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With an increasingly aging global population, the incidence of neurological diseases

such as dementia is set to increase to unmanageable levels, yet there are currently

only symptomatic therapies available for treatment. The mechanisms underlying the

development of some forms of dementia, such as Alzheimer's disease (AD), are not

yet completely elucidated with several competing hypotheses existing. During the

closure of the critical period in the brain, significant compositional changes occur to

the neural extracellular matrix (ECM). Specifically, condensed mesh‐like structures

called perineuronal nets (PNNs) form around subsets of neurons and have a profound

effect on axonal growth and limit neuronal plasticity. These PNNs act as a morpho-

logical checkpoint and can influence memory and cognition. Manipulating these

important ECM structures may provide the key to reactivating plasticity and restoring

memory, both of which are severely impaired in AD and other associated neurological

diseases. This review explores the current understanding of how PNNs are manipu-

lated and examines potential new methods for PNN modulation.

LINKED ARTICLES: This article is part of a themed section on Therapeutics for

Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view

the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/

bph.v176.18/issuetoc
1 | INTRODUCTION

Alzheimer's disease (AD) is the most common form of dementia and is

clinically characterised by a progressive loss of memory and functional

cognition as well as other non‐cognitive disturbances such as anxiety

and delusions (Yiannopoulou & Papageorgiou, 2013). The leading risk

factor for AD is age, one in 23 people over the age of 65 suffer from this
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rather, symptomatic and have been the first line of treatment for the last

30 years (Ballard et al., 2011; Cummings, Morstorf, & Zhong, 2014).

In the last two decades, attention has shifted towards treating the

more recently appreciated disease pathologies, notably targeting and

preventing the build‐up of amyloid β (Aβ) proteins (Selkoe & Hardy,

2016) and the microtubule associated phosphoprotein, Tau (Iqbal, Liu,

Gong, & Grundke‐Iqbal, 2010), both of which are increasingly becoming

explicitly linked to one another (Bloom, 2014). Several anti‐Aβmonoclo-

nal antibody therapies (Doody et al., 2014; Vandenberghe et al., 2016)

and a selection of β‐secretase (BACE1) inhibitors (Vassar, 2014) have

progressed as far as phase III clinical trials but have failed to translate

into commercial medicines. These recent high‐profile failures have led

some to believe that new hypotheses of AD are required, as the current

understanding has provided no progress to a medicine (Kepp, 2017).

This has led researchers to inspect features of the brain other than the

neural cells, such as the extracellular matrix (ECM), for novel inspiration.

Synaptic plasticity plays a key role in memory throughout the critical

period of development, during intense periods of learning and as we

age. Recent experiments have shown that neural plasticity can be

restored to a juvenile‐like state through modulation of a neuronal

ECM component known as perineuronal nets (PNNs), resulting in the

restoration of cognition in a mouse model (Rowlands et al., 2018; Sorg

et al., 2016; Yang et al., 2017). In this review, we discuss the emerging

role that PNNs play in controlling plasticity andmemory, presenting the

unique structural and functional features of these complex ECM

components and the evolving methodologies used to modulate them.
2 | KEY COMPONENTS AND STRUCTURE
OF PNNS

Neural cells produce specialised and distinctive ECM molecules that

fill the diffuse space between neurons and glial cells (Gundelfinger,
Frischknecht, Choquet, & Heine, 2010). These molecules can con-

dense and ensheath specific neurons forming PNNs. These nets were

first observed by Camillo Golgi in 1889, but only recently has there

been an interest in their structure and function (Spreafico, De Biasi,

& Vitellaro‐Zuccarello, 1999). The revelation that PNNs play a signifi-

cant role in regulating plasticity and memory has intensified research

efforts into elucidating their molecular composition and connectivity

in recent years. PNNs are composed of several components, the struc-

ture of which is shown in Figure 1 (Kwok, Dick, Wang, & Fawcett,

2011). Hyaluronan (HA), the most abundant and most crucial compo-

nent of PNNs, forms a backbone mesh‐like structure which allows for

the binding of other important components such as chondroitin sul-

fate proteoglycans (CSPGs) and ultimately dictates the overall struc-

ture of the ECM (McRae & Porter, 2012). HA consists of alternating

N‐acetylglucosamine and glucuronic acid (GlcA) units forming long

non‐sulfated polysaccharide chains which vary in length, ranging from

25 to 1,000 kDa (Viapiano & Matthews, 2006). HA is synthesised by

the transmembrane enzyme hyaluronan synthase (HAS) which anchors

the PNNs to the neuronal surface (Kwok, Carulli, & Fawcett, 2010).

Lecticans are the major CSPG family in the brain ECM and are able

to bind an array of matrix molecules; as a result, these CSPGs are con-

sidered the organisers of the ECM (Yamaguchi, 2000). The lectican

family include the non‐CNS‐specific lecticans: aggrecan (ACAN) and

versican (Glumoff, Savontaus, Vehanen, & Vuorio, 1994; Popp, Ander-

sen, Maurel, & Margolis, 2003), and the CNS‐specific lecticans:

neurocan (NCAN) and brevican (BCAN; Watanabe et al., 1995;

Yamada, Watanabe, Shimonaka, & Yamaguchi, 1994).

Lecticans are different from other CSPGs in the ECM as they are

composed of globular domains enabling them to interact with HA

and tenascin‐R (Tn‐R) simultaneously. All lecticans have an N‐terminal

globular (G1) domain containing an immunoglobulin‐like loop repeat

capable of binding HA chains and certain link proteins (Haplns) and

up to two link modules at the C‐terminus (Yamaguchi, 2000). The
FIGURE 1 Composition of the PNNs around
the neuron. The HA forms a mesh‐like
backbone to which other ECM molecules can
bind. HA is attached to the cell surface
through HAS as well as other cell surface HA
receptors (not shown). The CSPGs ‐ aggrecan,
verisican, brevican and neurocan ‐ are all able
to attach to chains of HA through link
proteins. The CNS‐exclusive tenascin, TN‐R,
can conjugate up to three lecticans, enhancing
the overall rigidity of the PNNs
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FIGURE 2 (a) The disaccharide repeat of CS. (b) Traditional and systematic nomenclature for various forms of CS present in the ECM
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central protein core has covalently attached chondroitin sulfate gly-

cosaminoglycan (CS‐GAG) chains which extend in a brush‐like manner

perpendicular to the core protein. The CS‐GAG chains are composed

of alternating N‐acetylgalactosamine (GalNAc) and GlcA (Figure 2a).

These extensions can be sulfated at various positions, typically carbon

4 and/or carbon 6 of the GalNAc subunit and/or carbon 2 of the GlcA

subunit, which gives rise to multiple versions of chondroitin sulfate

(CS) shown in Figure 2b (Mikami & Kitagawa, 2013; Silbert &

Sugumaran, 2002). The CS chains vary in number, length, and pattern

of sulfation, and this has a significant effect on their functions

(Bandtlow & Zimmermann, 2000). The C‐terminal globular (G3)

domain allows for the binding of tenascins—typically, this is Tn‐R in

the PNNs. As a trimeric modular glycoprotein, Tn‐R serves to

strengthen the overall macromolecular structure of PNNs through

binding multiple lecticans (Lundell et al., 2004; Figure 1). Visualisation

of the PNNs is commonly done using the lectin Wisteria floribunda

agglutinin (WFA) staining; however, it is still unclear which component

of the nets WFA binds to (Härtig, Brauer, & Brückner, 1992).
3 | THE ROLE OF PNNS IN PLASTICITY AND
MEMORY

3.1 | Plasticity

Plasticity is the ability of neurons to reorganise and reassemble synap-

tic connectivity in response to experiences and external stimuli and is

governed by a wide range of interrelated factors. It was previously

thought that neurons and glial cells which constitute much of the brain

volume were the exclusive directors of this adaptability. However,

ECM molecules which form the vital links between these cells are

increasingly becoming associated with neuroplasticity. As the critical

period closes for plasticity, PNNs rapidly form predominantly around

parvalbumin‐positive (PV+) GABAergic interneurons. This creates a

lattice structure which blocks the formation of new synapses (Deepa

et al., 2006; Kosaka & Heizmann, 1989; Tsien, 2013).

These lattice structures are dynamic, being turned over throughout

the lifetime of the neuron, regulating communication, and acting as

the gateway to the neuron. Several recent studies have provided

insight into the multifaceted role PNNs play in controlling plasticity.

The PNNs act not only as a physical barrier between the neurons

and the rest of the ECM but also as a mediator in the binding and
movement of critical binding proteins and membrane bound neuronal

proteins, respectively (Dick et al., 2013; Frischknecht et al., 2009).

The PNNs can be considered to act as a cationic buffer for the

neurons, as they possess an unusually high negative charge density

(Morawski et al., 2015). This provides protection from oxidative stress

caused by cations such as Fe3+ (Härtig et al., 1999; Suttkus et al.,

2014). Additionally, the repulsive axon guidance molecule semaphorin

3A (Sema3A) specifically binds to the glycosaminoglycan (GAG)

chondroitin‐4,6‐sulfate (C4,6S), which is enriched in the PNNs. When

bound to PNNs, Sema3A enhances the inhibition of PNNs to neuronal

growth and is involved in restricting plasticity (Boggio et al., 2019;

Dick et al., 2013). Moreover, PNNs limit the lateral movement of

AMPA‐type glutamate receptors on the cell surface. Removing PNNs

allows these receptors to diffuse laterally, leading to an increased

paired‐pulse ratio, a readout of short‐term synaptic plasticity and is

recorded using whole‐cell patch clamp. This suggests that suppressing

membrane protein mobility is another way in which PNNs inhibit

synaptic plasticity (Frischknecht et al., 2009).

The important role PNNs play in regulating plasticity has been

shown using several animal models with focus on the visual cortex.

The first evidence of this was seen in dark‐rearing experiments using

cats and mice. The visual cortex critical period was extended through

enhanced plasticity as a result of attenuating the expression of CSPGs

and stalling PNN formation (Lander, Kind, Maleski, & Hockfield, 1997;

Pizzorusso et al., 2002). Additionally, PNN formation is hindered by

reducing overall neuronal activity and thus providing a potential

continuation of the critical period. Using organotypic mouse brain slices

and non‐specific suppression of neuronal activity by blocking voltage‐

gated sodium channels, Reimers, Hartlage‐Rübsamen, Brückner, and

Roßner (2007) were able to postpone the development of PNNs and

maintain synaptic plasticity. Moreover, through a knockout (KO) mouse

model, the hapln1 gene which encodes the vital PNN component

hyaluronan and proteoglycan link protein 1 (Hapln1), the development

of PNNs can be attenuated, leading to the adult mice visual and

somatosensory systems plasticity being greatly enhanced to levels that

are comparable to juvenile animals (Carulli et al., 2010). Finally, adult

rats suffering from amblyopia, a visual acuity disorder developed during

the critical period for vision, were provided with a stimuli‐enriched

environment resulting in the reduction of the density of the PNNs as

well as the restoration of visual acuity and ocular dominance (Sale

et al., 2007). These few examples provide compelling evidence for the

close relationship thought to exist between PNNs and brain plasticity.

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9902
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9902
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=75
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3.2 | Memory

Synaptic plasticity has a long history of being linked to the encoding,

storage, and retrieval of information in the form of memory (Hebb,

1949; Jones, 1994; Martin, Grimwood, & Morris, 2000). As a result,

PNNs have been implicated in controlling various forms of memory.

Recently, it has been reported that digestion of the PNNs wrapped

around neurons in the secondary visual cortex (V2L) interrupts the recall

of long‐term fear memory in rats. In contrast, more recent fear memory

was undisturbed by the same change to the ECM (Thompson et al.,

2017). Several studies prior to this work also showed similar remote fear

memory recall impairmentwhen PNNswere disrupted in various regions

of the brain (Gogolla, Caroni, Lüthi, & Herry, 2009; Hylin, Orsi, Moore, &

Dash, 2013). This suggests that PNNs stabilise existing synaptic connec-

tions and block the formation of new synapses between these neurons.

PNNs in the perirhinal cortex have also been shown to affect a

different form of memory known as object recognition (OR) memory

in mice. Two mouse models with Tau pathology showing significant

impairment in OR memory were injected with chondroitinase

ABC (ChABC) at the site of the perirhinal cortex, in order to enzymi-

cally digest the PNNs present. One week after treatment, theTau mice

demonstrated similar levels of OR memory and synaptic transmission

to control animals, suggesting that ChABC may be effective in restor-

ing memory loss in neurodegenerative disorders such as AD (Yang

et al., 2015). A different study sought to genetically attenuate PNNs

and investigate the effects this had on long‐term OR memory. Using

the same adult hapln1 KO mouse model used by Carulli and colleagues

to investigate the effects of PNN removal on plasticity, OR memory

was greatly enhanced in the absence of PNNs (Romberg et al.,

2013). Furthermore, both perirhinal basal synaptic transmission and
FIGURE 3 Summary of current methods for modulating PNNs
long‐term depression were measured, following on from the notion

that these are the core physiological mechanisms underpinning long‐

term OR memory. These parameters were enhanced by the removal

of PNNs (Romberg et al., 2013).

This evidence inevitably guides research towards novel methods

of altering the PNNs to enhance plasticity for memory‐related

deficiencies. As previously mentioned, the most telling and disruptive

symptom of AD is a loss of memory. Modulation of the PNNs

may provide improvements to impaired neuronal connectivity seen in

AD patients' brains, altogether bypassing the pathologies of AD.
4 | MODULATION OF THE PNNS

4.1 | Removing PNNs

Several molecular structures including HA backbone, link proteins

such as Hapln1 and Tn‐R, and the major CSPGs are essential for main-

taining the structure and function of the PNNs (Kwok et al., 2010;

Suttkus et al., 2014). As these components are exposed to the diffuse

ECM, many extracellular macromolecules can recognise and bind to

specific molecular sequences (Figure 3). An example of this is the bac-

terial enzyme ChABC which can indiscriminately recognise and digest

CS‐GAG chains present on the CSPGs into disaccharides and partially

digest HA (Saito & Yamagata, 1968). Without the CS and HA chains,

the structural integrity of the CSPG is compromised resulting in a

complete collapse of the PNN structure into diffuse ECM. ChABC

has been used extensively in a range of experiments to investigate

the effects of PNN removal on various parameters and indications

including plasticity, memory, and spinal cord injury recovery (Bradbury
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et al., 2002; Kwok, Afshari, García‐Alías, & Fawcett, 2008; Pizzorusso

et al., 2002; Romberg et al., 2013).

Levels of the brain‐specific lectican BCAN were significantly ele-

vated in AD patients, contributing to a loss of synaptic plasticity

observed prior to neuronal cell death (Howell, Bailey, Cozart, Gannon,

& Gottschall, 2015). Aβ protein can directly interact with BCAN

in vitro, as well as disrupting the proteolytic cleavage mechanisms

involved in BCAN processing, potentially accentuating the inhibition

of synaptic plasticity (Ajmo et al., 2010; Howell et al., 2015). Injection

of ChABC into the hippocampus of 15‐month‐old double transgenic

APPswe/PS1dE9micewhich have greatly increased Aβ protein produc-

tion and severe synaptic deficits with age, removed the CS chains on

lecticans and the effects on Aβ plaques, was monitored. Interestingly,

the application of ChABC resulted in a significant reduction in Aβ bur-

den and an increase in synaptic density (Howell et al., 2015). These

results introduce the possibility of targeting perisynaptic lecticans as a

starting point for an AD therapy. The APPswe/PS1dE9 mice model

has also been used to demonstrate the up‐regulation of several ECM

proteins including Hapln1, NCAN, BCAN, and Tn‐R that coincides with

an early increase in synaptic Aβ levels, as well as LTP and contextual

memory impairment. Treatment of the ECM with ChABC was able to

reverse these adverse effects, suggesting that increasing ECM levels

contributes to early memory deficits in AD (Végh et al., 2014).

The relative sulfation patterns on CSPGs notably influence the

formation of PNNs and the effect they have on axon growth. During

development and maturation, the ratio of chondroitin‐4‐sulfate (C4S)

to chondroitin‐6‐sulfate (C6S) in the PNNs gradually increases

(Miyata, Komatsu, Yoshimura, Taya, & Kitagawa, 2012). This is due

to both the depletion of C6S over time and the increase in C4S during

progression into adulthood (Miyata et al., 2012). The change in

C4S/C6S ratio is partly the result of the change in activity of

both chondroitin 6‐sulfotransferase‐1 (C6ST1) and chondroitin

4‐sulfotransferase‐1 (C4ST1), Golgi‐resident enzymes which are

responsible for the sulfation of unsulfated chondroitin to the 6‐

sulfated and 4‐sulfated forms of chondroitin, respectively (Mikami &

Kitagawa, 2013; Silbert & Sugumaran, 2002). The changes in sulfation

observed during development continue into adulthood and aging

where C6S sulfation drops further (Foscarin, Raha‐Chowdhury,

Fawcett, & Kwok, 2017). C6S has been shown to be permissive to

axonal growth and regeneration (Kitagawa, Tsutsumi, Tone, &

Sugahara, 1997; Lin, Rosahl, Whiting, Fawcett, & Kwok, 2011). In con-

trast, C4S is thought to be the most inhibitory form of CS to axonal

growth and guidance (Deepa et al., 2006; Wang et al., 2008). The shift

in C4S/C6S ratio is crucial for successful PNN development and

restriction of axon growth during the closure of the critical period. If

C6S is up‐regulated by overexpression of C6ST1, then PNN formation

in the visual cortex is severely impaired and the mice are more plastic

(Miyata et al., 2012). On the contrary, reducing C6S level in c6st1 KO

mice shows a reduction in axonal regeneration after a CNS lesion (Lin

et al., 2011). An increase in C6S also surprisingly leads to an increase

in the proteolysis of ACAN by a disintegrin and metalloproteinase

domain with thrombospondin motif (ADAMTS) protease, further

disrupting PNN formation (Miyata & Kitagawa, 2016).
Besides using ChABC to digest PNNs, some studies have used hyal-

uronidase to specifically target HA chains and disrupt the entire PNN

(Frischknecht et al., 2009). Happel and colleagues injected hyaluronidase

into the auditory cortex of adult Mongolian gerbils and investigated the

effects this had on cognitive flexibility in reversal learning. They found

that removal of the PNN through this method improved the activity‐

dependent reorganisation of existing synaptic networks during reversal

learning and an overall increase in synaptic plasticity (Happel et al.,

2014). In some cases, ChABC and hyaluronidase have been used in com-

bination to eradicate all traces of the CS and HA in the ECM (Hylin et al.,

2013). Enzymic degradation using ChABC and hyaluronidase can be

considered a crude tool for modulating the ECM. In the context of

treating AD patients, using enzymes such as ChABC is not considered

practical for targeting the large volume of an adult brain (Fawcett,

2015). More discrete methods, such as specifically targeting and altering

the molecular composition of PNNs, must be used if fine modifications

to neuronal plasticity are required (van't Spijker & Kwok, 2017).

Several animal KO and transgenic mouse models have been devel-

oped to prevent or reduce the formation of PNNs around neurons. As

mentioned previously, removing Hapln1 through gene deletion of

hapln1 has consistently resulted in the attenuation of PNNs (Carulli

et al., 2010; Czipri et al., 2003; Romberg et al., 2013). Other link pro-

teins that are found in the PNNs such as the brain link protein 2

(Bral2) have also been removed in KO mouse models to inhibit the

development of PNNs (Bekku et al., 2012). A useful alternative

approach to PNN degradation was shown through the overexpression

of C6S to disrupt the accrual of ACAN via c6st1 transgenic mice

(Miyata & Kitagawa, 2016; Miyata et al., 2012). KO mice lacking the

chondroitin sulfate N‐acetylgalactosaminyltransferase‐1 (CSGalNAcT‐

1) enzyme have been used as an alternative way to interrupt CSPG

production. Interestingly, these mice still formed structurally identifi-

able, albeit abnormal, PNNs (Yoshioka et al., 2017). KOs of the gene

encoding the trimeric Tn‐R have been conducted, resulting in the dis-

ruption (but not complete removal) of the PNNs. This was thought to

be due to the absence of two types of CSPGs (phosphacan and NCAN)

in the nets (Haunsoø et al., 2000; Suttkus et al., 2014).

There have been examples of multiple KO mice—notably, work by

Geissler et al. (2013) generated quadruple KO mice preventing the

expression of tenascin‐C, Tn‐R, BCAN, and NCAN and causing severely

shrunken PNNs to form. Recently, a novel animal model was developed

in which the levels of ACAN were reduced in vivo through targeted

ACAN gene deletion. This attenuated the PNNs and was shown to

result in reinstating of the juvenile ocular dominance plasticity, as well

as providing enhancements in OR memory (Rowlands et al., 2018).

Despite the numerous successes seen with transgenic animals in

removing PNNs and enhancing plasticity, this method of modulating

PNNs has both practical and moral hurdles preventing it from being a

viable treatment for neurodegenerative disorders in patients at present.

4.2 | Blocking PNN action

An alternative route to PNN modulation is targeting the interaction of

various diffuse ECM‐affiliated molecules to the core components
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of the PNNs. For example, as discussed previously, Sema3A has

been shown to bind specifically to certain CS moieties on CSPGs.

This includes chondroitin‐4,6‐sulfate(C4,6S) but not chondroitin‐2,6‐

sulfate (C2,6S), despite both forms being disulfated chondroitins,

suggesting that Sema3A binding has sulfation pattern specificity rather

than overall sulfation quantity specificity (Corredor et al., 2016; Dick

et al., 2013). As a chemorepulsive axon guidance molecule, the pres-

ence of Sema3A in the PNNs potentiates PNN inhibition on neurite

outgrowth and new synaptic connections (Dick et al., 2013). Low

MW compounds can be used to block Sema3A and controllably coun-

teract its inhibitory nature in PNNs on axonal growth. For instance, a

selective Sema3A inhibitor, SM‐216289, was identified from a fungal

strain fermentation broth and shown to regenerate or preserve injured

axons both in vitro and in vivo (Kaneko et al., 2006). Several Sema3A

C‐terminus‐derived basic peptides have also been reported to inter-

rupt the Sema3A–CS‐GAG interactions (Corredor et al., 2016). A

recent paper by Boggio et al. (2019) used adeno‐associated virus to

overexpress the soluble fragment of neuropilin 1, the receptor of

Sema3A, resulting in an enhanced ocular dominance plasticity in the

visual cortex. Additionally, anti‐Sema3A monoclonal antibodies have

been developed (Yamashita et al., 2015); while not being designed to

specifically target Sema3A in the PNNs, these antibodies could be

probed for their relevance in blocking Sema3A binding to PNNs both

in vitro and in vivo.

Another PNN binding protein is orthodenticle homeobox 2 (Otx2).

This transcription factor also binds to C4,6S in the PNNs of the PV+

interneurons, is then internalised, and modulates gene expression for

the maturation of PV+ neurons. It plays an important role in the

commencement and termination of the critical period for plasticity

(Bernard & Prochiantz, 2016). Moreover, it is thought that Otx2 can

facilitate its own uptake in a positive feedback loop by binding to

increasingly thriving PNNs (Beurdeley et al., 2012). The transfer of

Otx2 into the PV+ interneurons can be blocked by various peptide

and CS mimetics and thus reduce PNNs surrounding the cells. A

sequence of amino acids which traverses the N‐terminal domain and

homeodomain of Otx2 was described as being a putative GAG binding

motif (Beurdeley et al., 2012). This motif contains an RK doublet pep-

tide sequence which has proved to be crucial for CS‐GAG binding. An

RK peptide was created, and this peptide was used to outcompete

binding of an Otx2 to PNNs in cortical cells and thus prevent the

internalisation of Otx2 in vitro and in vivo (Beurdeley et al., 2012).

Additionally, the RK doublet interacted specifically with C2,6S and

C4,6S, both of which contain carbon 6 sulfation (Beurdeley et al.,

2012). This again highlights the importance of sulfation patterns on

CSPGs for coordination of the ECM and specifically the PNNs. An

alternative approach to blocking Otx2–CS‐GAG interactions has been

explored using CS analogues (Despras et al., 2013). The preparation of

hexasaccharide C4,6S analogues from lactose was first described and

then followed up by in vitro and in vivo studies to assess whether they

successfully mimicked natural C4,6S. Using a gel shift assay, C4,6S

analogues were shown to bind to Otx2, presumably at the RK doublet

peptide sequence (Despras et al., 2013). Additionally, infusion of a par-

ticular hexasaccharide C4,6S analogue reduced the Otx2 internalised
by PV+ interneurons as well as slightly inhibiting WFA staining, sug-

gesting disruption of the PNNs around these cells (Despras et al.,

2013). Lastly, inducing point mutations in the RK doublet motif of

the Otx2 gene in knock‐in mice, the localisation and accumulation of

Otx2 in the PV+ were disrupted (Lee et al., 2017). Furthermore, this

led to a delay in PNN expression and the extension of the critical

period for plasticity (Lee et al., 2017).

Recently, antibodies that bind to and block the brush‐like CS

chains on PGs in PNNs have been explored in vivo (Figure 3). The

Cat316 antibody can specifically recognise C4S, blocking the usual

inhibitory effect on axonal growth associated with C4S on CSPGs

(Yang et al., 2017). It was also noted that the binding of Cat316 to

the PNNs moderately prevented the binding of Sema3A to the PNNs,

accentuating the constructive effect on axon growth (Yang et al.,

2017). Despite restoring memory function in mice with Tauopathies,

this approach did not significantly alter disease progression. Addition-

ally, there remains the necessity to inject Cat316 directly into the

brain. In order to address this, the authors suggest that a better

blocking agent should be developed that would be able to cross the

blood brain barrier, if this approach is to be used in a therapeutic set-

ting in the future for neurodegenerative diseases such as AD (Yang

et al., 2017).

There are several known membrane‐bound cell surface CSPG

receptors that contribute to the inhibitory nature of CSPGs and control

of neural plasticity (Miao, Ye, & Zhang, 2014). These include the recep-

tor protein tyrosine phosphatase σ (PTPσ or RTP Type S) and the leu-

kocyte common antigen‐related phosphatase (LAR or RTP Type F; l;

Fisher et al., 2011; Shen et al., 2009), as well as the Nogo receptors,

NgR1 and NgR3 (Dickendesher et al., 2012), which have all been

reported to have high binding affinity for CSPGs. Axonal growth inhi-

bition from CSPGs was shown to be reduced when a double knockout

of the PTPσ gene was carried out in neuronal cell culture (Shen et al.,

2009). Similarly, dorsal root ganglion (DRG) neurons derived from

LAR KO mice do not suffer a restriction in neurite outgrowth in the

presence of CSPG substrate (Fisher et al., 2011) indicating the impor-

tance of the LAR–CSPG interaction in plasticity. To further confirm

these results, two sequence‐targeting peptides, extracellular LAR pep-

tide and intracellular LAR peptide, were used to treat CSPG substrate

cultured DRG neurons resulting in an increase in neurite length as

expected (Fisher et al., 2011). More recently, a membrane‐permeable

peptide mimetic was developed and utilised, binding to PTPσ and

preventing the interaction with CSPGs (Lang et al., 2015). The peptide

mimetic known as intracellular sigma peptide represented the highly

conserved wedge domain on PTPσ and treatment of adult sensory

neurons with intracellular sigma peptide allowed axons to sprout and

cross through a CSPG gradient (Lang et al., 2015). To assess the signif-

icance of the Nogo receptors on axon regeneration, several Nogo

receptor KO mice were generated and studied (Dickendesher et al.,

2012). Following an optic nerve crush injury, the regeneration of reti-

nal ganglion cell axons was assessed in the various mutants. Triple

mutant NgR1−/−; NgR2−/−; NgR3−/− mice and double mutant NgR1−/−;

NgR3−/− mice showed improved axon regeneration when compared

to wild‐type mice (Dickendesher et al., 2012).

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2998
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=333#1866
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=333#1866
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1855
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1855
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5 | FUTURE DIRECTIONS

The extensive and thorough research already carried out and

presented here has clearly demonstrated the promise in targeting

PNNs for the treatment of several neurological conditions. Much of

the current methodology for modulating PNNs involves the use of

macromolecules such as digestive enzymes or antibodies due to the

relative ease of use and production in the early stages of therapy

development. Additionally, genetic modifications such as KO models

are frequently used to abolish or attenuate PNNs. These methods

are very useful to establish the proof of concept that modulating

PNNs can have a significant effect on plasticity and memory; however,

they are not easy to translate into clinically relevant therapies.

Commonly, low MW compounds are developed to try and mimic the

effects that macromolecules and/or KO models have on phenotype

(Samanen, 2013). There are considerable benefits to using low MW

compounds over other forms of therapy such as biologics and genetic

modifications. One of the main advantages, especially in the early

stages of development, is the ease of optimisation. Making subtle

adjustments to biologics to improve the effectiveness is seldom

successful due to the size and complexity of these species, whereas

modifying low MW compounds can easily be achieved through chem-

ical synthesis; guidance by methods such as structure‐based drug

design can aid in improving efficacy of the drug (Samanen, 2013).

Additionally, low MW compounds are usually orally administered

which is commonly preferred over the parenteral administration

required for biologics due to their poorly defined and adverse physio-

chemical properties (Samanen, 2013).

One of the most obvious targets for the development of low MW

compounds would be the transmembrane enzyme HAS. Inhibiting

HAS would prevent the synthesis of the HA potentially resulting in

the breakdown of PNNs and disrupting the ECM overall. HA synthesis

has been successfully targeted before on numerous occasions, albeit

in alternative indications to AD (Nagy et al., 2015). The commercially

available drug 4‐methylumbelliferone has frequently been used for

this purpose, due to its ability to deplete one of the substrates (uridine

diphosphate GlcA) required for HA synthesis (Nagy et al., 2015).

The fact that HA is found throughout all ECMs and not just in neural

ECMs and around the PNNs, coupled with the promiscuity of

4‐methylumbelliferone, means that targeted treatment to specifically

disrupt HA synthesis in the PNNs may be a challenge (Garg & Hales,

2004; Nagy et al., 2015).

A promising target for intervention with low MW compounds on

PNNs and axonal growth may be the CSPGs. More specifically,

preventing the biosynthesis of these structures by targeting the

sulfotransferase enzymes that provide the CS chains has been shown

to be an effective method to renew axonal growth. In recent studies,

the Golgi‐resident N‐acetylgalactosamine 4‐sulfate 6‐sulfotransferase

(GALNAC4S‐6ST) was shown to be modestly inhibited by a low

MW compound that had been optimised using a high throughput

screening and medicinal chemistry (Cheung et al., 2017). The

most potent compound decreased the overall levels of C4,6S

and overall sulfation in vitro as well as reversing the inhibition of
axonal growth caused by CSPGs in DRG neurons (Cheung et al.,

2017). Despite being selective towards membrane‐bound GAG

sulfotransferases compared to cytosolic sulfotransferases, the

optimised compound was indiscriminately inhibitory towards several

membrane bound GAG sulfotransferases including the closely related

C4ST1 (Cheung et al., 2017). This observation suggests that the rever-

sal of inhibited axonal growth seen in DRG neurons could be due to

pan‐sulfotransferase inhibition. Clearly, this highlights the potential

hurdles involved in achieving drug–protein interaction specificity,

which may pose a challenge for the further development of low MW

sulfotransferase inhibitors.

There are numerous other components in the PNNs that can

potentially be targeted by low MW compounds, including the CNS‐

exclusive tenascin, TN‐R, and the HA–CSPG bridging link proteins.

Additionally, it can be envisaged that interruption of the binding of

the known PNN binding molecules Sema3A and Otx2 may provide

success. Further research into the druggability of these proteins is

required before an inhibitor can be realised. Other therapeutic

avenues may be pursued. However, given the benefits of developing

a low MW modulator, as previously mentioned, coupled with the pit-

falls frequently encountered with these other modalities, discovery of

a low MW drug seems to provide the most promise going forward.
6 | CONCLUSIONS

Increasingly, the emerging evidence suggests that PNNs have a vital

role to play in controlling plasticity, regulating axonal growth and

regeneration and memory storage during development and throughout

adulthood. This has obvious implications in several neurological dis-

eases, including the many forms of dementia, in which the underlying

mechanisms involved in disease progression are not fully understood.

The molecular make‐up and function of the PNNs are increasingly

being appreciated, when assessing the scientific literature currently

available. This understanding has been used to target and disrupt the

PNNs using numerous methods to increase neuronal plasticity. This

includes enzymic degradation of the nets, genetic therapy to prevent

PNN formation, and blocking of PNN action using lowMWcompounds

and/or biomolecules. The abundance of potential protein targets in the

PNNs should inspire the development of novel therapeutic agents with

a focus on utilising the ease of discovery and optimisation of low MW

compounds to inhibit PNNs, in order to reactivate plasticity and restore

cognition in neurological disorders such as AD.
6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in

the Concise Guide to PHARMACOLOGY 2017/18 (Alexander,

Fabbro et al., 2017; Alexander, Kelly et al., 2017; Alexander, Peters

et al., 2017).

http://www.guidetopharmacology.org
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