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Ultra Fast Linear State Estimation Utilizing
SCADA Measurements

A. Salehi Dobakhshari, Member, IEEE, S. Azizi , Member, IEEE, M. Paolone, Senior Member, IEEE, and
V. Terzija, Fellow, IEEE

Abstract—This paper presents a closed-form and non-iterative

solution for the long-studied SCADA-based State Etimation (SE)

problem, where unsynchronized traditional measurements from

Remote Terminal Units (RTUs) are used. In this regard, a novel

reformulation of the problem is introduced where unknowns

are expressed as complex variables in terms of unsynchronized

SCADA measurements. To this end, it is assumed that bus

voltage amplitudes as well as current amplitudes and active

and reactive power flows/injections are available. The resulting

system of equations is solved by the classic linear weighted least-

squares method. In contrast to the traditional approaches, several

drawbacks such as initialization and issues with convergence

(especially for large-scale systems) are resolved. Moreover, the

proposed approach does not use synchrophasors. The method is

validated on a 3-bus test network and applied to the IEEE 118-

bus test system, 1341-bus and 9241-bus European high-voltage

transmission networks.

Index Terms—Complex analysis, Linear least-squares estima-

tion, Power system operation, RTU, SCADA, State estimation,

Unsynchronized measurements.

I. NOMENCLATURE

Ea True voltage amplitude at bus a.
Emeas

a Voltage amplitude measurement at bus a.
EEEa Unknown complex voltage at bus a with respect

to the reference bus.
Iab True current amplitude through line a-b.
θab True phase angle of the current through line a-b

(with respect to EEEa).
Imeas
ab Current amplitude measurement through line a-

b measured at bus a.
θmeas
ab Measured/Calculated phase-angle of the current

through line a-b (with respect to EEEa).
III localab True complex current through line a-b (with

respect to EEEa).
IIIab Unknown complex current through line a-b

with respect to the reference bus at bus a.
III locala,inj True complex current injection (with respect to

EEEa) at bus a.
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IIIa,inj True complex current injection at bus a with
respect to the reference bus.

Pab, Qab True active and reactive power flows through
line a-b on terminal a.

eEa
Amplitude measurement error of Emeas

a .
eIab

Amplitude measurement error of Imeas
ab .

eθab
Angle measurement/calculation error of θmeas

ab .
δa Unknown phase angle of complex voltage at

bus a with respect to the slack bus voltage
phasor.

Zab Series impedance of transmission line a-b.
Yab Shunt admittance of transmission line a-b.
HHH Known matrix of the measurement model used

to formulate the SE problem.
m Number of measurements.
n Number of buses.

II. INTRODUCTION

P
OWER system state estimation is an essential prerequisite
for secure and economic power system operation [1].

Conventionally, the Supervisory Control And Data Acquisi-
tion (SCADA) system utilizing RTUs in substations provides
busbar voltage amplitudes as well as currents and active and
reactive powers flowing through transmission lines or in-
jected into busbars. The advantages of using non-synchronized
SCADA-based measurements are the utilization of existing
infrastructure and exploiting redundant measurements. These
measurements, however, are nonlinearly related to the system
state variables, composed of the phasors of nodal voltages
[2]. In order to solve this problem, iterative methods based
on the Gauss-Newton algorithms are usually adopted [3].
Although this solution is widely adopted in real-world situ-
ational awareness systems [4], it still suffers from inherent
problems associated with iterative algorithms, i.e., failure of
the algorithm to converge, the speed of convergence, and
concerns over multiplicity of the solution and sensitivity to
initial values chosen for the system states.

To address these difficulties, convexification of power flow
equations through semidefinite and conic programming has
recently attracted attention [5]–[9]. Although this approach
has shown promising results for power system SE, the con-
vexification of the problem may not yield a feasible solution,
and the algorithm yet remains iterative. Other approaches use
factorized [10] and bilinear [11]–[13] formulations of the SE.
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However, also these formulations rely on nonlinear transforma-
tions, which need iterations to converge, if an optimal estimate
is desired. Linear measurement functions have been developed
in [14], which models SE as a constrained linear programming
problem with nonlinear constraints and solves it iteratively by
interior-point methods.

Direct non-iterative SE methods are mainly focused on uti-
lizing synchrophasor measurements by Phasor Measurement
Units (PMUs) [15]–[20]. If the power system is observable
by PMUs with sufficient redundancy, then the PMU-only SE
[20] can be performed. Otherwise, either SCADA-based or
hybrid SCADA/PMU-based state estimation should be used
(e.g. [21]–[23]).

Only a few attempts have been made to solve the SE
using purely SCADA-based measurements, in a non-iterative
manner. The most recent research works include a novel refor-
mulation of the problem in rectangular form by Fardanesh [24]
and its extension by Jiang etal. [25], [26]. This reformulation,
however, introduces an excessive number of additional state
variables due to bilinear terms involving the real and imaginary
parts of bus voltages. Moreover, this approach needs sign
identification for the complex voltages, among other issues,
when retrieving the complex voltages.

This paper presents a novel formulation of the power system
SE problem using only traditional unsynchronized SCADA
measurements. It does not rely on time synchronization tech-
nology and associated PMU measurements. In the new prob-
lem formulation both measurement and state variables are
represented as complex numbers. As known, the traditional
SEs express them as pure real variables. This allows lineariza-
tion of the problem, in contrast to the traditional solution by
Schewppe in 1970 [27] repeatedly practiced since then. Thanks
to its low computational complexity, the proposed formulation
achieves ultra-fast SE for large-scale power systems.

The state estimation method presented in this paper trans-
forms the SE problem into a system of linear equations, which
is solved directly without any need for iterations. The main
idea is utilizing complex branch and bus-injection currents
instead of active and reactive power flows. This allows to
directly utilize linear KVL equations in complex form. This
approach is in sharp contrast with conventional expression for
active and reactive powers, which are dependent on sine and
cosine of phase-angle difference between the two bus voltages
of the associated branch.

Salient features of the linear formulation for power system
SE in this paper include: 1) no need for PMUs to make
the SE problem linear; 2) a direct non-iterative solution to
the SE problem, thanks to the linearity of equations; 3) low
computational burden as only two square matrices each of the
size of the number of network buses need to be inverted; 4) no
concern over the convergence as a system of linear equations
needs to be solved; 5) fast implementation (due to the above

features) along with utilization of sparsity techniques [28].

III. COMPLEX LINEAR EXPRESSION FOR MEASUREMENTS

There are two families of state estimators: the first one
assumes that the rate of change of the system state is slow
enough in order to be assumed steady with respect to the
measurements [2], [3]; the other family assumes that the
above hypothesis does not hold and, therefore, the system
state includes also the time derivatives of the state variables
[29]. Our state estimator belongs to the static SE category [2],
[3]. Although future power systems, dominated by inverter-
based generators and FACTS devices, will be characterized
by shorter time responses, in such systems the assumption of
static SE appears reasonable. For example, the ERCOT system
in Texas, USA, includes 11 GW wind capacity while the peak
load is 70 GW. In such a system, classical RTUs are used
with classical static SEs [30], [31]. The error made in that
system by the SE does not exceed 3% even in presence of
highly-variable wind power [30]. This implies that classical
SE still offers a meaningful solution to assess a static system
state even in real systems with high penetration of renewable
energy sources.

In this respect, we focus on the problem of determining the
system state using measurements that are nowadays available
by SCADA. These measurements are provided by RTUs that
make use of finite time windows to measure amplitudes of
powers, currents and voltages [32], [33]. It is worth noting
that over these finite windows, the measurements provided
by RTUs refer to a system in permanent sinusoidal static
condition. Therefore, our approach assumes the state variables
to be statistically associated to RTU measurements.

A. Notations

In this paper, a variable such as voltage or current can be
represented by its true value, measured value or estimated
value. To distinguish, (.)meas and (̂.) denote measured and es-
timated values, respectively, while true values appear without
any superscript. (.)local denotes the complex current, calcu-
lated with respect to the phase angle of the corresponding bus
voltage. It should be noted that (.)local is not a synchrophasor,
but a current phasor whose phase angle can be calculated from
the measured active and reactive power flows. All complex-
valued scalars, vectors and matrices are printed in bold.

B. Complex Currents

A different formulation of the relation between system states
and measurements as a linear system of equations is utilized
in this paper. This converts the SE problem into the solution of
a system of linear equations, which, as its name implies, does
not need to be solved in an iterative manner. We begin with
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the complex current through line a-b, which can be expressed
as

III localab

∆
= Iabe

jθab (1)

where Iab and θab are related to the current and phase-angle
measurements, respectively, as

Imeas
ab = Iab + eIab

(2)

θmeas
ab = θab + eθab

(3)

In (2) it is assumed that current amplitude measurements are
available. One reason that they are not used in conventional
SE is that they deteriorate the algorithm performance [2]. Our
algorithm justifies communicating Iab measurements to con-
trol center if they are not already available. If P ,Q and E are
only transmitted by RTU at substation a, then (29) can be used
in the SE code to obtain Iab without directly communicating
it. It is worth noting that θmeas

ab is the difference between
the phase angle of voltage waveform at bus a and that of
current waveform along branch a-b.It may be calculated from
availability of active and reactive power measurements as

θab = tg−1

(

−
Qab

Pab

)

(4)

where Pab and Qab are the measurable active and reactive
power through line a-b (from bus a toward bus b), respectively.
The power factors, like all the system state variables, are
continuous functions of time. Similar to the any other existing
method on static state estimation [2], [3], in which it is
assumed that P ,Q,E remain constant during the time window
when the measurements are taken, we have assumed power
factor remains constant as well.

The assumption related to the slow variation of the system
state is a prerequisite enabling application of static SEs [2], [3].
All SE functions developed by GE, ABB, Siemens, etc., which
are currently in use in worldwide EMSs, are based on the
same steady-state assumption as that of this paper [30], [34],
[35]. It should be noted that although θab can be calculated
by Pab and Qab measurements obtained by the RTU at bus
a, this does not mean that δa is considered known to the
state estimator, as voltages and complex currents measured
at different locations, including those measured at bus a, are
obviously unsynchronized. This has been demonstrated in Fig.
1. It should be noted that voltage and current phasors have
been used regularly in protection relays in absence of telecom
infrastructure for many years, as each measurement device can
have its own local time reference.

With reference to the slack bus, complex current measure-
ment may be expressed as

IIIab = III localab ejδa (5)

a
a a

jE eE 

Phase-Angle Reference

abQ

a
abP

abI
ab

1E

Figure 1. Calculating θab by Pab and Qab while measurements are
unsynchronized (δa is unknown).

where δa is the unknown phase angle of complex voltage at
bus a, with reference to the slack bus.1 It is assumed that
system branches can be modeled as passive, reciprocal two-
port equivalents and there are no unbalances in the grid [2],
[3]. In view of this assumption, any branch of the grid can
be modeled as a pi equivalent. We express complex current
at bus a through any branch a-b in terms of state variables,
which are voltage phasors, as follows.

IIIab = (Yab +
1

Zab

)EEEa + (−
1

Zab

)EEEb (6)

where Yab and Zab are the transmission line shunt admittance
and series impedance, respectively.

1) Current Flow Measurements: To express complex cur-
rent measurement through branch a-b in (1), it is sufficient to
substitute (5) into (6) as

III localab ejδa = (Yab +
1

Zab

)EEEa + (−
1

Zab

)EEEb (7)

It is worth noting that a different reformulation of the flow
measurements is utilized here, in contrast with conventional
SE.

2) Injected Current Measurements: Consider current injec-
tion at bus a. Similar to (6), KCL may be written as

IIIa,inj =
∑

b∈La

IIIab (8)

where La is the set of branches connected to bus a. Similar
to (7), one can write

III locala,inje
jδa =

∑

b∈La

(Yab +
1

Zab

)EEEa + (−
1

Zab

)EEEb (9)

where III locala,inj is the complex current injection measured with
respect to the phase angle of voltage at bus a, similar to (1)-
(3). Zero-injection is a special case of injection measurement,
in which the left hand side of (9) is zero.

1Note that in traditional RTU-based state estimators, phase-angle reference
is needed in view of the absence of an absolute time reference in the
measurements. This reference is usually defined as the argument of the
fundamental frequency phasor of the voltage waveform of the slack bus.
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C. Complex Voltages

As the bus voltage measurements are in fact magnitudes of
state variables (complex voltages), it is therefore needed to
include phase-angle values for bus voltages as state variables.
In this way, bus voltage measurement at any bus is related to
the associated complex bus voltage as

Eae
jδa = EEEa (10)

where Ea is related to the measured voltage amplitude at bus
a as

Emeas
a = Ea + eEa

(11)

The phase-angle operator does not appear in (10) for slack
bus, whose phase angle is set to zero.

IV. LINEAR ESTIMATION OF VOLTAGE PHASE ANGLES

Equations (7), (9) and (10) show nonlinear relationships
between measurements and system states, i.e. bus voltage
magnitudes and phase angles. Manipulating these equations
will result in a linear reformulation of the problem, if the
exponential phase-angle operators, that appear in (7), (9) and
(10), are included in the state vector, together with complex
voltages.

As such, integrating both voltage and current measurements
yields a linear system of equations as shown in (12) at
the bottom of next page. The first n rows concern voltage
measurements. In addition, current measurements at branches
1-2, 2-n, n-1 and n-2, as well as injection measurement
at buses 1 and 2 are demonstrated in this linear system of
equations.

In a compact form, (12) can be rewritten as

HHHxxx+ eee = zzz (13)

where HHH is of size m × (2n − 1) and eee is the vector of
complex measurement errors (See Appendix A). In both HHH

and zzz, true variables (See Section III.A) are used in order to
save space. From (1)-(3), the relationship between true and
measured currents can be deduced. Likewise, for true and
measured voltages are related by (10)-(11). If the number of
measurements exceeds two times the number of buses minus
one, a closed-form solution results from (13) as follows

x̂xx = (HHH∗HHH)−1HHH∗zzz (14)

where x̂xx is the least-squares estimate of xxx. Let us partition
matrix (HHH∗HHH) and vector (HHH∗zzz) as follows.

HHH∗HHH =

[

AAA BBB

CCC D

]

(15)

HHH∗zzz =

[

zzz1

zzz2

]

(16)

where AAA, BBB, CCC, D, zzz1 and zzz2 are of size n× n, n× (n− 1),
(n−1)×n, (n−1)×(n−1), n×1 and (n−1)×1, respectively.
Referring to (12), one can observe that AAA and CCC only include
network parameters. Furthermore, a closer look at the format
of HHH reveals that the last (n−1) columns of HHH have at most one
nonzero element at each row, which corresponds to the voltage
or current measurement of the associated bus. This property
of HHH makes D a real-valued diagonal matrix. In addition,
the measurements taken from the first bus appear in zzz, while
other voltage and current measurements are included in HHH .
Therefore, all elements of zzz2 are zero. Schur-Banachiewicz
inversion formula [36] gives the inverse of HHH∗HHH as
[

AAA BBB

CCC D

]−1

=

[

(AAA−BBBD−1CCC)
−1

EEE

−D−1CCC(AAA−BBBD−1CCC)
−1

FFF

]

(17)

where EEE and FFF are not important here. Substituting (15), (16)
and (17) into (14), one can solve for xxx as follows.

x̂xx =

[

(AAA−BBBD−1CCC)
−1

zzz1

−D−1CCC(AAA−BBBD−1CCC)
−1

zzz1

]

(18)










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































1 0 · · · 0 0 0 · · · 0

0 −1 . . . 0 E2 0 · · · 0
...

...
...

...
...

... · · ·
...

0 0 . . . −1 0 0 · · · En

Y12 + Z
−1

12
−Z

−1

12
0 0 0 0 · · · 0

0 Y2n + Z
−1

2n
· · · −Z

−1

2n
−III local2n 0 · · · 0

...
...

...
...

...
... · · ·

...
0 −Z

−1

n2
0 Yn2 + Z

−1

n2
0 · · · 0 −III localn2

−Z
−1

n1
0 0 Yn1 + Z

−1

n1
0 · · · 0 −III localn1

Y12+Z
−1

12
+Y1n +Z

−1

1n
−Z

−1

12
0 −Z

−1

1n
0 0 · · · 0

−Z
−1

21
Y21+ Z

−1

21
+Y2n+ Z

−1

2n
0 −Z

−1

2n
−III local2,inj 0 · · · 0

...
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...
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...
... · · ·
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EEE1

EEE2
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




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
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Voltage Measurement 

Power Measurement 

Figure 2. SLD and measurements of a 3-bus network [2].

The phase-angle vector of complex voltages are therefore
estimated as













ejδ̂2

...

ejδ̂n













= −D−1CCC(AAA−BBBD−1CCC)
−1

zzz1 (19)

For example consider a sample 3-bus network in Fig. 2 [2],
for which (12) can be written as follows.



















1 0 0 0 0

0 1 0 −E2 0

0 0 1 0 −E3

Z
−1

12
−Z

−1

12
0 0 0

−Z
−1

13
0 Z

−1

13
0 −III local31

−Z
−1

12
Z

−1

12
+Z−1

13
−Z

−1

13
−III local2,inj 0

































E1

EEE2

EEE3

ejδ2

ejδ3















=



















E1

0

0

III local12

0

0



















(20)
It can be seen that in contrast to previous SE formulations, the
one proposed here is exact and linear. It should be noted that,
as opposed to those used in [20], the local currents in (20)
are not synchrophasor measurements, but current phasors cal-
culated from the corresponding voltage amplitude and power
flow measurements. For example, III local31 can be calculated from
the corresponding voltage amplitude and active and reactive
power measurements as

III local31 =
P31 − jQ31

E3
(21)

where all of the parameters in the right-hand side are SCADA
measurements. Or alternately

III local31 = I31e
jtg−1

(

−
Q31
P31

)

(22)

where I31 is the current amplitude measurement [32], [33] pro-
vided by RTU at bus 3. It is worth noting that we have assumed
current amplitude measurements are available. Therefore, there
is no need for voltage amplitude measurements to calculate
current phasors (see (22)). If current amplitude measurements
are unavailable, then a noisy voltage measurements translates
into the noisy current phasor in (21) (see also (29)), which is
handled by the LS estimation. If a voltage measurement suffers
gross error, this error propagates to different current phasors
relating to the same bus. Smearing and masking effect [37] is

probable in this scenario, and typical bad data identifiers (e.g.
largest normalized residual test) may fail. However, 1) with the
existing communication network, it is not a heavy burden to
send Imeas

ab , and, therefore this problem can be avoided; 2) this
situation impacts also conventional SE; 3) if current amplitude
measurements are not available, a two-level SE [16] may be
employed where redundant voltage measurements by different
IEDs are used to reject erroneous voltage measurement at
substation-level SE.

V. MINIMUM-VARIANCE COMPLEX STATE ESTIMATION

Once phase angles of complex voltages at all buses are
calculated from (19), it is possible to formulate the problem
as a linear minimum-variance estimation. This is achieved
by putting all the voltage and current measurements in the
measurement vector as shown in (23) at the bottom of next
page. Assuming that the voltage and current measurement
errors have Gaussian distributions, according to (A.4) we can
write (23) in a compact form as

TTTyyy + eee =mmm (24)

where y = [EEE1EEE2 ...EEEn]
T is the complex state vector and mmm

consists of voltage and current measurements. Following the
procedure in Appendix A, the minimum-variance estimate of
yyy is given by

ŷyy = (TTT ∗R−1TTT )−1TTT ∗R−1mmm (25)

where R is the diagonal covariance matrix of measurements,
consisting of standard deviations of voltage, current and phase-
angle measurements as follows (See Appendix A).

Rii =

{

σ2
Ei

i′th voltage measurement

σ2
Iab

+ σ2
θab

Imeas2

ab i′th current measurement
(26)

In deriving (26), the time skew between measurements has
been neglected, although in practice different measurements
across the grid are not time-aligned. However, under normal
operating conditions, the system state is assumed to remain
unchanged during a few seconds before the measurements
get updated, and therefore R is assumed diagonal [2], [3].
Moreover, since δi values are estimated by a large number
of measurements, it has been assumed that they have much
smaller standard deviations compared to σθab

in (26). Typical
results from simulations presented in later show that this is
practically true. For the 3-bus network in Fig. 2, the system
of equations in the second stage can be written as follows
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where δ̂2 and δ̂3 were estimated by (20) in the first stage.
Therefore, δ̂2 and δ̂3 in (27) do not equal their true values due
to the measurement noise. However, they play the same role
as noisy measurements in conventional SE.

VI. CASE STUDIES

A. IEEE 118-bus Test System

In this part, the accuracy of the proposed complex linear
SE algorithm is analyzed. In all simulations, the standard
deviation of current amplitude and power flow measurements
are assumed to be two times that of voltage amplitude mea-
surements, unless stated otherwise. The step-by-step algorithm
for simulations are as follows.
1. Run a load flow.
2. For bus a, receive voltage magnitude (Ea), active and
reactive power flows through each line connected to bus a

(Pab, Qab) and current amplitude (Iab).
3. Simulate voltage amplitude measurements by (11).
4. Simulate local current measurements. This is done by (1)-
(4), where Gaussian error is added to construct input data from
RTUs:

III localab = [Iab + eIab
] e

jtg−1

(

−
Qab+eQab
Pab+ePab

)

(28)

where eIab
, ePab

and eQab
are zero-mean Gaussian random

variables with corresponding variances to model measurement
noise and Iab, Pab and Qab are obtained from load flow output.
If the current amplitude measurement is not available then the
local current measurement can be calculated by

III localab =
Pab + ePab

− j(Qab + eQab
)

|Ea + eEa
|

(29)

When it comes to SCADA inputs from a substation RTU there
are the following options:

• Option 1: Pab, Qab, Iab and Ea measurements are avail-
able.

• Option 2: Pab, Qab and Ea measurements are available.

In the case of Option 1, the current phasors are calculated
using (28). In the case of Option 2, the current phasors are
calculated using (29).

We are assuming Option 1 in this paper. The reason is that
Watt and VAR transducer errors, when obtaining Pab and Qab

by Ea and Iab measurements, can be avoided.

The effect of redundancy and accuracy of measurements
are analyzed for the IEEE 118-bus test system, and the
convergence speed will be tested for 300-, 1341- and 9241-bus
systems as well.

Fig. 3 visualizes the sparsity pattern of HHH in the left-
hand side of (13) for the 118-bus test system. Referring to
(12), the pattern may be analyzed by the first 118 voltage
measurements, last 118 injection measurements and current
measurements in between. Fig. 4 shows the partitions AAA, BBB, CCC
and D in (15). The diagonal matrix D can easily be identified
in this figure, which is useful in applying (19).

1) Impact of Measurement Accuracy: Different accuracy
classes for measurements are considered in this part. It is
assumed that voltage magnitudes at all buses, current measure-
ments at both terminals of lines and current injections at all
load and generator buses are measured. Standard deviations of
complex voltage amplitude and phase-angle values from those
of the true values are used as performance index (PI). The PI
for voltage amplitude estimation is defined as follows.

σE =

n
∑

a=1

∣

∣Eest
a − Etrue

a

∣

∣

n
(30)

where Eest
a and Etrue

a are the estimated and exact voltage am-
plitude at bus a, respectively, and σE is the Mean Estimation
Error (MEE) for bus voltage magnitude. Likewise, for phase
angle of complex voltages, σδ is defined as

σδ =

n
∑

a=2

∣

∣δesta − δtruea

∣

∣

n− 1
(31)
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Figure 3. Visualization of HHH for the IEEE 118-Bus Test System (HR case).
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Figure 4. Visualization of (15) for the IEEE 118-Bus Test System.

Figs. 5 and 6 show the results of the linear SE for 1000
measurement sets, generated randomly from the exact load
flow results. Three values for standard deviation of bus voltage
measurements (σ) are considered randomly. As expected,
the more the standard deviation of measurements, the more
the standard deviation of estimated voltage magnitudes and
phase angles. It can be seen from Fig. 5 that since various
measurements contribute to the SE, the mean value for the
standard deviation of estimated bus voltage magnitudes are
less than that of the measurements. Moreover, accuracy of
the estimated phase angles are mostly better than 0.3◦ even
with the least accurate measurements, which can be considered
most desirable for practical systems.

In order to confirm the effect of considering different
accuracy levels for different measurements, Fig. 7 shows
results for phase-angle estimates of a typical SE case. It
can be observed that although LS estimation in the first step
(Section IV) yields acceptable estimates for phase angles, the
WLS estimation in the second step (Section V) has improved
the phase angle estimates by incorporating different accuracy
levels of measurements.

2) Impact of Measurement Redundancy: Two cases of
low and high redundancy of measurements are studied in
this part. The low redundancy (LR) case consists of voltage
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Figure 5. Impact of measurement accuracy on voltage magnitude estimation.
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Figure 7. Comparison between LS and WLS SE for phase-angle estimation.

measurement at all buses, injection measurements at half of
the buses (buses 1, 3, ...) and current measurements at one
terminal of every line (“from” terminal in the MATPOWER
format [38]). High redundancy (HR) case includes injection
measurements at all buses and current measurement at both
terminals of every line, together with voltage measurements
at all buses. Table I shows the average MEE of complex
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Table I
IMPACT OF MEASUREMENT REDUNDANCY ON STATE ESTIMATION.

Case σE(pu) σδ(deg)

High Redundancy 2.52e-4 2.98e-2
Low Redundancy 3.18e-4 3.1e-2

Table II
COMPARISON BETWEEN PROPOSED AND CONVENTIONAL METHODS FOR

STATE ESTIMATION

Case σE(pu) σδ(deg)

Proposed Method 2.52e-4 2.98e-2
Conventional Method 1.17e-3 2.84e-2

Table III
BAD DATA DETECTION AND IDENTIFICATION FOR ERRONEOUS

MEASUREMENT I26−30

Measurement True Value
Measured

Value
Normalized

Residual
I26−30 2.2385 1.1206 104.6
I30,inj 0 0.0031 38.9
I26,inj 3.3496 3.3521 20.1
I8−30 0.745 0.7357 17.9

voltage amplitude and phase angle obtained under LR and
HR of measurements by conducting 1000 simulation cases.
As expected and confirmed by the obtained results, the higher
the redundancy of measurements, the more accurate the SE
results.

3) Comparison with Conventional SE: Conventionally, an
iterative method based on Gauss-Newton algorithm has been
adopted to solve the SE problem. To make a comparison
between the conventional and the proposed methods, 1000
Monte-Carlo simulations have been carried out on the 118-
bus test system. For the conventional SE, run_se.m and
doSE.m in MATPOWER [38] have been modified to include
injection measurements at all buses and initialize voltages
according to measured voltage magnitudes in flat start. The
standard deviation for voltage and power measurements (active
and reactive) have been set to 0.2 % and 0.4%, respectively,
similar to the proposed method. Table II reflects the results
for the average of performance indices over 1000 simulation
cases. It is evident that the proposed method outperforms the
iterative-based conventional method in term of accuracy of the
estimation.

4) Bad Data Identification: Largest Normalized Residual
Test (LNRT) may be utilized to detect and identify bad data
in order to improve the SE results [2]. In order to evaluate
LNRT for the IEEE 118-bus test system, various measurement
errors in different HR and LR conditions have been carried
out, successfully. AS an example, in LR condition, the current
measurement through the 345-kV line 26-30 is halved in order
to simulate bad data. Table III shows the LNRT result for
four measurements with the largest large normalized residuals
where the bad data is identified, correctly.

Table IV
COMPUTATION TIME OF STATE ESTIMATION (IN SECONDS ) FOR

DIFFERENT SYSTEMS

System
Semidefinite

Programming [9]
Complex

Linear
9-bus 1.58 0.0019

14-bus 2.54 0.0032
30-bus 3.21 0.0066
57-bus 4.09 0.0156
118-bus 5.63 0.0558

1354-bus 9.48 0.1428
9241-bus 109.14 1.3044

B. 1354- and 9241-bus Pan-European High-Voltage Grids

Figs. 8 and 9 compare the SE performance indexes for dif-
ferent systems from 118 to 9241 buses. One can conclude that
the system size does not significantly impact the performance
of the linear SE method. Even on large-scale systems, the
implementation of SE is ultra fast. Table IV compares the
solution time for systems of different sizes. All simulations
for the proposed linear SE are carried out by a PC with
Core i7 6500U CPU at 2.5 GHz and 16 GB of RAM. It
should be noted that the results for the SDP-based approach
are directly reported from [9], where for the last two systems
a macOS system with 2.2 GHz CPU and 12 GB RAM was
used while a Windows system with 2.7 GHz CPU and 8GB
RAM was utilized for other systems. Computation time for
[23] as a complex but iteration-based method has also been
reported directly in Table V and compared with the proposed
method. It should be noted that less measurements are used
in SE problem for Table V compared with Table IV, hence
less computation time for the proposed method in the former
table. Even though the Core i5-6600k CPU used in [23] is
twice as fast as ours [39], the proposed linear SE algorithm
outperforms the complex iterative algorithm in [23], which
needs 5 iterations to solve SE for the 9241-bus system.

Moreover, in contrast to the proposed algorithm, the algo-
rithm in [23] needs PMU measurements to solve SE, a require-
ment not imposed on the proposed algorithm. Furthermore,
the matrices used in the proposed method comprise mostly of
constant parameters of the system, therefore need to be built
once and updated slightly based on network topology changes.

Simulation results indicate fast speed of the proposed com-
plex linear method, since it only requires solving a linear
system of equations. This has resulted in fast solution of SE
for different systems, especially almost 1 second and 0.25
second for the 9241-bus system in high and low redundancy
of measurements, respectively.

VII. CONCLUSION

A complex linear formulation of the SE problem, utilizing
unsynchronized RTU measurements, has been presented in this
paper. In contrast to the conventional SE currently used in
modern EMS in control rooms, the proposed method does
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Figure 8. Comparison of estimated voltage magnitude for different systems.
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Figure 9. Comparison of estimated voltage phase angle for different systems.

Table V
COMPARISON BETWEEN COMPLEX ITERATIVE [23] AND PROPOSED

COMPLEX LINEAR ALGORITHMS

System Complex Iterative [23] Complex Linear
118-bus 1.2 ms 4.7 ms
9241-bus 312.7 ms 243.1 ms

CPU Speed Rank [39] 38th/1103 349th/1103

not need initialization, involves no iterations, and is solved
swiftly with no concern about convergence. The first property
is quite useful in operating conditions when initialization in
the conventional SE may move apart from the current system
state. The other properties mentioned above make SE feasible
for large-scale grids with detailed models at different voltage
levels. As much as SE needs to be solved regularly enough,
the present iterative methods based on SCADA measurements
are too slow to implement on large-scale models. Utilizing
the same measurements, the proposed method, in contrast, is
carried out ultra fast, taking almost one second even for the
large-scale 9241-bus Pan-European grid. The proposed method
has been tested on several systems including 6 up to nearly
10,000 buses, where results confirm that it outperforms the
conventional algorithm in terms of solution speed.

APPENDIX A
COMPLEX LINEAR LEAST SQUARES

Consider a complex random variable zzzi = zie
jδi defined

by two real-valued random variables zi ∼ N (ztruei , σ2
zi
) and

δi ∼ N (δtruei , σ2
δi
), which are independent. Therefore zzzi can

be written as

zie
jδi = (ztruei + ezi)e

j(δtrue
i + eδi) (A.1)

where ezi ∼ N (0, σ2
zi
) and eδi ∼ N (0, σ2

δi
) are independent

measurement errors of magnitude and phase angle of zzzi,
respectively. Taylor series expansion of ejeδi is written as

ejeδi = 1 + jeδi −
e2δi
2

+ ... (A.2)

Assuming small phase-angle error, the higher order terms in
(A.2) may be neglected. Substituting ejeδi = 1 + jeδi into
(A.1) we have:

zzzi = zzztruei + ezie
jδtrue

i + jeδizzz
true
i (A.3)

where zzztruei = ztruei ejδ
true
i is the complex true value of zzzi

and is never known due to statistical nature of measurement
errors. Now consider complex vector zzz containing m complex
measurements related to the complex state xxx linearly. That is

zzz =HHHxxx+ eee (A.4)

where HHH is the constant complex coefficient matrix, xxx is
the complex state vector and eee is the complex error vector.
According to (A.3) the ith element of eee, designated as eeei,
may be written as

eeei = ezie
jδtrue

i + jeδizzz
true
i = ejδ

true
i (ezi + jeδiz

true
i ) (A.5)

The minimum-variance estimation of xxx in (A.4) is obtained
by solving the following least squares formulation [40].

Min
xxx

eee∗RRR−1eee = (zzz −HHHxxx)∗RRR−1(zzz −HHHxxx) (A.6)

where R = E(eeeeee∗) is the complex covariance matrix of
measurement errors. The best linear unbiased estimate of xxx

is given by [40]:

x̂xx = (HHH∗RRR−1HHH)−1HHH∗RRR−1zzz (A.7)

If measurement errors are assumed to be independent, the
covariance matrix RRR in (A.6)-(A.7) will be real-valued and
diagonal, whose elements are calculated according to (A.5) as

Rii = E(eeeieee
∗

i ) = E(|eeei|
2) = E(e2zi + e2δiz

true2

i ) (A.8)

which can be expressed in terms of variances of magnitude
and phase angle of the complex measurement as

Rii = σ2
zi
+ σ2

δi
ztrue

2

i (A.9)



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2894518, IEEE

Transactions on Power Systems

10

REFERENCES

[1] F. F. Wu, K. Moslehi, and A. Bose, “Power system control centers:
Past, present, and future,” Proceedings of the IEEE, vol. 93, no. 11, pp.
1890–1908, 2005.

[2] A. Abur and A. G. Exposito, Power system state estimation: theory and

implementation. CRC Press, 2004.
[3] A. J. Wood and B. F. Wollenberg, Power generation, operation, and

control. John Wiley & Sons, 2012.
[4] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State

estimation in electric power grids: Meeting new challenges presented by
the requirements of the future grid,” IEEE Signal Processing Magazine,
vol. 29, no. 5, pp. 33–43, 2012.

[5] Y. Weng, R. Negi, C. Faloutsos, and M. D. Ilić, “Robust data-driven
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