

1
2
3
4 **Characterization of Sodium Carboxymethyl Cellulose (Na CMC) Aqueous**
5 **Solutions to Support Complex Product Formulation – a Rheology and Light**
6 **Scattering Study**
7
8

9
10 Juliette S. Behra,[†] Johan Mattsson,^{*,‡} Olivier J. Cayre,[†] Eric S. J. Robles,[§] Haiqiu Tang,[¶] Timothy
11 N. Hunter[†]
12
13

14 [†]School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
15
16 [‡]School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
17
18 [§]Newcastle Innovation Centre, Procter & Gamble Company, Whitley Road, Longbenton,
19 Newcastle Upon Tyne, NE12 9BZ, UK
20
21

22 [¶]P&G Technology (Beijing) Co. Ltd, No. 35 Yu'an Road, B Zone, Tianzhu Konggang
23 Development Zone, Shunyi District, Beijing, 101312, China
24
25

26 ^{*}k.j.l.mattsson@leeds.ac.uk
27
28
29

30 **Abstract**
31
32

33 Sodium Carboxymethyl Cellulose (Na CMC) is used for its thickening and swelling properties in
34 a wide range of complex formulated products for pharmaceutical, food, home and personal care
35 applications, as well as in paper, water treatment and mineral processing industries. To design
36 Na CMC solutions for applications, a detailed understanding of the concentration-dependent
37 rheology and relaxation response is needed. We address this here by investigating aqueous
38 Na CMC solutions over a wide range of concentrations using rheology as well as static and
39 dynamic light scattering. The concentration dependence of the solution specific viscosities η_{sp}
40 could be described using a set of three power laws, as predicted from the scaling theory of
41 polyelectrolytes. Alternatively, a simpler approach could be used, which interpolates between two
42 power law regimes and introduces only one characteristic crossover concentration. We interpret
43 the observed behavior as a transition from the non-entangled semi-dilute to the entangled
44 concentration regimes; this transition behavior was not observed in the solution structure, as
45 determined using static light scattering. Dynamic light scattering revealed three relaxation modes.
46 The two fastest relaxations were assigned as the ‘fast’ and ‘slow’ relaxation modes typically
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 observed in salt-free or not fully screened polyelectrolyte solutions within the semi-dilute
4 concentration range. The third, typically weak mode, was attributed to the presence of a small
5 amount of poorly dissolved cellulose residuals. Since filtration altered the solution behavior,
6 without sufficiently removing the residuals, data collection and processing were adapted to account
7 for this, which facilitated a detailed light scattering investigation of the original solutions, relevant
8 for industrial applications. The relaxation time characterizing the fast mode, τ_f , was concentration
9 independent, whereas the relaxation time of the slow mode, τ_s , demonstrated similar crossover
10 behavior as observed for the specific viscosity, further demonstrating the dynamic nature of the
11 crossover.
12
13
14
15
16
17
18
19
20
21

Keywords

22
23 Sodium Carboxymethyl Cellulose (Na CMC); polyelectrolyte; rheology; Dynamic Light
24 Scattering (DLS); Static Light Scattering (SLS).
25
26
27
28
29
30

1. Introduction

31
32
33 Sodium Carboxymethyl Cellulose (Na CMC) is a linear semi-flexible negatively charged
34 polyelectrolyte. It is produced from cellulose, the most abundant biopolymer on Earth,^{1,2} by
35 substituting some of its hydroxyl groups for carboxymethyl groups.²⁻⁴ Because of its high
36 availability as well as its thickening and swelling properties, Na CMC is widely used in numerous
37 industries.^{1,2,5} Application fields include food, pharmaceutical, home and personal-care products,
38 as well paper industry, paint, water treatment and mineral processing.^{1,2,5-7} The Na CMC global
39 market represented 1.2 billion USD in 2016⁸ and is expected to exceed 1.7 billion USD by 2024.⁹
40
41

42 The market of formulated products (*i.e.* food & beverages, cosmetic & pharmaceuticals, and
43 detergents) represents more than half of the global Na CMC market. Such products contain a large
44 number of compounds such as solid particles (*e.g.* silica), polymers (*e.g.* Na CMC), oils
45 (*e.g.* fragrance and flavoring oils), surfactants, salts or proteins.¹⁰⁻¹² A general challenge in
46 formulating such complex systems is to understand the interactions between the components and
47 their effects on the efficacy and the stability of the product over its shelf-life.
48
49
50
51
52
53
54
55
56
57
58
59
60

Na CMC is often used in formulated products to control their rheological properties. For example, in the case of toothpaste, Na CMC is responsible for toothpaste performance, including toothpaste stability in its container, dispensing, in-mouth behavior and rinsing of the sink after use.¹² Despite its broad use in industry, Na CMC behavior in solution is still relatively poorly understood and is the subject of research from both fundamental^{1,13-16} and applied perspectives.^{10,17-20} The polyelectrolyte nature of Na CMC is, in itself, a reason for this poor understanding since many questions remain about the behavior of charged polymers in solution,^{16,21} and especially in salt-free solutions; one example concerns the origin of the ‘slow’ relaxation mode typically observed using Light Scattering (LS), whose presence is not predicted by standard theory.²²⁻²⁴

Given the biological origin of Na CMC, it typically has a high polydispersity of the chain length distribution^{1,5,25,26} (common values of M_w/M_n are around 1.7-4.5^{1,5,13,25,26}). The crystallinity of the cellulose raw material,^{3,25,27} and/or the amount and the distribution of the carboxymethyl groups along the chains.^{3,19,28-30} can also vary. Commercial Na CMCs typically have an average of 0.4-1.5 carboxymethyl groups per monomer, which is referred to as the absolute Degree of Substitution (DS).^{3,19} These charged carboxymethyl groups are key to the behavior of Na CMC in solution as they confer its water-solubility to Na CMC. If there are not enough of these groups and/or if they are not homogeneously distributed along Na CMC chains, Na CMC chains or chain sections are not fully solubilized in water.^{3,28,29}

The rheological behavior of Na CMC in water, with or without other compounds (e.g. salts,^{16,30-33} sugars,^{33,34} or surfactants^{31,35}), or in solvents such as glycerin/water mixtures,³² propylene glycol/water mixtures³⁶ or cadoxen³⁷ has been characterized. Studies investigating the swelling properties of Na CMC³⁸ and its ability to form films on its own, or in association with other polymers, have also been performed.³⁹⁻⁴¹ However, only a few light scattering (LS) studies have been performed on Na CMC solutions, and none, to the best of our knowledge, have been performed on Na CMC solutions without added salt. Several Static Light Scattering (SLS) studies were performed in the 1950-1960s⁴²⁻⁴⁴ on Na CMC in the presence of NaCl and focused on the intrinsic properties of the Na CMC polymer without the effects of charge. Also, four recent light scattering studies that combine LS with other experimental techniques have been published: Dogsa *et al.*¹⁴ studied Na CMC chain conformation as a function of pH while keeping the ionic strength constant at 0.1 M, Guillot *et al.*³⁵ investigated the behavior of Na CMC in the presence of a surfactant, Hoogendam *et al.*⁴⁵ characterized the conformation of Na CMC chains in the presence

of an electrolyte, using Size-Exclusion Chromatography (SEC) coupled to a Multiple Angle Laser Light Scattering (MALLS) detector, and Lopez and Richtering⁴⁶ used rheology and DLS to examine the influence of the nature of the counterion on carboxymethyl cellulose behavior.

Generally, both SLS and Dynamic Light Scattering (DLS) have been widely used to characterize polyelectrolytes in aqueous solution. Synthetic polyelectrolytes such as sodium poly(styrene sulfonate) (Na PSS),⁴⁷ poly(methacrylic acid) (PMA)⁴⁸ or poly(*N*-methyl-2-vinylpyridinium chloride) (PMPVP),⁴⁹ as well as natural polyelectrolytes such as DNA,^{50,51} chitosan,⁵² xanthan^{53,54} or hyaluronan⁵³ have been investigated. For polyelectrolyte solutions above their overlap concentrations, either without added salt or at relatively low salt concentrations so that charges along the chains are not fully screened, DLS typically reveals two relaxation modes: (i) a fast mode which is usually attributed to the coupling between counterions and polyions^{49,54} (as the smaller counterions diffuse within the solution, they exert a drag on the oppositely charged polyions) and (ii) a slow mode, whose origin is not fully understood, but is usually attributed to the presence of aggregates or clusters of polyelectrolyte chains, commonly termed ‘domains’.^{49,54}

The relaxation rate of the fast mode is usually linear in q^2 (q is the scattering vector defined as $q = \frac{4\pi n \sin(\theta/2)}{\lambda}$, with n the refractive index, θ the scattering angle and λ the laser excitation wavelength); implying it has diffusive character.^{52,53,55-57} The fast mode relaxation time τ_f is typically around a few μ s and the corresponding diffusion coefficient $D_f \sim 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$.^{23,58} Detailed discussions about the comparison between predicted and experimental values of D_f can be found in the literature, such as a Sedlák and Amis⁵⁷ about salt-free Na PSS solutions and Topp’s about quaternized poly(2-vinylpyridine) in KBr solutions.⁵⁹ The slow mode is characterized by significantly longer relaxation times τ_s , that are typically in the range of 1 ms to 10 s.^{23,58} The slow mode has commonly been found to also exhibit a linear dependence in q^2 ,^{52,53,55-57} for which a diffusion coefficient can be calculated⁵² and an apparent hydrodynamic radius of the domains can be estimated.⁵² However, other q -dependences have been observed for the slow mode^{53,57}, where it has been suggested that the characteristic size of the domains, L , is large compared to the probed length scale so that $qL \gg 1$ and internal relaxations within the domains are also probed.^{23,58}

To understand the nature of the slow mode, the influence of both the polymer intrinsic properties (e.g. M_w ,^{49,53,57} degree of ionization⁵⁹⁻⁶¹) and the experimental conditions (e.g. polyelectrolyte concentration,^{23,49,53} sample filtration,^{23,62} centrifugation,^{54,63} dialysis,^{60,64} salt addition,^{55,60,65}

1
2
3 backbone solvation,^{59,65,66} pH^{14,60}) have been extensively studied. Nevertheless, there appears to
4 be relatively few outcomes that can be generalized across all the investigated systems. For
5 example, some studies show that, at a given polyelectrolyte concentration, the size of the domains
6 does not vary with M_w ^{49,57} while another shows it does.⁵³ In a similar way, a study shows that at a
7 given M_w , the size of the domains increases with the polyelectrolyte concentration,²³ while others
8 show that it does not.^{49,53} However, there does seem to be an agreement on the fact that both
9 filtration and centrifugation can modify the domains.^{23,54,62,63} Filtration using small pore size filters
10 can even fully remove them^{62,63} or, at least, reduce their size to a level that is below the length
11 scales probed by LS in the particular experiment.⁶³ Ultracentrifugation has also recently been
12 shown to remove the domains, suggesting that centrifugal forces can break the cohesive
13 interactions in the domains.⁵⁴ This observation was suggested to support the idea that the domains
14 result from electrostatic forces and are formed by polyelectrolyte chains sharing counterions.⁵⁴ It
15 has also been suggested that they are temporal, in that the polyelectrolyte chains of a domain are
16 continually exchanged with polyelectrolyte chains present in the rest of the solution.^{54,55} In some
17 cases, it has been reported that the number of chains forming a domain decreases over long periods
18 of time.⁶⁷

19
20
21
22
23
24 Finally, a third relaxation mode is sometimes observed in polyelectrolyte solutions,^{50,58,59,64,67}
25 which is generally either slower than the slow mode^{50,59} or situated between the fast and the slow
26 modes.^{58,59,67} The reported origin of this relaxation varies significantly between different systems.
27
28
29 For example, as an intermediate mode, it has been attributed to the motion of
30 polyelectrolyte chain sections that do not belong to the domains,⁵⁸ or to the motion of hydrophobic
31 domains formed by uncharged segments of the polyelectrolyte backbone,⁵⁹ while as an 'ultra-slow'
32 mode, it has been attributed to loose aggregates of polyelectrolyte chains.⁵⁰

33
34
35
36
37
38 The present work combines viscosity measurements with SLS and DLS over a wide range of
39 polymer concentrations for salt-free aqueous Na CMC solutions. The solution viscosity is studied
40 as a function of polymer concentration. Our results are compared to the predictions of the scaling
41 theory for polyelectrolytes and to recent results from literature; leading to the identification of two
42 concentration regimes and to their assignment to the semi-dilute non-entangled and entangled
43 regimes. Moreover, a comprehensive SLS-DLS study is performed over a similar range of
44 concentrations, where the properties of the excess Rayleigh ratio determined from SLS and the
45 three relaxation modes observed in DLS are investigated.

1
2
3
4
5
6
7
2. Materials and methods

8
2.1. Materials

9 Na CMC was acquired from Sigma-Aldrich (product number: 419338; lot number: MKBR1032V;
10 manufacturer specifications: average molecular weight 700,000 g/mol and DS 0.8-0.95). We
11 estimated the average molecular weight to 1.2×10^6 g/mol from the intrinsic viscosity determined
12 with low concentration Na CMC solutions in 0.2 M NaCl (see more detailed explanations in
13 Section 1 of the Supporting Information (SI)). Though larger than the value provided by the
14 supplier, it is identical to the value found by Lopez et al.¹⁶ for a Na CMC with the same product
15 number (*i.e.* the same supplier and specifications). Using the acid wash method from the ASTM,⁶⁸
16 the DS was found to be 0.85 ± 0.03 . The moisture content of the polymer powder was $8.4 \pm 0.2\%$
17 (as determined using the method from the ASTM⁶⁸), which was taken into account for the
18 preparation of the polyelectrolyte solutions. ‘Ultrapure’ water type I (called deionized DI water in
19 the following) was obtained from either a Milli-Q[®] Advantage A10 ultrapure water station (Merck
20 Millipore) or a PURELAB[®] Option Q station (Elga). Isopropanol from VWR[®] Chemicals (AnalR
21 NORMAPUR[®] ACS, Reag. Ph. Eur. analytical reagent; product number: 20842.323) and toluene
22 from Fisher Chemical (analytical reagent; product number: T/2300/17) were used.

23
3. Methods

24
3.1. Optical microscopy

25 Optical microscopy was performed using a Zeiss LSM700 inverted confocal microscope (Carl
26 Zeiss Microscopy) using both phase contrast and differential interference contrast (DIC)
27 techniques.

28
3.2. Rheology measurements

29 Initially, stock solutions of 0.037, 0.18, 0.68 and 0.73% Na CMC (all concentrations quoted in this
30 paper are in *wt%*) were prepared by adding the appropriate amounts of Na CMC powder to filtered
31 DI water (using non-sterile Fisherbrand[®] syringe filters with 0.2 μm pore-size nylon membranes)
32 under stirring with the help of a magnetic stirrer at 850 rpm. Stirring was pursued for 2 h. These
33 initial solutions were diluted to 0.018-0.48% Na CMC and kept overnight before rheology

1
2
3 measurements were carried out. The pH of a few of the Na CMC solutions was measured on the
4 day following sample preparation and was found to be 7.1 ± 0.1 , independent of the Na CMC
5 concentration.
6
7

8 All rheology measurements were performed at 25°C using a Discovery HR-2 rheometer (TA
9 Instruments) equipped with a bob and cup geometry (bob with a conical end) on the day following
10 sample preparation. Preliminary measurements of the time-evolution of the viscosity for different
11 constant shear stress values (data not shown) were performed to determine the most suitable shear
12 stress range and time parameters for flow curve acquisition; these include the equilibration time
13 Δt_{eq} , which is the time during which the shear stress is applied before data acquisition to allow a
14 steady flow to be achieved, and the averaging time Δt_{av} , which is the time during which data are
15 taken and averaged. All viscosities were measured using the stress-controlled mode. Δt_{eq} was set
16 to 200 s for Na CMC concentrations up to 0.18% and to 30 s for all other concentrations. For each
17 solution, flow curve data were collected using $\Delta t_{av} = 200$ s and $\Delta t_{av} = 300$ s to confirm that the
18 value of Δt_{eq} was adequate and a steady flow had indeed been achieved.
19
20
21
22
23
24
25
26
27
28

29 2.2.3 Light scattering measurements 30

31 To avoid dust contamination, all glassware were washed with filtered DI water (nylon-membrane
32 filters mentioned in 2.2.2) and filtered isopropanol (non-sterile Fisherbrand® syringe filters with
33 0.2 μ m pore-size PTFE membranes) before being dried in a dust-free environment at *ca.* 50°C.
34 Solutions ranging from 0.018 to 0.92% Na CMC were prepared directly by mixing the appropriate
35 amounts of Na CMC powder and filtered DI water. The preparation procedure was the same as
36 that used for the rheology samples, except that the solutions prepared for LS were transferred into
37 glass vials (rimless Pyrex® culture tubes 75 \times 10 mm), suitable for LS, and then kept overnight
38 before the measurements. During the sample preparation tests for the LS measurements, using
39 filtration and/or centrifugation to try to remove contamination (*e.g.* dust), the solutions were
40 filtered using a P5 (1.0-1.6 μ m pore size) VitraPOR® Borosilicate 3.3 filter tunnel (ROBU®) before
41 being transferred into LS tubes, and/or centrifuged directly in the LS tubes using a Heraeus™
42 Megafuge™ 16R Centrifuge (Thermo Scientific™) equipped with a Rotor swing-out TX-400 4 \times
43 400 mL (Thermo Scientific™); both procedures are described in detail in Section 3.3. The
44 reference (*i.e.* toluene) and solvent (*i.e.* water) samples required for excess Rayleigh ratio ΔR
45 calculations were filtered through previously mentioned PTFE and nylon filters, respectively.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 LS measurements were performed at $25.0 \pm 0.5^\circ\text{C}$ using a 3D LS spectrometer (LS Instruments,
4 Switzerland) equipped with a HeNe laser ($\lambda = 632.8$ nm, power: 21 mW), an automated laser
5 attenuator and two avalanche photodiode (APD) detectors. All measurements were performed with
6 vertically polarized incident and vertically polarized detected light and in pseudo-cross correlation
7 mode, which removed after-pulsing effects and allowed the investigation of lag times τ as low as
8 25 ns. All samples were transparent and it was confirmed that multiple scattering did not have to
9 be taken into account; thus, all measurements were performed using a standard '2D mode'. The
10 measurements were performed within a few days following solution preparation and did not last
11 more than a week, which is important since Na CMC solution properties such as the viscosity have
12 been shown to change over time.^{13,33,69} In the present case, a decrease of *ca.* 7% of the viscosity
13 measured for an applied stress of 0.1 Pa (corresponding to the low shear viscosity plateau) was
14 observed after a week for 0.18% Na CMC solutions, while LS measurements did not show any
15 change after the same ageing time. Further details about the LS measurement process and data
16 analysis are given in Section 3.3.
17
18

28 2.2.4 *Fitting of the data*

29
30 All fits were performed with Origin[®] and the Levenberg Marquardt algorithm with 'instrumental
31 weights' was used.
32
33

36 3. Results and discussion

39 3.1. Optical microscopy of Na CMC solutions

42 It became evident upon the initial preparation of the Na CMC solutions that a very small proportion
43 of non-dissolved cellulose residuals remained, even after extended mixing. To understand their
44 nature, we used microscopy and categorized them based upon different observed morphologies,
45 with examples shown in Figure S1 in the SI. The presence of similar residuals in Na CMC
46 solutions was reported as early as 1942 by Höppler.⁷⁰ Further investigations on Na CMC samples
47 with a low DS (around 0.7) were performed more recently by Jardeby and co-workers,^{29,71,72} who
48 concluded that these residuals were made of non- or poorly-substituted cellulose originating from
49 less reactive cellulose fragments in the raw material used for Na CMC synthesis. Because of their
50 lower DS, these residuals could not undergo full dissolution and would exist in solution as fibers
51
52
53
54
55
56
57
58

($DS_{\text{residuals}} \approx 0.1$), ‘ballooned’ fibers ($DS_{\text{residuals}} \approx 0.3\text{-}0.5$) or gel particles ($DS_{\text{residuals}} \approx 0.5\text{-}0.6$).²⁹ The presence of undissolved residuals in Na CMC solutions for samples with DS values as high as 0.95 has previously been reported.^{28,73} In the following, the term ‘particulates’ will be used for the residuals observed in the studied samples.

Consistent with Jardeby and co-workers’s observations^{29,71,72}, microscopy reveals the existence of particulates as fibers (Figure S1.A), swollen and ballooned fibers (Figure S1.B), or swollen ring-like fragments (Figure S1.C) at more advanced dissolution stages. It is worth noting that studying these particulates using optical microscopy can be difficult. As an example, Figure S2 in the SI shows the same particulates as in Figure S1.C for different *foci*. We also note that similar morphologies to those shown in Figure S1.D were observed in microcrystalline cellulose suspensions, as shown in Figure S3 in the SI; which supports assigning these to non- or poorly substituted cellulose fragments.

3.2. Concentration dependence of Na CMC solution viscosity

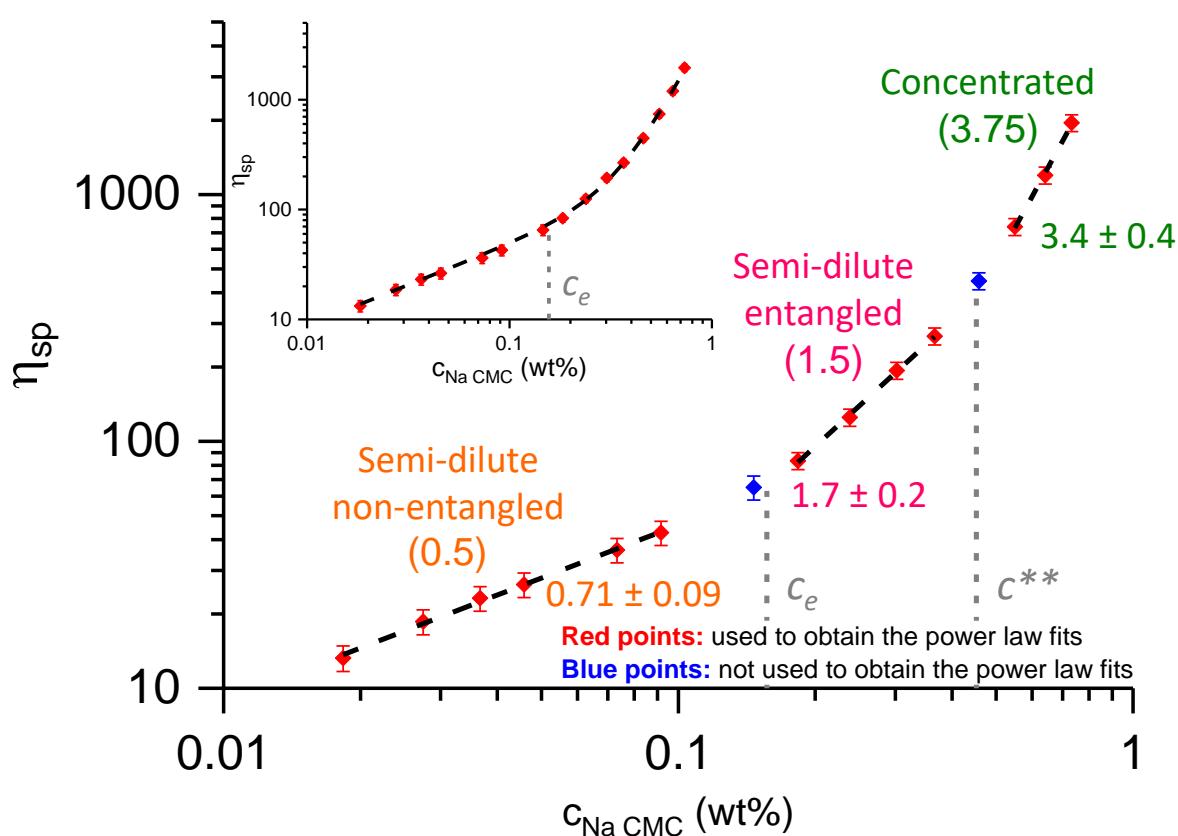
The scaling model for solutions of uncharged flexible polymers in good solvents classifies their behavior into three concentration regimes: dilute, semi-dilute and concentrated.^{74,75} In the dilute regime, the polymer chains are well separated and can be described as a sequence of thermal ‘blobs’ of size ζ_T : for length scales smaller than ζ_T (*i.e.* within the blobs), the excluded volume interactions are weaker than the thermal energy kT and chains adopt a nearly ideal chain conformation, while for length scales larger than ζ_T , the excluded volume interactions are stronger than kT and the chains can be viewed as self-avoiding walks of thermal blobs.⁷⁴ As the semi-dilute regime is entered at the overlap concentration c^* , a new length scale, the correlation length ζ , approximately corresponding to the distance between polymer chains and defining so-called correlation blobs, is introduced.⁷⁴ At length-scales smaller than ζ , the chain conformations are the same as in the dilute regime, while for length-scales larger than ζ , the excluded volume interactions are screened and each chain can be viewed as a random walk of correlation blobs.⁷⁴ As the polymer concentration is further increased, the distance between polymer chains and correspondingly ζ decrease,^{75,76} and when ζ becomes smaller than ζ_T , the polymer chains behave like ideal chains at all length scales; this is called the concentrated regime^{75,76} and the concentration at which it is entered is called c^{**} . Moreover, if the polymer molecular weight is high enough, the chains in the semi-dilute and concentrated solutions can be entangled, and the crossover concentration between

1
2
3 the semi-dilute non-entangled and entangled regimes is then called the entanglement concentration
4
5 c_e .
6

7 A common method to identify these concentration regimes is to plot the specific viscosity η_{sp}
8 (Eq. 1) as a function of the polymer concentration, where η_{sp} is defined as:
9

10
11
$$\eta_{sp} = (\eta_0 - \eta_s)/\eta_s \quad (1)$$

12


13 with η_0 the polymer solution zero-shear viscosity and η_s the solvent viscosity. According to the
14 scaling laws for polymer solutions,^{16,77} each concentration regime is characterized by a power law
15 $\eta_{sp} \sim c^b$, with a characteristic exponent b that depends not only on the concentration regime, but
16 also on the solvent quality (e.g. theta solvent, good solvent).^{16,77} For an uncharged flexible polymer
17 in a good solvent, the predicted values of the exponent b for the dilute, the semi-dilute non-
18 entangled, the semi-dilute entangled and the concentrated regimes are 1, 1.3, 3.9 and 3.75,
19 respectively.^{16,77}
20

21 Importantly, similar concentration regimes have been observed for polyelectrolytes in salt-free
22 solutions.^{16,77} The relevant length-scales are here defined by the effects of electrostatic
23 interactions.^{21,75} The key length scale of the polyelectrolyte scaling theory⁷⁸ is that characterizing
24 so called electrostatic blobs of size ζ_e . Within these blobs, electrostatic interactions are screened
25 and chains act as if they were uncharged, whereas on length-scales larger than ζ_e , the chains adopt
26 stretched directed random walk configurations in the dilute regime due to repulsive interactions
27 between the electrostatic blobs.^{1,78} Within the semi-dilute regime, neighboring chains screen
28 electrostatic interactions on length-scales above the correlation length ζ , where chains behave like
29 random walks of correlation blobs.⁷⁹ The power law exponent in the dilute regime is predicted to
30 be 1 for salt-free polyelectrolyte solutions, as for neutral solutions, but c^* is typically much lower
31 for polyelectrolyte chains of similar molecular weight due to the significant charge-induced chain
32 stretching.⁷⁷ The power law exponents of the semi-dilute non-entangled and entangled regimes are
33 predicted to be 0.5 and 1.5, respectively, while the power law exponent of the concentrated regime
34 should be identical to that observed for neutral polymers (3.75) since the charges of the
35 polyelectrolyte chains are fully screened in this regime.^{16,77,79}
36
37

38 Examples of Na CMC solution flow curves spanning the full range of investigated concentrations
39 are shown in Figure S4 in the SI. Flow curves obtained with $\Delta t_{av} = 200$ s and $\Delta t_{av} = 300$ s
40 superimposed well (data not shown); which confirms that the time parameters used for the
41

1
2
3 measurements were appropriate, and the measured viscosities were at steady-state. All solutions
4 are shown to exhibit shear-thinning behavior. The values of η_0 were obtained by fitting the flow
5 curves with the Carreau model¹ (also shown in Figure S4). The equation as well as the fitting
6 parameters corresponding to the curves shown in Figure S4 are provided in Section 3.1 of the SI.
7 The values of η_0 were combined with the experimentally determined solvent viscosity $\eta_s = 0.95 \pm$
8 0.06 mPa.s (see Section 3.1 of the SI) to calculate the specific viscosities η_{sp} (Eq. 1), which are
9 shown in Figure 1 as a function of the Na CMC concentration.
10
11

12 For the studied range of Na CMC concentrations, the increase in η_{sp} with $c_{Na CMC}$ may be described
13 using three different power laws (dashed lines in Figure 1). The determined power law exponents
14 are shown below the fits in Figure 1 and were found to be consistent with those previously reported
15 for other Na CMC solutions.^{1,16,80,81} However, a comparison to the exponents theoretically
16 predicted by the scaling theory for polyelectrolytes^{15,16} (values in brackets in Figure 1) clearly
17 shows that the exponent value found for the semi-dilute non-entangled regime is higher than the
18 prediction from scaling theory. For their Na CMC samples, Lopez *et al.*¹⁶ obtained a value of 0.68
19 ± 0.02 , similar to our value of 0.71 ± 0.09 within experimental error. They suggested that both
20 polydispersity and chain rigidity could contribute to the discrepancy observed between
21 experimental and predicted power law exponent values in the semi-dilute non-entangled regime.¹⁶
22 The scaling laws for polyelectrolytes have indeed been established for flexible polymer chains,
23 while it is known that Na CMC polymer chains are semi-flexible.^{16,79}
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1: Determination of the concentration regimes from the specific viscosity η_{sp} vs Na CMC concentration $c_{Na CMC}$ data. Dashed lines: best power law fits; the corresponding power law exponents are provided below the fitting curves. Theoretical values from the polyelectrolyte scaling laws are given in brackets below the name of each concentration regime. The inset shows the same data set fitted using Eq. 3 where $b = 0.71$ and $c_e = 0.16$ wt% (values obtained from the best power law fits). The fit with the power law exponent predicted by the scaling law is shown in Figure S5.

The crossover concentrations are shown in Table 1. It is worth noting that as non-fractionated Na CMC samples are generally polydisperse,¹ we expect the transitions between different concentration regimes to be characterized by a concentration range instead of a single characteristic concentration. Thus, the concentrations determined using the power law fitting approach should be viewed only as estimates. Because the exponents of the best power law fits are different from those predicted by the scaling laws, the crossover concentrations c^* , c_e , and c^{**} , calculated as the intersections between the power law fits of two successive concentration regimes, differ depending on whether theoretical or best fit exponents are considered (*i.e.* upper and lower lines of Table 1 respectively). The fits of the semi-dilute non-entangled concentration regime obtained with both theoretical and best fit exponents were extrapolated to $\eta_{sp} = 1$ to obtain the values of the overlap concentrations. These processes are illustrated in Figure S3.

Table 1: Crossover concentrations calculated with different methods.

Calculation method	c^* (wt%)	c_e (wt%)	c^{**} (wt%)
Scaling law fits	7.1×10^{-5}	0.11	0.46
Best power law fits	4.7×10^{-4}	0.16	0.45

By studying how the crossover concentrations and the specific viscosity behave with Na CMC molecular weight, Lopez *et al.*^{1,16} concluded that the scaling laws of salt-free polyelectrolyte solutions may not be the most appropriate model to describe salt-free Na CMC solutions above c^* . Their study¹⁶ indicated that there may be only one crossover concentration, instead of the two separate concentrations, c_e and c^{**} . This hypothesis was reinforced by the absence of the expected change in the Small Angle Neutron Scattering (SANS) profile at c^{**} , which suggests that the current description of such systems based on the electrostatic blobs and the correlation length is not sufficient to describe them,¹ as well as by the fact that viscosity data could be successfully fitted outside the dilute regime using a simple expression (Eq. 2) that contains only one characteristic concentration within the fitting regime, chosen as the entanglement concentration c_e determined as discussed above. Eq. 2¹⁶ is a simple parameterization of the η_{sp} vs $c_{Na CMC}$ data above c^* , which uses a single characteristic concentration c_e outside the dilute regime and includes two parameters γ and q to describe the power law exponents in the non-entangled and entangled regimes. To account for variations in the shape of η_{sp} vs $c_{Na CMC}$ as the behavior transitions from the low to high concentration power law behavior, a final parameter Q is introduced.

$$\eta_{sp} = \eta_{sp}(c^*) \cdot (c_{Na CMC}/c^*)^\gamma \cdot (1 + Q(c_{Na CMC}/c_e)^q) \quad (2)$$

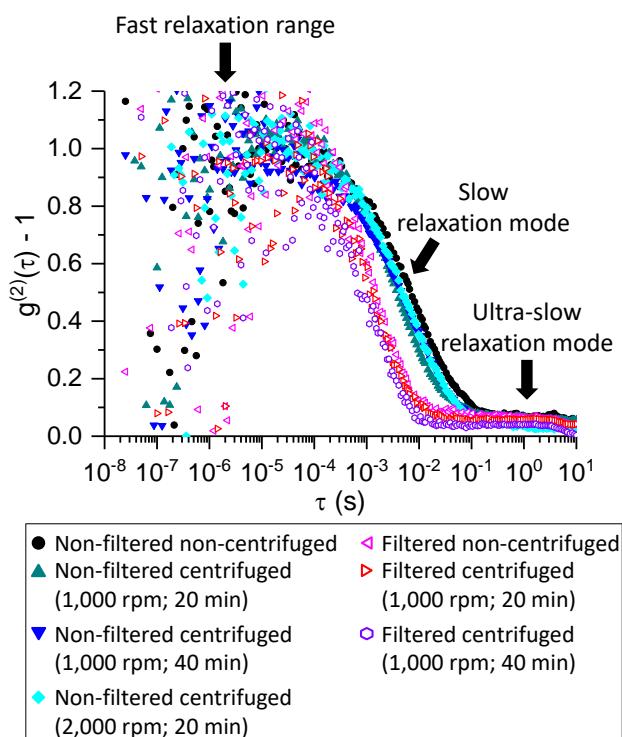
An attempt to fit our data outside of the dilute regime with Eq. 3, adapted from Eq. 2 to avoid any assumption on the values of $\eta_{sp}(c^*)$ and c^* , is shown in the inset to Figure 1. Here γ is the exponent of the best power law fit within the semi-dilute non-entangled regime (*i.e.* $\gamma = 0.71$), c_e is the entanglement concentration determined from the scaling law analysis described above (see value in Table 1), and A , Q and q are fitting parameters.

$$\eta_{sp} = A \cdot c_{Na CMC}^\gamma \cdot (1 + Q(c_{Na CMC}/c_e)^q) \quad (3)$$

The fit is also shown in Figure S3 of the SI, where it is compared to that using the exponent predicted from scaling theory (*i.e.* $\gamma = 0.5$) and where all parameters are provided for both fits. Eq. 3 is found to fit the data well, which supports the possibility that there may be only one

1
2
3 crossover concentration above the overlap concentration. It is worth noting that the existence of
4 the concentrated regime has also been questioned for another polyelectrolyte system by Dou and
5 Colby.⁷⁸ While the graph of η_{sp} vs $c_{polymer}$ was consistent with the scaling law predictions, the
6 concentration-dependence of the terminal modulus G did not show the expected inflection at c^{**} .
7
8

9 In summary, a detailed analysis of the concentration dependence of the specific viscosity has been
10 performed above the overlap concentration. Our data can be described using a set of power laws
11 as predicted from the scaling laws for polyelectrolytes. The determined power law exponents
12 slightly differ from the theoretical predictions, but are consistent with those previously determined
13 for Na CMC samples of varying M_w and DS.^{1,15,16} Importantly, we can alternatively describe the
14 same data using a simpler approach which interpolates between a low and a high concentration
15 power law behavior using only a single crossover concentration. This concentration is assigned to
16 that characterizing the onset of entanglements within the semi-dilute regime.
17
18


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 3.3. Optimization of light scattering measurements

30 LS measurements are very difficult to perform for Na CMC concentrations below 0.018% due to
31 the low scattering intensity. It was thus decided to limit the LS study to Na CMC concentrations
32 starting from 0.018% and covering the concentration range investigated with viscosity
33 measurements (see Section 3.2).
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Sample preparation

55 LS measurements ideally require samples free of dust and residual components.^{60,82} Observations
56 of the Na CMC solutions using optical microscopy, however, showed the presence of particulates
57 (see Figure S1 in the SI). Thus, the possibility of removing these particulates from the solutions
58 prior to performing the LS measurements was investigated. Filtration and centrifugation are the
59 two most commonly used techniques for this purpose.^{14,60,82} 0.2 μ m pore-size syringe filters were
60 tried first. However, the scattering intensities of the Na CMC solutions after filtering using such
61 filters were very close to those of pure water (data not shown). This result clearly demonstrated
62 that these filters are not appropriate for sample preparation, which is consistent with the fact that
63 the characteristic diameter of the ‘domains’ responsible for the slow relaxation mode scattering
64 contribution was determined to be around 400 nm (see Section 3.5, and Figure S24 in the SI).
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
75100
75101
75102
75103
75104
75105
75106
75107
75108
75109
75110
75111
75112
75113
75114
75115
75116
75117
75118
75119
75120
75121
75122
75123
75124
75125
75126
75127
75128
75129
75130
75131
75132
75133
75134
75135
75136
75137
75138
75139
75140
75141
75142
75143
75144
75145
75146
75147
75148
75149
75150
75151
75152
75153
75154
75155
75156
75157
75158
75159
75160
75161
75162
75163
75164
75165
75166
75167
75168
75169
75170
75171
75172
75173
75174
75175
75176
75177
75178
75179
75180
75181
75182
75183
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219
75220
75221
75222
75223
75224
75225
75226
75227
75228
75229
75230
75231
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
75290
75291
75292
75293
75294
75295
75296
75297
75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309
75310
75311
75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330
75331
75332
75333
75334
75335
75336
75337
75338
75339
75340
75341
75342
75343
75344
75345
75346
75347
75348
75349
75350
75351
75352
75353
75354
75355
75356
75357
75358
75359
75360
75361
75362
75363
75364
75365
75366
75367
75368
75369
75370
75371
75372
75373
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
75390
75391
75392
75393
75394
75395
75396
75397
75398
75399
75400
75401
75402
75403
75404
75405
75406
75407
75408
75409
75410
75411
75412
75413
75414
75415
75416
75417
75418
75419
75420
75421
75422
75423
75424
75425
75426
75427
75428
75429
75430
75431
75432
75433
75434
75435
75436
75437
75438
75439
75440
75441
75442
75443
75444
75445
75446
75447
75448
75449
75450
75451
75452
75453
75454
75455
75456
75457
75458
75459
75460
75461
75462
75463
75464
75465
75466
75467
75468
75469
75470
75471
75472
75473
75474
75475
75476
75477
75478
75479
75480
75481
75482
75483
75484
75485
75486
75487
75488
75489
75490
75491
75492
75493
75494
75495
75496
75497
75498
75499
75500
75501
75502
75503
75504
75505
75506
75507
75508
75509
75510
75511
75512
75513
75514
75515
75516
75517
75518
75519
75520
75521
75522
75523
75524
75525
75526
75527
75528
75529
75530
75531
75532
75533
75534
75535
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
75551
75552
75553
75554
75555
75556
75557
75558
75559
75560
75561
75562
75563
75564
75565
75566
75567
75568
75569
75570
75571
75572
75573
75574
75575
75576
75577
75578
75579
75580
75581
75582
75583
75584
75585
75586
75587
75588
75589
75590
75591
75592
75593
75594
75595
75596
75597
75598
75599
75600
75601
75602
75603
75604
75605
75606
75607
75608
75609
75610
75611
75612
75613
75614
75615
75616
75617
75618
75619
75620
75621
75622
75623
75624
75625
75626
75627
75628
75629
75630
75631
75632
75633
75634
75635
75636
75637
75638
75639
75640
75641
75642
75643
75644
75645
75646
75647
75648
75649
75650
75651
75652
75653
75654
75655
75656
75657
75658
75659
75660
75661
75662
75663
75664
75665
75666
75667
75668
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678
75679
75680
75681
75682
75683
75684
75685
75686
75687
75688
75689
75690
75691
75692
75693
75694
75695
75696
75697
75698
75699
75700
75701
75702
75703
75704
75705
75706
75707
75708
75709
75710
75711
75712
75713
75714
75715
75716
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728
75729
75730
75731
75732
75733
75734
75735
75736
75737
75738
75739
75740
75741
75742
75743
75744
75745
75746
75747
75748
75749
75750
75751
75752
75753
75754
75755
75756
75757
75758
75759
75760
75761
75762
75763
75764
75765
75766
75767
75768
75769
75770
75771
75772
75773
75774
75775
75776
75777
75778
75779
75780
75781
75782
75783
75784
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
75798
75799
75800
75801
75802
75803
75804
75805
75806
75807
75808
75809
75810
75811
75812
75813
75814
75815
75816
75817
75818
75819
75820
75821
75822
75823
75824
75825
75826
75827
75828
75829
75830
75831
75832
75833
75834
75835
75836
75837
75838
75839
75840
75841
75842
75843
75844
75845
75846
75847
75848
75849
75850
75851
75852
75853
75854
75855
75856
75857
75858
75859
75860
75861
75862
75863
75864
75865
75866
75867
75868
75869
75870
75871
75872
75873
75874
75875
75876
75877
75878
75879
75880
75881
75882
75883
75884
75885
75886
75887
75888
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
75904
75905
75906
75907
75908
75909
75910
75911
75912
75913
75914
75915
75916
75917
75918
75919
75920
75921
75922
75923
75924
75925
75926
75927
75928
75929
75930
75931
75932
75933
75934
75935
75936
75937
75938
75939
75940
75941
75942
75943
75944
75945
75946
75947
75948
75949
75950
75951
75952
75953
75954
75955
75956
75957
75958
75959
75960
75961
75962
75963
75964
75965
75966
75967
75968
75969
75970
75971
75972
75973
75974
75975
75976
75977
75978
75979
75980
75981
75982
75983
75984
75985
75986
75987
75988
75989
75990
75991
75992
75993
75994
75995
75996
75997
75998
75999
75100
75101
75102
75103
75104
75105
75106
75107
75108

Jardeby and co-workers have previously isolated particulates from Na CMC solutions (see Figure S1 and Jardeby and co-workers' papers^{29,71,72}) using filters, and the same filter types (*i.e.* ROBU® VitraPOR® Borosilicate 3.3 filter tunnels) were thus tried in the present study, using the smallest available pore size (1.0-1.6 μm). Centrifugation tests were also carried out, and were performed directly in the LS cells to prevent any contamination of dust due to the sample transfer into the cells.⁶⁰ The centrifugation acceleration and deceleration speeds were set to the lowest available values to minimize any modification of the solution structure.^{60,63} For the same reason, the Relative Centrifuge Force (RCF) and the centrifugation times were varied to ensure that none of the chosen values modified the solution behavior significantly, as several studies have shown that centrifugation can alter the solution properties.^{54,58} Both the filtration and centrifugation trials were performed on 0.018% Na CMC solutions. The effectiveness of these preparation protocols to remove dust and residual components were evaluated using LS. The intensity auto-correlation data corresponding to a range of different preparation protocols are shown in Figure 2.

Figure 2: Normalized intensity auto-correlation data at 90° scattering angle collected during sample purification trials (*i.e.* centrifugation and/or filtration) for a 0.018 wt% Na CMC solution. Each data series is an average of 30 s measurements (See details about normalization and averaging in Section 4.3 of the SI.)

All intensity auto-correlation data exhibit two decays: (i) a main decay with a relaxation time around either 0.01 s or 0.003 s, and (ii) a secondary decay at much longer relaxation times. The main relaxation (i) was assigned to the slow relaxation normally reported for salt-free polyelectrolyte solutions above c^* , and thought to be due to the presence of polyelectrolyte aggregates here termed ‘domains’,^{55,83} as discussed in the introduction. None of the investigated centrifugation parameters modified the value of the relaxation time τ_s of the slow mode significantly, which demonstrates that the behavior of the Na CMC solutions was not altered by the centrifugation procedure. Conversely, filtration led to a significant decrease in τ_s , suggesting that the compositions and/or the structures of the solutions were considerably modified. This observation is in agreement both with previous literature on light scattering of salt-free polyelectrolyte solutions^{23,63} and with an observed $12.2 \pm 0.6\%$ decrease of the viscosity upon filtration (data not shown). The origin of the secondary decay, referred to here as the ultra-slow mode, is not clear. The corresponding relaxation times are long, suggesting that the ultra-slow mode is due to the presence of large particulates present in solution (see 3.5 for a more detailed discussion). As neither centrifugation nor filtration completely removed the ultra-slow mode, and filtration even significantly altered the slow relaxation mode-, the LS measurements were performed using unprocessed Na CMC solutions. The next two sub-sections describe how data collection and processing were adapted to account for the presence of the ultra-slow mode. Importantly, our approach has the clear advantage that it allowed detailed light scattering measurements to be performed on the original Na CMC solutions which are relevant for industrial applications.

40 *Measurement settings*

42 For each solution, preliminary measurements at different angles were performed to identify the
43 most appropriate measurement durations. DLS measurements need to be long enough so that the
44 determination of the intensity auto-correlation data is reliable. However, particularly for the lower
45 concentration range, where the scattering is weak, the acquisition times that can be used are limited
46 since scattering from particulates (assumed to be responsible for the ultra-slow mode) will
47 eventually interfere with the scattering from the Na CMC solution. This is demonstrated in
48 Section 4.1 of the SI, where Figure S6 shows both DLS and SLS data collected for different
49 durations on a 0.018% Na CMC solutions.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 From a practical viewpoint, more but shorter measurements can be performed at each scattering
4 angle so that measurements that are significantly impacted by scattering from particulates can be
5 discarded. Subsequently, the remaining data are averaged across several independent
6 measurements to enable good statistics for samples at low concentrations, where the intrinsic
7 scattering is low, without significant effects of scattering from particulates.
8
9

10
11 *Data processing*
12

13 The LS data need to be collected within the linear range of the detector to be reliable. As a
14 consequence of the presence of particulates in the solutions, extra precautions were required to
15 make sure this condition was always met, as explained in detail in Section 4.2 of the SI. Hence,
16 the first data processing step was to remove all measurements during which the scattering
17 intensities were outside the detector linear range, which occurred for some experimental runs
18 influenced by the stronger scattering contribution from particulates. Subsequently, the scattering
19 traces (*i.e.* scattering intensity over time) were investigated and traces which contained clear
20 contributions to the scattering from particulates, as identified by sharp peaks with significantly
21 higher intensity than the intensity fluctuations corresponding to the contributions from the intrinsic
22 solutions, were removed. This trace check was performed for all DLS measurements, while it was
23 only performed for the measurements where the scattering was far above the mean for SLS data.
24
25

26 The obtained SLS data were used to calculate the excess Rayleigh ratio ΔR using Eq. 4⁸⁴
27
28

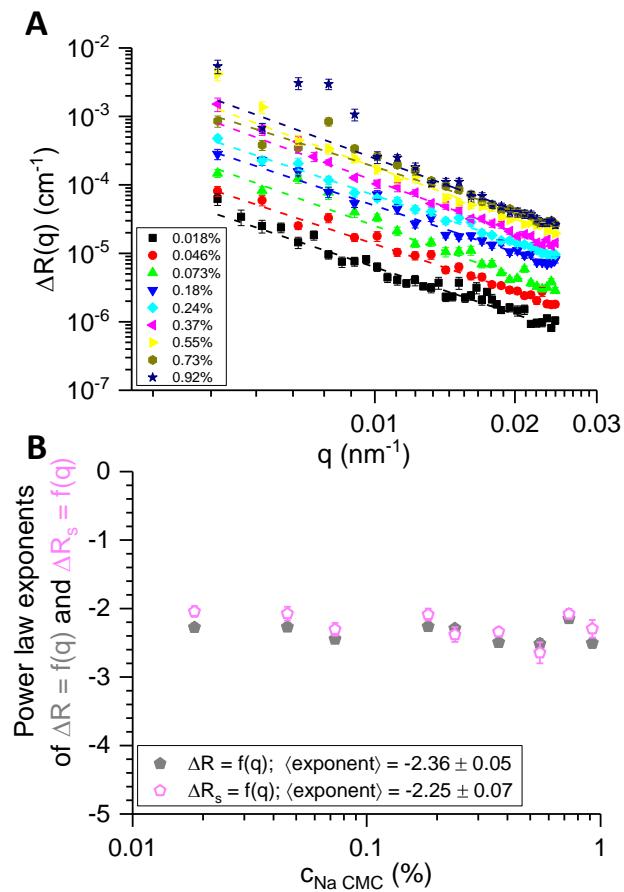
$$\Delta R(\theta) = \frac{I_{\text{norm, sample}}(\theta) - I_{\text{norm, water}}(\theta)}{I_{\text{norm, toluene}}(\theta)} \left(\frac{n_{\text{sample}}}{n_{\text{toluene}}} \right)^2 R_{\text{toluene}} \quad (4)$$

29 where n_{sample} and n_{toluene} are the measured sample refractive index and the toluene refractive index
30 respectively, R_{toluene} is the Rayleigh ratio of toluene at $\lambda = 632.8$ nm, and $I_{\text{norm}} =$
31 $\frac{\text{measured count rate} \times \sin(\theta)}{\text{laser intensity}}$.
32
33

34 For DLS on the solutions with low polymer concentration (0.018-0.073%), the intensity auto-
35 correlation data from multiple experimental runs were averaged to obtain the final intensity auto-
36 correlation curves. The data processing methodology is summarized in Figure S8 of the SI.
37
38

39 The way of fitting the data depended on the Na CMC concentration, and examples of fitting
40 approaches are shown in Figure S9 for solutions of low (0.018-0.073%), intermediate (0.18-
41 0.37%) and high (0.55-0.92%) Na CMC concentrations. Eq. 5^{14,83} could be used to fit all the
42
43

intensity auto-correlation data, where f , s and us refer to the fast, slow and ultra-slow mode respectively, A_i is the amplitude of the mode i , β_i is the stretching coefficient of the mode i and $\tau_{e,i}$ is an effective relaxation time of the mode i . The average relaxation time τ_i of the mode i is linked to $\tau_{e,i}$ with $\tau_i = \frac{\tau_{e,i}}{\beta_i} \Gamma\left(\frac{1}{\beta_i}\right)$ where Γ is the gamma function.^{14,83}


$$g^{(2)}(\tau) - 1 = \left[A_f e^{-\left(\frac{\tau}{\tau_f}\right)} + A_s e^{-\left(\frac{\tau}{\tau_{e,s}}\right)^{\beta_s}} + A_{us} e^{-\left(\frac{\tau}{\tau_{e,us}}\right)^{\beta_{us}}} \right]^2 \quad (5)$$

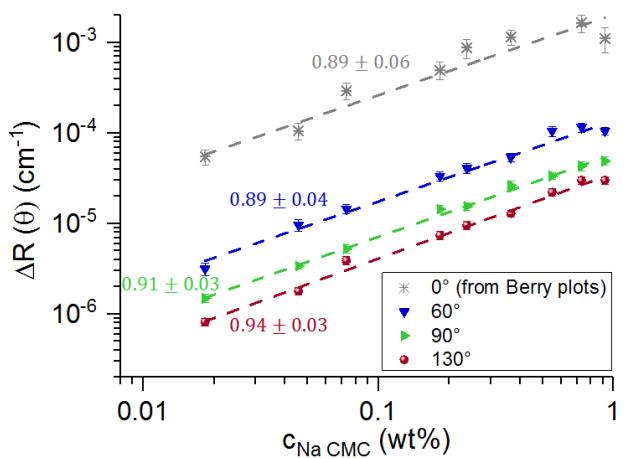
The fast mode could not be observed for the least concentrated solutions (Figure S9.A₂), so here A_f was set to 0 and only the slow and the ultra-slow modes were fitted. For the high Na CMC concentrations, it was not possible to get a satisfactory fit with Eq. 5. Therefore, the contributions of the fast and the slow modes were determined using two different fits as detailed in Section 4.3 and Figure S8 of the SI, and illustrated in Figures S9.C₂ and S9.C₃. The residuals of the fits shown in Figure S9 are displayed in Figure S10 of the SI and demonstrate that the data are successfully fitted using the approach described above. The fitting of the fast mode is further commented in Section 4.4 of the SI.

3.4. Static light scattering measurements

The excess Rayleigh ratio ΔR , calculated from SLS data, is plotted as a function of scattering wave-vector q in Figure 3.A. ΔR increases with increasing Na CMC concentration and decreases with increasing q , following an approximate power law relationship (see dashed lines in Figure 3.A). At low q and high $c_{Na} CMC$, the data points are more scattered and fall above the power law fits; the likely reason for this behavior is the presence of the sample particulates which provide an additional scattering contribution that is most prominent at small scattering angles. The power law exponent values obtained from the data fitting are shown in Figure 3.B for samples of varying Na CMC concentrations. No significant concentration dependence of the power law exponents is observed, and their average value across the concentration range is estimated as -2.36 ± 0.05 . It is worth noting that this value is, within the experimental error, identical to the one determined from the contribution of the slow relaxation mode – attributed to the domains – to the excess Rayleigh ratio ΔR_s (see Sections 4.6.1 and 4.6.3 of the SI about ΔR_s) as shown in Figure 3.B. Similar values have been observed for other polyelectrolytes such as PMPVP⁴⁹ ($d_f = 2.2 \pm 0.2$) or poly(*N*-benzyl-2-vinylpyridinium bromide)⁵⁵ ($d_f = 2.7$). This power law exponent has sometimes been interpreted

as the fractal dimension of the system. However, given the relatively small q -range and the fact that observing an approximate power law does not necessarily indicate a fractal behavior, this interpretation must be considered with care. In addition, Zhang *et al.*⁸⁵ have shown that the value of the exponent for a polyelectrolyte can vary significantly depending on the experimental conditions (*e.g.* solvent nature) and suggested that the structure of the domains is not universal.

Figure 3: q - and $c_{\text{Na CMC}}$ -dependence of the excess Rayleigh ratio ΔR . **A.** Excess Rayleigh ratio ΔR as a function of the scattering vector q for all the studied concentrations. The dashed lines are power law fits. **B.** Exponents resulting from both the power law fits shown in A (full grey symbols), and the power law fits of the slow relaxation mode contribution to the excess Rayleigh ratio ΔR_s (empty pink symbols; the data $\Delta R_s = f(q)$ are plotted in Figure S18.A). In both A and B, $c_{\text{Na CMC}}$ is in wt%.

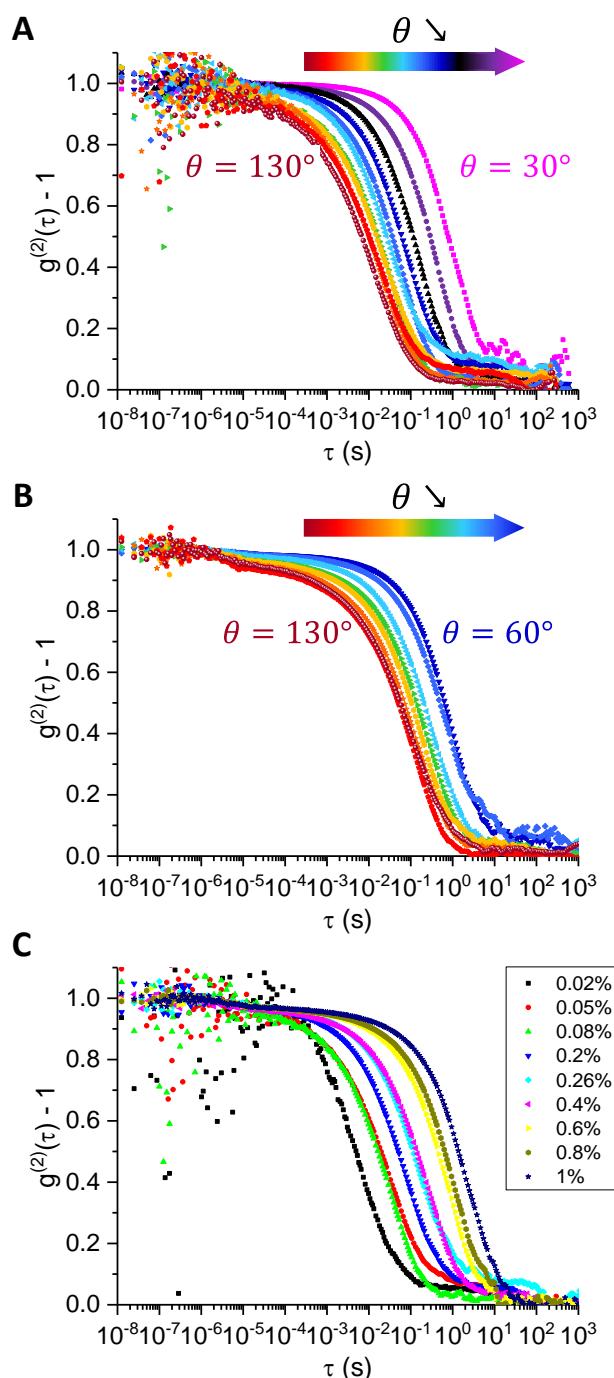

Moreover, the power law exponent can be compared to the power law exponents determined by Lopez and co-workers^{1,15} for the low q upturn observed in their SANS experiments, where the value of the exponent was DS-dependent. For solutions made with a Na CMC of similar DS but lower M_w ($DS = 0.8 \pm 0.1$; $M_w = 3.1 \times 10^5$ g/mol) than the one studied here, the power law exponent describing the low q upturn was -3.4 at low Na CMC concentrations (4-8 g/L \sim 0.4-0.8%), and -1

1
2
3 at higher concentrations (20-28 g/L \sim 2-2.8%).¹⁵ Our value of -2.4 thus lies between these two
4 values. It is worth noting that direct comparison between Lopez *et al.*'s data¹⁵ and ours should be
5 carried out with caution since the Na CMC molecular weights are different and, even if the their
6 lower investigated concentrations overlay with the higher concentrations investigated here,
7 solution structure and dynamics may be different as the crossover concentrations are different.¹⁶
8 Assuming that both the low q upturn observed by SANS and the SLS profile probe the same
9 structural features, the difference observed between Lopez *et al.*'s power law exponents¹⁵ and ours
10 could arise from the difference in M_w between the two Na CMCs; the domain size has been shown
11 to be M_w -dependent in a number of previous studies on high M_w polyelectrolytes.^{53,55,57,86} The
12 differences could also be explained by the fact that different length scale ranges are probed in these
13 experiments. Indeed, our investigated q range is 0.005-0.024 nm⁻¹, while the one investigated by
14 Lopez and co-workers^{1,15} corresponds to q values above 0.04 nm⁻¹. Hence, a difference between
15 the power law exponent determined within the q range probed by SLS, compared with that probed
16 within the low q range probed by SANS, was reported by Borsali *et al.*⁵⁰ for DNA solutions.
17 Furthermore, to achieve enough scattering contrast, Lopez and co-workers^{1,15} studied their
18 Na CMC solutions in D₂O rather than in H₂O and the structure of Na CMC solutions might be
19 different in non-deuterated and deuterated aqueous solutions. Even though many properties of both
20 D₂O and H₂O are similar, the hydrogen bond strength is slightly different,⁸⁷ and as an example,
21 SLS experiments performed with guar, a neutral polymer, show that both the scattering intensity
22 and the power law exponents describing $\Delta R = f(q)$ are higher in D₂O compared to H₂O. Gittings *et*
23 *al.*⁸⁸ suggest that, in the case of guar, the observed difference is due to the poorer solubility of
24 guar in D₂O compared to H₂O.⁸⁸

25
26 To determine the excess Rayleigh ratio in the zero wave-vector limit $q = 0$, $\Delta R(0)$, Zimm plots
27 ($[K \cdot c_{Na\,CMC} / \Delta R] = f(q^2)$ where K is an optical contrast constant⁸⁹ (see Eq. S3 in the SI)) were
28 produced, for which an example is shown in Figure S13.A. However, for most of our solutions,
29 the $q = 0$ intercepts were slightly negative, which indicates the presence of excess scattering at low
30 q and thus the presence of large structures.⁸⁹ Berry ($[K \cdot c_{Na\,CMC} / \Delta R]^{0.5} = f(q^2)$)⁸⁹ and Guinier
31 ($\ln[K \cdot c_{Na\,CMC} / \Delta R] = f(q^2)$)⁸⁹ plots were also considered as they might be more successful at
32 linearizing the data at low q values⁸⁹ and examples are shown in Figure S13. As the linear part
33 covered a wider range of q values for Berry plots as compared to Guinier plots, further calculations
34 were performed with the data obtained from the Berry plots. Ioan *et al.*⁸³ obtained similar Berry
35 plots for guar in H₂O and D₂O and found that the Guinier plots were more successful at linearizing
36 the data at low q values. The same was found for the Na CMCs in this work. The Guinier plots
37 were more successful at linearizing the data at low q values, but the linear part covered a wider range of
38 q values for the Berry plots as compared to the Guinier plots. The linear part of the Guinier plots
39 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
40 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
41 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
42 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
43 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
44 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
45 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
46 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
47 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
48 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
49 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
50 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
51 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
52 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
53 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
54 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
55 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
56 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
57 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
58 covered a range of q values from 0.005 to 0.024 nm⁻¹. The linear part of the Guinier plots
59 covered a range of q values from 0.005 to 0.015 nm⁻¹, while the linear part of the Berry plots
60 covered a range of q values from 0.005 to 0.024 nm⁻¹.

plots for dextran solutions above c^* . It is also worth noting that, as shown in Section 4.6.3 of the SI, the same behavior was observed for the proportion of the excess Rayleigh ratio corresponding to the slow mode; which suggests that the observed behavior of the total excess Rayleigh ratio is mainly driven by the domains responsible for the slow mode.

The obtained values of $\Delta R(0)$, as well as the values of ΔR at different angles, are plotted as a function of Na CMC concentration in Figure 4. For each angle, the data $\Delta R = f(c_{Na CMC})$ were fitted using power laws (dashed lines in Figure 4), and the power law exponents for all angles were found to be 0.91 ± 0.02 . Sedlák and Amis obtained similar results, though their power law exponents were slightly above 1.⁴⁷


Figure 4: Concentration dependence of the excess Rayleigh ratio $\Delta R(\theta)$ at different angles. The values of the excess Rayleigh ratios at 0° (or $q = 0$) were obtained by linear extrapolation of the Berry plots at low 2 values. Dashed lines are power law fits whose exponent values are provided next to each fit.

In conclusion, we found that $\Delta R \sim q^\alpha$ across the investigated concentration range with a concentration-independent power law exponent $\alpha = -2.36 \pm 0.05$. We also found that $\Delta R(\theta) \sim c_{Na CMC}^{\alpha'}$ with a consistent power law exponent $\alpha' \sim 0.9$. Thus, from SLS, we do not find any evidence for a change in structure across our investigated concentration range.

3.5. Dynamic light scattering measurements

Examples of normalized intensity auto-correlation data at different scattering angles for two solutions, illustrating the behavior observed at low (0.018–0.073%), and higher (from 0.18%) Na CMC concentrations, are shown in Figures 5.A and B, respectively. For each solution, the characteristic relaxation time of the slow mode is shifted towards longer times as the scattering

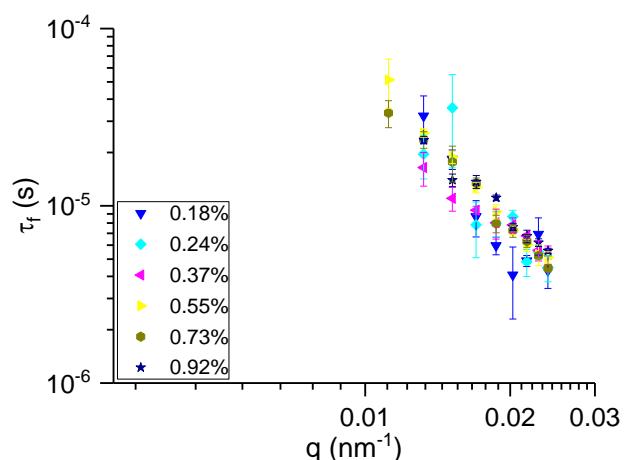
1
2
3 angle decreases.⁵⁵ However, for some data sets, the amplitude of the ultra-slow mode is significant;
4 particularly for the two lowest scattering angles shown in Figure 5.B. To address this issue, we
5 take account of the ultra-slow mode in the fitting procedure, as described in Section 3.3, and Figure
6 S8 of the SI. Also, as discussed previously (Section 3.3), the fast mode cannot be observed for the
7 least concentrated solutions, despite their concentrations being above the overlap concentration c^* ,
8 which is likely due to it being hidden in the noise observed at low lag times τ . When the fast mode
9 can be observed (at higher concentrations) its relative amplitude (compared to the slow mode)
10 increases for increasing scattering angles.⁵⁵ This is explicitly shown in Figure S14 of the SI and
11 agrees with the commonly observed behavior for polyelectrolytes.^{52,53} Figure S14, however, also
12 shows that the relative amplitude of the fast mode is concentration-independent, which is different
13 from the behavior reported for some polyelectrolytes.^{52,53,55,56}
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 5: Influence of the scattering angle θ and Na CMC concentration on the normalized intensity auto-correlation data. **A.** **B.** Data collected for a wide range of angles in steps of 10° on the 0.073 wt\% (low concentration) and the 0.37 wt\% (intermediate-high concentration) Na CMC solutions, respectively. **C.** Data at 90° scattering angle for all the investigated Na CMC concentrations ($c_{\text{Na CMC}}$ in wt\%). These data are also shown in Figure S16 of the SI with data collected at 60° and 130° . The data are averaged intensity auto-correlation data for 0.018 , 0.046 and 0.073 wt\% Na CMC, while they are angle-representative curves for all the other Na CMC concentrations. In A and B, the step between two successive angles is 10° .

1
2
3 Intensity auto-correlation data for each solution are compared at 90° in Figure 5.C. The relaxation
4 time of the fast mode is concentration-independent.^{55,56} The relaxation time of the slow mode,
5 conversely, increases across the concentration range.^{55,56}
6
7
8
9

10 *Ultra-slow mode*

11 The ultra-slow mode is characterized by a long relaxation time and was present in all solutions at
12 all scattering angles. Moreover, neither filtration nor centrifugation were able to remove this decay
13 to a significant degree (see Section 3.3). As mentioned in Section 3.3, the presence of particulates
14 in the Na CMC solutions (see Figure S1 of the SI) could explain the presence of the ultra-slow
15 mode. The size of the smallest particulates determined by optical microscopy (Figure S1.C) is in
16 the range of 1-10 μm , but difficulty in determining the size using optical microscopy made exact
17 size determination difficult (see Section 3.1). While the smallest particulates could pass through
18 the glass filter (pore size: 1.0-1.6 μm), some larger particulates may also go through if they have
19 the ability to deform and change shape during filtration. Assuming the diffusion of these 1-10 μm -
20 diameter particulates solution is Brownian in the 0.018% Na CMC solution and the viscosity they
21 experience is that of the solution (see Eq. 8), the corresponding relaxation times at a scattering
22 angle of 90° would be in the range of 0.09-0.9 s, while they would be in the range of 12-120 s for
23 the 0.73% Na CMC solution under the same hypotheses. For both Na CMC concentrations, these
24 relaxation times are longer than the relaxation times of the slow mode, but smaller than those
25 observed for the ultra-slow mode (Figure 5.B). The assumptions behind this simple argument,
26 including simple Brownian motion, a spherical particle shape and the fact that the particulates
27 experience the viscosity of the solution are most unlikely to be all true. Even more likely, the strong
28 contribution to the resulting scattering of the largest particulates, such as the fiber shown in
29 Figure S1.A, would, in effect, hide the contribution from smaller particulates, and result in the very
30 long relaxation times we observe.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


46 The amplitude of the ultra-slow mode was typically higher for lower Na CMC concentrations (see
47 Figure 5.B and Figure S16 in the SI), which is reasonable since, at low Na CMC concentrations,
48 the scattering of the Na CMC solutions themselves would be very weak and we would thus observe
49 the particulates to a greater degree. In addition, these solutions have lower viscosities, meaning
50 that particulates would move faster and their scattering is more likely to be detected within the set
51 acquisition time. Moreover, the values of the ultra-slow mode fitting parameters vary significantly
52
53
54
55
56
57
58
59
60

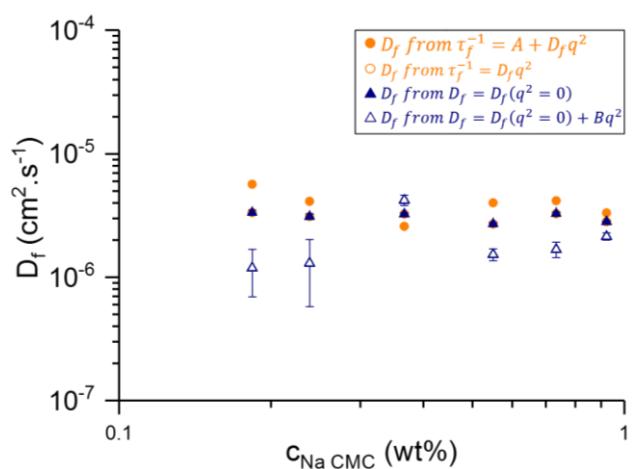
1
2
3 between repeat measurements, which strongly suggests that the ultra-slow mode relaxation time is
4 too long compared with measurement durations to collect statistically reliable data for this mode.
5 Thus, the fitting of the ultra-slow mode was only used to effectively remove its contribution from
6 the results of the two other modes, and the corresponding fitting parameters have not been
7 included.
8
9

10 *Fast mode*
11
12

13 The contribution of the fast mode to the total excess Rayleigh ratio ΔR_f (called fast mode amplitude
14 by Sedlák⁶³) is q -independent within experimental error as shown in Figure S16 of the SI and is
15 proportional to the Na CMC concentration. A similar q -independence of ΔR_f was found for Na PSS
16 in an organic solvent, *N*-methylformamide, and in the presence of various amounts of NaCl⁶⁵ as
17 well as for poly(acrylic acid) (PAA) in water.⁶⁰
18
19

20 The q - and $c_{Na\text{ CMC}}$ -concentration dependences of the fast relaxation time τ_f are shown in Figure 6.
21 The curves of $\tau_f = f(q)$ superimpose well within the experimental error for all the studied
22 solutions, which confirms that the fast-mode is independent of Na CMC concentration (as
23 discussed in relation to Figure 5.B). The q -dependent data can be fitted by a power law with an
24 exponent value of 2.5 ± 0.3 . This is close to the usually reported value of 2,^{52,53} and characteristic
25 for a diffusive process; this small discrepancy is thought to be due to the difficulties encountered
26 in the fitting of the fast mode (see Section 3.3).
27
28

57 **Figure 6:** q - and $c_{Na\text{ CMC}}$ -dependences of the fast mode. Fast relaxation time τ_f as a function of the scattering
58 vector q for solution concentrations of 0.18 wt% Na CMC and above ($c_{Na\text{ CMC}}$ in wt%). The curves were
59 fitted with power laws which are not represented for clarity. The average exponent across all concentrations
60 is -2.5 ± 0.3 .


Considering the fast mode as a diffusive process, attempts were made to calculate the fast mode diffusion coefficient D_f . The different methods used are explained below and further illustrated in Figure S17 in the SI. For each solution, the data $\tau_f^{-1} = f(q^2)$ were fitted using Eq. 6.

$$\tau_f^{-1} = A + D_f q^2 \quad (6)$$

where A is the intercept of the linear curve and is either set to be free or set to 0. Eq. 6 with $A = 0$ is expected for simple diffusive behavior^{50,82} while Eq. 6 with $A \neq 0$ accounts for a small uncertainty in the determined values of τ_f (see Section 3.3). As shown in Figure 7, which displays the values of D_f obtained using different calculation methods, the two methods used to determine D_f lead to consistent results within the accuracy of the data. Two other calculation methods were also investigated: D_f values were computed at each angle with $D_f = \tau_f^{-1} q^{-2}$ (equivalent to Eq. 6 with $A = 0$)⁵⁷ before being fitted as a function of q^2 with Eq. 7 for $B = 0$ and $B \neq 0$.

$$D_f = D_f(q^2 = 0) + Bq^2 \quad (7)$$

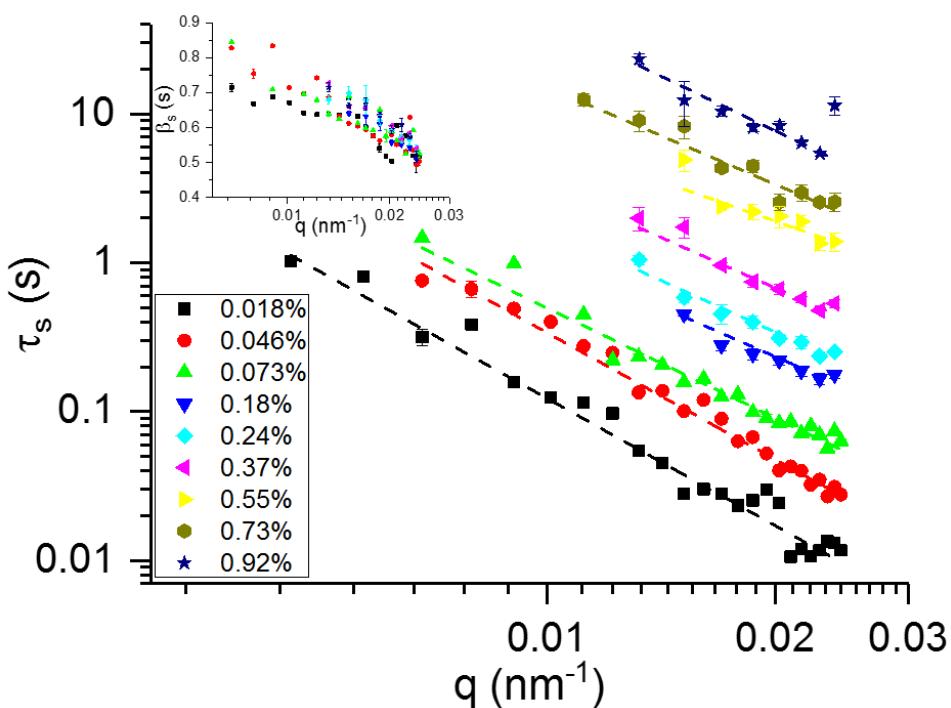

The results of these calculations are also shown in Figure 7. The values of D_f obtained from all four calculation methods are close to each other and are of the same order of magnitude as those generally observed for other polyelectrolytes^{51,57,85,90} (*i.e.* around $10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$). A value of D_f of $(3.1 \pm 0.2) \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$ is obtained using Eq. 6 with $A = 0$ and Eq. 7 with $B = 0$; which are the simplest methods and correspond to what is expected for diffusive behavior. This value is similar to the value of $4.9 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$ reported by Lopez and Richtering⁴⁶ for a 0.2 *wt%* Na CMC solution prepared with a Na CMC of smaller M_w and higher DS; thus showing the independence of D_f from M_w and DS. This finding is also consistent with that of Sedlák and Amis,⁴⁷ who showed that D_f was independent from M_w for sodium poly(styrene sulfonate), as well as with that of Förster *et al.*,⁵⁵ who reported D_f to be independent from both the degree of quaternization and the molecular weight for quaternized poly(vinyl pyridine).

Figure 7: Fast mode diffusion coefficients as a function of Na CMC concentration. The calculation methods are explicitly shown in the SI (Figure S17).

Slow mode

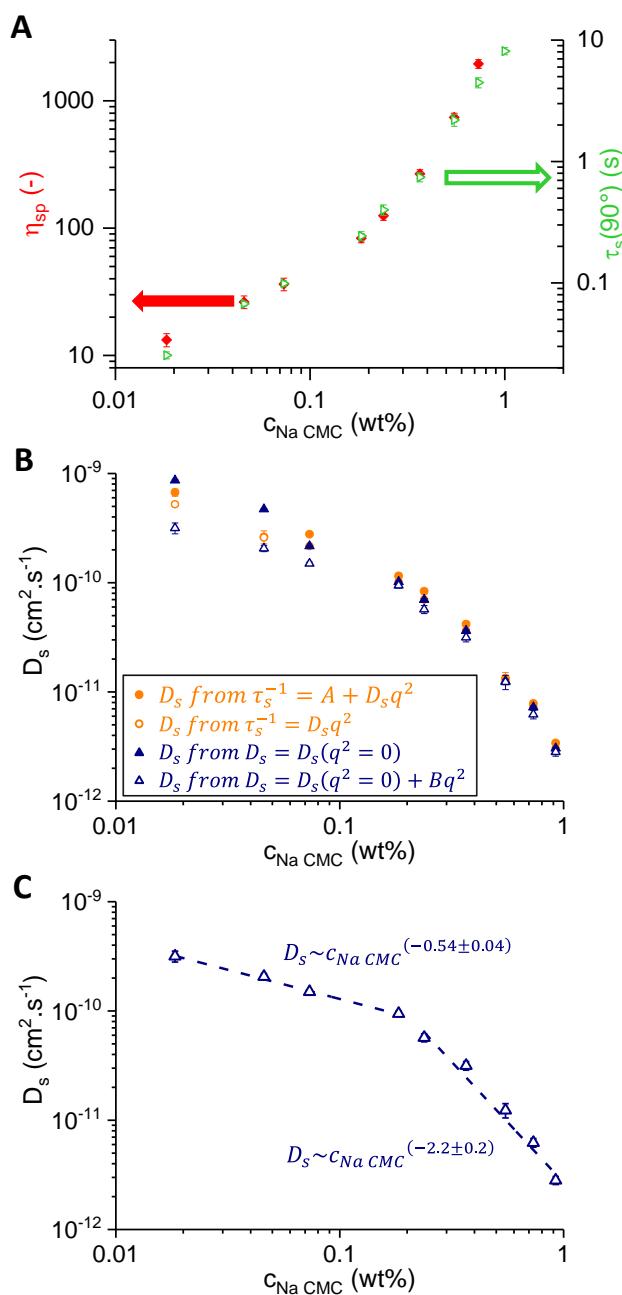

The contribution of the slow mode to the total excess Rayleigh ratio ΔR_s (called slow mode amplitude by Sedlák)⁶³ is q -dependent, as shown in Figure S18, and is proportional to the Na CMC concentration. A q -dependence of ΔR_s has been observed for Na PSS in water without added salt²² as well as in an organic solvent in the presence of salt.⁶⁵ The q - and $c_{Na CMC}$ -concentration dependences of the slow relaxation time τ_s are shown in Figure 8. It is found that as the Na CMC concentration is increased, the relaxation time τ_s also increases. The q - and $c_{Na CMC}$ -concentration dependences of the stretching exponent β_s (see Eq. 5) are illustrated in the inset of Figure 8 for a few Na CMC concentrations. Within the accuracy of the measurements, β_s is independent of Na CMC concentration, but decreases with q . Its value is around 0.7; which is in agreement with the value found by Dogsa *et al.*¹⁴ for Na CMC solutions of smaller DS and M_w , as well as with values usually found for polyelectrolyte solutions whose slow mode is successfully fitted with a stretched exponential.^{53,83}

Figure 8: q - and $c_{Na\text{ CMC}}$ -dependence of the slow mode. Slow mode relaxation time τ_s as a function of the scattering vector q for all studied concentrations ($c_{Na\text{ CMC}}$ in wt%). For concentrations of 0.18 wt% Na CMC and above, DLS measurements could not be successfully performed at the lowest angles (corresponding to the lowest q values) as the durations required to collect statistically reliable data allowed too many of the particulates to enter the scattering volume, thus providing unreliable data. Consequently, the data collected for these solutions cover a smaller q range. Dashed lines are power law fits. The average exponent value across all concentrations is -2.4 ± 0.2 . Exponent values are shown in Figure S19. Inset shows the stretching coefficient β_s as a function of q , for a few Na CMC concentrations.

The relationship between the slow mode relaxation time and Na CMC concentration is also shown in Figure 9.A, which presents τ_s at 90° scattering angle as a function of $c_{Na\text{ CMC}}$ across the studied range of concentrations, as well as in Figure S20 in the SI which shows the concentration dependence of τ_s at two other scattering angles. Figures 8, 9.A and Figure S20 all confirm that including the ultra-slow mode in the fits is successful in removing its influence on the τ_s values. Figure 9.A also compares $\tau_s(90^\circ)$ with the specific viscosity η_{sp} and shows that they exhibit a similar concentration dependence, suggesting that the slow mode is related to the viscosity of the solutions across the studied concentration range. A similar result was found by Esquenet and Buhler⁵³ for high molecular weight xanthan and hyaluronan samples (average molecular weights of 4.2×10^6 and 2×10^6 g/mol respectively) in 0.1 M NaCl. In our case, the q -dependence of the slow mode can be described using power laws, where the average value of power law exponents across all concentrations is -2.4 ± 0.2 (the exponent values for each studied concentrations are

given in Figure S19 within the SI). Similarly to the fast mode, the exponent is close to 2; thus suggesting that the slow mode is also related to a diffusive process. There is, however, a slight concentration dependence with greater values at low concentrations, likely due to the increased difficulty in determining τ_s for very dilute solutions and/or to the presence of additional relaxation contributions (e.g. relaxation contributions of internal modes). These effects are also illustrated in the data representation shown in Figure S21 within the SI.

Figure 9: Polymer concentration dependences for the slow mode relaxation time τ_s and slow mode diffusion coefficient D_s . **A.** Concentration dependence of the slow mode relaxation time τ_s at 90° scattering angle and the specific viscosity. **B.** Concentration dependence of D_s for D_s values calculated with four methods (as shown for the fast mode). **C.** Concentration dependence of D_s , with the D_s values retained for further calculations (D_s values from $D_s = D_s(q^2 = 0) + Bq^2$). Dashed lines are the best power law fits of $D_s = f(c_{Na\ CMC})$.

The same methods as for the fast mode were used to calculate the diffusion coefficient D_s of the slow mode (see previous subsection for more details). Values of D_s obtained with the four methods

1
2
3 are shown in Figure 9.B. For the most concentrated solutions, the D_s values are very close,
4 regardless of the calculation method. For the three least concentrated solutions, the values are
5 somewhat different from each other. This discrepancy is most likely due to the fact that the slow
6 mode is not strictly linear in q^2 at these low concentrations (see Figures S21 and S22 illustrating
7 the D_s calculation methods for a low and a high Na CMC concentrations respectively) which is
8 usually attributed to the large size of the domains and to their polydispersity.^{22,55}
9
10
11
12
13

14 $D_s = f(c_{Na CMC})$ suggests a change in the concentration behavior for an intermediate concentration,
15 where the behavior can be approximately described by power laws at both low and high
16 concentrations, as shown in Figure 9.C which displays the values of D_s obtained using Eq. 7. The
17 equivalent graphs obtained for the three other calculation methods are shown in Figure S23 of the
18 SI, where the fitting parameters for all four methods are reported in Table S2. This type of behavior
19 has previously been observed in the literature for high molecular weight polyelectrolytes in salt-
20 free solutions above c^* .^{47,48} The power law exponent of the fit describing the low concentration
21 region is -0.54 ± 0.04 , which is in a similar range compared to the values of -0.35 and -0.7 obtained
22 by Sedláček and co-workers obtained for Na PSS⁴⁷ and poly(methacrylic acid), respectively.⁴⁸ The
23 power law exponent describing the high concentration region is -2.2 ± 0.2 ; which is much higher
24 than the values of -0.83 and 1.4 found for the two previously cited polyelectrolytes.^{47,48} It has
25 however been shown that the value of the power law exponent ν of the relationship $D_s \sim c^\nu$
26 increases with the polymer molecular weight.⁵⁷
27
28

29 The crossover concentration determined from the intercept of the two power laws for our system
30 is $\sim 0.21\%$ (as determined from the fits shown in Figure 9.C; the values obtained using the other
31 methods are similar and can be found in Table S2 of the SI; as for the crossover concentrations
32 determined from rheology data (see Section 3.2), these concentrations are only estimates of where
33 a change in behavior occurs). Sedláček and Amis⁴⁷ found a similar crossover concentration in
34 Na PSS solutions. They also observed that this crossover concentration does not correspond to c^{**}
35 predicted by the version of the scaling laws for polyelectrolytes improved by Odijk.⁴⁷ The
36 crossover concentration for our system is close to the entanglement concentration $c_e = 0.16\%$, as
37 calculated using the scaling laws; so it is reasonable to assume that they both correspond to the
38 onset of entanglements. This is in agreement with the previously observed similarity in the
39 behavior of the specific viscosity and the slow mode relaxation time shown in Figure 9.A. The fact
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 that the change in concentration behavior of D_s vs $c_{Na\text{ CMC}}$ is not observed for low molecular weight
4 polymers^{47,48} is consistent with this hypothesis, since low molecular weight polymer chains are
5 too short to be entangled.
6
7

8 Using the values of D_s plotted in Figure 9.C (*i.e.* assuming the slow mode is diffusive), the apparent
9 hydrodynamic radii $R_{H,app}$ of the domains were estimated using Eq. 8.
10
11

12

$$R_{H,app} = \frac{kT}{6\pi\eta D_s} \quad (8)$$

13

14 where k is the Boltzmann constant, T the temperature and η the solution viscosity. The obtained
15 values of $R_{H,app}$ are plotted in Figure S24 in the SI together with the estimated values of the
16 apparent radii of gyration of the domains $R_{g,app}$ obtained from the Berry plots of the excess
17 Rayleigh ratio associated with the slow mode ΔR_s . Details on the determination of $R_{g,app}$ are
18 provided in Section 4.6.3 of the SI. $R_{g,app}$ is relatively independent of the Na CMC concentration
19 and an average value of 200 ± 20 nm is estimated across the studied range of concentrations. This
20 value is of the same order of magnitude as the one obtained for a $\sim 900,000$ g/mol hyaluronan
21 sample in 0.1 M NaCl.⁵³ $R_{g,app}$ has also been found to be independent of the polyelectrolyte
22 concentration above c^* for two hyaluronan samples of smaller M_w ,⁵³ for PMPVP⁴⁹ and for chitosan
23 in an electrolyte solution,⁵² while they have been found to increase with the polyelectrolyte
24 concentration for Na PSS.^{23,55,86} It is worth noting that Buhler and Rinaudo⁵² highlight the fact that
25 R_g is likely to increase with the polyelectrolyte concentration and to be larger than $R_{g,app}$. The
26 values of $R_{H,app}$ in the present study are of the same order of magnitude as $R_{g,app}$. We find that the
27 values decrease over the studied range of concentration; which is different from the results of
28 Buhler and Rinaudo⁵² who studied chitosan in the presence of a background electrolyte and found
29 that $R_{H,app}$ instead increased with increasing chitosan concentration.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

4. Conclusions

46 In this work, the behavior of Na CMC in aqueous solutions without added salt was investigated
47 for a wide range of concentrations, using rheology and light scattering measurements.
48
49

50 For the studied concentration range, the concentration dependence of the specific viscosity could
51 be described by the scaling theory for polyelectrolytes using a set of power laws. Three
52 concentration regimes were identified: semi-dilute non-entangled, semi-dilute entangled and
53
54
55
56
57
58
59
60

1
2
3 concentrated. The so-determined power law exponents slightly differed from the theoretically
4 predicted values but were consistent with those previously found for Na CMC. Alternatively, the
5 data could be described using a simple empirical equation which links two power law behaviors
6 only including one crossover concentration. The success of this approach suggests that only the
7 semi-dilute non-entangled and entangled regimes are observed.
8
9

10 To further test this, Na CMC solutions covering the same concentration range were investigated
11 using both SLS and DLS. The excess Rayleigh ratio, as determined from SLS, was found to vary
12 linearly with Na CMC concentration. For all the studied solutions, it followed a power law
13 relationship with the scattering wave vector q and a power law exponent of -2.36 ± 0.05 , which
14 was independent of the Na CMC concentration. Three relaxation modes were observed in DLS
15 measurements. The two fastest modes were identified as the fast and slow relaxation modes
16 commonly observed for polyelectrolytes. The third, and slowest mode, was attributed to poorly
17 substituted undissolved cellulose fragments. As filtration (or centrifugation) did not sufficiently
18 remove these fragments, and importantly did alter the solution behavior, both data collection and
19 processing were adapted to account for the presence of this mode; we were thus able to perform
20 the detailed LS characterization on the original Na CMC solutions, which are relevant for industrial
21 applications. The diffusion coefficient D_f of the fast relaxation mode was found to be
22 concentration-independent and equal to $(3.1 \pm 0.2) \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$. The relaxation time of the slow
23 mode showed a similar crossover behavior to that found for the specific viscosity. Interestingly,
24 no such change in behavior with Na CMC concentration was observed in the excess Rayleigh ratio,
25 determined from static light scattering, suggesting that the origin of the observed behavior mainly
26 originates from a change in dynamics. We note that the approach used in this study could be used
27 also to investigate the behavior of Na CMC in the presence of other components commonly found
28 in complex formulated products such as salts, sugars or solid particles, thus, acquiring detailed
29 information which can guide the process and formulation design.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Acknowledgments

50 This work was co-funded by the University of Leeds (University of Leeds 110 Anniversary
51 Research Scholarship) and Procter and Gamble (P&G). We are grateful to the EPSRC
52 (EP/J021156/1, EP/K005073/1, EP/J02113X/1) for supporting the LS spectrometer and related LS
53
54
55
56
57
58
59
60

1
2
3 work. Access to the Zeiss LSM700 microscope was provided by the Bio-imaging Facility of the
4 Faculty of Biological Sciences of the University of Leeds. We also wish to thank Daniel Baker
5 (University of Leeds) for his assistance regarding LS measurements, and Brian Jackson
6 (University of Leeds) for his help with the microscope. We would like to thank the reviewers for
7 their thoughtful suggestions.
8
9
10
11
12
13

14 Supporting Information 15

16 Supporting information available:
17

18 Figure S1: Examples of particulates observed in Na CMC solutions under the microscope;
19 Figure S2: Small particulates observed in a 0.018 wt% Na CMC solution; Figure S3: Examples of
20 particulates observed with a phase contrast microscope in microcrystalline cellulose suspensions;
21 Figure S4: Examples of viscosity curves across the studied range of concentrations; Figure S5:
22 Illustration of the methods used to calculate the crossover concentrations; Figure S6: Influence of
23 measurement duration on the light scattering data collected for a 0.073 wt% Na CMC solution;
24 Figure S7: Scattered intensity (or count rate) as a function of time for a 0.073 wt% Na CMC
25 solution at $\theta = 30^\circ$ and for $\Delta t_{meas} = 10$ min; Figure S8: Illustration of the method used to process
26 the DLS data collected at an angle θ ; Figure S9: Measurement reproducibility and data processing
27 for low Na CMC concentrations (0.073 wt%), intermediate Na CMC concentrations (0.37 wt%)
28 and high Na CMC concentrations (0.55 wt%); Figure S10: Residuals of the fits shown in
29 Figure S9; Figure S11: Comparison between the excess Rayleigh ratio ΔR values obtained during
30 SLS and DLS measurements (*i.e.* short and long measurements, respectively); Figure S12:
31 Refractive index as a function of Na CMC concentration; Figure S13: Determination of the excess
32 Rayleigh ratio at $q^2 = 0$ for the 0.046 wt% Na CMC solution; Figure S14: q - and $c_{Na CMC}$ -
33 dependences of the ratio of the excess Rayleigh contributions of the slow and the fast modes
34 $\Delta R_s/\Delta R_f$; Figure S15: Normalized intensity auto-correlation data over the full range of
35 concentrations at three different scattering angles; Figure S16: q - and $c_{Na CMC}$ -dependences of the
36 fast mode contribution to the excess Rayleigh ratio scattering; Figure S17: Illustration of the
37 calculation of the fast mode diffusion coefficient D_f with the 0.92 wt% Na CMC solution;
38 Figure S18: q - and $c_{Na CMC}$ -dependences of the slow mode contribution to the excess Rayleigh ratio
39 scattering; Figure S19: Concentration-dependence of the power law exponents of $\tau_s = f(q)$;
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure S20: Concentration and angle dependence of the slow mode relaxation time τ_s ; Figure S21: Illustration of the calculation of the slow mode diffusion coefficient D_s with the 0.046 wt% Na CMC solution; Figure S22: Illustration of the calculation of the slow mode diffusion coefficient D_s with the 0.18 wt% Na CMC solution; Figure S23: Concentration dependence of the slow mode diffusion coefficient D_s calculated using four different methods; Figure S24: Apparent hydrodynamic radius $R_{H,app}$ and apparent radius of gyration $R_{g,app}$ of the domains as a function of Na CMC concentration.

Table S1: Fitting parameters obtained with the Carreau model for the data shown in Figure S4; Table S2: Fitting parameters of the power laws describing the behaviour of $D_s = f(c_{Na CMC})$ at low and high $c_{Na CMC}$ and shown in the plots A, B, C and D of Figure S23.

Additional details about the methods and further discussion of the data.

Data statement

The article metadata, entitled Juliette Behra (2019): Characterization of Sodium Carboxymethyl Cellulose (Na CMC) Aqueous Solutions to Support Complex Product Formulation – a Rheology and Light Scattering Study – dataset. University of Leeds. [Dataset]. <https://doi.org/10.5518/547>, is available under a Creative Commons Attribution license (CC-BY) in the University of Leeds repository.

References

- (1) Lopez, C. G.; Rogers, S. E.; Colby, R. H.; Graham, P.; Cabral, J. T. Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: A SANS and Rheology Study. *J. Polym. Sci., Part B: Polym. Phys.* **2015**, *53*, 492-501.
- (2) Joshi, G.; Naithani, S.; Varshney, V. K.; Bisht, S. S.; Rana, V.; Gupta, P. K. Synthesis and Characterization of Carboxymethyl Cellulose from Office Waste Paper: A Greener Approach Towards Waste Management. *Waste Manage.* **2015**, *38*, 33-40.
- (3) Almlöf Ambjörnsson, H.; Schenzel, K.; Germgård, U. Carboxymethyl Cellulose Produced at Different Mercerization Conditions and Characterized by NIR FT Raman Spectroscopy in Combination with Multivariate Analytical Methods. *BioResources* **2013**, *8*, 1918-1932.
- (4) Enebro, J.; Momcilovic, D.; Siika-aho, M.; Karlsson, S. A New Approach for Studying Correlations between the Chemical Structure and the Rheological Properties in Carboxymethyl Cellulose. *Biomacromolecules* **2007**, *8*, 3253-3257.

(5) Zhao, G. H.; Kapur, N.; Carlin, B.; Selinger, E.; Guthrie, J. T. Characterisation of the Interactive Properties of Microcrystalline Cellulose–Carboxymethyl Cellulose Hydrogels. *Int. J. Pharm. (Amsterdam, Neth.)* **2011**, *415*, 95-101.

(6) MarketsAndMarkets. Carboxymethyl Cellulose Market by Application (Food & Beverages, Pharmaceutical & Cosmetics, Oil & Gas, Paper, Detergents, and Others (Mining, Textiles Processing, Ceramics, Paints, Construction, and Adhesives)) - Trends & Forecasts to 2020 <http://www.marketsandmarkets.com/Market-Reports/carboxymethyl-cellulose-market-16412328.html?gclid=EAIAIQobChMIyaiA976x1wIV1TLTCh34mwWpEAAYASAAEgLmvfDBwE> (accessed Nov 9, 2017).

(7) Transparency Market Research. Carboxymethyl Cellulose Market for Food and Beverages, Oil Drilling Fluids, Paper Processing, Personal Care, Paints & Adhesives, and Other End-Users - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019. <https://www.prnewswire.com/news-releases/carboxymethyl-cellulose-market-will-reach-us10398-million-by-2019-expanding-food-and-beverage-industry-to-drive-global-market-transparency-market-research-522683771.html> (accessed Nov 9, 2017).

(8) Grand View Research. Carboxymethyl Cellulose Market Analysis by Application (Cosmetics & Pharmaceuticals, Food & Beverages, Oil & Gas, Paper & Board, Detergents), by Region, and Segment Forecasts, 2018 - 2025. <https://www.grandviewresearch.com/industry-analysis/carboxymethyl-cellulose-cmc-market> (accessed Sept 20, 2018).

(9) Global Market Insights. Carboxymethyl Cellulose Market Worth over \$1.7bn by 2024. <https://www.gminsights.com/pressrelease/carboxymethyl-cellulose-cmc-market> (accessed Sept 20, 2018).

(10) Arancibia, C.; Bayarri, S.; Costell, E. Effect of Hydrocolloid on Rheology and Microstructure of High-Protein Soy Desserts. *J. Food Sci. Technol. (New Delhi, India)* **2015**, *52*, 6435-6444.

(11) Ho Tan Tai, L., Liquid Detergents. In *Formulating Detergents and Personal Care Products - a Guide to Product Development*, AOCS Press: Champaign, 2000; pp 156-173.

(12) Pader, M., Dentifrice Rheology. In *Rheological Properties of Cosmetics and Toiletries.*, Laba, D., Ed. CRC Press: New-York, 1993; pp 247-273.

(13) Arinaitwe, E.; Pawlik, M. Dilute Solution Properties of Carboxymethyl Celluloses of Various Molecular Weights and Degrees of Substitution. *Carbohydr. Polym.* **2014**, *99*, 423-431.

(14) Dogsa, I.; Tomšič, M.; Orehek, J.; Benigar, E.; Jamnik, A.; Stopar, D. Amorphous Supramolecular Structure of Carboxymethyl Cellulose in Aqueous Solution at Different pH Values as Determined by Rheology, Small Angle X-Ray and Light Scattering. *Carbohydr. Polym.* **2014**, *111*, 492-504.

(15) Lopez, C. G.; Colby, R. H.; Cabral, J. T. Electrostatic and Hydrophobic Interactions in NaCMC Aqueous Solutions: Effect of Degree of Substitution. *Macromolecules* **2018**, *51*, 3165-3175.

(16) Lopez, C. G.; Colby, R. H.; Graham, P.; Cabral, J. T. Viscosity and Scaling of Semiflexible Polyelectrolyte NaCMC in Aqueous Salt Solutions. *Macromolecules* **2017**, *50*, 332-338.

(17) Hulskotter, F.; Scialla, S.; Loughnane, B. J.; Brooker, A. T.; Ure, C.; Ebert, S. R.; Ludolph, B.; Wigbers, C.; Maas, S.; Boeckh, D.; Eidamshaus, C. Cleaning Compositions Containing a Polyetheramine, a Soil Release Polymer, and a Carboxymethylcellulose. US 9,193,939 B2 Nov 24, 2015.

(18) Nicolae, A.; Radu, G.-L.; Belc, N. Effect of Sodium Carboxymethyl Cellulose on Gluten-Free Dough Rheology. *J. Food Eng.* **2016**, *168*, 16-19.

(19) Savadkoohi, S.; Farahnaky, A. Small Deformation Viscoelastic and Thermal Behaviours of Pomegranate Seed Pips CMC Gels. *J. Food Sci. Technol. (New Delhi, India)* **2014**, *52*, 1-10.

(20) Savadkoohi, S.; Mesbahi, G.; Niakousari, M.; Farahnaky, A. A New Study on the Steady Shear Flow, Thermal and Functional Properties of Beet Pulp Carboxymethyl Cellulose. *J. Food Process. Preserv.* **2014**, *38*, 2117-2128.

(21) Dobrynin, A. V.; Rubinstein, M. Theory of Polyelectrolytes in Solutions and at Surfaces. *Prog. Polym. Sci.* **2005**, *30*, 1049-1118.

(22) Sedláč, M. What Can Be Seen by Static and Dynamic Light Scattering in Polyelectrolyte Solutions and Mixtures? *Langmuir* **1999**, *15*, 4045-4051.

(23) Sedláč, M. Domain Structure of Polyelectrolyte Solutions: Is It Real? *Macromolecules* **1993**, *26*, 1158-1162.

(24) Sedláč, M. The Ionic Strength Dependence of the Structure and Dynamics of Polyelectrolyte Solutions as Seen by Light Scattering: The Slow Mode Dilemma. *J. Chem. Phys.* **1996**, *105*, 10123-10133.

(25) Cheng, H. N.; Takai, M.; Ekong, E. A. Rheology of Carboxymethylcellulose Made from Bacterial Cellulose. *Macromol. Symp.* **1999**, *140*, 145-153.

(26) Eremeeva, T. E.; Bykova, T. O. SEC of Mono-Carboxymethyl Cellulose (CMC) in a Wide Range of pH; Mark–Houwink Constants. *Carbohydr. Polym.* **1998**, *36*, 319-326.

(27) Kamide, K.; Okajima, K.; Kowsaka, K.; Matsui, T.; Nomura, S.; Hikichi, K. Effect of the Distribution of Substitution of the Sodium Salt of Carboxymethylcellulose on its Absorbency toward Aqueous Liquid. *Polym. J. (Tokyo, Jpn.)* **1985**, *17*, 909-918.

(28) Barba, C.; Montané, D.; Rinaudo, M.; Farriol, X. Synthesis and Characterization of Carboxymethylcelluloses (CMC) from Non-Wood Fibers I. Accessibility of Cellulose Fibers and CMC Synthesis. *Cellulose* **2002**, *9*, 319-326.

(29) Jardeby, K.; Germgård, U.; Kreutz, B.; Heinze, T.; Heinze, U.; Lennholm, H. Effect of Pulp Composition on the Characteristics of Residuals in CMC Made from such Pulps. *Cellulose* **2005**, *12*, 385-393.

(30) Kulicke, W.-M.; Kull, A. H.; Kull, W.; Thielking, H.; Engelhardt, J.; Pannek, J.-B. Characterization of Aqueous Carboxymethylcellulose Solutions in Terms of their Molecular Structure and its Influence on Rheological Behaviour. *Polymer* **1996**, *37*, 2723-2731.

(31) Kästner, U.; Hoffmann, H.; Dönges, R.; Hilbig, J. Structure and Solution Properties of Sodium Carboxymethyl Cellulose. *Colloids Surf., A* **1997**, *123–124*, 307-328.

(32) Yang, X.; Zhu, W. Viscosity Properties of Sodium Carboxymethylcellulose Solutions. *Cellulose* **2007**, *14*, 409-417.

(33) Francis, P. S. Solution Properties of Water-Soluble Polymers. I. Control of Aggregation of Sodium Carboxymethylcellulose (CMC) by Choice of Solvent and/or Electrolyte. *J. Appl. Polym. Sci.* **1961**, *5*, 261-270.

(34) Cancela, M. A.; Álvarez, E.; Maceiras, R. Effects of Temperature and Concentration on Carboxymethylcellulose with Sucrose Rheology. *J. Food Eng.* **2005**, *71*, 419-424.

(35) Guillot, S.; Delsanti, M.; Désert, S.; Langevin, D. Surfactant-Induced Collapse of Polymer Chains and Monodisperse Growth of Aggregates near the Precipitation Boundary in Carboxymethylcellulose–DTAB Aqueous Solutions. *Langmuir* **2003**, *19*, 230-237.

(36) Komorowska, P.; Różańska, S.; Różański, J. Effect of the Degree of Substitution on the Rheology of Sodium Carboxymethylcellulose Solutions in Propylene Glycol/Water Mixtures. *Cellulose* **2017**, *24*, 4151-4162.

(37) Okatova, O. V.; Lavrenko, P. N.; Dautzenberg, H.; Filipp, B. N.; Tsvetkov, V. N. Polyelectrolyte Effects in Diffusion and Viscosity Phenomena in Water-Cadoxene Solutions of Carboxymethylcellulose. *Polym. Sci. U.S.S.R.* **1990**, *32*, 533-539.

(38) Waring, M. J.; Parsons, D. Physico-Chemical Characterisation of Carboxymethylated Spun Cellulose Fibres. *Biomaterials* **2001**, *22*, 903-912.

(39) Arik Kibar, E. A.; Us, F. Thermal, Mechanical and Water Adsorption Properties of Corn Starch–Carboxymethylcellulose/Methylcellulose Biodegradable Films. *J. Food Eng.* **2013**, *114*, 123-131.

(40) Li, W.; Sun, B.; Wu, P. Study on Hydrogen Bonds of Carboxymethyl Cellulose Sodium Film with Two-Dimensional Correlation Infrared Spectroscopy. *Carbohydr. Polym.* **2009**, *78*, 454-461.

(41) Mutalik, V.; Manjeshwar, L. S.; Wali, A.; Sairam, M.; Sreedhar, B.; Raju, K. V. S. N.; Aminabhavi, T. M. Aqueous-Solution and Solid-Film Properties of Poly(Vinyl Alcohol), Poly(Vinyl Pyrrolidone), Gelatin, Starch, and Carboxymethylcellulose Polymers. *J. Appl. Polym. Sci.* **2007**, *106*, 765-774.

(42) Brown, W.; Henley, D. Studies on Cellulose Derivatives. Part IV. The Configuration of the Polyelectrolyte Sodium Carboxymethyl Cellulose in Aqueous Sodium Chloride Solutions. *Makromol. Chem.* **1964**, *79*, 68-88.

(43) Schneider, N. S.; Doty, P. Macro-Ions. IV. The Ionic Strength Dependence of the Molecular Properties of Sodium Carboxymethylcellulose. *J. Phys. Chem.* **1954**, *58*, 762-769.

(44) Trap, H. J. L.; Hermans, J. J. Light-Scattering by Polymethacrylic Acid and Carboxymethylcellulose in Various Solvents. *J. Phys. Chem.* **1954**, *58*, 757-761.

(45) Hoogendam, C. W.; de Keizer, A.; Cohen Stuart, M. A.; Bijsterbosch, B. H.; Smit, J. A. M.; van Dijk, J. A. P. P.; van der Horst, P. M.; Batelaan, J. G. Persistence Length of Carboxymethyl Cellulose as Evaluated from Size Exclusion Chromatography and Potentiometric Titrations. *Macromolecules* **1998**, *31*, 6297-6309.

(46) Lopez, C. G.; Richtering, W. Influence of Divalent Counterions on the Solution Rheology and Supramolecular Aggregation of Carboxymethyl Cellulose. *Cellulose* [Online early access]. DOI: 10.1007/s10570-018-2158-8. Published Online: Dec 10, 2018. <https://link.springer.com/article/10.1007/s10570-018-2158-8> (accessed Jan 31, 2019).

(47) Sedlák, M.; Amis, E. J. Concentration and Molecular Weight Regime Diagram of Salt-Free Polyelectrolyte Solutions as Studied by Light Scattering. *J. Chem. Phys.* **1992**, *96*, 826-834.

(48) Sedlák, M.; Koňák, Č.; Štěpánek, P.; Jakeš, J. Semidilute Solutions of Poly(Methacrylic Acid) in the Absence of Salt: Dynamic Light-Scattering Study. *Polymer* **1987**, *28*, 873-880.

(49) Ermi, B. D.; Amis, E. J. Domain Structures in Low Ionic Strength Polyelectrolyte Solutions. *Macromolecules* **1998**, *31*, 7378-7384.

(50) Borsali, R.; Nguyen, H.; Pecora, R. Small-Angle Neutron Scattering and Dynamic Light Scattering from a Polyelectrolyte Solution: DNA. *Macromolecules* **1998**, *31*, 1548-1555.

(51) Wissenburg, P.; Odijk, T.; Cirkel, P.; Mandel, M. Multimolecular Aggregation of Mononucleosomal DNA in Concentrated Isotropic Solutions. *Macromolecules* **1995**, *28*, 2315-2328.

(52) Buhler, E.; Rinaudo, M. Structural and Dynamical Properties of Semirigid Polyelectrolyte Solutions: A Light-Scattering Study. *Macromolecules* **2000**, *33*, 2098-2106.

(53) Esquenet, C.; Buhler, E. Aggregation Behavior in Semidilute Rigid and Semirigid Polysaccharide Solutions. *Macromolecules* **2002**, *35*, 3708-3716.

(54) Cao, Z.; Zhang, G. Insight into Dynamics of Polyelectrolyte Chains in Salt-Free Solutions by Laser Light Scattering and Analytical Ultracentrifugation. *Polymer* **2014**, *55*, 6789-6794.

(55) Förster, S.; Schmidt, M.; Antonietti, M. Static and Dynamic Light Scattering by Aqueous Polyelectrolyte Solutions: Effect of Molecular Weight, Charge Density and Added Salt. *Polymer* **1990**, *31*, 781-792.

(56) Schmidt, M. Static and Dynamic Light Scattering by an Aqueous Polyelectrolyte Solution without Added Salt: Quaternized Poly(2-Vinylpyridine). *Makromol. Chem., Rapid Commun.* **1989**, *10*, 89-96.

(57) Sedlák, M.; Amis, E. J. Dynamics of Moderately Concentrated Salt-Free Polyelectrolyte Solutions: Molecular Weight Dependence. *J. Chem. Phys.* **1992**, *96*, 817-825.

(58) Nierling, W.; Nordmeier, E. Studies on Polyelectrolyte Solutions VII. Fast, Heterogeneous, and Slow Diffusion Modes of Poly(Diallyl-*N,N*-Dimethylammonium Chloride) in Aqueous Alcoholic Salt Solvents. *Polym. J. (Tokyo, Jpn.)* **1997**, *29*, 795-806.

(59) Topp, A.; Belkoura, L.; Woermann, D. Effect of Charge Density on the Dynamic Behavior of Polyelectrolytes in Aqueous Solution. *Macromolecules* **1996**, *29*, 5392-5397.

(60) Sedlák, M. Generation of Multimacroion Domains in Polyelectrolyte Solutions by Change of Ionic Strength or pH (Macroion Charge). *J. Chem. Phys.* **2002**, *116*, 5256-5262.

(61) Zhou, K.; Li, J.; Lu, Y.; Zhang, G.; Xie, Z.; Wu, C. Re-Examination of Dynamics of Polyelectrolytes in Salt-Free Dilute Solutions by Designing and Using a Novel Neutral-Charged-Neutral Reversible Polymer. *Macromolecules* **2009**, *42*, 7146-7154.

(62) Ghosh, S.; Peitzsch, R. M.; Reed, W. F. Aggregates and Other Particles as the Origin of the “Extraordinary” Diffusional Phase in Polyelectrolyte Solutions. *Biopolymers* **1992**, *32*, 1105-1122.

(63) Sedlák, M. Mechanical Properties and Stability of Multimacroion Domains in Polyelectrolyte Solutions. *J. Chem. Phys.* **2002**, *116*, 5236-5245.

(64) Cong, R.; Temyanko, E.; Russo, P. S.; Edwin, N.; Uppu, R. M. Dynamics of Poly(Styrenesulfonate) Sodium Salt in Aqueous Solution. *Macromolecules* **2006**, *39*, 731-739.

(65) Sehgal, A.; Seery, T. A. P. The Ordinary-Extraordinary Transition Revisited: A Model Polyelectrolyte in a Highly Polar Organic Solvent. *Macromolecules* **1998**, *31*, 7340-7346.

(66) Ermi, B. D.; Amis, E. J. Influence of Backbone Solvation on Small Angle Neutron Scattering from Polyelectrolyte Solutions. *Macromolecules* **1997**, *30*, 6937-6942.

(67) Sedlák, M. Long-Time Stability of Multimacroion Domains in Polyelectrolyte Solutions. *J. Chem. Phys.* **2002**, *116*, 5246-5255.

(68) ASTM D1439-03(2008), Standard Test Methods for Sodium Carboxymethylcellulose. In *Annual Book of ASTM Standards*, ASTM International: Philadelphia, 2010; Vol. 6.03, pp 245-250.

(69) Lohmander, U.; Strömberg, R. Non-Newtonian Flow of Dilute Sodium Carboxymethyl Cellulose Solutions at Different Ionic Strengths and of Dilute Solutions of Cellulose Nitrate and Polystyrene in Moderately Viscous Solvents Studied by Capillary Viscometry · Experimental Results. *Makromol. Chem.* **1964**, *72*, 143-158.

(70) Höppler, F. Rheometrie Und Kolloidik Des Systems Natriumzelluloseglykolat—Wasser. *Kolloid-Z.* **1942**, *98*, 348-358.

(71) Jardeby, K.; Germgård, U.; Kreutz, B.; Heinze, T.; Heinze, U.; Lennholm, H. The Influence of Fibre Wall Thickness on the Undissolved Residuals in CMC Solutions. *Cellulose* **2005**, *12*, 167-175.

(72) Jardeby, K.; Lennholm, H.; Germgård, U. Characterisation of the Undissolved Residuals in CMC-Solutions. *Cellulose* **2004**, *11*, 195-202.

(73) Siqueira, E. J.; Brochier Salon, M. C.; Mauret, E. The Effects of Sodium Chloride (NaCl) and Residues of Cellulosic Fibres Derived from Sodium Carboxymethylcellulose (NaCMC) Synthesis on Thermal and Mechanical Properties of CMC Films. *Ind. Crops Prod.* **2015**, *72*, 87-96.

(74) Rubinstein, M.; Colby, R. H., *Polymer Physics*. Oxford University Press: New-York, 2003.

(75) Strobl, G., *The Physics of Polymers. Concepts for Understanding their Structures and Behavior*. 3rd ed.; Springer: Berlin, 2007, pp. 70, 82-83, 88, 93-95.

(76) Rubinstein, M.; Colby, R. H.; Dobrynin, A. V. Dynamics of Semidilute Polyelectrolyte Solutions. *Phys. Rev. Lett.* **1994**, *73*, 2776-2779.

(77) Colby, R. Structure and Linear Viscoelasticity of Flexible Polymer Solutions: Comparison of Polyelectrolyte and Neutral Polymer Solutions. *Rheol. Acta* **2010**, *49*, 425-442.

(78) Dou, S.; Colby, R. H. Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology. *J. Polym. Sci., Part B: Polym. Phys.* **2006**, *44*, 2001-2013.

(79) Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. Scaling Theory of Polyelectrolyte Solutions. *Macromolecules* **1995**, *28*, 1859-1871.

(80) Truzzolillo, D.; Bordi, F.; Cametti, C.; Sennato, S. Counterion Condensation of Differently Flexible Polyelectrolytes in Aqueous Solutions in the Dilute and Semidilute Regime. *Phys. Rev. E* **2009**, *79*, 011804.

(81) Truzzolillo, D.; Cametti, C.; Sennato, S. Dielectric Properties of Differently Flexible Polyions: A Scaling Approach. *Phys. Chem. Chem. Phys.* **2009**, *11*, 1780-1786.

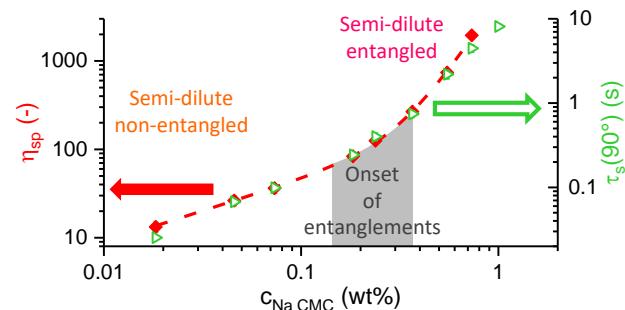
(82) Schärtl, W., *Light Scattering from Polymer Solutions and Nanoparticle Dispersions*. Springer: Berlin, 2007.

(83) Ioan, C. E.; Aberle, T.; Burchard, W. Light Scattering and Viscosity Behavior of Dextran in Semidilute Solution. *Macromolecules* **2001**, *34*, 326-336.

(84) Vaccaro, A. Light Scattering: Fundamentals. http://www.lsinstuments.ch/technology/slide_shows/ (accessed Nov 1, 2017).

(85) Zhang, Y.; Douglas, J. F.; Ermi, B. D.; Amis, E. J. Influence of Counterion Valency on the Scattering Properties of Highly Charged Polyelectrolyte Solutions. *J. Chem. Phys.* **2001**, *114*, 3299-3313.

(86) Tanahatoe, J. J.; Kuil, M. E. Light Scattering on Semidilute Polyelectrolyte Solutions: Molar Mass and Polyelectrolyte Concentration Dependence. *J. Phys. Chem. B* **1997**, *101*, 9233-9239.


(87) Némethy, G.; Scheraga, H. A. Structure of Water and Hydrophobic Bonding in Proteins. IV. The Thermodynamic Properties of Liquid Deuterium Oxide. *J. Chem. Phys.* **1964**, *41*, 680-689.

(88) Gittings, M. R.; Cipelletti, L.; Trappe, V.; Weitz, D. A.; In, M.; Marques, C. Structure of Guar in Solutions of H_2O and D_2O : An Ultra-Small-Angle Light-Scattering Study. *J. Phys. Chem. B* **2000**, *104*, 4381-4386.

(89) Burchard, W., Light Scattering. In *Physical Techniques for the Study of Food Biopolymers*, Ross-Murphy, S. B., Ed. Blackie Academic & Professional: London, 1994; pp 151-213.

(90) Ermi, B. D.; Amis, E. J. Model Solutions for Studies of Salt-Free Polyelectrolytes. *Macromolecules* **1996**, *29*, 2701-2703.

Table of Contents Graphics

