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A B S T R A C T

Manufacturing is usually performed as a sequence of operations such as forming, machining, inspection,

and assembly. A new challenge in manufacturing is to move towards Industry 4.0 (the fourth Industrial

revolution) concerning the full integration of machines and production systems with machine learning

methods to enable for intelligent multistage manufacturing. This paper discusses Multistage

Manufacturing Processes (MMPs) and develops a probabilistic model based on Bayesian linear

regression to estimate the results of final inspection associated with comparative coordinate

measurement given in-process measured coordinates. The results of two case studies for flatness

tolerance evaluation demonstrate the effectiveness of the probabilistic model which aims at being part of

a larger metrology informatics system to be developed for predictive analytics and agent-based advanced

control in multistage manufacturing. This solution relying on accurate models can minimise post-process

inspection in mass production with independent measurements.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Manufacturing concerns the application of many kind of

machinery and tools to ensure product quality and functionality.

Dedicated machines to manufacturing tasks may add value to parts

by changing their form and properties or ensure their conformance

to design specifications. Data acquisition systems are employed to

provide raw data associated with the state of the production

processes. A manufacturing process usually involves multiple

operations to produce accurate products with the desired properties

and a high level of confidence. Therefore, the performance of each

operation and thus part quality is influenced by a large range of error

sources induced by the current as well as preceding operations. A

typical production process for metallic products consists of metal

forming, subtractive machining, inspection, assembly and testing.

Following the manufacture, the product will have an in-service life.

Each of these steps may be important to consider. Briefly, further

detail of these process steps is now discussed. Fig. 1 shows the

product development process consisted of five operations or

workstations; forming workstation, machining workstation, inspec-

tion workstation, assembly workstation and test workstation.

Metal forming: A given starting material is formed, cast, rolled,

or perhaps additively manufactured. Heat treatment, quenching

and tempering may be an important part of the material forming

given that it can significantly affect the properties of the material,

such as strength and stress distribution, and therefore the

performance of the final product. Heat treatment is the process

of heating and cooling materials to modify their microstructure

and mechanical properties and thus, also affecting machinability.

Machining: Most machining operations (milling, turning,

drilling, etc.) are accomplished using Computer Numerically

Controlled (CNC) machine tools. These machines are among the

most accurate of all production machines used in manufacturing

industry. They have been studied extensively over the last decades

to reduce manufacturing errors and variability [1].

Inspection: The actual shapes of most manufactured parts are

obtained by Coordinate Measuring Systems (CMSs) such as

Coordinate Measuring Machines (CMMs) though comparator

gauges have also been recently applied to dimensional inspection,

mainly, for shop floor inspection tasks. Although such devices only

record point coordinates on the part surface, they are very flexible

as they are equipped with tolerance assessment software.

Assembly: The assembly of parts is often performed by robots

usually equipped with vision systems. The dimensional accuracy
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and surface quality of parts are important since they affect the

assembly operation and product performance. Assembly processes

may vary including welding, brazing, soldering and mechanical

fastening [2].

Test: The final products may be tested by a certain method to

assess how well they operate. These tests differ from dimensional

inspection procedures as well as mechanical and chemical tests.

In-service life: The in-service life of products is subject to

various factors including its manufacturing method as well as its

proper use as defined by the manufacturer.

In order to apply informatics to this problem, the multistage

process must be derived numerically. Given physical constraints

and based on the machining strategy, the machine tool will be

capable of producing p number of parts q at time t, such that qj 2 S,

for all j ¼ 1; . . . ; p, and S � V. Each part is inspected by an

inspection device such as a CMM, or in this case the Equator Gauge

which uses a specific Compare method such as the Golden

Compare or the CMM Compare [3]. The former implies that the

comparator gauge is calibrated using a reference master part q�,

where q�=2S. Therefore, any deviation of the master part to drawing

nominals will be included in the measurements. The latter

suggests that any production part produced close to drawing

nominals can be used as a master part, where q� 2 S, in this case,

and therefore, it is first measured by an accurate measuring system

such as a CMM. However, in both cases, the measurement

uncertainty for a given production part will inherit uncertainty

from the calibration of the master part.

On-Machine Measurement (OMM) may take place for rapid

verification before post-process inspection. OMM can be consid-

ered as part of the machining stage as the measurements are taken

with the product in situ. Products are assembled from a specific

number of parts in a predefined sequence at the assembly

workstation. Assembly robots are used for the joining of multiple

parts. Finally, each assembled product is then tested in the last

workstation.

This paper is concerned with manufacturing systems and the

problem of estimating the results of final inspection from direct

and/or indirect in-process monitoring data. Fig. 2 is a graphical

abstract of this work where a universal metrology informatics

system receives process and workpiece data and controls a MMP.

Multi-Agent Systems (MASs) are proposed for the efficient

automated implementation of this scheme. Under this framework,

machines and production systems will be capable of sharing data

and information, detecting manufacturing errors and poor quality

in machined parts, and taking corrective actions to minimise part

variation and propagation. This will also lead to manufacturing

flexibility to product design changes and other functionalities such

as autonomous self-calibration without additional efforts. MASs

can realise autonomous control and synchronisation and therefore,

they can be considered as an attractive solution to developing and

implementing a universal metrology informatics system in

accordance with Industry 4.0 principles including big data

analytics (the modelling and analysis of data characterised by

high volume, velocity and variety), energy efficient manufacturing,

etc. [4–7]. Such an evolution requires the development of efficient

predictive models. This work presents a Bayesian linear regression

model to estimate the results of post-process inspection from in-

process monitoring data. The Bayesian approach to statistical

inference has re-emerged due to the extreme advances in

computing technology and demand in many fields of science

and engineering for developing more realistic models for complex

phenomena and multi-parameter systems or processes.

Section 2 presents the background of the research. Section 3

presents the probabilistic model used to estimate part quality and

associated uncertainties given in-process monitoring data. Sec-

tions 4 and 5 validate the proposed model using MATLAB. Finally,

concluding remarks are given in Section 6.

2. Background

Metal alloys can be shaped into useful products by bulk-metal

forming processes such as forging, rolling, extrusion, and drawing

or sheet-metal forming processes such as bending, stretch

forming, deep drawing, and spinning. Compared to metal casting

and machining, metal forming provides components with superior

mechanical properties but it is limited to the manufacture of less

complex shapes [8,9]. The quality of a forming process is subject to

many factors including: heat treatment of the material, tempera-

ture of the deformation process, strain and strain rate, lubrication

and lubricant type and quality, geometry and surface properties of

Fig. 1. Production process stages.

Fig. 2. Metrology informatics system.
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the initial workpiece, flow stress and workability/formability of the

material, tool material, tool geometry, tool wear, and shear stress

though friction is controlled through lubrication. Recent develop-

ments in metal forming have led to Sheet-Bulk Metal Forming

(SBMF) used for the manufacturing of sheet metal parts with

functional features [10]. Casting is a manufacturing process of

pouring or injecting molten material into a mold which contains

it in the desired shape during solidification. Metal casting

performance is mainly subject to the material, method used,

pouring temperature, pouring rate, path of flow, use of chills, and

risering. The physical and sometimes chemical properties of a

part in a MMP are subject to changes throughout the different

production steps. Four basic engineering materials can be

distinguished in terms of their physical and chemical properties:

metals, ceramics, polymers, and composites though composites

are nonhomogeneous mixtures of the other three basic types

rather than a unique category [2]. The physical properties of the

part often influence the performance of the manufacturing

process. For example, in machining, the thermal properties of the

workpiece determine the cutting temperature and thus, affecting

tool life. Tool wear or breakages have a large influence on

machining processes because it leads to tool failure, machining

errors of a workpiece, and unscheduled machine downtime on

the shop floor [11]. In particular, the accuracy of the machined

parts depends on many factors including machine geometry and

thermal errors, vibration, cutting forces, feed rate, cutting and

spindle speed, depth of cut, workpiece dimensions and rough-

ness, workpiece holding method/clamping, tool type and wear,

datum, and coolant type.

Although fabrication processes are designed with high criteria in

order to produce efficiently high-quality parts, deviations from

nominal are often found during inspection and a decision must be

taken on whether or not the part meets its design specifications.

However, this is not straightforward since the features are

constructed using a finite number of contact points which are often

limited to reduce inspection cycle times and thus, the entire

geometry of the part is not known [12,13]. Also, all the measurement

systems and processes are influenced by various influencing factors

including usually both random and systematic effects. Therefore, it is

necessary to evaluate the associated measurement uncertainties

[14–16]. Evaluating the measurement uncertainties associated with

complex multipurpose measuring systems such as CMMs however is

difficult and many efforts are often required to achieve valid

measurement uncertainty statements. In particular, the accuracy

of inspection results obtained by CMSs such as CMMs is based on

many factors including temperature, the probing system and

machine itself, measurement part, fixturing, measurement strategy,

and evaluation algorithms and filters [17,18]. The measurement

strategy usually concerns the number and distribution of contact

points (in discrete-point probing mode) or scanning speed and

sampling point density (in scanning mode) as well as the selection of

datum features and part-alignment technique. In this work, a Parallel

Kinematic Machine (PKM)-based flexible gauge is considered as the

measurement/gauging systemfor the final inspection. Thisdeviceisa

CMS that employs the Comparator principle to account for the

influence of systematic effects associated with the measurement

system [3,19–21]. Hence, the complexity of evaluating the measure-

mentuncertainties associatedwithCMSs operating inabsolute mode

is largely reduced since many of the systematic effects associated

with the measurement system cancel out. The accuracy of

comparator measurement results depends on the calibration of

the master part and its quality, machine repeatability, fixturing

variability and part misalignment from rotation between master and

measure coordinate frames, measurement strategy, measurement

part, software errors, and frequency of re-mastering process and

variability of temperature conditions of the shop floor environment.

On-Machine Probing (OMP) is often used for rapid verification of the

machine and part [22]. However, this inspection approach is

characterised by high measurement uncertainties because the same

errors that influencethemachiningprocessarealsotransferredtothe

inspection process. Thus, this inspection approach may be not

reliable especially for parts with tight tolerances due to the

fundamental metrological limitations. CNC machine tools used as

CMMs will have the same errors sources as CMMs with differences in

the relative magnitude and dynamics of those errors [23]. Despite

these disadvantages, OMP has been used extensively as part of the

machining cycle to avoid or reduce hard gauging. Fig. 3 depicts the

major error sources associated with a MMP. These error sources

influence part quality and contribute to the uncertainties associated

with it. As can be seen from Fig. 3, many uncertainty sources can arise

from the operator e.g. measurement or machining strategy, part

misalignments and fixturing.

The factory of the future requires smart, flexible, and adaptive

manufacturing lines capable of being autonomously self-healed,

self-adapted, and reconfigurable against product requirements

changes. This requirement is known as the ‘batch-size-of-one’

(BSo1) problem. However, many factories cannot replace their

existing equipment with the state of the art equipment. Sanderson

et al. [24] presented an assembly cell demonstrator, called Smart

Manufacturing And Reconfigurable Technologies (SMART) dem-

onstrator, to address this challenge by applying adaptive multi-

agent control to existing equipment. The demonstrator cell

consists of various workstations controlled by Programmable

Logic Controllers (PLCs). The ‘legacy’ system, which was requiring

manual reprogramming of each PLC and sometimes physical

reconfiguration when adding new recipes, was transformed to

‘SMART’ by adding an agent control layer. The SMART demonstra-

tor was based on HAS-200 and their agents were programmed in

Java Agent Development framework (JADE). The hardware for the

SMART demonstrator is detailed by Chaplin et al. [25]. In particular,

modern manufacturing systems adopt multi-agent technology

because they include a variety of components (PLCs, machines,

robots, conveyors, etc.) from different manufacturers [26,27].

Antzoulatos et al. [28] presented a multi-agent architecture to

enable plug and produce based configuration and reconfiguration

of assembly systems. The MAS was implemented using the

communication infrastructure of JADE because of its peer-to-peer

agent communication and functionality to create, execute, manage

and terminate agents. An agent is an autonomous and flexible

computational problem-solver capable of sensing and acting upon

its environment. MASs consist of intelligent agents interacting

with each other and are composed of at least two agents [29].

Holonic manufacturing systems has also received a lot of attention

in recent years. A holon is a special type of an agent. Although

holonic and MASs share similar concepts, holonic systems is a

manufacturing-specific approach applied to achieve distributed

intelligent manufacturing control while MASs is a broad software

approach [30]. To minimise manufacturing errors and increase

manufacturing system capabilities, many research efforts are

focused on enabling machines and production systems exchange

data and information. Due to the complexity of the manufacturing

system consisting of various complex processes, autonomous

control systems are required. Therefore, MASs can be considered as

an attractive automated solution to developing and implementing

a metrology informatics system. Decentralized and distributed

control schemes such as MASs can provide an efficient solution for

implementing the metrology informatics system since they are

inherently modular, able to provide robust solutions with

redundant agents, can utilise artificial intelligence techniques

and handle interactions. In this case, the manufacturing equipment

and systems, critical machine components, products, and other

resources shall be defined as intelligent agents and communicate
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their state to the “metrology system”. Then, agents for the models

and simulation tools will enable actuator agents to perform an

action e.g. to reduce the feed rate due to the high magnitude of

vibration signals or to perform a calibration due to the high

uncertainties associated with the machine axes.

Modelling MMPs has been studied extensively over the past

several years. Various approaches have been proposed to reduce

process variability while ensuring product quality specifications.

Du et al. [31] developed a Markov model to analyse product

quality propagation in multistage manufacturing systems with

Remote Quality Information Feedback (RQIF). Bowling et al. [32]

employed a Markovian approach to determine the optimal process

target levels for MMPs. Pepyne & Cassandras [33] described a

hybrid system modelling framework for MMPs by formulating and

solving optimal control problems. Jiang et al. [34] proposed a

machining error propagation model based on complexity network

theory and Artificial Neural Networks (ANNs). An ANN is a

computational model capable of acquiring, storing and utilising

knowledge gained from experience [35,36]. ANNs are one of the

most important components of Industry 4.0. They have been

inspired by biological neural networks found in humans. The most

popular ANNs are the Multi-Layer Perceptron (MLP) networks

which use the Back-Propagation (BP) learning technique for

training. They are known as supervised networks because a

desired output is required for training the network. Mathematical

models such as state space models have also been widely used in

many applications including MMPs [37]. The methodology used to

model variation propagation in a MMP using a state space

representation is known as the Stream of Variation (SoV). Ding

et al. [38] were concerned with state space modelling and

diagnosing fixture variation in MMPs. Du et al. [39] presented a

generic framework for 3D variation propagation modelling for

Fig. 3. MMP uncertainty contributors.
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Multistage Turning Processes (MTPs) of rotary workpieces.

Abellán-Nebot et al. [40] expanded the process-oriented toler-

ancing methodology proposed by Ding et al. [41] to incorporate

critical process variables such as tool wear, cost functions and quality

constraints. This was achieved by applying an extended SoV model. A

comprehensive review and comparison for major linearized SoV

modelling methods for MMPs can be found in [42]. Lawless et al.

[43] used simple regression and Analysis of Variance (ANOVA) methods

forvariationreduction.Inthesecondpartofthiswork,Agrawaletal. [44]

presented methods to deal with measurement error and obtain

confidence intervals for variance proportion estimates. Regression

analysis is a statistical data analysis technique used to investigate the

relationship between dependent and explanatory variables [45]. It is a

supervised machine learning technique with major applicability in

predictive analytics. Frequentist estimation methods that are usually

used to estimate the unknownparameters are the least-squares and the

maximum likelihood, which yield equivalent estimates for linear

models that assume that the random effects are normally distributed

[46]. The work presented in this paper uses a Bayesian approach to

estimate the results of final inspection from in-process inspection

measurements. Bayesian methods have attracted a lot of interest in

recent years because they can combine easily expert knowledge with

experimental data while considering uncertainty [47]. However, they

require a probability distribution to be defined on the parameter space

before the data are observed (prior distribution). Due to the

unpredictability of temperature changes in shop floor environments

and the complexity of the measurement system, a deterministic model

for the measurement process is not feasible. Instead we derive a

probabilistic model and use a Bayesian approach to compute posterior

distribution of the unknown parameters. With advances in computing,

computational Bayesian methods such as Markov Chain Monte Carlo

(MCMC) are straightforward to use to generate samples from the

posterior distribution of interest which may otherwise be difficult to

generatesamplesfrom.MCMCmethodscombineMonteCarlosampling

and Markov chain theory [48,49] to draw values of unobservable data.

Well-known MCMC methods include the Metropolis algorithm, the

Metropolis-Hastings algorithm, and the Gibbs sampler, also called

alternating conditional sampling. Inparticular, the latterhas been found

very useful in a large number of multidimensional problems [50].

3. Probabilistic model

This section will describe a proposed probabilistic model for

estimating part quality (characterised by the geometrical inspec-

tion of the part after machining) from in-process monitoring data,

such as OMMs, temperature of the machine, or other sensor data or

information available from a process.

Modern CNC machinetools can beusedtotakeOMMsofa product

by exchanging the cutting tool for a probing system. Such a system

can gather a set of m data points D ¼ fdi ¼ ðx i; yi; ziÞ
Tg

m

1 on the

workpiece surface. Geometric tolerance assessment can then be

applied to the coordinate data D to determine how close the

workpiece has been manufactured to its nominal, ideal geometry.

The reliability of tolerance assessment depends on a number of

factors such as the measurement strategy used to gather the

coordinate data, the machine geometric and thermal errors, and

the probing system errors.

To estimate the measurement results of final inspection from

in-process monitoring data, consider a model of the form:

y ¼ Xa þ e; e 2 Nm 0; s
2Im

� �

; ð1Þ

where y ¼ ðy1; . . . ; ymÞ
T is the response variable, X is the m � ðn þ

1Þ matrix of covariates or design matrix, a ¼ ða0; a1; . . . ; anÞ
T

represents the unknown parameters describing the state of the

machine, and e ¼ ðe1; . . . ; emÞ
T represents the error term not

explained by the model. Assuming that the errors are normally

distributed is not questionable since most of the random effects are

associated with the response variable. Note, Im is the m � m

identity matrix. The design matrix X is given by:

X ¼

1 x11 x12 � � � x1n
1 x21 x22 . . . x2n
..
. ..

. ..
.

} ..
.

1 xm1 xm2 . . . xmn

2

6

6

6

4

3

7

7

7

5

; ð2Þ

with n þ 1 < m. Assume that

E yija; Xð Þ ¼ a0 þ a1xi1 þ . . . þ anxin and V yijs
2; X

� �

¼ V eið Þ ¼ s
2.

For n ¼ 2 predictor variables related to the point coordinates and

additional sensor data, the design matrices for y
x
,y

y
, and y

z
are

given by Xx ¼ fðxi0; xi1 ¼ x i; xi2Þ
Tg

m

1 , Xy ¼ fðxi0; xi1 ¼ yi; xi2Þ
Tg

m

1 , and

Xz ¼ fðxi0; xi1 ¼ zi; xi2Þ
Tg

m

1 , respectively, where xi0 ¼ 1,

8 i ¼ 1; . . . ; m, is the coefficient of the intercept. Thus, the

probabilistic model can be written as

y
x
jXx ; a; s

2 � Nm Xxa; s
2Im

� �

;

y
y
jXy ; a; s

2 � Nm Xya; s
2Im

� �

;

y
z
jXz ; a; s

2 � Nm Xza; s
2Im

� �

: ð3Þ

The response variables Y ¼ ðy
x
; y

y
; y

z
Þ correspond to the raw

data G ¼ fgi ¼ ðx i; yi; ziÞ
Tg

m

1 obtained by a CMS. Although working

with the raw coordinate data p ¼ ðdi; giÞf gm1 requires algorithms for

finding least-squares best-fit geometric elements to Y , it lets us

evaluate uncertainty contributors associated with a particular axis

of the (Cartesian) machine tool.

Our primary interest is to estimate the unknown regression

parameters a and variance s
2. Classical estimation approaches

such as least-squares and maximum likelihood treat the

parameters as fixed, but unknown quantities, rather than as

random variables. In particular, in Bayesian inference, probability

statements about unknown parameters u given data y can be

obtained by a model providing the joint Probability Density

Function (PDF):

p u; yð Þ ¼ p uð ÞpðyjuÞ; ð4Þ

where pðuÞ is the prior distribution and pðyjuÞ is the likelihood. The

posterior density can be determined via Bayes’ rule as:

p ujyð Þ ¼
p u; yð Þ

p yð Þ
¼

pðuÞpðyjuÞ

p yð Þ
; ð5Þ

where p yð Þ ¼
R

pðuÞpðyjuÞdu is the prior predictive distribution,

which can be omitted with fixed y. Therefore, the posterior density

can be written in the unscaled form as:

p ujyð Þ / p uð ÞpðyjuÞ: ð6Þ

Given the observed data y; future data y
�

can be generated

using for example Monte Carlo simulation. The distribution of y
�
,

conditional on y, pðy
�
jyÞ, is called the posterior predictive

distribution given by:

pðy
�
jyÞ ¼

Z

pðy
�
; ujyÞdu

¼

Z

pðy
�
ju; yÞp ujyð Þdu
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¼

Z

pðy
�
juÞp ujyð Þdu; ð7Þ

since in this model, y and y
�
are conditionally independent given u

[48]. However, the ‘data’ in a regression problem include both

X and y. Therefore, the posterior distribution for u; given y and X,

can be written as:

p ujy; Xð Þ / p uð Þpðy; XjuÞ; ð8Þ

where p uð Þ is the prior distribution representing the prior

knowledge about u and pðy; XjuÞ is the likelihood. We assume

that prior beliefs about uyjx and ux are independent [49]:

p uð Þ ¼ p uyjx; ux
� �

¼ p uyjx
� �

p uxð Þ ¼ p a; s
2

� �

p uxð Þ: ð9Þ

Thus, the posterior density for the unknown parameters is:

p a; s
2; uxjy; X

� �

¼ p a; s
2jy; X

� �

pðuxjXÞ; ð10Þ

and the likelihood of the normal linear model is:

pðy; X; a; s
2Þ ¼ ð2ps2Þ�m=2 exp

�ðy � XaÞTðy � XaÞ

2s2

" #

: ð11Þ

Note that, our interest lies only with uyjx. An important issue in

Bayesian inference is the selection of prior density. Using a

conjugate prior density for the parameter vector uyjx ¼ a; s
2

� �T
,

then, the posterior density is:

p a; s
2jy; X

� �

/ p a; s
2

� �

pðyja; s
2Þ; ð12Þ

where p a; s
2

� �

¼ p ajs2
� �

p s
2

� �

is the prior distribution and

pðyja; s
2Þ is the likelihood. Conjugate prior distributions for a,

conditional on s
2, and s

2 can be given by:

ajs2 � Nnþ1ða0; s
2V�1

0 Þ; s
2 � IGða0; b0Þ: ð13Þ

So, the conditional prior density for a given s
2 is a multivariate

normal density with mean a0 2 R
nþ1 and variance-covariance

matrix s
2V�1

0 , where V0 is a symmetric positive definite matrix of

size ðn þ 1Þ � ðn þ 1Þ, and the prior density for s
2 is an inverse

Gamma density with shape a0 and scale b0. Note that, while the

conditional posterior density pðajs2; y; XÞ is a multivariate normal

density, the marginal posterior density p ajy; Xð Þ ¼
R

pðajs2; y; XÞp s
2jy; X

� �

ds2 is a multivariate t-density [49]. In

situations as in this case where prior knowledge is difficult to elicit

in probabilistic form, then, for this model, a noninformative prior

can be given by:

p a; s
2

� �

/
1

s
2
: ð14Þ

Fig. 4. Comparator data against OMP data.

Fig. 5. Normal probability plot of the comparator data.
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4. Model validation

This section concerns the prediction quality of the probabilistic

model. Our main aim is to obtain a probabilistic model capable of

predicting future response data y
�
given future predictor data X

�

with the minimum prediction error. To validate the model, data

points dI associated with on-machine probe coordinate data were

generated according to a model of the form:

di ¼ wi þ Fðwi; bÞ þ ei; ei 2 Nð0; s
2Þ; i 2 I ¼ f1; . . . ; mg; ð15Þ

where wi is the true probing point related to the workpiece surface,

Fðwi; bÞ is a deterministic error model of the system parameters b

to account for the systematic effects associated with the machine,

Fig. 7. Prior and posterior distributions of the parameters.

Fig. 6. Normal probability plot of residuals.

Table 1

Estimated regression parameters and disturbance variance.

Estimate SE Bayesian CI Positive p-value

a0 0.0006 0.0057 [-0.0106, 0.0118] 0.544 0.91

a1 0.8893 0.0466 [0.7973, 0.9813] 1.000 1 0 10�17

a2 �0.0001 0.0003 [-0.0007, 0.0005] 0.356 0.71

s
2 6 0 10�7 2 0 10�7 [3.3 0 10�7, 9.9 0 10�7] 1.000

Table 2

ANOVA results.

SSE [mm] DOF MSE [mm]

TSS 0.000717 29 0.000025

ESS 0.000702 2 0.000351

RSS 0.000014 27 0.000001
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and ei represents the random effects drawn from a Gaussian

distribution with zero mean and variance s
2. Note, I is also used to

denote the identity matrix with ones on the diagonal and zeroes

everywhere else. For a comparator system error used for

measuring final part geometry, we considered a model of the form:

gi ¼ wi þ e þ ei; ei 2 N 0; s
2

� �

; i 2 I ¼ 1; . . . ; mf g; ð16Þ

where wi is the true probing point related to the workpiece surface,

e represents a fixed offset associated with the comparator system,

and ei represents the random effects [19,20].

Six data sets including ten data point coordinates each were

generated. Half of the data sets were used for fitting the model and

half of the data sets were used for testing it. Fig. 4 plots the

comparator point coordinates gi :¼ zi against the CNC machine tool

point coordinates di :¼ zi, for i ¼ 1; . . . ; 30. Fig. 5 displays the

normal probability plot of the complete data set for the comparator

system. Fig. 6 shows the normal probability plot of the classical

regression model residuals. As can be seen, the model residuals

follow a normal distribution with small deviations from normality.

For many data points and a small number of parameters the

noninformative prior distribution p a; s
2

� �

/ 1=s2 offers the

advantage that it provides acceptable results without the need

to specify prior knowledge in the form of an informative prior. In

this case, the conditional posterior density pðajs2; y; XÞ is a

multivariate normal density given by:

ajs2; y; X � Nnþ1

�

â; s
2ðXTXÞ�1

�

; ð17Þ

where â ¼ ðXTXÞ�1XTy is the Maximum Likelihood Estimate

(MLE). The posterior is proper if and only if XTX is nonsingular.

The marginal posterior density p s
2jy; X

� �

is an inverse Gamma

density given by:

s
2jy; X � IG

m � n � 1

2
;
ðy � XâÞTðy � X â Þ

2

  !

: ð18Þ

The marginal posterior density p ajy; Xð Þ is a multivariate t-

density with m � n � 1 Degrees of Freedom (DOF):

ajy; X � tm�n�1

�

â ; s2ðXTXÞ�1
�

; ð19Þ

where s2 ¼ ðy � X â ÞTðy � X â Þ=ðm � n � 1Þ is the sample vari-

ance. Finally, the posterior predictive distribution pðy
�
jyÞ is a

multivariate t-density with m � n � 1 DOF:

pðy
�
jyÞ � tm�n�1

�

X
�

â ; s2
�

Im þ X
�

ðXTXÞ�1X
�T��

: ð20Þ

Fig. 8. Predicted model responses to new data.

Fig. 9. Residuals.
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Fig. 7 shows the prior and posterior distributions of the random

regression coefficients a and disturbance variance s
2. Table 1

shows the results for the model terms. The columns of Table 1 are

as follows: the first column includes the terms included in the

model; the second column includes the mean value of the

coefficient estimates; the third column includes the Standard

Deviation (SD) or the Standard Error (SE) of the coefficients; the

fourth column includes the 95% Bayesian equal-tailed Credible

Interval (CI) for the parameters; the fifth column includes the

posterior probability that the parameter is greater than zero; and

the sixth column includes the p-value from the frequentist

statistics where a term is statistically significant for 95% confidence

level when the p-value < 0.05 given the other model terms. Table 2

shows the ANOVA results. The columns of Table 2 are as follows:

the first column includes the Total Sum of Squares (TSS), the

Explained Sum of Squares (ESS), and the Residual Sum of Squares

(RSS); the second column includes the Sum of Squared Error (SSE);

the third column includes the DOF; and the fourth column includes

the Mean Squared Error (MSE). The coefficient of determination

was R2 = 0.980, the adjusted R2 = 0.978, the F-statistic = 658.85, and

the p-value = 1 0 10�23 for the F-test on the model. Fig. 8 shows the

predicted mean responses to unseen data. Fig. 9 shows the residual

values obtained by the difference between the predicted values

and the expected values in order to assess the deviation of the

prediction results from the expected data. The forecast Root Mean

Squared Error (RMSE) was 1 mm. It can be concluded that the

model predicted responses compared well against the true

observations, the residual values are very small (< 2.5 mm), the

model explains most of the response variable variation (high R2

value), and that due to the use of diffuse priors the performance of

the model can increase as the prior sample size increases. This was

also validated by fitting the model using four data sets and testing

it using the remaining two data sets. In that case, the coefficient of

determination was R2 = 0.987, the adjusted R2 = 0.986, the F-

statistic = 1398.80, and the p-value = 1 0 10-35 for the F-test on

the model. The forecast RMSE from this simulation was 0.991 mm

and the residual values were also less than 2.5 mm.

5. Experimental model validation

Another case was considered to validate the proposed method

using experimental data. Experimental work was performed using

an DMG MORI NVX 5080 3-axis machine with an OMP60 probe to

obtain OMP coordinate data and a comparator system for the final

inspection results. The comparative sampled points were generat-

ed based on the fitted results obtained from the comparator. The

comparator system used to obtain the post-process inspection

results was an Equator 300 Extended Height system. The probing

Fig. 11. Normal probability plot of the comparator data for second case study.

Fig. 10. Experimental setup: OMP (left); CMM measurement (middle); Comparator measurement (right).
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data correspond to points taken on the top plane of the part for

flatness tolerance evaluation. The flatness tolerance defines how

much a surface on a machined part may vary from the ideal flat

plane. Planes are one of the most common geometric surfaces in

coordinate metrology. The comparator was used in discrete-point

probing mode using the CMM Compare method, which requires an

accurate CMM to calibrate the master part in order to generate a

calibration file for the comparator system. The calibration file was

generated using a Mitutoyo CMM with REVO RSP3 probe. The

calibration file is read by the comparator system during mastering

to enable the probing points of a master data set to be compared

with that of test data sets. The number and position of the probing

points can be a major contribution to the magnitude of deviation of

the machined geometry from the substitute geometry. A poor

measurement strategy and a non-repeatable fixturing arrange-

ment for a comparator system leads to large uncertainties in the

computed results. The standard uncertainty associated with the

fixturing repeatability in post-process inspection was very small

for flatness tolerance (0.1 mm for a coverage factor of k = 2 and a

confidence level of about 95%). The same part fixturing setup was

also used for the CMM used to generate the calibration file for the

comparator system. The measurement strategy used for OMP and

Equator CMM Compare was the same. A general overview of the

experimental setup is shown in Fig. 10.

Fig. 11 displays the normal probability plot of the complete data

set for the comparator system. Note that the second validation case

Fig. 12. Normal probability plot of residuals for second case study.

Fig. 13. Prior and posterior distributions of the parameters for second case study.
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study considers only one predictor associated with twenty OMP

point coordinates for six different machined parts. Half of the data

sets were used for fitting the model and half of the data sets were

used for testing it.

Fig. 12 shows the normal probability plot of the regression

model residuals. Fig. 13 shows the prior and posterior distributions

of the unknown parameters. Table 3 shows the results for the

model terms. Table 4 shows the ANOVA results. The coefficient of

determination was R2= 0.866, the adjusted R2 = 0.863, the F-

statistic = 374.16, and the p-value = 6 0 10�27 for the F-test on the

model. Fig. 14 shows the residual values. The forecast RMSE was

1.6 mm.

For comparison, an MLP neural network was developed. The

ANN was trained by Bayesian regularization, which is an

improvement of BP learning technique. By varying the simulations

in MATLAB with different transfer functions and different numbers

of hidden neurons and layers, various ANN models were

developed. The MSE performance function was used to measure

each network’s performance. The models were trained for a

different number of epochs to let the errors converge to zero. An

ANN with one hidden layer, five hidden neurons, and linear

activation functions were selected. The MSE was 2.7 0 10�6 mm at

1000 epochs. Fig. 15 is the bar graph of residuals obtained from the

regression and ANN models, where it can be seen that both models

provided similar results. Regression models are simple models and

usually superior for small sample sizes. However, ANNs can easily

deal with nonlinear dependencies in the data using nonlinear

activation functions. The linear regression model can also be used

to estimate nonlinear functions through nonlinear

Table 3

Estimated regression parameters and disturbance variance for second case study.

Estimate SE Bayesian CI Positive p-value

a0 0.0442 0.0003 [0.0436, 0.0448] 1.000 1 0 10�76

a1 1.0842 0.0570 [0.9720, 1.1964] 1.000 6 0 10�27

s
2 2.7 0 10�6 5 0 10�7 [1.9 0 10�6, 3.9 0 10�6] 1.000

Table 4

ANOVA results for second case study.

SSE [mm] DOF MSE [mm]

TSS 0.001140 59 0.000019

ESS 0.000987 1 0.000987

RSS 0.000153 58 0.000003

Fig. 14. Residuals for second case study.

Fig. 15. Comparison of models.
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transformations of data. Nevertheless, in such a case, the model

will be still linear since the term linear in the linear regression

models refers to the linearity of the parameters. Fig. 16 is the bar

graph of flatness values obtained from the Equator, OMP, and

regression model, where it can be seen that the regression model

leads to much more accurate flatness estimates compared to OMP.

In the case of many process variables, high sampling rates, and

large measurement uncertainties, it may be necessary to pre-

process the data in order to reduce the number of process

variables to be used by the model. ANNs such as Self-Organising

Maps (SOMs) or Principal Component Analysis (PCA) could be

employed for that purpose.

6. Conclusions and future work

A manufacturing production line is a dynamic system

comprised of many complex processes interacting with each

other. Therefore, modelling of a Multistage Manufacturing Process

(MMP) requires a sufficient understanding of all the production

processes and their relationship. Due to the wide range of

uncertainty sources associated with the machines and systems

composing a MMP and their complex interaction, mathematical

and statistical models accounting for uncertainties associated with

the system model parameters are required. This paper has

developed a Bayesian linear regression model to estimate part

quality and associated uncertainties given in-process monitoring

data. The predicted results compared well with the experimental

comparator measurements for flatness tolerance evaluation. In

addition, a neural network model was developed and the

comparison showed that both models provided similar results.

The developed model aims to be part of a larger modular

machine learning-based MMP data analytics system to be used

for estimating product quality characteristics and associated

uncertainties from process variables associated with the various

processing stages such as heat treating, machining, and

inspection. Such a system will benefit from a multivariate

output including not only the part quality in terms of its

dimensions and associated uncertainties but also including its

mechanical, thermal, and chemical properties, all associated

with stated uncertainties. The output could also include

manufacturing costs, service life, and other specified param-

eters of interest by considering all the processes that take place

during part production. Due to the new trends on the market

such as customization of complex products and shorter product

lifecycles, modern manufacturing faces many challenges to

readjust effectively to the new requirements including big data

and manufacturing intelligence. Based on real-time data,

predictive analytics has the potential to create manufacturing

intelligence. Despite the advancements in manufacturing

metrology and data informatics, new systems and technologies

are required to allow for bidirectional machine-to-machine

communication and real-time computation based on efficient

models and simulation tools. Within the smart factory of

Industry 4.0, agent-based control has been proposed to cope

with these challenges in manufacturing.
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