detail on how each of the

terms in Eq. (18) can be calculated.

A. Mutual information

The mutual information between two random variables XA

and XB , corresponding, respectively, to post-selected data

on Alice and Bob side, is, by definition, the difference be-

tween the entropy function H(XB) and the conditional en-

tropy H(XB |XA) [31]:

I⋆
AB

= H(XB)−H(XB |XA), (19)

where

H(XB) = −
∫
dxB fXB

(xB) log2 fXB
(xB), (20)

and

H(XB |XA) =−
∫
dxAfXA

(xA)

×
∫
dxBfXB

(xB |xA) log2 fXB
(xB |xA),

(21)

with

fXB
(xB |xA) =

∫
dpAfPA

(pA)fXB
(xB |xA + ipA). (22)

In above, fXB
(xB |xA+ ipA) and fXB

(xB) can, respectively,

be obtained from Eqs. (15) and (16), after making the neces-

sary adjustments to account for channel loss and the excess
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FIG. 5. QS-amplified EB CV QKD scheme. The quantum channel

and the QS are considered as a combined system with input modes

â1 − â3 and âv and three output modes b̂1 − b̂3 and b̂v . The trans-

formation matrix of the system is given by Eq. (23).

noise; see Appendix A for details. In our work, we numeri-

cally carry out the above integrals for a given set of parame-

ters.

B. Holevo information

In order to calculate the Holevo information term, χ⋆
BE

, we

use the EB description of the protocol, where one part of an

EPR state travels through the quantum channel and amplified

by a QS, while the other is measured by Alice; see Fig. 5. In

order to upper bound χ⋆
BE

, what we need is then the CM of

Alice-Bob bipartite state. We will then first derive the exact

post-selected joint state, from which the CM parameters can

be obtained.

We use a similar approach to Sec. III in using character-

istic functions to find a relationship between Alice and Bob

states when the QS is successful. As shown in Fig. 5, we

also account for the effect of the quantum channel in our cal-

culations. Note that the dashed box in Fig. 5 is a linear op-

tics circuit, for which input-output relationships can be ob-

tained. In particular, considering the input modes represented

by AT = [â1 â2 â3 âv] and output modes BT = [b̂1 b̂2 b̂3 b̂v],
we find B = ΓA, where the transformation matrix

Γ =




√
T
2

√
µ
2 −

√
1−µ
2

√
1−T
2

−
√

T
2

√
µ
2 −

√
1−µ
2 −

√
1−T
2

0
√
1− µ

√
µ 0

−
√
1− T 0 0

√
T




(23)

is a unitary matrix.

By using Eq. (2) and the transformation matrix Γ, we can

now write the full output anti-normally ordered characteris-

tic function, including â0 mode, in terms of the input one by

χout
A (ξ0, ξ1, ξ2, ξ3, ξv) = χin

A (λ0, λ1, λ2, λ3, λv), where

[λ0 λ1 λ2 λ3 λv]
T =

(
1 0
0 ΓT

)
[ξ0 ξ1 ξ2 ξ3 ξv]

T , (24)

with
∑

j |λj |2 =
∑

j |ξj |2 and

χin
A (λ0, λ1, λ2, λ3, λv) = χEPR

A (λ0, λ1)× χin
A (λ2, λ3, λv),

(25)

where χEPR
A (λ0, λ1) = exp{−δ2(|λ0|2 + |λ1|2) −

2Re(δγλ∗0λ
∗
1)} is the anti-normally ordered characteristic

function of the EPR state with parameters δ and γ =√
δ2 − 1 , Re[ξ] being the real part of the complex num-

ber ξ, and χin
A (λ2, λ3, λv) is calculated for an input state

|1〉â2
|0〉â3

|0〉âv
. Putting all this together, we then find the

pre-measurement anti-normally ordered characteristic func-

tion for modes â0, b̂1, b̂2, b̂3, and b̂v as follows:

χout
A (ξ0, ξ1, ξ2,ξ3, ξv) = e−δ2|ξ0|2e−ωRe

(
ξ∗
0
(ξ∗

1
−ξ∗

2
)
)

× e−
δ2T
2

|ξ1−ξ2−
√
2 τξv|2e−

1−T
2

|ξ1−ξ2+
√

2

τ ξv|2

× e−
1−µ
2

|ξ1+ξ2−
√

2

g ξ3|2e−
µ
2
|ξ1+ξ2+

√
2 gξ3|2

×
(
1− µ

2
|ξ1 + ξ2 +

√
2 gξ3|2

)
, (26)

where g =
√

(1− µ)/µ , τ =
√
(1− T )/T , and ω =

2δγ
√
T/2 . Note that we account for the effect of excess

noise by adjusting the effective modulation variance as de-

scribed in Appendix A.

Having obtained the characteristic function, we can find the

corresponding output density matrix using Eq. (3). Then, by

tracing out the output mode b̂v and also performing photon-

detection measurements on modes b̂1 and b̂2—by introducing

the same measurement operator as in Eq. (9)—we find the

resultant joint state of â0 and b̂3 modes in the case of having a

successful event.

Appendix B provides the detailed calculations of the post-

measurement density matrix, and the corresponding CM pa-

rameters. It turns out that the CM of the shared bipartite state

between Alice and Bob has the form

γ
AB

=

(
a✶ cσz
cσz b✶

)
, (27)

where ✶ = diag(1, 1) and σz = diag(1,−1) with
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a =− 1− 2

(g2 + 1)P succ

(4δ2[γ2T − (2F + 1)][(2F + 1)g2 + 2F ]− 4δ2γ2T

(2F + 1)3
− δ2g2(γ2T − 2F )

2F 2

)
,

b =− 1− 2

(g2 + 1)P succ

(
− 4[g2(2F + 1) + 2F ]

(2F + 1)2
− 4g2

2F + 1
+

2g2

F

)
,

c =
8δγg

√
T

(g2 + 1)(2F + 1)2P succ

, (28)

and

F =
1− T + δ2T

2
and P succ =

2

g2 + 1

(2[(2F + 1)g2 + 2F ]

(2F + 1)2
− g2

2F

)
.

It is interesting to make the following observation. If the

EPR state is assumed totally uncorrelated, which happens

when its squeezing parameter goes to zero, both parts of the

state are left with vacuum states. Thus, if the QS is successful,

the output state of mode b̂3 should be a vacuum state as well.

This means that the CM of the end-to-end state is identity [8].

We verify that in the case of having a totally uncorrelated EPR

state, corresponding to δ = 1 and γ = 0, the expressions

above will indeed result in the identity matrix; that is, we ob-

tain a = b = 1 and c = 0.

Now that the CM is known, we can upper bound the Holevo

information by using Eq. (B13).

V. NUMERICAL RESULTS

In this section, we present numerical simulations of the se-

cret key rate of the QS-amplified GG02 protocol and compare

it with that of the conventional one. We find the maximum

value for the lower bound in Eq. (18) by optimizing, at each

distance, the modulation variance, VA, or, equivalently, the

parameter δ in the EB scenario, as well as the QS parameter,

µ, which specifies the QS amplification gain. We also account

for the excess noise which, as discussed in Appendix A, can

be included in the modulation variance. We assume that the

quantum channel between the sender and receiver is an opti-

cal fiber with loss factor α, whose transmittance is given by

T = 10−αL/10, where L is the channel length and the loss

factor is α = 0.2 dB/km corresponding to standard optical

fibers. Also, we assume β = 1 and that ideal homodyne de-

tection, with no electronic noise, is performed at the receiver.

We first highlight the importance of accounting for the non-

Gaussian behavior of the QS by comparing the difference be-

tween the exact value of the mutual information function I⋆
AB

,

given by Eq. (19), and that obtained by Gaussian approxima-

tion, IG
AB

, in Eq. (B14). Figure 6 shows both curves, ver-

sus distance, at no excess noise. It is clear that the Gaus-

sian approximation would have overestimated the mutual info

between Alice and Bob at all distances considered, and that

could have resulted in wrong bounds for the key rate of QS-

based systems.
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FIG. 6. The exact mutual information function (dashed) as compared

to its Gaussian approximation (solid) versus distance at ε = 0. All

other parameters have been optimized.

Figure 7 shows the optimized secret key rates of both con-

ventional and the QS-assisted GG02 protocol versus distance

in two scenarios: with and without excess noise. In the case

of no excess noise, it can be seen that the no-QS curve stays

above the QS-assisted system at all distances considered. The

slope of the QS-based system is, however, almost half of

the no-QS system, especially at short to mid range distances,

which resembles a repeater behavior. By introducing a fixed

excess noise of 0.002 at the receiver, the QS-based system of-

fers a clear rate advantage over distances greater than 80 km,

and can reach a security distance of around 120 km. This is

a promising result in the sense that one extend the range of

CV QKD systems by nearly 50% using a simple QS module.

More importantly, the better rate-versus-distance scaling of

the QS-assisted system makes it a potential candidate for CV

repeater setups [25].

As can be seen in Fig. 7, QS-equipped receivers may not

support high key rates at short distances. There are over two

orders of magnitude difference between the no-QS and QS-

based curves at L = 0. This is attributed to multiple factors.

First, the trade-off between the choice of modulation variance

and noise level in the system, would require us to use very

small values of VA at short distances, as otherwise, the QS will

not operate at its low-noise regime. For instance, at L = 0, the

optimum value of VA for the QS-based system is 0.05. A no-
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FIG. 7. The optimized secret key rate for the QS-amplified CV QKD

protocol versus distance, as compared to the rate of conventional

GG02, the upper bound for a thermal-loss channel (TL-PLOB) at

a mean thermal photon number of εrec/(2(1− T )), and the rate ob-

tained by an ideal NLA.

TABLE I. Optimized values for modulation variance and amplifica-

tion gain at zero excess noise.

Distance (km) Optimized modulation variance Optimized gain

0 0.05 1.02

50 0.20 1.36

100 0.45 1.53

QS system with such a low value of VA also offers a low key

rate of 3.52 × 10−2, which is comparable to what we obtain

for the QS-based system. Other factors are the success prob-

ability, which at L = 0 is around 0.5, and it almost linearly

goes down to around 0.2 at 120 km. One other factor is also

the fact that the QS is not entirely noise free. The additional

noise by the QS would bring the rate at L = 0 to around 0.01

per pulse.

The post-selection mechanism in the QS is the key to ob-

taining higher key rates at long distances. At long distances,

the channel loss naturally prepares low-intensity inputs to the

QS, which allows us to use larger values of VA, as shown in

Table I. That would also enable us to use slightly higher gains

without necessarily increasing the QS noise. A higher-than

unity gain for the post-selected states would then offer a bet-

ter signal-to-noise ratio at long distances, which allows us to

achieve positive secret key rates at longer distances. It is note-

worthy that, at εrec = 0.002, the maximum security distance

that can be achieved by using an ideal NLA, as in Ref. [15],

is almost the same as we have achieved with the QS. This im-

plies that within certain regions the QS module can offer a

performance close to ideal NLA devices, which matches our

findings in Sec. III. Note that the plots in Ref. [15] are ob-

tained for fixed values of amplification gain and modulation

variance g = 4 and VA = 3.5, respectively), where no op-

timization is performed. The ideal NLA curve in Fig. 7 is,

however, gained after optimizing the secret key rate given in

Ref. [15].

Figure 7 also shows that our QS-amplified system cannot

beat the existing upper bounds for repeaterless systems [32].

Here, we have used the bound given in Eq. (23) of Ref. [32]

for a thermal-loss channel as a benchmark (labelled TL-PLOB

in Fig. 7). This curve has been obtained at an equivalent mean

thermal photon number, n̄, to our receiver excess noise. That

is, we have used n̄ = εrec/(2(1 − T )). As expected, the

QS-based system cannot outperform this bound. This again

indicates that one would need a CV repeater setup in order to

beat such bounds by CV QKD.

VI. CONCLUSIONS AND DISCUSSION

In this work, we studied the performance of the GG02 pro-

tocol where the received signal was amplified by a quantum

scissor. We first obtained the exact output state and success

probability of the QS under study, which was latter used in

calculating the secret key generation rate of the system. We

showed that the QS would turn a Gaussian input state into a

non-Gaussian one. That would make the conventional tech-

niques to estimating the key rate not directly applicable to

our case. We instead directly calculated the mutual informa-

tion by working out the probability distribution function of

the quadratures after the QS. Also, in order to upper bound

the leaked information to Eve, we obtained the exact covari-

ance matrix of the bipartite state shared between sender and

receiver labs. We then found the Holevo information corre-

sponding to a Gaussian channel with the same covariance ma-

trix. We optimized the key rate over input modulation vari-

ance and amplification gain. Our results showed that the QS-

enhanced key rate can tolerate more excess noise than the no-

QS system. This implied that we could reach longer distances,

up to 120 km with existing technologies, by using a QS at the

receiver module.

There are certain practical aspects that one should consider

before using quantum scissors in CV QKD. One assumption

that we make throughout our paper is that on-demand single-

photon sources are available for our scheme. There are two

practical issues, in this regard, that affect the performance of

the QS-based system. The first is the rate at which single-

photons are generated. The success rate of such sources di-

rectly affect the key rate achievable. Secondly, we should be

cautious about the purity of the single-photon source output.

Multiple-photon components, in particular, could be damag-

ing to the performance of the QS. The good news is that

the current available technology for quantum-dot sources has

made a substantial progress to meet both above requirements.

In particualr, quantum dot sources with efficiencies over 80%

and second-order coherence values< 0.004 have already been

demonstrated [33, 34]. The second issue is the reliance on

single-photon detectors, which will make CV QKD systems,

in terms of requirements, as pricy as their discrete-variable

counterparts. But, paying such prices may be unavoidable

if one wants to have long-distance CV QKD and/or CV re-

peaters. Our study would, in particular, be highly relevant to

analyzing the performance of recently proposed CV quantum

repeaters [25], which rely on a similar building block. Finally,

note that while the original NLA proposal by Ralph and Lund

relies on multiple QS modules, in our scheme, we find using

one QS optimal as it minimizes the noise while we can adjust
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the signal level by optimizing the modulation variance.
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Appendix A: Channel loss and excess noise

In order to calculate the exact conditional and marginal entropy functions in Eqs. (20)–(22), the following procedure should

be followed:

Channel transmittance (T ). The state that reaches the QS is attenuated because of the channel transmittance; hence, in

Eqs. (15) and (16): (xA, pA) → (
√
T xA,

√
T pA).

Channel excess noise (ε). A thermal excess noise that is added at the channel input can be modeled by an independent

Gaussian distribution. In the prepare and measure scheme, that implies that the effective modulation variance of the system

should change from VA to VA + ε. This is because the sum of two independent Gaussian distributions is another Gaussian

distribution with a variance equal to the sum of their variances [31]. In the EB scheme, we find the corresponding parameter δ in

our EPR state, which gives the same output statistics for the signal that goes to Bob, when Alice does a heterodyne measurement

on her state. It then turns out that to get an identical output state we should satisfy δ =
√
(V + 1)/2 , where V = VA + ε+ 1.

Note that in our simulation, following the experimental results in Ref. [9], we assume that the noise level, εrec, is measured at

the receiver. We estimate the excess noise at the transmitter side by ε = εrec/T .

Appendix B: Covariance matrix

Having obtained the output anti-normally ordered characteristic function of Eq. (26), we use Eq. (3) to find the corresponding

output state:

ρ̂out0123v =

∫
d2ξ0
π

d2ξ1
π

d2ξ2
π

d2ξ3
π

d2ξv
π

χout
A (ξ0, ξ1, ξ2, ξ3, ξv)D̂N(â0, ξ0)D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3)D̂N(b̂v, ξv). (B1)

In the following, we show how the shared state between Alice and Bob is found step-by-step. We first trace out mode bv , see

Fig. 5, to obtain

ρ̂out0123 =

∫
d2ξ0
π

d2ξ1
π

d2ξ2
π

d2ξ3
π

χout
A (ξ0, ξ1, ξ2, ξ3, 0)D̂N(â0, ξ0)D̂N(b̂1, ξ1)D̂N(b̂2, ξ2)D̂N(b̂3, ξ3), (B2)

where we use Tr[D̂N(a, ξ)] = πδ2(ξ). Next, by defining the measurement operator M̂ = (I − |0〉b1〈0|) ⊗ |0〉b2〈0|, modes b̂1
and b̂2 are measured. The post-selected state is

ρ̂PS
03 =

Tr12[M̂ρ̂out0123]

Tr[M̂ρ̂out0123]
=:

σ̂PS
03

PPS
EB

, (B3)

where

σ̂PS
03 =

∫
d2ξ0
π

d2ξ3
π

[∫
d2ξ1
π

d2ξ2
π

χout
A (ξ0, ξ1, ξ2, ξ3, 0)

(
πδ2(ξ1)− 1

)
]
D̂N(â0, ξ0)D̂N(b̂3, ξ3)

=

∫
d2ξ0
π

d2ξ3
π

χ̃A(ξ0, ξ3)D̂N(â0, ξ0)D̂N(b̂3, ξ3) (B4)

with the following definition

χ̃A(ξ0, ξ3) :=

∫
d2ξ1
π

d2ξ2
π

χout
A (ξ0, ξ1, ξ2, ξ3, 0)

(
πδ2(ξ1)− 1

)
, (B5)
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and PPS
EB = P succ/2 is the corresponding success probability to measurement M̂ :

PPS
EB =

∫
d2ξ1
π

d2ξ2
π

χout
A (0, ξ1, ξ2, 0, 0)

(
πδ2(ξ1)− 1

)
= χ̃A(0, 0). (B6)

Now, we find the CM for ρ̂PS
03 . In doing so, we need to work out the triplet (a, b, c) of the corresponding CM as follows. By

definition, assuming that x̂0 is the X quadrature of mode â0, we have

a = 〈x̂20〉ρ̂03
=
〈x̂20〉σ̂03

PPS
EB

=
Tr[x̂20σ̂03]

PPS
EB

, (B7)

where

Tr[x̂20σ̂03] =

∫
d2ξ0
π

d2ξ3
π

χ̃A(ξ0, ξ3)× Tr[x̂20D̂N(â0, ξ0)]× Tr[D̂N(b̂3, ξ3)]

=

∫
d2ξ0
π

χ̃A(ξ0, 0)× Tr[x̂20D̂N(â0, ξ0)]. (B8)

Assuming that ξ0 = x+ iy, one can show that Tr[x̂20D̂N(â0, ξ0)] = πδ2(ξ0) + 2πyδ(x) d
dy δ(y)− πδ(x) d2

dy2 δ(y); thus,

Tr[x̂20σ̂03] =− χ̃A(0, 0)−
d2

dy2
χ̃A(0, y, ξ3 = 0)

∣∣∣
y=0

, (B9)

where we use the identity
∫
dzf(z) d

dz δ(z) = −
∫
dz d

dz f(z)δ(z). Therefore,

a = −1−
d2

dy2 χ̃A(0, y, ξ3 = 0)
∣∣∣
y=0

χ̃A(0, 0)
. (B10)

In a similar way, assuming ξ0 = x+ iy and ξ3 = u+ iv, we show that

b =
Tr[x̂23σ̂03]

χ̃A(0, 0)
= −1−

d2

dv2 χ̃A(ξ0 = 0, 0, v)
∣∣∣
v=0

χ̃A(0, 0)
(B11)

and

c =
Tr[x̂0x̂3σ̂03]

χ̃A(0, 0)
=

d
dv

[
d
dy χ̃A(0, y, 0, v)

∣∣∣
y=0

]∣∣∣
v=0

χ̃A(0, 0)
. (B12)

Having the integrals in Eq. (B5) taken, we are able to calculate the triplet (a, b, c), thus the CM. Using MAPLE, we obtain the

closed form expressions as summarized in Eq. (28).

Having the triplet (a, b, c), χ⋆
BE

is upper bounded by:

χG
BE

= g(Λ1) + g(Λ2)− g(Λ3), (B13)

where

g(x) = (
x+ 1

2
) log2(

x+ 1

2
)− x− 1

2
log2

x− 1

2

and

Λ1/2 =

√
1

2

(
A±

√
A2 − 4B2

)
=

√
(a+ b)2 − 4c2 ± (b− a)

2
, Λ3 =

√
aB

b
=

√
a(ab− c2)

b
,

with A = a2 + b2 − 2c2 and B = ab − c2. Note that Eq. (B13) is valid when we neglect the electronic noise at the receiver as

we have assumed in our numerical results. Also, mutual information can be calculated form the covariance matrix, if we wish to

use the Gaussian approximation, by

IG
AB

=
1

2
log2

ab

ab− c2
. (B14)
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