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ABSTRACT

This paper proposes an alternative parameterisation of the degrees of freedom in
a predictive functional control (PFC) law. Using recent insights on the potential
of Laguerre functions in traditional MPC (Rossiter et al., 2010; Wang, 2009), it is
demonstrated that these functions can also be exploited to give a good effect in
PFC. An appropriate design with tuning methodology is developed and this is then
demonstrated with a number of numerical examples.
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1. Introduction

Model predictive control (MPC) has been very popular in the literature (Camacho
& Bordons, 1999; Rossiter, 2018) for decades and very widely applied in industry
(Richalet , 1993). However, the literature has given much less attention to certain
approaches within the MPC portfolio, namely algorithms such as Predictive Functional
Control (PFC), (Fallasohi et al., 2010; Fiani & Richalet, 1991; Haber et al., 2011;
Richalet et al., 1978, 2009). This may appear somewhat surprising given the evidence
that PFC is so widely used in industry, however, the reasoning is simple: the tuning
and general properties of PFC are difficult and weak compared to more conventional
MPC algorithms (Rossiter & Haber, 2015; Rossiter, 2015; Rossiter et al., 2016) and in
consequence, academic authors and reviewers are very wary since most of the academic
journals are focusing on the theoretical development of a predictive controller. The
same situation can be seen in most of the core textbooks of MPC as PFC concept is
barely discussed, for examples Rawlings & Mayne (2009); Wang (2009) to name a few.
More specifically, with the exception of a few special cases (Rossiter, 2016), PFC is not
conducive to a priori stability gaurantees and many reviewers are uncomfortable with
this weakness, not withstanding the huge successes in industry especially for many
chemical applications (Haber et al., 2011; Richalet et al., 2009).

The prime aim of this paper is to propose a modification to PFC which improves the
overall properties and thus gives the user more confidence in the resulting closed-loop
behaviour and constraint handling. We do not pretend that a generic a priori stability
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proof is possible and instead emphasise that PFC should not be contrasted with more
advanced MPC algorithms such as dual-mode (Rossiter et al., 1998; Rossiter, 2018;
Scokaert & Rawlings, 1998) because:

(1) PFC is a competitor with algorithms such as PID which equally have weak a
priori properties.

(2) PFC is orders of magnitude cheaper than dual-mode MPC and thus a comparison
between the two is inappropriate. Besides the application is usually restricted to
Single Input and Single Output (SISO) processes; you get what you pay for and
if you want a very cheap and simple algorithm do not expect all the analysis and
properties of expensive alternatives.

PFC offers properties such as prediction and systematic constraint handling not easily
embedded in PID while having coding complexity that is similar to PID and tuning
rules that are easy to automate and understand (Richalet et al., 2009, 2011).

In recent years, some authors have been to explore alternative parameterisations
of the degrees of freedom with conventional MPC approaches. One could argue this
begins with prestabilisation (e.g. Muske & Rawlings (1993)) and indeed the dual-
mode approaches as proposed in the 1990s are, in effect, reparameterising the d.o.f.
(Rossiter, 2018). Latterly, authors have been looking at functional approaches (Rossiter
et al., 2010; Wang, 2009) whereby the future input trajectory is defined as a linear
combination of a set of functions (Khan & Rossiter, 2013), where the systematic choice
of function is still to a large extent an open question (Muehlebach & D’Andrea, 2017).
The advantages of functions such as Laguerre over the more conventional choice of a
standard basis set are that they extend the impact of the input changes over a much
longer horizon and thus are more likely to be able to capture the shape of the desired
closed-loop input trajectory. This simple change can lead to a reduction in the number
of d.o.f. needed to manage constraints effectively and thus enables performance to be
maintained with a lower computational load.

The obvious question to ask then is: to what extent can a similar parameterisation
improve the properties of PFC leading to easier or more consistent tuning? Such an
advance would be of significant benefit given the large number of SISO loops which
involve some what challenging dynamics and constraints which make PID implemen-
tations messy and often poorly tuned whereas, by contrast, PFC may be equally cheap
and also able to handle those dynamics and constraints more systematically. Of course,
as with PID, the user must accept that any stability analysis is a posteriori.

A smaller but important contribution of this paper is also to improve the constraint
handling techniques typically adopted in a conventional PFC algorithm as, in order to
demonstrate the constraint handling of the proposed Laguerre approaches, it is perti-
nent to ensure the constraint handling is done as effectively as possible. The existing
strategies popular in PFC were developed using engineering intuition and limited com-
puting but as will be seen can be improved using insights available from more modern
MPC approaches and while still incurring minimal computational loading and coding,
certainly in terms of the functionality available on current cheap processors. Specifi-
cally the aim is to avoid the need for an online optimisation as that ensures the code
is simple, quick and easy to maintain and validate.

This paper will propose the use of Laguerre functions for PFC and demonstrate
how these can be introduced in a systematic manner. Section 2 will give standard
background on PFC and briefly highlight the tuning challenges. Section 3 looks at
constraint handling and proposes a systematic but simple procedure. Section 4 will
introduce Laguerre functions and propose two different mechanisms for introducing
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these into PFC. Section 5 will give a number of numerical examples and Section 6 will
give a case study on some laboratory hardware. Section 7 contains the conclusions.

2. Background on PFC

This section summarises the key assumptions, notation and principles underlying a
conventional PFC algorithm and gives a brief insight into the weaknesses. As much of
this is standard in the literature, detailed derivations are omitted.

2.1. Standard PFC algorithm

PFC is premised on the assumption that it is reasonable to desire the closed-loop
response to follow (approximately) a first order trajectory from the current position
to the desired steady-state target.

Remark 2.1. For simplicity of exposition, as these issues only introduce more com-
plicated algebra but do not affect the core principles, this paper will not discuss issues
linked to non-zero dead-times and time-varying targets. Details are available in the
references.

Therefore, the desired output trajectory is given as:

rk+n = R− (R− yk)λ
n, (1)

where rk+n denotes the desired n-step ahead value for output yk at sample k and λ is
the desired closed-loop pole (PFC practitioners often use the desired closed-loop time
constant in lieu of λ as these are equivalent) and R is the target. The unconstrained
PFC law is defined by solving, for a single specified coincidence horizon n:

yk+n|k = rk+n with uk = uk+1|k = uk+2|k = · · · , (2)

where yk+n|k, uk+n|k are the n-step ahead predicted values for the output and input
respectively made at sample k.

In order to solve (2), the dependence of the output predictions on the assumed
values uk = uk+i|k, i ≥ 0 is needed. Prediction algebra is standard in the literature
(e.g. Rossiter (2018)) so here we simply assume the solution can be given as:

yk+n|k = Pnup+Qnyp+Hnu→k
+dk; up =








uk−1

uk−2

...
uk−nb







; yp =








yk−1

yk−2

...
yk−na







; u

→k
=








uk
uk+1|k

uk+2|k
...







,

(3)
for suitable Pn, Qn, Hn, nb, na and dk is a term to ensure unbiased prediction (typically
taken as the difference between the process measurement and an internal model output,
although these details are not central here). Note that from (2) we can write u

→k
=

Luk, L = [1, 1, · · · , 1]T . Substituting prediction (3) into (1,2) the PFC control law
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can be defined as:

{Pnup+Qnyp+HnLuk+dk = R−(R−yk)λ
n} ⇒ uk =

R− (R− yk)λ
n − Pnup −Qnyp − dk
HnL

.

(4)

Remark 2.2. A main selling point of PFC is the computational simplicity of control
law (4). Given Hn, Pn, Qn are needed for just a single horizon n, the computation of
these can be relatively trivial and thus the overall coding requirements are elementary
(Richalet et al., 2009).

2.2. Tuning of PFC

The industrial popularity of PFC is partially down to the intuitive tuning parame-
ters. The designer, at least in principle, chooses the desired closed loop time constant
(equivalently λ). The computer can then do a quick search over diffferent choices of
coincidence horizon n, displays the associated responses and then the user can deter-
mine which value n gives the most desireable closed-loop behaviour. However, herein
lies two major weaknesses (Khadir & Ringwood, 2005, 2008; Rossiter & Haber, 2015).

(1) Often the actual closed-loop performance/dynamics are not close (Rossiter et al.,
2016; Zabet et al, 2017) to the chosen pole λ which of course draws into question
the value of this as a tuning parameter (main exceptions are when n = 1 can be
chosen which is generally true only for first order plant).

(2) An offline search over different coincidence horizons is somewhat clumsy and
difficult to argue as systematic and gives no assurance that a reasonable answer
will result.

Remark 2.3. It is easy to show that PFC suffers from the prediction mismatch
(Rossiter, 2018) common in open-loop MPC approaches whereby the optimised pre-
dictions may bare little resemblance to the closed-loop behaviour that results. This
inconsistency can (not must) lead to poor descision making. The mismatch arises be-
cause the prediction assumption on the future input, that this remains constant, is
in many cases inconsistent with the actual input trajectory that arises or indeed is
required for good behaviour.

In summary, where a process has close to first order dynamics, PFC works very
well. However, as the open-loop dynamics differ more from a first order system, the
usefulness of λ as a tuning parameter reduces and the selection of an appropriate
coincidence horizon become less obvious. This paper seeks to propose some alternative
formulations to reduce these weaknesses and, as will be noted, can be very beneficial
when it comes to constraint handling.

3. Systematic constraint handling in PFC with recursive feasibility

Given PFC deploys only very simple coding to enable use on low level processors, the
constraint handling is defined to be simple and thus avoids the optimisers common
in more mainstream algorithms and instead uses approaches which are simpler even
than reference governer strategies (Fiani & Richalet, 1991; Gilbert & Tan, 1991).
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Assume constraints, at every sample, on input and states as follows:

∆u ≤ ∆uk ≤ ∆u; u ≤ uk ≤ u; y ≤ yk ≤ y, (5)

where ∆uk = uk − uk−1 is the input increment or rate.
The simplest PFC approach deals only with input constraints and deploys a sat-

uration approach, that is, if the proposed uk violates (5), then move to the nearest
value which does not. Readers should note that this saturation approach automati-
cally avoids issues with integral windup and the like which can occur when using PID.
Also, for systems with stable open-loop dynamics, this approach is usually safe, albeit
potentially suboptimal.

The historic PFC literature (Richalet et al., 2011) deploys more involved strategies
to cater for state constraints which are akin to reference governer approaches (Gilbert
& Tan, 1991), though perhaps a little more cumbersome. The core principle is to deploy
nested or parallel PFC loops. The outer loop supplies the target to the inner loop and
is used to modify this target when there is an expectation that an unmodified target
will lead to a constraint violation. Such an approach requires design and tuning of the
outer loop, but also is inherently simplistic and not designed to consider a multitude
of different constraints as in (5); consequently there is clear potential in modernising
that approach.

First we summarise a core concept adopted as standard in the MPC literature for
constraint handling and propose to use this concept in place of the historical PFC
choices.

(1) For a suitable horizon m, compute the entire set of future predictions yk+i|k =
Piup + Qiyp + Hiu→k

+ dk, i = 1, · · · ,m. Use the compact notation y
→k+1

=

Pup + Qyp + Hu
→k

+ Ldk to capture the output predictions in a single vector

where y
→k+1

= [yk+1|k, yk+2|k, · · · ]
T .

(2) Combine the output constraints, output predictions and input constraints into
a single set of linear inequalities of the form:

Cuk ≤ fk, (6)

C =











1
−1
1
−1
HL
−HL











; f =











u
−u
∆u
−∆u
Ly
−Ly











−











0
0

uk−1

−uk−1

Pup +Qyp + Ldk
−Pup −Qyp − Ldk











,

where fk depends on past data in up, yp and on the limits. The horizon for
the output predictions y

→k+1
, and thus the row dimension of H, should be long

enough to capture all core dynamics!
(3) The predictions satisfy constraints iff (6) is satisfied and thus a conventional

MPC algorithm will ensure this occurs and that is consider inequalities Cuk ≤ fk
explicitly rather than an alternative constraint representation which may be
suboptimal or approximate.

The proposed PFC constraint handling algorithm is summarised next. This uses a
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single simple loop to select the uk closest to the unconstrained solution of (4) which
satisfies (6).

Algorithm 3.1. At each sample:

(1) Define the unconstrained value for uk from (4).
(2) Define the vector fk of (6) (it is noted that C does not change).
(3) Use a simple loop covering all the rows of C as follows:

(a) Check the ith constraint that is the ith row of Cuk ≤ fk using ai = Ciuk −
fk,i.

(b) If ai > 0, then set uk = (fk,i)/Ci, else leave uk unchanged.

Theorem 3.1. In the nominal case (when there is no change in dk) and for stable
open-loop processes, Algorithm 3.1 is guaranteed to be recursively feasible and moreover
converge to a feasible value for uk that is closest to the unconstrained choice.

Proof. Assume feasibility at initiation and also note that for stable open-loop pro-
cesses the predicted outputs are convergent for constant future inputs uk+i = uk, ∀i >
0. Consequently, if one has feasibility at sample k − 1, then the choice uk = uk−1

must be feasible, that is satisfy (6). Hence, as long as uk−1 is a possible choice (which
it must be as all constraints must satisfy Ciuk−1 ≤ fk,i), recursive feasibility is as-
sured and a feasible solution will lie between uk−1 and the unconstrained uk. Each
constraint Ciuk ≤ fk,i will either lower or upper bound uk; if uk < uk−1 then only the
lower bounds can be active and if uk > uk−1 only the upper bounds. Hence, an active
constraint Ciuk ≤ fk,i will bring uk closer to uk−1 if violated by the unconstrained uk
but otherwise will have no affect. In consequence, the final uk will be only as close to
uk as it needs to be to satisfy all the active constraints and thus, is also as close to
the original unconstrained uk as possible.

Remark 3.1. Because this approach (Algorithm 3.1) deploys a very simple for-loop,
coding is simple and very fast and certainly far more simple than traditional MPC ap-
proaches which often use a quadratic program but equally, more systematic and probably
quicker than the ad-hoc approaches common with PID. Nevertheless, the usage is only
limited for single input single output (SISO) process, as PFC is rarely used to con-
trol a multi input multi output (MIMO) system due to its limited capability (Richalet
et al., 2009). Nevertheless, this offset only occurs in the implied prediction, where the
closed-loop response will only used the first sample of the input. Since the manipulated
input uk value is updated at each sample time, the final output still converges to the
steady state target R.

4. PFC using Laguerre functions

The main weakness of conventional PFC was the assumption with the predictions
that the future input is constant. This same weakness is present in conventional MPC
algorithms such as GPC and in fact equivalent restrictions also exist in the d.o.f. within
dual-mode strategies. In an effort to ameloirate these and instead propose future input
trajectories which were likely to be closer to those required in closed-loop, a few authors
considered Laguerre function parameterisations (Khan & Rossiter, 2013; Rossiter et
al., 2010; Wang, 2009). It was shown that despite being a relatively simple change in
formulation, this helped significantly with trade-offs between the number of d.o.f. in
the prediction class and the feasibility (ability to deal with constraints).
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The purpose of this paper is to propose and demonstrate the potential benefits of
a similar concept when applied to PFC. However we should note some fundamental
differences:

• In PFC we deploy just one d.o.f. and thus can use just a single Laguerre function.
• A different trade off will be investigated, that is between tuning parameter λ
and closed-loop performance achieved during both unconstrained scenarios and
constraint handling scenarios

4.1. Definition of input trajectories using Laguerre functions

As we are not using the whole set of Laguerre functions and just a single one, it is
easier just to state that single function. For a given pole a, the first Laguerre function
is given as:

La(z) = La(1)[1 + az−1 + a2z−2 + a3z−3 + · · · ]. (7)

(Typically L(1) 6= 1 when defining multiple Laguerre functions (Rossiter et al., 2010)
although for this paper this detail is optional.) An underlying assumption within this
paper is that the closed-loop input will converge to the steady-state with close to first
order dynamics and thus with dynamics that can be represented by La(z) plus some
constant w. That is, ideally the future input predictions are defined as:

uk = wk + ηk; uk+1|k = wk + aηk; uk+2|k = wk + a2ηk; · · · , (8)

where ηk is a scaling factor to be selected on-line, and wk is a value to be defined
rather than a d.o.f.. The reader will note that in effect wk is the implied steady-
state/asymptotic value for uk+i within the predictions.

An almost equivalent definition could use the input increments and hence:

∆uk = νk; ∆uk+1|k = aνk; ∆uk+2|k = a2νk; · · · , (9)

although in this case the implied input trajectory would be:

uk = uk−1 + νk; uk+1|k = uk−1 + (1 + a)νk; uk+2|k = uk−1 + (1 + a+ a2)νk; · · · .
(10)

Next note the properties of the geometric sequence 1, 1 + a, 1 + a + a2, · · · . It is
known that

Sa =

∞∑

i=0

ai =
1

1− a
and

n∑

i=0

ai =
1− an+1

1− a
= (1− an+1)Sa. (11)

Lemma 4.1. The choices of (8,9) are not exactly equivalent and thus would lead to
different results in general.

Proof. Consider the implied control increments with the choices of (8,9). First the
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choice (8) gives:








uk
uk+1|k

uk+2|k
...







=








wk + ηk
wk + aηk
wk + a2ηk

...








⇒








∆uk
∆uk+1

∆uk+2

...







=








wk − uk−1 + ηk
(a− 1)ηk
(a2 − a)ηk

...







. (12)

Using an equivalent notation, we can rewrite sequence (10) as follows:








∆uk
∆uk+1|k

∆uk+2|k
...







=








νk
aνk
a2νk
...








⇒








uk
uk+1|k

uk+2|k
...







=








uk−1 + νk
uk−1 + (1− a2)Saνk
uk−1 + (1− a3)Saνk

...







. (13)

Hence it is clear that there is a significant difference in these choices of parameterisa-
tion:

(1) Choice (8) allows the first increment ∆uk to be out of proportion to the remaining
increments whereas for choice (9) this ratio is fixed. Choice (8) may be better
where a disproportionately large (or small) first increment is needed.

(2) Irrespective of the choice of w, the relative sizes of respective elements are the
same for all except the first increment, so for example, taking (12,13) in turn:

{
∆uk+i|k

∆uk+i+1|k
=

1

a
} or {

∆uk+i|k

∆uk+i+1|k
=

ai − ai−1

ai+1 − ai
=

1

a
}. (14)

Hence the two choices would be equivalent if and only if both wk − uk−1 + ηk = νk
and (a− 1)ηk = aνk which would require a specific choice of wk.

Theorem 4.2. The choice of parameterisation (8) has more flexibility than the choice
(9) and thus, in general, is to be prefered.

Proof. This follows immediately from the previous Lemma. Appropriate choices of
ηk, νk make the increments identical for all bar the first, that is ∆uk. In this instance,
parameterisation (8) has an additional d.o.f. wk which can be exploited if desired and
if not assigned an equivalent value to that implied in (9).

Proposal: As was noted above, wk is the asymptotic value of the input within the
predictions and hence an obvious choice of wk which eliminates the need for more
design decisions is to set wk = E[uss], that is the expected steady-state input value
required to remove offset. This would ensure the output predictions have zero offset
asymptotically.

Corollary 4.3. The prediction classes for PFC given in (2) and with Laguerre based
on input increments (9) suffer from a critical weakness. In both cases the asymptotic
value of the predicted output (not to be mixed up with the closed-loop output which
has no asymptotic offset assuming stability) is highly unlikely to be close to the desired
target of R. This is because, the value of uk satisfying the PFC law definition rk+n =
yk+n in general will be inconsistent with uk = E[uss].
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4.2. Unbiased prediction and steady-state estimation

The output predictions with a single control increment were given in (3). With La-
guerre based predictions, that is where u

→k
is taken from, for example (12), this pre-

diction can be reformulated as:

yk+n|k = Pnup +Qnyp +Hn








1
1
1
...








︸ ︷︷ ︸

Hnw

wk +Hn








1
a
a2

...








︸ ︷︷ ︸

Hna

η + dk. (15)

The reader will note from Corollary 4.3 that wk is defined using the expected steady-
state. In simple terms, a typical PFC computation of this value is given from:

yss = Gssuss + dk → uss =
yss − dk
Gss

=
R− dk
Gss

, (16)

where Gss is the model steady-state gain, yss is the desired output steady-state (typ-
ically R) and dk the offset between the model output and process measurement.

Remark 4.1. Since the value of dk is updated at each sample, the Independent Model
(IM) structure is capable to handle some level of disturbance and parameter uncertainty
and give zero asymptotic offset. Although the loop and its signals are impacted by
measurement noise, as measurement noise is typically assumed to be a zero mean
random variable, the impact of this on offset is typically ignored in the MPC literature.
Of course there is an impact on loop sensitivity which is not a topic of this paper but
an interested reader may refer to the work of Abdullah & Rossiter (2018b).

4.3. Two PFC algorithms using Laguerre function predictions

Having defined both the input and output predictions, the PFC algorithm follows the
same lines as in section 2, that is, choose the d.o.f. η such that (1,2) are satisfied.

Algorithm 4.1. LPFC: The PFC control law using a Laguerre parameterisation of
the input trajectory is defined as follows:

(1) Define the input trajectory from (12) with wk = uss,k as defined in (16).
(2) Define the output prediction n-steps ahead using (15).
(3) Substituting prediction (15) into (1,2) the PFC control law can be defined as:

Pnup +Qnyp +Hnwwk +Hnaη + dk = R− (R− yk)λ
n, (17)

⇒ ηk =
R− (R− yk)λ

n − Pnup −Qnyp −Hnwwk − dk
Hna

; uk = wk + ηk.

For completeness, as this has some relevance with constaint handling, a second
algorithm is also defined.
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Algorithm 4.2. LPFC2: An alternative PFC control law using a Laguerre parame-
terisation of the input increment trajectory is defined as follows:

(1) Define the input trajectory from (13).
(2) Define the output prediction n-steps ahead using (15) with (13) and hence define

yk+n|k = Pnup +Qnyp +Hnwuk−1 +Hn








1
(1− a2)Sa

(1− a3)Sa
...








︸ ︷︷ ︸

Hnn

νk + dk. (18)

(3) Substituting output predictions (18) into (1,2) the PFC control law can be defined
as:

Pnup +Qnyp +Hnwuk−1 +Hnnνk + dk = R− (R− yk)λ
n, (19)

⇒ νk =
R− (R− yk)λ

n − Pnup −Qnyp −Hnwuk−1 − dk
Hnn

; uk = uk−1 + νk.

4.4. Constraint handling

The procedure for constraint handling is analogous to that discussed in section 3 and
thus is not presented in detail. The core conceptual difference is that the d.o.f is now
one, as either the parameter ηk or νk can be selected depending on the choice of input
parameterisation and this means that, in principle, the input constraints need to be
checked along the entire prediction horizon. However, given the maximum magnitude
increments occur at the first sample, only ∆uk one needs to be checked and similarly,
the maximum/minimum of uk+i has a simple dependence on ηk, νk, wk so again only
one value needs to be checked.

As in Algorithm 3.1, the aim is to choose the d.o.f. as close as possible to their
unconstrained values, and subject to (5). Nevertheless, there are some subtleties which
are worth highlighting and link to feasibility.

Lemma 4.4. For the nominal case (where the is no large change in dk), recursive
feasibility is guaranteed with input prediction class (13), irrespective of the choice of
target R.

Proof. Assuming feasibility at sample k − 1, then the choice ∆uk+i|k =
∆uk+i|k−1, ∀i ≥ 0 will give rise to predictions which satisfy constraints (5). The
choice νk = aνk−1 will enable this choice of future inputs and thus a feasible solution
exists at the current sample and, clearly, this statement can be made recursively.

Lemma 4.5. For the nominal case, recursive feasibility is not guaranteed with input
prediction class (12).

Proof. The potential weakness with input prediction class (12) is emphasised in the
first term uk = uss,k + ηk as this contains a value, specifically uss,k which may or
may not be feasible. Moreover, consideration of the implied increments shows that
∆uk = uss,k − uk−1 + ηk could be very large if there is a significant change in uss,k
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(that is, uss,k 6= uss,k−1). To be more precise, the sequence of proposed inputs from the
previous sample can be laid alongside the proposed sequence at the current sample:

u
→k|k−1

=








uss,k−1 + aηk−1

uss,k−1 + a2ηk−1

uss,k−1 + a3ηk−1

...








: u
→k|k

=








uss,k + ηk
uss,k + aηk−1

uss,k + a2ηk
...







. (20)

From these it is clear that one can only ensure u
→k|k−1

= u
→k|k

if uss,k = uss,k−1

(equivalently wk) is unchanged. Without the ability to remain on the same prediction
class, recursive feasibility cannot be assured.

Theorem 4.6. In order to ensure recursive feasibility while using prediction class
(12), the user must retain the option to modify uss,k as required.

Proof. It is a consequence of Lemma 4.4 whereby the option to choose uss,k = uss,k−1

enables the selection of u
→k|k−1

= u
→k|k

, hence garanteeing feasibility.

Readers may note that the requirement in Theorem 4.6 is analogous to reference
governer strategies (Gilbert & Tan, 1991) and is unsurprising and indeed also a well
known issue within mainstream MPC. That is, large changes in the target can give
rise to transient infeasibility where there is a terminal constraint as implicit with
input trajectory (12) and this is easiest dealt with by slowing the change in target
(equivalently modifying the implied terminal constraint). This paper will use examples
to compare such a strategy with the use of (13) which is more analogous to GPC
(Clarke & Mohtadi, 1989) in not having an implied terminal constraint and thus does
not require this additional check.

5. Simulation studies

The simulation studies will be sectioned into three main themes and comparisons will
be made between PFC, LPFC and LPFC2.

(1) Compare the predictions arising from the different algorithms and the extent to
which these give good expectations of good performance and consistent decision
making.

(2) Consideration of tuning efficacy and performance.
(3) Consideration of constraint handling efficacy.

Several non-first order dynamics examples will be used to emphasise a variety of chal-
lenging characteristics (for example non-minimum phase and unstable dynamics), as it
is known that conventional PFC is often inadequate for such systems. These examples
are:

(1) A second order non-minimum phase system with zero at 0.4:

G1 =
−0.04z−1 + 0.1z−2

1− 1.4z−1 + 0.45z−2
; n = 5; λ = 0.7. (21)
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(2) A third order over-damped system with poles at 0.9241, 0.9869 ± 0.03339:

G2 = 10−3 −0.1665z−1 + 0.0157z−2 − 0.1505

1− 2.898z−1 + 2.7993z−2 − 0.9012z−3
; n = 25; λ = 0.96. (22)

(3) A second order unstable system with poles at 0.63 and 1.27.

G3 =
0.1z−1 − 0.2z−2

1− 1.9z−1 + 0.8z−2
; n = 5; λ = 0.7. (23)

Remark 5.1. The selection of λ depends on a user preference where the range should
be in between 0 < λ < 1. This parameter is directly related to the desired closed-loop
time response (CLTR), where λ = e−3Ts/CLTR and Ts is the sampling time (Richalet
et al., 2009). Obviously, a smaller value of λ leads to a faster convergence and vice
versa. For the coincidence horizon n, this work follows the conjecture given in (Rossiter
& Haber, 2015) where the point is selected in between 40% to 80% rise of the step input
response to the steady-state value.

5.1. Prediction consistency and recursive decision making

A core underlying assumption in well posed MPC algorithms is that the optimised
prediction at the current sample is reasonable and hence, could be re-used at the
next sample. However, as these examples will show that is often not the case with
a conventional PFC law due to the prediction assumption that the future input is
constant. Where anything other than an open-loop dynamic is required, a constant
input cannot deliver the desired dynamic and thus to embed this into the predictions
automatically creates a mismatch in expectations.

Figure 1 shows the optimised predictions for example G1 at the first sample from
which it is clear that although all the predictions satisfy rk+n = yk+n (n = 5) as defined
by (2) but elsewhere they differ significantly from the target trajectory rk within the
exception of LPFC which remains close (apart from in early transients for which,
due to the non-minimum phase characteristic, tracking rk is impossible) and also has
the correct asymptotic value. The input trajectories show that the flexibility in LPFC
allows a large initial input to get a fast transient and then a gradual decay to the desired
steady-state. By contrast, PFC tries to manage everything with a constant input and
thus fails. LPFC2 has a different weakness: as the increments ∆uk all have the same
sign, the required early increments to satisfy (2) inevitably lead to an asymptotic input
trajectory which grows too large and ironically, also imply a less aggressive initial input
move which could imply relatively slow transients compared to PFC and LPFC.

Figure 2 shows similar behaviour for exampleG2, although in this case the disparaity
between the target rk is amplified much further due to the relatively slow underly-
ing dominant dynamics of the open-loop poles (real part 0.98), and thus open-loop
predictions, compared to the desired pole (λ = 0.96).

The figure for G3 is omitted as, being open-loop unstable, the predictions are diver-
gent. It so happens that, in the constraint free case, effective decision making may still
result from using these predictions over a short output horizon as evidenced by the
numerous examples in the literature using both GPC and PFC on open-loop unstable
processes (e.g. Rossiter et al. (1998)). Moreover,

Remark 5.2. It is worth noting that, an IM structure is not suitable for open-loop

12



0 5 10 15 20

Sampling instants

0

1

2

3

4

5

O
ut

pu
ts

PFC
LPFC
LPFC2
r

0 5 10 15 20

Sampling instants

0

1

2

3

4

5

6

7

In
pu

ts

PFC
LPFC
LPFC2

Figure 1. Output and input predictions for PFC, LPFC, LPFC2 for example G1.
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Figure 2. Output and input predictions for PFC, LPFC, LPFC2 for example G2.

unstable processes as would be evident should any uncertainty or noise be introduced.
In such cases a classical PFC approach often deploys a cascade structure (Richalet
et al., 2009), but for convenience, the results of this paper carry across directly as long
as a suitable alternative prediction model is used (Clarke & Mohtadi, 1989; Rossiter,
2018). Such details are not core to this paper and thus omitted.

5.2. Tuning efficacy of PFC, LPFC and LPFC

The tuning efficacy of PFC has been discussed elsewhere (Rossiter & Haber, 2015;
Rossiter et al., 2016) and so this section illustrates whether the proposed adaptions of
LPFC, LPFC2 change any of those insights or not. The underlying issue is that, with
the exception of cases where one can choose n = 1, the tuning parameter λ may have
a weak correlation with the closed-loop pole that results.

Figures 3, 4, 5, 6 overlap the closed-loop behaviour with the original target for
examples G1, G2, G3. From these figures three obvious conclusions are clear.

(1) None of the algorithms is able to get close to the desired dynamic/target trajctory
when n ≫ 1.

(2) LPFC is marginally faster during the intermediate transients than PFC whereas
LPFC2 has slow initial transients but ultimately converges to the steady-state
slightly more quickly.

(3) Nevertheless, the closed-loop responses do speed up with the choice of smaller λ
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(see figure 6).
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Figure 3. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example G1.
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Figure 4. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example G2.

5.3. Constraint handling

The reader may be puzzled as to why the improved prediction consistency illustrated in
section 5.1 seems to have minimal impact on the efficacy of tuning and hence question
whether the move to LPFC has any benefits? The answer to this becomes clear when
one considers the constraint handling scenarios. When doing constraint handling and
in particular wanting assurances of recusive feasibility (see section 4.4), consistency
between predicitions and the actual closed-loop behaviour is essential. The decision on
how to limit uk, η, νk to ensure predictions meet constraints will be ill-posed if those
predictions are not representative and, of particular concern, these decisions could be
unnecessarily conservative thus leadng to far slower performance than necessary.

• This section will demonstrate how the inconsistency in PFC predictions can lead
to extreme conservativism, whereas this is less likely to occur with LPFC.

• The section also shows a scenario where LPFC2 might be preferred to LPFC
as it gives a much more straightforward mechanism for coping with large target
changes.

Add constraints u = 1.2,∆u = 0.5, y = 1.1 to example G1 and limits u = 2,∆u =
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Figure 5. Closed-loop output and input behaviour for PFC, LPFC, LPFC2 for example G3.
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Figure 6. Closed-loop output and input behaviour for LPFC for example G1 with various λ.

0.4, y = 1.1 to example G2. Then the corresponding closed-loop simulations for a
target of R = 1 are shown in Figures 7, 8. It is clear that LPFC has by far the best
performance because it exploits the input most effectively. By contrast, because PFC
assumes a constant future input, the input values available become highly restricted
to be close to the steady-state because otherwise the long-range output predictions
would exceed the upper output limit; this is obvious in the input figures where for PFC
the input goes barely above its steady-state value. LPFC2 has a slow initial transient,
again because the shape of input trajectory (9) will only meet the upper constraints in
the long term if, for example, the first term ∆uk = aνk ≪ u. However, in the medium
term LPFC2 can exploit input values beyond uss and thus eventually converges in a
timescale not dissimilar from LPFC.

Now consider a case where a simplistic implementation of LPFC fails, whereas PFC
and LPFC2 do not. Add rate constraints to the input predictions for LPFC as given
in (12).






|∆uk|
|∆uk+1|

...




 =






|wk − uk−1 + ηk|
|(a− 1)ηk|

...




 ≤






∆u
∆u
...




 . (24)

Now, consider the case where ∆u = 0.1, wk = 1, uk−1 = 0, a = 0.8. The first two
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Figure 7. Closed-loop output and input behaviour for constrained LPFC for example G1.
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Figure 8. Closed-loop output and input behaviour for constrained LPFC for example G2.

inequalities reduce to:






|1 + ηk|
| − 0.2ηk|

...




 ≤

[
0.1
0.1

]

⇒
−1.1 ≤ ηk ≤ −0.9

|η| ≤ 0.5
. (25)

Clearly these two conditions are inconsistent and thus LPFC is infeasible and the
main factor is the input rate constraint. A simple scenario which would give rise to
this inconsistency is when wk changes significantly from one sample to the next (say
due to a large change in set-point R). The requirement for the input sequence to
both meet the new steady-state (while following the given decay rate) and beginning
from the current uk−1 can easily be in conflict with rate constraints ∆u. This issue
is well understood in the main MPC literature and a reference governing or softening
approach will be needed to avoid infeasibility.

Remark 5.3. The reader may also be able to come up with scenarios where a large
change in wk gives rise to inconsistency between output constraints and other con-
straints. In general the easiest solution, which is standard in the mainstream MPC
literature, is to relax the implied terminal constraint, that is slow the rate of change of
wk as much as required.
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6. Demonstrations on laboratory equipment

This section demonstrates and compares the performance of PFC and LPFC in con-
trolling a real laboratory process that is a Quanser SRV02 servo based unit (see Fig-
ure 9). This system is powered by a Quanser VoltPAQX1 amplifier that comes with
National Instrument ELVIS II+ multifunctional data acquisition device. The control
algorithms are employed using National Instrument LabVIEW software in personal
computer which is connected to the plant via USB wire.

Figure 9. Quanser SRV02 servo based unit.

The control objective for this case is to track the desired angular position of the
servo, θ(t) by regulating the supplied voltage, V (t). The mathematical model is derived
based on differential equation and given as (for more detail explanation and derivation
refer to Quanser (2012)):

Jeq
d2

dt2
θ(t) +Beq

d

dt
θ(t) = AmV (t), (26)

where Jeq = 0.00213 kgm2 is the equivalent moment of inertia, Beq = 0.0844 Nms/rad
is the equivalent viscous damping parameter and Am = 0.129 Nm/V is the actuator
gain. By rearrange the model (26) and discretise it with sampling time 0.02s, the
transfer function of angular position to voltage input can be formed as:

G4 =
0.0095z−1 + 0.0073z−2

1− 1.45z−1 + 0.45z−2
. (27)

Both of the controllers are tuned with λ = 0.7 and n = 8. Similar conclusions as in
previous section can be seen from Figure 10, where LPFC is more effective in tracking
the set point and converging faster (closer to the desired λ) than PFC.

Next, the following constraints are added to the process: −6 V < V < 6 V, −3 V
< ∆V < 3 V, −0.8 rad < θ < 0.8 rad. Due to the advantage of employing better
prediction consistency and well-posed decision making, LPFC manages to utilise the
extra d.o.f in its future input trajectory to satisfy all the constraints better than PFC
(refer Figure 11). It is notable that the constraint handling weaknesses implicit in
PFC (linked to the assumed steady-state input in the predictions implying output
constraint violations), means that PFC is very slow to converge to the output limit of
0.8 whereas LPFC is not affected by this weakness!
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Figure 10. Performance of PFC and LPFC in tracking the Quanser SVR02 servo position.
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Figure 11. Constrained performance of PFC and LPFC in tracking the Quanser SVR02 servo position.

Remark 6.1. The process used for this example has an integrator where one of its
poles reside on the unit circle. Using the conventional PFC approach is not recom-
mended since then the open loop prediction is divergent which inevitably will imply
output constraint violations. The normal practice is to employ a cascade structure
where the prediction is stabilised first before implementing the control law (Richalet
et al., 2009). However, this cascade from of PFC is more complex to tune and has less
clear cut properties so the discussion is beyond the scope of this paper. Conversely,
LPFC can still be used since its future input dynamics will converge to zero assuming
one uses the appropriate choice of uss = 0 (Abdullah & Rossiter , 2018a).

Remark 6.2. It is noted that there is a small offset error in Figure 10, which is far
more obvious when using the conventional PFC. The main reason behind this is because
the Independent Model (IM) structure used in the control law is not very effective in
handling parameter uncertainty of the open-loop divergent process. This sensitivity can
be improved by implementing other alternative prediction structures such as CARIMA
or T-filter (Rossiter, 2018), but again the discussion of this topic is beyond the remit
of this paper.
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7. Conclusions

This paper has taken the start point that Laguerre based input parameterisations have
been effective for mainstream MPC algorithms and thus it is worth investigating their
efficacy with PFC. We have proposed the use of Laguerre based predictions for PFC
and evaluated the efficacy of this, compared to a more conventional PFC algorithm,
using two different parameterisations: (i) one based on the inputs and (ii) another
based on the input increments.

The most obvious conclusion is that using Laguerre functions can offer some clear
benefits and more specifically, because it enables better consistency between the predic-
tions at each sample and the resulting closed-loop behaviour, it enables more accurate
constraint handling because satisfaction of constraints by the predictions is now a bet-
ter representation of the actual future. By contrast, especially with regard to output
constraints, a traditional PFC algorithm may have to adopt some quite conservative
assumptions in order to ensure recursive feasibility and thus sacrifices performance.

The paper gives a proposal for a more formal, but computationally simple, constraint
handling policy which has more rigour than traditional PFC constraint handling ap-
proaches. Then using this, a comparison of the two alternative parameterisations in-
dicates that in most cases, mapping Laguerre directly onto the inputs is preferable to
mapping onto the input increments as this enables faster transients and a better usage
of the full input range. However, the one downside is the need to utilise an implied
terminal constraint and, as is well known in the literature, terminal constraints can
cause conflicts with other constraints and thus, at times, need to be managed carefully.
Further investigations into computationally simple and efficient ways of doing this for
PFC form an immediate future work.

Some other aspects which would be interesting to address next include: (i) to what
extent does using a Laguerre parameterisation change, for better or worse, the underly-
ing loop sensitivity compared to conventional PFC and (ii) is there potential to exploit
other input parameterisations and if so, how can one choose these systematically and
in a computationally simple manner.
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