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Abstract

By engulfing potentially harmful microbes, professional phagocytes are continually at risk

from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in

the phagosome before they can escape or establish a survival niche. Here, we analyse the

role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing,

using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important

but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phos-

phatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)

P). Here we show that its activity is essential during early phagosome maturation inDictyos-

telium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and prote-

ases, dramatically reducing the ability of cells to acidify newly formed phagosomes and

digest their contents. Consequently, PIKfyve- cells were unable to generate an effective

antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate

that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen

Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production

plays a crucial and general role in ensuring early phagosomal maturation, protecting host

cells from diverse pathogenic microbes.
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Author summary

Cells that capture or eat bacteria must swiftly kill them to prevent pathogens from surviv-

ing long enough to escape the bactericidal pathway and establish an infection. This is

achieved by the rapid delivery of components that produce an antimicrobial environment

in the phagosome, the compartment containing the captured microbe. This is essential

both for the function of immune cells and for amoebae that feed on bacteria in their envi-

ronment. Here we identify a central component of the pathway used by cells to deliver

antimicrobial components to the phagosome and show that bacteria survive over three

times as long within the host if this pathway is disabled. We show that this is of general

importance for killing a wide range of pathogenic and non-pathogenic bacteria, and that

it is physiologically important if cells are to avoid infection by the opportunistic human

pathogen Legionella.

Introduction

Professional phagocytes must kill their prey efficiently if they are to prevent the establishment

of infections [1]. Multiple mechanisms are employed to achieve this. Once phagosomes have

been internalised they quickly become acidified and acquire reactive oxygen species, antimi-

crobial peptides and acid hydrolases. The timely and regulated delivery of these components is

vital to protect the host from intracellular pathogens but is incompletely understood.

After a particle is internalised, specific effector proteins are recruited to the phagosome’s

cytoplasmic surface by interacting with several inositol phospholipids (PIPs) that play impor-

tant roles in regulating vesicle trafficking and controlling maturation. The effectors of each

PIP regulate particular aspects of compartment identity, membrane trafficking and endosomal

maturation [2, 3]. Phosphatidylinositol-3-phosphate (PI(3)P), made by the class III PI 3-kinase

VPS34, is one of the first PIPs to accumulate on vesicles after endocytosis. PI(3)P recruits pro-

teins containing FYVE (Fab1, YOTB, Vac1 and EEA1) and PX domains, such as the canonical

early endosome markers EEA1 and Hrs, and sorting nexins [4, 5]. Also recruited to early endo-

somes by its FYVE domain is PIKfyve (Fab1 in yeast) [6], a phosphoinositide 5-kinase that

phosphorylates PI(3)P to phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) [7–11]. The roles

of PI(3)P are well explored but the formation of PI(3,5)P2 and the identities and functions of

its effector proteins and its metabolic product PI(5)P are less well understood [12–14]. PI(3,5)

P2 is thought to accumulate predominantly on late endosomes, and disruption of PIKfyve

activity leads to multiple endocytic defects, including gross endosomal enlargement and accu-

mulation of autophagosomes [15–20]. Recent research has begun to reveal important physio-

logical roles of PIKfyve and its products in a variety of eukaryotes, but mechanistic details

remain sparse [21–25].

As in classical endocytosis, phagosome maturation is regulated by PIPs [26]. Phagosomes

accumulate PI(3)P immediately after closure, and this is required for their subsequent matura-

tion [27–29]. The recent identification of several PIKfyve inhibitors, including apilimod and

YM201636 [30, 31], has allowed researchers to demonstrate the importance of PI(3)P to PI

(3,5)P2 conversion for phagosomal maturation in macrophages and neutrophils [32–35].

However, there are conflicting reports on the roles of PIKfyve in key lysosomal functions such

as acidification and degradation, with some studies reporting defective acidification upon PIK-

fyve inhibition [10, 36, 37] and others finding little effect [33, 38, 39]. Therefore the mechanis-

tic roles of PIKfyve and its products, and their relevance to phagosome maturation, remain

unclear and subject to debate.
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To understand the function and physiological significance of PIKfyve, we have investigated

its role in phagosome maturation and pathogen killing in Dictyostelium discoideum, a soil-

dwelling amoeba and professional phagocyte that feeds on bacteria. Dictyostelium PIPs are

unusual, with the lipid chain joined to the sn-1-position of the glycerol backbone by an ether,

rather than ester, linkage: these PIPs should correctly be named as derivatives of plasmanylino-

sitol rather than phosphatidylinositol [40]. This, however, makes no known difference to

downstream functions, which are dictated by interactions between the inositol polyphosphate

headgroups and effector proteins. Dictyostelium has thus been an effective model for analysis

of phosphoinositide signalling [41–44]. For convenience, both the mammalian and Dictyoste-

lium inositol phospholipids are referred to as PIPs hereafter.

We find that genetic or pharmacological disruption of PIKfyve activity in Dictyostelium

leads to a swollen endosomal phenotype reminiscent of defects in macrophages. We provide a

detailed analysis of phagosome maturation, and show that at least some of the defects in PIK-

fyve-deficient cells are due to reduced recruitment of the proton-pumping vacuolar

(V-ATPase). Finally, we demonstrate that PIKfyve activity is required for the efficient killing

of phagocytosed bacteria and for restricting the intracellular growth of the pathogen Legionella

pneumophila.

Results

PIKfyve-Dictyostelium have swollen endosomes

The Dictyostelium genome contains a single orthologue of PIKfyve (PIP5K3). Like the mam-

malian and yeast proteins, Dictyostelium PIKfyve contains an N-terminal FYVE domain, a

CCT (chaperonin Cpn60/TCP1)-like chaperone domain, a PIKfyve-unique cysteine/histidine-

rich domain and a C-terminal PIP kinase domain [7]. In order to investigate the role of PI(3,5)

P2 in Dictyostelium we disrupted the PIKfyve gene in the axenic Ax3 background by inserting a

blasticidin resistance cassette and deleting a portion of the central PIKfyve-unique region.

Gene disruption was confirmed by PCR of the genomic locus and loss of mRNA demonstrated

by reverse transcription PCR (RT-PCR) (S1 Fig). Two independent mutants were isolated PIK-

fyve-1 and -2 (strain ID’s JSK06 and JSK07 respectively)

While the unusual ether-linked chemistry of the Dictyostelium inositol phospholipids pre-

vented direct measurement of PI(3,5)P2 loss by either the standard method of methanolysis

followed by HPLC of deacylation products or by mass spectrometry, we found that each

mutant strain was highly vacuolated (Fig 1A and 1B), resembling the swollen vesicle phenotype

observed upon PIKfyve knockdown or inhibition in mammalian cells, C. elegans, S. cerevisiae

and D.melanogaster [10, 15, 20, 45]. This effect was recapitulated by incubation with the PIK-

fyve-specific inhibitor apilimod [30], confirming that this phenotype was due to deficient PIK-

fyve activity, most likely via the production of PI(3,5)P2 or PI(5)P (Fig 1B).

The large vacuoles normally observable in axenically growing Dictyostelium are derived

from either macropinocytic uptake of extracellular nutrients, or the contractile vacuole which

aids osmoregulation by pumping water from the cytoplasm into specialised bladders for expul-

sion. To test if the swollen vesicles are macropinocytic in origin, cells were incubated with the

fluid-phase marker TRITC-dextran for 2 hours. To further confirm macropinosome identity,

we used cells expressing the PI(3)P reporter GFP-2xFYVE which specifically labels the early

stages of this pathway ([46] and see later). Confocal microscopy showed that PIKfyve-cells con-

tained a dramatic increase in enlarged macropinosomes, at both early and late stages of matu-

ration at a comparable size and number to the swollen vesicles described above (Fig 1A–1C).

We therefore conclude that in Dictyostelium, the swollen vesicles observed upon loss of PIK-

fyve activity are macropinocytic in origin.
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When PIKfyve- amoebae were hypotonically stressed in phosphate buffer, we observed a

sustained increase in vacuolation for at least 5 hours. However, after 24 hours–when the cells

became polarized indicating the onset of starvation-induced development–PIKfyve-mutants

became indistinguishable from the random integrant and parental controls (Fig 1D). This is

most likely due to the suppression of fluid-phase uptake that occurs when Dictyostelium cells

enter starvation-induced development [47–49]. Consistent with this interpretation, PIKfyve-

cells had no observable delay or other defects in development, and formed morphologically

normal fruiting bodies with viable spores (S2 Fig). Therefore, disruption of PIKfyve leads to

endocytic defects but it is not required for Dictyostelium development.

PIKfyve is important for phagocytic growth but not uptake

Laboratory strains of Dictyostelium can obtain nutrients by macropinocytosis of liquid (axe-

nic) medium or by phagocytosis of bacteria. Although intracellular macropinosomes were

swollen, PIKfyve- cells had normal rates of both endocytosis and exocytosis (Fig 2A and 2B).

Furthermore, the fluid uptake of both wild-type and PIKfyve-cells reached a plateau at about

60 minutes. This steady-state occurs when the first vesicles complete their transit and are exo-

cytosed and indicates that the overall transit time in the absence of PIKfyve is unperturbed.

Despite this, axenic growth was slower than for wild-type cells, with mutants doubling every

16 hours compared to 10 hours for the controls (Fig 2C).

Growth on bacteria was more strongly affected. When we measured phagocytosis by follow-

ing the ability of Dictyostelium cells to decrease the turbidity of an E. coli suspension over time

we found no significant defects in PIKfyve- cells (Fig 2D). In contrast, they grew significantly

more slowly on a lawn of Klebsiella pneumoniae (Fig 2E). This indicates a specific role for PIK-

fyve activity in phagosome maturation rather than bacterial uptake.

PIKfyve deficient cells have defective phagosome acidification and
V-ATPase delivery

Next we investigated how the absence of PIKfyve affects phagosomal maturation. One of the

first stages of maturation is the acquisition of the proton-pumping V-ATPase, leading to rapid

acidification [50, 51]. The influence of PIKfyve on endosomal pH regulation remains contro-

versial: studies in C. elegans, plants, and mammalian epithelial cells have shown that PIKfyve is

required for efficient acidification [37, 45, 52–54], but RAW 264.7 macrophages are still able

to acidify their phagosomes to at least pH 5.5 when treated with a PIKfyve inhibitor [33].

Phagosome maturation is well characterised in Dictyostelium, with most studies being per-

formed using mutants in the Ax2 genetic background, rather than Ax3 as used above. For

comparison with other studies we isolated additional mutants from Ax2 cells, which were used

for all subsequent experiments unless stated otherwise. Ax2 background PIKfyvemutants also

exhibited slow growth on bacterial lawns but normal phagocytosis of both beads and bacteria

(S3 Fig), confirming that these phenotypes are robust across multiple genetic backgrounds.

Fig 1. Knockout or inhibition of PIKfyve leads to a swollen vesicle phenotype. (A) DIC images of Ax3, two
independent PIKfyve- clones and a random integrant growing in HL5 medium. Arrows indicate the enlarged vesicles.
(B) Induction of swollen vesicles with 5 μM apilimod, a PIKfyve-specific inhibitor, images taken in HL5 medium after
5 hours of treatment. (C) Confocal images of cells expressing the PI(3)P reporter GFP-2xFYVE. Cells were incubated
with 0.2 mg/ml TRITC-dextran for 2 hours to label macropinosomes indicating that the swollen compartments in
PIKfyve-cells derive from this pathway. (D) Changes in morphology upon incubation in low osmolarity starvation
buffer (KK2) compared to full medium (HL5). Swollen vesicles in PIKfyve- cells became initially more apparent but
were lost as cells entered differentiation.

https://doi.org/10.1371/journal.ppat.1007551.g001
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We followed phagosome acidification in PIKfyve- Dictyostelium by measuring changes in

the relative fluorescence of engulfed beads that had been labelled both with the pH-sensitive

FITC and the pH-insensitive Alexa 594 succinimidyl ester [55]. Phagosomes from wild-type

cells rapidly became acidified and remained acidic until ~40 minutes before transitioning to

neutral post-lysosomes, but phagosomes of PIKfyve- cells acidified much more slowly and

never achieved as low a pH (Fig 3A). In contrast, when we incubated cells with a mixture of

FITC- and pH-insensitive TRITC-conjugated dextrans to observed the acidication of macropi-

nosomes, we found that they were still able to acidify sufficiently to quench FITC fluorescence

(S4 Fig). However the concentration of dextrans within macropinosomes did appear delayed.

This is consistent with the relatively mild defect in axenic growth and previous studies in

mammalian cells [38], indicating a more stringent requirement for PIKfyve activity during

phagosome acidification.

Fig 2. PIKfyve-null cells have growth defects.Measurement of (A) macropinocytosis or (B) exocytosis in Ax3 and PIKfyve- cells as measured by uptake or loss of FITC
dextran. (C) Growth rates in axenic culture. PIKfyve- cells had a significantly longer generation time than Ax3 cells (Student’s t-test). (D) Phagocytosis of E. coli, as
measured by the ability of Dictyostelium cells to reduce the turbidity of a bacterial suspension. (E) Growth of PIKfyvemutants on lawns of K. pneumoniae as indicated by
the clearance of bacteria-free plaques on agar plates. RI denotes a random integrant control. All data plotted are mean +/- SD.

https://doi.org/10.1371/journal.ppat.1007551.g002
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Phagosomal acidification is driven by the rapid recruitment and activity of the V-ATPase.

To differentiate between defective V-ATPase delivery and activity, we directly imaged recruit-

ment of the VatM transmembrane subunit of the V-ATPase fused to GFP to nascent phago-

somes by microscopy. By observing the phagocytosis of pH-sensitive pHrodo-labelled yeast we

were able to simultaneously monitor acidification.

GFP-VatM began accumulating on phagosomes immediately following internalisation

both in PIKfyve- and control cells, but it accumulated more slowly in the mutants and to only

about half of the levels observed in wild-type cells (Fig 3B and 3C). Defective acidification was

further demonstrated by a reduced increase in pHrodo fluorescence (Fig 3D). We conclude

that there is some PIKfyve-independent lysosomal fusion with phagosomes, but that PIKfyve

Fig 3. Disruption of PIKfyve reduces V-ATPase delivery and phagosome acidification. (A) Measurement of phagosomal acidification in
Ax2 and PIKfyve- cells after engulfment of beads conjugated to pH-sensitive fluorophores. After initial acidification,Dictyostelium
phagosomes reneutralise ~45 minutes prior to exocytosis. (B) Recruitment of the V-ATPase subunit GFP-VatM to phagocytosed pHrodo-
labelled yeast visualised by confocal time-lapse imaging. (C) Quantification of GFP-VatM recruitment over time averaged across multiple
phagocytic events. Images were quantified by automated selection of a 0.5 μm-thick ring surrounding the yeast at each time point (see yellow
dotted circle in (B)). N indicates the total number of cells analysed over 3 independent experiments. Quantification of the associated increase
in yeast-associated pHrodo fluorescence, indicating acidification is shown in (D). Data shown are mean +/- SEM, p values calculated by
Student’s t-test: �p<0.05, ��p<0.01, ���p<0.005.

https://doi.org/10.1371/journal.ppat.1007551.g003
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activity is required for the high levels of V-ATPase accumulation that are needed for efficient

phagosomal acidification.

The V-ATPase consists of V0 (transmembrane) and V1 (peripheral) subcomplexes. It has

previously been suggested that PI(3,5)P2 can regulate V0-V1 assembly at the yeast vacuole

allowing dynamic regulation of activity [56]. VatM is a component of the V0 subcomplex (sub-

unit a in mammals and yeast). To test whether V0-V1 association is also affected by loss of PIK-

fyve we observed the phagosomal recruitment of the V1 subunit VatB fused to GFP [57]. Both

GFP-VatM and VatB-GFP were expressed equally in wild-type and mutant cells (S5A Fig). As

before VatB-GFP recruitment to nascent phagosomes was also significantly decreased in PIK-

fyve- cells (S5B and S5C Fig)

It should be noted that expression of VatB-GFP (but not GFP-VatM) caused a partial inhi-

bition of acidification in this assay, indicating caution should be taken in using this construct

(S5D Fig). Nevertheless, the observation that both V-ATPase components were equally

affected by PIKfyve deletion suggests that PIKfyve is required for delivery of the entire

V-ATPase to the phagosome, rather than specifically affecting V0-V1 association.

Proteolytic activity and hydrolase delivery are specifically affected in
PIKfyve- cells

Proper degradation of internalised material requires both acidification and the activity of pro-

teases. To test if hydrolytic activity was also dependent on PIKfyve, we measured phagosomal

proteolysis by following the increase in fluorescence due to the cleavage and unquenching of

DQ-bovine serum albumin (DQ-BSA) coupled to beads [55] (Fig 4A). Strikingly, despite their

partial acidification, phagosomes in PIKfyve- cells exhibited an almost complete loss of proteo-

lytic activity, an effect confirmed using the PIKfyve inhibitor apilimod (S6 Fig). To control for

a potential general decrease in protease activity, we measured the unquenching of DQ-BSA

beads in whole cell lysates (Fig 4B) and the protein levels of lysosomal protease cathepsin D by

Western blot (Fig 4C and 4D). Although activity in the phagosome is completely lost, we

found that total proteolytic activity remained normal and cathepsin D levels were significantly

increased upon loss of PIKfyve, consistent with a defect in delivery to the phagosome, rather

than in lysosomal biogenesis.

To investigate whether PIKfyve activity was required to deliver proteases to the phagosome,

we purified phagosomes at different stages of maturation and analysed their composition by

Western blot (Fig 4E). In wild-type cells phagosomes acquired cathepsin D from the earliest

time-point, but the protease was almost completely absent from phagosomes in PIKfyve- cells.

Whilst the delivery of the vacuolar ATPase was also qualitatively reduced in this assay, consis-

tent with decreased acidification, Actin-binding protein 1 (Abp1), an independent marker of

phagosome maturation [58], was unaffected. Thus, although both hydrolase and to a lesser

extent V-ATPase delivery requires PIKfyve activity, other aspects of maturation appear to

progress normally.

PIKfyve does not regulate PI(3)P dynamics

We next wanted to confirm whether loss of PIKfyve disrupts specific aspects of phagosome mat-

uration or causes a general trafficking defect. PI(3)P is one of the best characterised early mark-

ers of maturing endosomes and phagosomes in both mammalian macrophages and

Dictyostelium. Immediately following particle internalization, PI(3)P is generated on the phago-

some by the class III PI 3-kinase VPS34 [27, 33, 46] and interacts with a number of important

regulators of maturation such as Rab5 [59]. PIKfyve is both recruited by PI(3)P and phosphory-

lates it, forming PI(3,5)P2. Loss of PIKfyve activity could perturb phagosome maturation by
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reducing PI(3)P consumption, by eliminating the actions of PI(3,5)P2, or both. Studies on mac-

rophages have indicated that inhibition of PIKfyve can cause prolonged PI(3)P signalling [33].

PI(3)P can be visualised in cells using the well-characterised reporter GFP-2xFYVE [41,

60]. Expression of GFP-2xFYVE in control cells demonstrated that PI(3)P is present on Dic-

tyostelium phagosomes immediately following engulfment, consistent with previous reports

[46] (Fig 4F). However, we found no abnormalities in either the recruitment to or the dissocia-

tion from phagosomes of this reporter in PIKfyve-mutants (Fig 4F and 4G). PIKfyve activity

seems not to influence the steady-state levels of PI(3)P in Dictyostelium, and the functional

defects in PIKfyve- cells therefore are likely to be caused by a lack of the product(s) of PIKfyve

activity.

Overall, the normal transition of PIKfyve- phagosomes into a PI(3)P-negative compartment

indicates that much of their phagosome maturation process continues normally–but with the

product(s) of PIKfyve action playing specific role(s) in the delivery of certain important com-

ponents, including the V-ATPase and hydrolytic enzymes.

PIKfyve is essential for efficient killing of bacteria

Acidification and proteolysis are important mechanisms used by phagocytes to kill engulfed

microbes. We therefore asked whether PIKfyve was physiologically important for killing. Bac-

terial death leads to membrane permeabilisation and intracellular acidification, so survival

time within phagosomes can be inferred by observing the phagocytosis and subsequent

quenching of GFP fluorescence when expressed by a non-pathogenic Klebsiella pneumoniae

strain [61]. In this assay, the phagocytosed bacteria survived more than three times longer in

PIKfyve- cells (median survival 12 min) than in wild-type cells (3.5 min) (Fig 5A and 5B). This

effect was again recapitulated by treatment with 5 μM apilimod (S6 Fig). These benign bacteria

did eventually die in PIKfyve- cells, indicating either that the residual acidification is eventually

sufficient or that enough other elements of the complex bacterial killing machinery remain

functional in PIKfyve- phagosomes.

These defects in bacterial killing and digestion (Fig 4) explain why PIKfyve is important for

Dictyostelium to grow on a lawn of K. pneumoniae (Fig 2E). To test whether this is general to a

broad range of bacteria, we employed an assay whereby serial dilutions of amoebae are plated

on lawns of a panel including both Gram-positive and Gram-negative bacteria [62]. In this

assay, PIKfyve-deficient cells were severely inhibited in growth on all bacteria tested, demon-

strating a general role for PIKfyve in bacterial killing and digestion (Fig 5C and 5D).

PIKfyve activity restricts the persistence of Legionella infection

Many pathogenic bacteria infect host immune cells by manipulating phagosome maturation to

establish a replication-permissive niche or to escape into the cytosol. To avoid infection, host

Fig 4. PIKfyve is required for hydrolase activity and proteolysis. (A) Phagosomal proteolysis measured by dequenching of
DQ-BSA-conjugated beads after phagocytosis. (B) Total proteolytic activity in cell lysates against DQ-BSA-beads is
unchanged upon PIKfyve disruption, dotted lines are parallel samples in the presence of protease inhibitors. (C) Western blot
of cathepsin D protein levels, three independent samples of each strain were normalised for total protein and are quantified
in (D). Loading control is fluorescent streptavidin which recognises the mitochondrial protein MCCC1; P-value from a one-
sample T-test. (E) Analysis of phagosome maturation, by purifying phagosomes from cells after maturation for the indicated
times. VatA is a subunit of the V1 subcomplex of the V-ATPase, whereas VatM is a V0 component. Blots are from the same
samples and are representative of multiple independent purifications. (F) Analysis of PI(3)P dynamics in the absence of
PIKfyve. PI(3)P was monitored by the recruitment of GFP-2xFYVE following phagocytosis of 3 μm beads (asterisks) imaged
by confocal time-lapse microscopy. (G) Time that GFP-2xFYVE stays associated with phagosomes following engulfment,
indicating that PI(3)P removal is not PIKfyve-dependent. N indicates the total number of cells quantified across 3
independent experiments. Data shown are mean ± SEM (A & B) or SD (G).

https://doi.org/10.1371/journal.ppat.1007551.g004
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cells must efficiently kill such pathogens; hence PIKfyve might be critical to protect host cells

from infection.

Legionella pneumophila is a Gram-negative opportunistic human pathogen that normally

lives in the environment by establishing replicative niches inside amoebae such as Acantha-

moeba. This process can be replicated in the laboratory using Dictyostelium as an experimental

host [63]. Following its phagocytosis, Legionella can disrupt normal phagosomal maturation

and form a unique Legionella-containing vacuole (LCV). This requires the Icm/Dot (Intracel-

lular multiplication/Defective for organelle trafficking) type IV secretion system that delivers a

large number of bacterial effector proteins into the host (reviewed in [64]). These effectors

modify many host signalling and trafficking pathways, one of which prevents the nascent

Legionella-containing phagosome from fusing with lysosomes [65].

Fig 5. Bacterial survival is increased in PIKfyve-null cells. (A) Stills from widefield timelapse movies ofDictyostelium cells eating GFP-expressing Klebsiella
pneumoniae. The point of bacterial cell permeablisation and death can be inferred from the quenching of GFP fluorescence after engulfment. Arrows indicate captured
bacteria. This is quantified in (B) which shows a Kaplan-Meyer survival graph, based on the persistence of bacteria GFP-fluorescence within the amoebae. 60 bacteria
were followed across three independent experiments and survived significantly longer in PIKfyve-null cells than Ax2 (p<0.0001, Mantel-Cox test). (C) Loss of PIKfyve
inhibits growth on diverse bacteria. Growth was assessed by plating serial dilutions of amoebae on lawns of different bacteria and dark plaques indicate amoebae growth.
Data for all bacteria are summarised in (D).

https://doi.org/10.1371/journal.ppat.1007551.g005
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Phosphoinositide signalling is heavily implicated in Legionella pathogenesis, with Legio-

nella-containing phagosomes rapidly accumulating PI(3)P. Its concentration then declines

within 2 hours and PI(4)P accumulates [66]. Multiple effectors introduced through the Icm/

Dot system bind PI(3)P or PI(4)P [67–73]. The role of PI(3,5)P2 (and/or PI(5)P) in Legionella

infection is yet to be investigated, so we tested whether PIKfyve was beneficial or detrimental

for the host to restrain Legionella infection.

When we measured the rate of uptake of GFP-expressing Legionella by flow cytometry, we

found PIKfyve- Dictyostelium were indistinguishable from wild-type. Both strains phagocy-

tosed many more of the virulent wild-type Legionella strain (JR32) than an avirulent strain that

is defective in type IV secretion (ΔicmT) [74] (Fig 6A). These results are in agreement with the

previous finding that expression of the Icm/Dot T4SS promotes uptake of Legionella [75].

When we measured the ability of Dictyostelium to kill Legionella ΔicmT, the bacteria survived
for significantly longer in PIKfyve- cells (Fig 6B).

We next tested the role of PIKfyve on the outcome of infection. When Ax2 and PIKfyve

mutants were infected with either wild-type or ΔicmT Legionella, using a MOI of 0.1 to com-

pensate for the greater uptake of wild-type Legionella, both amoeba strains suppressed the avir-

ulent bacteria, although the reduction in bacteria was slower in the PIKfyvemutants. In

contrast, wild-type Legionella grew substantially faster in cells lacking PIKfyve (Fig 6C, note

that the CFUs scales in Fig 6B and 6C are logarithmic). We independently confirmed these

results using flow cytometry of cells infected with GFP-producing bacteria in our Ax3-back-

ground mutants. The only Dictyostelium cells that accumulated substantial GFP fluorescence

over several days were those infected by wild-type Legionella, and this happened sooner and to

a greater degree in the PIKfyve- cells (Fig 6D).

Unlike PI(3)P and PI(4)P, the lipid products of PIKfyve are thus not required for Legionella

to subvert phagosome maturation and generate its replicative vacuole. Rather, the role of PIK-

fyve in ensuring rapid phagosomal acidification and digestion is crucial for the host to prevent

Legionella, and presumably other pathogens, from surviving and establishing a permissive

niche.

Discussion

In this study, we have characterised the role of PIKfyve during phagosome maturation using

the model phagocyteDictyostelium. The roles of PI 3-kinases and PI(3)P signalling during pha-

gosome formation and early maturation have been studied extensively but the subsequent

actions of PIKfyve and roles of PI(3,5)P2 and PI(5)P are much less well understood [3, 26]. In

non-phagocytic cells such as fibroblasts and yeast, PI(3,5)P2 production is important for endo-

somal fission and fragmentation of endolysosomal compartments [10, 18, 37, 45], and PIKfyve

inhibition has been shown to cause macrophage lysosomes to coalesce by an unknown mecha-

nism [34]. PIKfyve also regulates macropinosome maturation [38], intracellular replication of

the vaccinia virus and Salmonella [38, 53, 76] and production of reactive oxygen species (ROS)

in neutrophils [35]. In this paper we show that PIKfyve is critical to ensure efficient phagoso-

mal acidification and proteolysis via delivery of specific components, and we demonstrate its

physiological importance in the killing of bacteria and suppression of intracellular pathogens.

Complex effects of PIKfyve inhibition on PIP-mediated signalling have hampered clear

interpretation of PIKfyve function in some mammalian studies. For example, some studies

report that disruption of PIKfyve both prolonged PI(3)P-mediated signalling and eliminated

PI(3,5)P2 production [30, 32], making it difficult to determine which phosphoinositide change

is responsible for the observed phenotypes. In contrast, and in agreement with other reports in

mammalian cells [18, 37], we found that deletion of PIKfyve had no impact on phagosomal PI
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Fig 6. PIKfyve is required to suppress Legionella replication.A)Wild-type (Ax2, black lines), or PIKfyve-nullDictyostelium (red lines) were infected (MOI 50) with
wild-type (JR32, solid lines) or avirulent (ΔicmT, dotted lines) Legionella expressing GFP and fixed 40 min post infection before analysis by flow cytometry. The GFP
fluorescence intensity, indicating bacteria per cell was indistinguishable between the twoDictyostelium strains, but higher for JR32 than ΔicmT. Uninfected cells are
represented by pale black/red lines. Data are representative of three independent experiments, performed in duplicate. (B) Survival of GFP-ΔicmT Legionella after infecting
Ax2 and PIKfyve-null amoebae (MOI 50). Bacterial colony forming units (CFU) were determined at each timepoint after lysis of the Dictyostelium amoebae. (C) Outcome
of infection with either wild-type (solid lines) or ΔicmT (dashed lines) Legionella. Dictyostelium cells were infected at a MOI of 0.1, and intracellular growth measured by
CFU’s at each indicated time. Data shown are the means +/- SEM of 3 independent experiments performed in triplicate (� = p<0.05, ��p<0.01 Student’s t-test vs
equivalent Ax2 infection). (D) Flow cytometry of intracellular bacterial burden of Ax3-derived PIKfyve-null cells infected with GFP-producing Legionella strains over time.
Virulent Legionella replicate more efficiently in PIKfyve-Dictyostelium, as indicated by the increasing proportions of amoebae containing high levels of GFP over time.
Graphs show>10,000 cells measured at each time point, and are representative of 3 independent experiments.

https://doi.org/10.1371/journal.ppat.1007551.g006

PIKfyve in microbial killing

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007551 February 7, 2019 13 / 26

https://doi.org/10.1371/journal.ppat.1007551.g006
https://doi.org/10.1371/journal.ppat.1007551


(3)P dynamics in Dictyostelium. The defects in phagosome maturation that we observed in this

system are thus due to lack of PI(3,5)P2/PI(5)P formation and not to prolonged PI(3)P signal-

ling. There is limited evidence that PIKfyve might exhibit protein kinase activity [77], but

whether this is relevant in vivo remains to be shown.

Whilst PIKfyve appears to be the major route of PI(3,5)P2 synthesis, there remains the

caveat that other pathways exist in Dictostelium or mammalian cells. Indeed 20% of PI(3,5)P2
levels remain after PIKfyve inhibition in fibroblasts [37] and whilst inhibition may not be com-

plete it is also theoretically possible that a pool of PI(3,5)P2 can be generated by 5-dephosphor-

ylation of PIP3, or 3-phosphorylation of PI(5)P. Whilst PIKfyve is the only route for PI(3,5)P2
synthesis in yeast, until we are able to specifically measure PI(3,5)P2 inDictyostelium it is possi-

ble that alternative pathways exist.

The role of PIKfyve in lysosomal acidification and degradation is currently disputed. Sev-

eral studies which have measured vesicular pH at a single time point have shown that PIKfyve

is required for acidification [10, 37, 45, 54], whereas others found that disruption of PIKfyve

had little effect on phagosomal pH [33, 38, 39]. In contrast, we followed the temporal dynamics

of V-ATPase delivery and of phagosomal acidification and proteolysis, and showed that

V-ATPase delivery to PIKfyve-deficient phagosomes was substantially decreased and delayed,

with consequent defects on initial acidification and proteolysis. PI(3,5)P2 has also been pro-

posed to regulate V-ATPase V0-V1 subcomplex association dynamically at the yeast vacuole

[56], but we found no evidence for this during Dictyostelium phagosome maturation.

It is still not clear how PIKfyve-generated PI(3,5)P2 regulates V-ATPase trafficking, and few

PI(3,5)P2 effectors are known. One of these is the lysosomal cation channel TRPML1/mucoli-

pin, which is specifically activated by PI(3,5)P2 [78]. This interaction was recently shown to

partly underlie the role of PIKfyve in macropinosome fragmentation, although not acidifica-

tion [38]. TRPML1 is also required for phagosome-lysosome fusion [79], and PI(3,5)P2 and

TRPML1 have been proposed to mediate interactions between lysosomes and microtubules

[80]. PIKfyve may therefore drive V-ATPase delivery to phagosomes both by microtubule-

directed trafficking and by regulating fission. However, the sole mucolipin orthologue in Dic-

tyostelium is only recruited to phagosomes much later, during the post-lysosomal phase, and

its disruption influences exocytosis rather than acidification [81].

Effective phagosomal acidification and proteolysis is essential if phagocytes are to kill inter-

nalised bacteria. Many clinically relevant opportunistic pathogens, including Legionella [64,

82], Burkholderia cenocepacia [83] and Cryptococcus neoformans [84], have developed the abil-

ity to subvert normal phagosome maturation so as to maintain a permissive niche inside host

phagocytes. This ability is likely to have evolved from their ancestors’ interactions with envi-

ronmental predators such as amoebae [85–87].

Legionella are phagocytosed in the lung by alveolar macrophages. After internalisation, they

employ effectors secreted via their Type IV secretion system, some of which interfere with PI

(3)P-signalling, to inhibit phagosome maturation [68, 88, 89]. We have shown that the prod-

ucts of PIKfyve are not required for Legionella to establish an intracellular replication niche.

Rather, Legionella survive much better in PIKfyve-deficient cells, suggesting that PI(3,5)P2
helps Dictyostelium to eliminate rather than harbour Legionella. Consistent with this, recent

studies have shown that the Legionella virulence effector SidK directly binds to and suppresses

the activity of the phagosomal V-ATPase, further underlining the importance of acidification

in restricting pathogen survival [90, 91].

This is in contrast to the non-phagocytic invasion of epithelia that occurs during Salmonella

infection. In that case, PIKfyve activity is necessary to promote the generation of a specialised

survival niche within which the bacteria replicate [53]. Salmonella has thus evolved a specific

requirement for PIKfyve in generating a survival niche–likely through using phagosome
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acidification as a cue for virulence factor expression–whereas Legionella and other bacteria are

suppressed by rapid and PIKfyve-driven phagosomal maturation.

The molecular arms race between host and pathogens is complex and of great importance.

The very early events of phagosome maturation are critical in this competition; host cells aim

to kill their prey swiftly whilst pathogens try to survive long enough to escape. Although its

molecular effectors remain unclear, PIKfyve and its products are crucial to tip the balance in

favour of the host, providing a general mechanism to ensure efficient antimicrobial activity.

Materials andmethods

Cell strains and culture

Dictyostelium discoideum cells were grown in adherent culture in plastic Petri dishes in HL5

medium (Formedium) at 22˚C. PIKfyve-mutants were generated in both Ax2 and Ax3 back-

grounds, with appropriate wild-type controls used in each case. Cells were transformed by

electroporation and transformants selected in 20 μg/ml hygromycin (Invitrogen), 10 μg/ml

G418 (Sigma) or 10 μg/ml blasticidin S. Apilimod was from United States Biological.

Growth in liquid culture was measured by seeding log phase cells in a 6 well plate and

counting cells every 12 hours using a haemocytometer. Growth on bacteria was determined by

plating ~10 Dictyostelium cells on SM agar plates (Formedium) spread with a lawn of non-

pathogenic KpGe K. pneumoniae [92].

Plaque assays were performed as previously described [93]. Briefly, serial dilution of Dic-

tyostelium cells (10−104) were placed on bacterial lawns and grown until visible colonies were

obtained. The bacterial strains were kindly provided by Pierre Cosson and were: K. pneumo-

niae laboratory strain and 52145 isogenic mutant (Benghezal et al., 2006), the isogenic P. aeru-

ginosa strains PT5 and PT531 (rhlR-lasR avirulent mutant) (Cosson et al., 2002), E.coliDH5ċ
(Fisher Scientific), E. coli B/r (Gerisch, 1959), non-sporulating B. subtilis 36.1 (Ratner and

Newell, 1978), andM. luteus (Wilczynska and Fisher, 1994). An avirulent strain of K. pneumo-

niae was obtained from ATCC (Strain no. 51697).

The Dictyostelium development was performed by spreading 107 amoebae on nitrocellulose

filters (47 mmMillipore) on top of absorbent discs pre-soaked in KK2 (0.1 M potassium phos-

phate pH 6.1) and images were taken at 20 hours [94].

Gene disruption and molecular biology

PIKfyve- cells in an Ax2 background were generated by gene disruption using homologous

recombination. A blasticidin knockout cassette was made by amplifying a 5’ flanking sequence

of the PIKfyve gene (DDB_G0279149) (primers: fw- GGTAGATGTTTAGGTGGTGAAGT,

rv- gatagctctgcctactgaagCGAGTGGTGGAATTCATAAAGG) and 3’ flanking sequence (prim-

ers: fw- ctactggagtatccaagctgCCATTCAAGATAGACCAACCAATAG, rv- AGAATCAGAA-

TAAACATCACCACC). These primers contained cross over sequences (in lower case)

allowing a LoxP-flanked blasticidin resistance cassette (from pDM1079, a kind gift from

Douwe Veltman) to be inserted between the two arms.

For PIKfyve gene disruption in an Ax3 background a knockout cassette was constructed in

pBluescript by sequentially cloning fragment I (amplified by TAGTAGGAGCTCGGATCCG

GTAGATGTTTAGGTGGTGAAGTTTTACCAAC and TAGTAGTCTAGACGAGTGGTGG

AATTCATAAAGGTACGTTCAT) and fragment II (amplified by TAGTAGAAGCTTCCAT

TCAAGATAGACCAACCAATAGTAGTCCTGC and TAGTAGGGTACCGGATCCCAGT

GTGTAAATGAGAATCAGAATAAACATCACC). The blasticidin resistance gene was

inserted between fragment I and II as an XbaI–HindIII fragment derived from pBSRĎBam
[95]. Both constructs were linearised, electroporated into cells and colonies were screened by
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PCR. Genomic DNA was extracted from lysing 1 x 106 cells in 100 μl lysis buffer (10mM Tris-

HCl pH8.0, 50 mM KCl, 2.5mMMgCl1, 0.45% NP40, 0.45% Tween 20) and addition of 2ul of

20mg/ml Proteinase K (NEB) for 5 minutes incubation at room temperature. Proteinase K was

inactivated at 95˚C for 10 minutes prior to PCR analysis. RT-PCR analysis was performed as

previously described [96]. Briefly, total RNA was extracted from 1 x 107 cells using the Roche

High Pure total RNA isolation kit. The Thermo RevertAid first strand synthesis kit was then

used to synthesise cDNA from 2 μg RNA using random hexamer primers, and used as tem-

plate for PCR analysis of transcription. Primers used for gDNA and cDNA PCR screens are

listed in S1 Table. After validation, the Ax2-derived PIKfyve mutant strain was designated

JSK01, and the two independent Ax3-derived mutants JSK05 and 06.

GFP-2xFYVE was expressed using pJSK489 [41] and GFP-PHCRAC with pDM631 [97].

VatM and VatB were cloned previously [98] but subcloned into the GFP-fusion expression

vectors pDM352 and 353 [99] to give plasmids pMJC25 and pMJC31 respectively.

Microscopy and image analysis

Fluorescence microscopy was performed on a Perkin-Elmer Ultraview VoX spinning disk

confocal microscope running on an Olympus 1x81 body with an UplanSApo 60x oil immer-

sion objective (NA 1.4). Images were captured on a Hamamatsu C9100-50 EM-CCD camera

using Volocity software by illuminating cells with 488 nm and 594 nm laser lines. Quantifica-

tion was performed using Image J (https://imagej.nih.gov).

To image PI(3)P dynamics, cells were incubated in HL5 medium at 4˚C for 5 mins before

addition of 10 μl of washed 3 μm latex beads (Sigma LB30) and centrifugation at 280 x g for 10

seconds in glass-bottomed dishes (Mat-Tek). Dishes were removed from ice and incubated at

room temperature for 5 mins before imaging. Images were taken every 30 s across 3 fields of

view for up to 30 mins.

V-ATPase recruitment and acidification was performed using Saccharomyces cerevisiae

labelled with pHrodo red (Life Technologies) as per the manufacturers instructions. Dictyoste-

lium cells in HL5 medium were incubated with 1x107 yeast per 3 cm dish, and allowed to settle

for 10 mins before the medium was removed and cells were gently compressed under a 1%

agarose/HL5 disk. Images were taken every 10 s across 3 fields of view for up to 20 mins. Yeast

particles were identified using the “analyse particles” plugin and mean fluorescence measured

over time. V-ATPase recruitment was measured as the mean fluorescence within a 0.5 μm

wide ring selection around the yeast. The signal was then normalised to the initial fluorescence

after yeast internalisation for each cell.

Endocytosis and exocytosis

To measure endocytosis, Dictyostelium at 5 × 106 cells/ml were shaken at 180 rpm for 15 mins

in HL5 before addition of FITC dextran to a final concentration of 2 mg/ml (molecular mass,

70 kDa; Sigma). At each time point 500 μl of cell suspension were added to 1 ml ice-cold KK2

on ice. Cells were pelleted at 800 x g for 2 mins and washed once in KK2. The pellet was lysed

in 50 mMNa2HPO4 pH 9.3 0.2% Triton X-100 and measured in a fluorimeter. To measure

exocytosis, cells were prepared as above and incubated in 2 mg/ml FITC-dextran overnight.

Cells were pelleted, washed twice in HL5 and resuspended in HL5 at 5 × 106 cells/ml. 500 μl of

cell suspension were taken for each time point and treated as described above.

Phagocytosis and phagosomal activity assays

Phagocytosis of E. coli was monitored by the decrease in turbidity of the bacterial suspension

over time as described [100]. An equal volume of 2 × 107 Dictyostelium cells was added to a
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bacterial suspension with an OD600 nm of 0.8, shaking at 180 rpm, and the decrease in OD600

nm was recorded over time. Phagocytosis of GFP-expressingM. smegmatis and 1 μmYG-car-

boxylated polystyrene beads (Polysciences Inc.) was previously described [55, 101]. 2 × 106

Dictyostelium/ml were shaken for 2 hours at 150 rpm. Either 1 μm beads (at a ratio of 200:1) or

M. smegmatis (multiplicity of infection (MOI) 100) were added, 500 μl aliquots of cells were

taken at each time point and fluorescence was measured by flow cytometry [55].

Phagosomal pH and proteolytic activity were measured by feeding cells either FITC/TRITC

or DQgreen- BSA/Alexa 594-labelled 3 μm silica beads (Kisker Biotech) [55]. Briefly, cells

were seeded in a 96 well plate before addition of beads and fluorescence measured on a plate

reader over time. pH values were determined by the ratio of FITC to TRITC fluorescence

using a calibration curve and relative proteolysis was normalised to Alexa594 fluorescence. To

measure proteolytic activity in cell lysates 4 x 107 cells/ml were resuspended in 150 mM potas-

sium acetate pH 4.0 and lysed by 3 cycles of freeze/thaw in liquid nitrogen. After pelleting cell

debris at 18,000 x g for 5 minutes at 4˚C, 100 μl of lysate was added per well. Proteolytic activity

was measured on a plate reader in triplicate, as described above, using 1 x 108 DQ-BSA/

Alexa594 beads per cell. A 5 x final concentration of HALT protease inhibitor cocktail (Life

Technologies) was added to samples as a negative control.

Phagosome isolation and blotting

Dictyostelium phagosomes were purified at different stages in maturation after engulfment of

latex beads as previously described [102]. Briefly 109 cells per timepoint were incubated with a

200-fold excess of 0.8 μm diameter beads (Sigma) first in 5 ml ice-cold Soerensen buffer con-

taining 120 mM sorbitol (SSB) pH 8 for 5 minutes, then added to 100 ml room-temperature

HL5 medium in shaking culture (120 rpm) for 5 (first time point) or 15 minutes to allow

phagocytosis (pulse). Engulfment was stopped by adding cells to 300ml ice-cold SSB and cen-

trifugation. After washing away non-engulfed beads, cells were again shaken in room-temper-

ature HL5 for the times indicated (chase) to allow maturation. At each time point, maturation

was stopped using ice-cold SSB as above, and cells pelleted. Phagosomes were purified as in

[58], after homogenization using 10-passages through a ball homogeniser (void clearance

10 μm). The homogenate was incubated with 10 mMMg-ATP (Sigma) for 15 minutes before

loading onto a discontinuous sucrose gradient. Phagosomes were collected from the 10–25%

interface, normalised by light scattering at 600 nm and analysed byWestern blot. Antibodies

used were anti-VatA mAB 221-35-2 (gift from G. Gerisch), anti-VatM mAb N2 [103]; rabbit

anti-cathepsin D [104] and anti-Abp1 [105]. All blots were processed in parallel from the same

lysates with identical exposure and processing between cell lines.

Bacteria killing assay

Killing of GFP-expressing K. pneumoniae was measured as previously described [61]. Briefly,

10 μl of an overnight culture of bacteria in 280 μl HL5 was placed in a glass-bottomed dish and

allowed to settle before careful addition of 1.5 ml of a Dictyostelium cell suspension at 1 × 106

cells/ml. Images were taken every 20 s for 40 min at 20x magnification. Survival time was

determined by how long the GFP-fluorescence persisted after phagocytosis.

Western blotting

Ax2 or PIKfyve- cells expressing GFP-VatM or VatB-GFP were analysed by SDS-PAGE and

Western blot using a rabbit anti-GFP primary antibody (gift from A. Peden) and a fluores-

cently conjugated anti-rabbit 800 secondary antibody, using standard techniques. The
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endogenous biotinylated mitochondrial protein Methylcrotonoyl-CoA Carboxylase 1

(MCCC1) was used as a loading control using Alexa680-conjugated Streptavadin (Life Tech-

nologies) [106].

Legionella infection assays

The following L. pneumophila Philadelphia-1 strains were used: virulent JR32 [107], the iso-

genic ΔicmT deletion mutant GS3011 lacking a functional Icm/Dot type IV secretion system

[74], and corresponding strains constitutively producing GFP [75]. L. pneumophila was grown

for 3 days on charcoal yeast extract (CYE) agar plates, buffered with N-(2-acetamido)-2-ami-

noethane-sulfonic acid (ACES) [108]. For infections, liquid cultures were inoculated in AYE

medium at an OD600 of 0.1 and grown for 21 h at 37˚C (post-exponential growth phase). To

maintain plasmids, chloramphenicol was added at 5 μg/ml.

Uptake by D. discoideum, intracellular replication or killing of GFP-producing L. pneumo-

philawas analyzed by flow cytometry as described [72]. Exponentially growing amoebae were

seeded onto a 24-well plate (1 × 106 cells/ml HL5 medium per well) and allowed to adhere for at

least 1–2 h. L. pneumophila grown for 21 h in AYE medium was diluted in HL5 medium and

used to infect the amoebae at an MOI of 50. The infection was synchronised by centrifugation

(10 min, 500 x g), and infected cells were incubated at 25˚C for 30 min before extracellular bacte-

ria were removed by washing twice with SorC (2 mMNa2HPO4, 15 mMKH2PO4, 50 μMCaCl2,

pH 6.0). Infected amoebae were detached by vigorously pipetting and fixed (PFA 2%, sucrose

125 mM, picric acid 15%, in PIPES buffer, pH 6.0), and 1 × 104 amoebae per sample were ana-

lyzed using a using a LSR II Fortessa analyser. The GFP fluorescence intensity falling into aDic-

tyostelium scatter gate was quantified using FlowJo software (Treestar, http://www.treestar.com).

Alternatively, intracellular replication of L. pneumophila inD. discoideum was quantified by

determining colony forming units (CFU) in the supernatant as described [72, 109]. Exponen-

tially growing amoebae were washed and resuspended in MBmedium (7 g of yeast extract, 14 g

of thiotone E peptone, 20 mMMES in 1 l of H2O, pH 6.9). Amoebae (1 × 105 cells per well)

were seeded onto a 96-well plate, allowed to adhere for at least 2 h, and infected at an MOI of

0.1 with L. pneumophila grown in AYE medium for 21 h and diluted in MBmedium. The infec-

tion was synchronised by centrifugation, and the infected amoebae were incubated at 25˚C. At

the time points indicated, the number of bacteria released into the supernatant was quantified

by plating aliquots (10–20 μl) of appropriate dilutions on CYE plates. Intracellular bacteria were

also quantified by counting CFU after lysis of the infected amoebae with saponin. At the time

points indicated host cells were detached by vigorous pipetting and lysed by incubation with

saponin (final concentration– 0.8%) for 10 min. The number of bacteria released into the super-

natant was quantified by plating 20 μl aliquots of appropriate dilutions on CYE plates.

Statistics

Statistical analysis was performed using Graphpad Prism 7 software. Biological replicate num-

bers and statistical tests used for each experiment are detailed in each figure legend. A p-value

of<0.05 were deemed significant with � indicating p<0.05, ��p<0.01 and ���p<0.005

throughout.

Supporting information

S1 Fig. PIKfyve gene disruption. (A) Schematic representation of the Dictyostelium PIKfyve

genomic locus indicating the homology arms, blasticidin resistance cassette. Primers used to

screen the mutated locus are shown and labelled as circled numbers. (B) PCR screens of the

genomic locus for strains JSK06 (Ax3-derived PIKfyve- (1)) and the Ax2-derived mutant
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JSK01. Three primer combinations were used to verify correct recombination, and loss of the

wild-type allele. (C) Confirmation of loss of PIKfyve mRNA by RT-PCR. The mitochondrial

large subunit rRNA Ig7 was used as positive control, as well as primers to the gene either 5’ or

3’ to the blasticidin insertion site. Primer sequences used are listed in S1 Table.

(TIF)

S2 Fig. PIKfyve is not required for development. (A) Images of Dictyostelium fruiting bodies

formed on filter discs, indicating a normal morphology and proportioning in the absence of

PIKfyve. (B) Higher magnification differential interference contrast (DIC) images of pores col-

lected from the fruiting bodies in (A).

(TIF)

S3 Fig. Conservation of PIKfyve-null phenotypes in Ax2-derived mutants. Phagocytosis of

(A) of 1 μm beads or (B) GFP-expressingMycobacterium smegmatismeasured by flow cytome-

try, is normal in PIKfyve-null cells. (C) Growth on lawns of K. pneumoniae is impaired. Colony

diameter over time is plotted in (D). All data are means +/- SD.

(TIF)

S4 Fig. Acidification of macropinosomes in PIKfyve-null cells. Cells were incubated in a

mixture of 0.4 mg/ml FITC and 4 mg/ml TRITC dextran for the times indicated. Images were

then captured on a confocal microscope. In this assay, vesicles of a neutral pH are yellow and

become progressively more red as they acidify and FITC fluorescence is quenched. PIKfyve-

cells remain able to acidify their macropinosomes within 10 minutes.

(TIF)

S5 Fig. VatB-GFP expression has a dominant negative effect on acidification. (A)Western

blot of cells expressing VatB-GFP or GFP-VatM, probed with an anti-GFP antibody (green).

There was no difference in expression levels between Ax2 and PIKfyve- cells for either reporter.

However, VatB-GFP was expressed at higher levels than GFP-VatM, likely because it is present

in 3 copies per V-ATPase complex. Loading control is the mitochondrial protein MCCC1, recog-

nised by Alexa680-conjugated streptavidin (red). (B) Recruitment of VatB-GFP to phagosomes

containing pHrodo-labelled yeast. (C) Automated image analysis of VatB-GFP recruitment as

described in Fig 3, showing reduced recruitment in PIKfyve-null cells. (D) Phagosome acidifica-

tion, measured by the increase in pHrodo fluorescence over time. Note that expression of

VatB-GFP in Ax2 cells significantly reduces phagosome acidification relative to GFP-VatM

expressing cells, indicating disruption of V-ATPase activity. Values plotted are mean +/- SEM.

(TIF)

S6 Fig. Apilimod recapitulates PIKfyve knockout phenotypes. (A) Phagosomal proteolysis

of Ax2 cells either untreated, or treated with 5 μM apilimod. As defects are in hydrolase deliv-

ery rather than activity, cells were pre-treated for 2 hours prior to the experiment. (B) Intracel-

lular survival of GFP-expressing Klebsiella pneumoniae determined by the time taken for GFP

fluorescence to be quenched post-phagocytosis.

(TIF)

S1 Table. Primers used for screening and validating PIKfyve gene disruption.

(DOCX)
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