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Abstract

We investigate information geometry in a toy model of self-organised shear flows, where a bi-

modal PDF of x with two peaks signifying the formation of mean shear gradients is induced by a

finite memory time γ−1 of a stochastic forcing f . We calculate time-dependent Probability Density

Functions (PDFs) for different values of the correlation time γ−1 and amplitude D of the stochastic

forcing, and identify the parameter space for unimodal and bimodal stationary PDFs. By com-

paring results with those obtained under the Uniform Coloured Noise Approximation (UCNA)

in Jacquet, Kim & Hollerbach (Entropy 20, 613, 2018), we find that UCNA tends to favor the

formation of a bimodal PDF of x for given parameter values γ−1 and D. We map out attractor

structure associated with unimodal and bimodal PDFs of x by measuring the total information

length L∞ = L(t → ∞) against the location x0 of a narrow initial PDF of x. Here L(t) represents

the total number of statistically different states that a system passes through in time. We examine

the validity of the UCNA from the perspective of information change and show how to fine-tune

an initial joint PDF of x and f to achieve a better agreement with UCNA results.
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I. INTRODUCTION

Stochastic noise is ubiquitous and plays a crucial role in the evolution of many different

systems (e.g. [1–4]). For example, in nonlinear systems, it can change the stability by making

a stable equilibrium point unstable (or vice versa) or by inducing a stochastic resonance [5],

while in a linear system, it can also increase the linear growth rate [6]. The effect of a

stochastic noise on stability is analogous to the Reynolds stress in fluid mechanics, whereby

the quadratic interaction of small-scale fluctuations affects the evolution of a large-scale

mean field (e.g. [7]), leading to the formation of large-scale structures such as shear flows,

vortices, jets, etc. The change in the stability of a nonlinear system can be inferred from a

stationary Probability Density Function (PDF), such as the transition from a unimodal to

bimodal PDF or vice versa. In this paper, we consider the case where a stationary PDF that

is unimodal for δ-correlated stochastic noise becomes bimodal when the noise has a finite

correlation time.

This issue was addressed in [8–10] and references therein. In particular, [9] proposed a 1-

dimensional (1-D) continuous model of a self-organised shear flow [9] with a cubic nonlinear

diffusion by extending a prototypical sand-pile model which evolves in discrete time.

Specifically, [9] considered the formation of a shear flow driven by a short-

correlated (white-noise) random forcing, where shear gradient increases until

it becomes unstable according to the stability criterion such as the Richardson

criterion R = (A/N)2 > Rc = (Ac/N)2 = 1/4 in a strongly stratified medium. Here,

N is the buoyancy frequency due to the restoring force (buoyancy), and A is

the shear gradient with the critical value Ac. Fluctuations on small scales (or

internal gravity waves) amplify a shear gradient and thus act as a forcing until

the gradient exceeds its critical value Ac. When unstable, the shear flow then

relaxes its gradient and generates small-scale fluctuations, and this relaxation

was modelled by a nonlinear (cubic) diffusion; the shear gradient then grows

again when small-scale turbulence becomes sufficiently strong to drive a shear

flow. The same cycle repeats itself, exhibiting a continuous growth and damping.

This highlights that a self-organised state is never stationary in time, but involves

persistent fluctuations. For a short-correlated (white-noise) stochastic forcing,

a stationary PDF was shown to be unimodal, signifying a zero value of a mean

2



shear gradient.

[10] extended [9] to include a finite-correlation time τ of the stochastic noise,

and solved a stochastic differential equation by 4th-order stochastic Runga-

Kutta method in 1D, showing the transition from a unimodal stationary PDF to

a bimodal stationary PDF when the correlation time of a random forcing exceeds

a critical value. A mean shear gradient is zero for a unimodal PDF, while its

non-zero value represents the critical shear gradient around which a shear gra-

dient continuously grows and decays through the interaction with fluctuations.

The transition from a unimodal to bimodal PDF represents the formation of a

non-zero mean shear gradient, or the formation of jets. Similar results were also

reproduced in a simpler 0-D model with a cubic damping and also in a 2-D fluid

simulation. In particular, 2D results showed that a shear flow evolves through

the competition between its growth and damping due to a localized instabil-

ity, maintaining a stationary PDF, and that the bimodal PDF results from a

self-organising shear flow with linear profile.

In this paper, we extend [9, 10] to investigate the time-evolution of PDFs to elucidate

the effects of different initial conditions and correlation times. A particular interest will be

to understand the information change in the relaxation of an initial PDF to a stationary

PDF by using the information length L [11–21]. In the case of a stochastic variable x and

time-dependent PDF p(x, t), L is defined by

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

dt1. (1)

L(t) measures the cumulative change in p(x, t), or the total number of statistically dis-

tinguishable states between p(x, 0) and p(x, t), and thus provides a convenient means of

measuring the distance between p(x, 0) and p(x, t) continuously in time for a given initial

condition p(x, 0). In contrast to other statistical measures such as entropy, which depends

only on the PDF at a single instant in time, L(t) depends on all the intermediate states that

a system evolves through between time 0 and t, and is thus a Lagrangian quantity.

[11–22] utilized this property to map out the attractor structure by consid-

ering a narrow initial PDF at a different peak position x0 and by measuring L∞

against x0. In particular, L∞ captured the effect of different deterministic forces

through the scaling of L∞ with the position of a narrow initial PDF. For a stable
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equilibrium, the minimum value of L∞ occurs at the equilibrium point. For a

chaotic attractor, L∞ – the distance between x0 and the final chaotic attractor

– was shown to depend sensitively on x0, since a small change in the initial con-

dition x0 causes a large difference in a path that a system evolves through and

thus L∞. This is a good illustration of a chaotic equilibrium and is quite similar

to the sensitive dependence of the Lyapunov exponent on the initial condition.

That is, our L∞ provides a new methodology to test chaos and a diagnostic for

understanding dynamical systems.

In this paper, to facilitate our analysis and numerical simulations, we utilise a 0-D model

with a cubic damping, and calculate time-dependent PDFs which depend on two variables

x and f . For two variables, Eq. (1) generalises to

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

√

∫∫

dxdf
1

p(x, f, t1)

[

∂p(x, f, t1)

∂t1

]2

dt1. (2)

We can then calculate L(t) either from Eq. (2), or from Eq. (1) by using a marginal PDF

P (x, t) =
∫

p(x, f, t) df . We will compare the two versions of L∞ with one another, as

well as with L∞ from a 1-Variable (1-V) approximation to the full 2-Variable (2-V) model

(see Section 2). The remainder of this paper is organised as follows. We introduce our

model and discuss statistical property in Section II. In Section III we discuss

1-V and 2-V models. Sections IV and V present the analysis for stationary and

time-dependent PDFs, respectively. Conclusion is provided in Section VI.

II. MODEL AND STATISTICAL PROPERTIES

As noted in the introduction, given the universality of self-organisation in 0-D, 1-D and

2-D models, and the challenge in computation of time-dependent PDFs, we utilise a 0-D

model to facilitate the calculation of time-dependent PDFs and scan over different param-

eter values. Our 0-D model is based on the cubic process for a stochastic variable x (e.g.

representing a shear gradient), governed by the following Langevin equations

∂tx = −(ax+ bx3) + f ≡ −g(x) + f, (3)

∂tf = −γf + ξ. (4)
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Here, g(x) = ax+bx3, where a and b are constants. We are interested in the case where both

are positive, in which case both of them can be rescaled to one without loss of generality. ξ

is a δ-correlated stochastic noise (〈ξ〉 = 0) with the correlation function

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (5)

where the angular brackets represent the average over ξ.

If f were δ-correlated, Eq. (3) would have only one equilibrium point x = 0 (when

f = 0), leading to a unimodal stationary PDF p(x, t → ∞) = p∞(x) with a peak at x = 0.

A bimodal stationary PDF can only form due to a finite correlation time of f . Our model

given by Eqs. (3)-(4) is thus fundamentally different from a bistable model considered in [8]

where a bimodal PDF can form due to bistability.

A. Statistical property of f

It is worth noting that f in Eq. (4) evolves independently of x, and is simply the Ornstein-

Uhlenbeck process [2], with solution

f(t) = f(0)e−γt +

∫ t

0

dt1e
−γ(t−t1)ξ(t1), (6)

where f(0) = f(t = 0). Since f is a Gaussian process, a time-dependent marginal PDF of

f , p̃(f, t) =
∫

p(x, f, t) dx, is readily obtained from Eq. (6) as

p̃(f, t) =

√

α

π
e−α(f−〈f〉)2 , (7)

where

〈f(t)〉 = 〈f(0)〉e−γt, (8)

1

2α(t)
=

e−2γt

2α(0)
+

D(1− e−2γt)

γ
. (9)

Here, α0 = α(t = 0); α is the inverse temperature of f related to its variance as 〈(δf(t))2)〉 =

1
2α(t)

, where δf(t) = f(t) − 〈f(t)〉. In the limit of t → ∞, α → γ

2D
and 〈f〉 → 0, Eq. (7)

giving the stationary PDF

p̃(f) ∝ exp[−γf 2/2D]. (10)
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Also, from Eqs. (5) and (6), we can show

〈δf(t)δf(t′)〉 ∼

∫ t

0

dt1

∫ t′

0

dt2e
−γ(t−t1)e−γ(t′−t2)〈ξ(t1)ξ(t2)〉

=
D

γ

[

e−γ(t′−t) − e−γ(t+t′)
]

≈
D

γ
e−γ|t′−t|, (11)

where we assumed t′ > t and ignored the contribution from the terms involving e−γ(t′+t).

Thus, f in Eq. (4) has the correlation time τ ∼ γ−1, whose finite value is crucial for the

formation of a bimodal PDF in x. A δ-correlated f is obtained in the limit γ → ∞. We can

also show that f and x are correlated for t > 0 even when they are uncorrelated initially

at t = 0. To this end, we let x(t) = 〈x〉 + δx and f(t) = 〈f〉 + δf in Eqs. (3) and (6), and

subtract the mean values to obtain

∂tδx = −
dg(x)

dx

∣

∣

∣

∣

x=〈x〉

δx+ δf, (12)

δf(t) = δf(0)e−γt +

∫ t

0

dt1e
−γ(t−t1)ξ(t1), (13)

where g(x) = ax+bx3 (a = b = 1). For a sufficiently small time, we approximate dg(x)
dx

|x=〈x〉 ∼

dg(x)
dx

|x0
≡ Γ where x0 = 〈x(t = 0)〉 and obtain a solution to Eq. (12) as

δx(t) = δx(0)e−Γt +

∫ t

0

dt1e
−Γ(t−t1)δf(t1)

= δx(0)e−Γt +
δf(0)

Γ− γ

[

e−γt − e−Γt
]

+

∫ t

0

dt2 ξ(t2)
[

e−γ(t−t2) − e−Γ(t−t2)
]

. (14)

Performing some algebra from Eqs. (13)-(14) and (5) and using 〈δf(0)δx(0)〉 = 0, we find

〈δf(t)δx(t)〉 =
〈(δf(0))2〉

Γ− γ

[

e−2γt − e−(Γ+γ)t
]

+
2D

Γ− γ

[

1

2γ

(

1− e−2γt
)

−
1− e−(γ+Γ)t

Γ + γ

]

. (15)

Eq. (15) is non-zero for t > 0 unless Γ = γ, showing that δf and δx are correlated.

III. 1-VARIABLE (1-V) AND 2-VARIABLE (2-V) MODELS

The set of Eqs. (3)-(4) give a joint PDF p(x, f, t) for the two variables (x, f), which

satisfies the following Fokker-Planck equation [2]

∂

∂t
p(x, f, t) =

∂

∂x
[(g(x)− f)p(x, f, t)] +

∂

∂f
[γfp(x, f, t)] +D

∂2

∂f 2
p(x, f, t). (16)

Just as with the bistable model in [8], Eq. (16), or equivalently Eqs. (3)-(4), does not satisfy

detailed balance, so it is impossible to find an analytical stationary solution in a closed
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form. To gain a key insight, our previous work [22] utilised the Uniform Coloured Noise

Approximation (UCNA) [23], and performed thorough parameter studies of time-dependent

PDFs of one variable x, and L(t) calculated from Eq. (1). As noted in [23], UCNA

works well in the limit where the correlation time γ−1 is either small or large in

general. Specifically, for our g(x) = ax + bx3 in Eq. (3), the validity of UCNA is

given by the effective damping factor Γ [see Eq. (3) in [23]]

Γ = γ
1

2 + γ− 1

2∂xg(x) → ∞. (17)

Using ∂xg(x) = a+ 3bx2 > 0 (recall a, b are positive constants) in Eq. (17), we can

see that UCNA is a good approximation as γ → 0, γ → ∞, or x → ∞. This will

be observed later in Figure 1. As it is of interest to compare the results from our

2-Variable model with the approximated 1-Variable model in [22], we summarise the main

equations for the 1-V model with UCNA in the following subsection.

A. 1-Variable (1-V) Model with UCNA

In order to compare our results in this paper with those in [22], it is useful to use a

different variable, say y, instead of x for the 1-V model in [22]. Thus, by replacing x by y

in Eq. (3), UCNA reduces Eqs. (3)-(4) to

∂ty = −
γg

G
+

1

G
ξ, (18)

where G = ∂yg(y) + γ and g(y) = ay + by3. The corresponding Fokker-Planck equation is

given by

∂

∂t
p(y, t) =

∂

∂y

[

γg

G
p(y, t)

]

+D
∂

∂y

[

1

G

∂

∂y

(

1

G
p(y, t)

)

]

. (19)

Note that we use the Stratonovich calculus [2–4, 24], which recovers the limit of a δ-correlated

forcing from a finite-time correlated forcing [24].

Eq. (19) permitted us to find an exact stationary PDF and to perform a thorough

study on time-dependent PDFs and L by using a relatively narrow initial PDF p(y, 0) ∝

exp[−(y−y0)
2/10−3] with the initial mean value y0. In particular, we investigated the infor-

mation change in these processes and measured L∞ for different y0 to map out the attractor

structure. In the context of a shear flow, y0 represents the mean value of an initial shear

gradient. For a unimodal stationary PDF, the mean shear gradient decreases to zero in the
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long time limit; for a bimodal stationary PDF with a peak ±y∗, the case of y0 > y∗ models

the relaxation of an initial super-critical gradient y0 to the critical value y∗, and the case of

y0 < y∗ models the build-up of the gradient from a subcritical initial value to the critical

value y∗. This led us to identify the difference between the relaxation and build-up of shear

gradient in view of information change.

B. 2-Variable (2-V) Model

Returning to the Fokker-Planck equation (16), there are several aspects we wish to con-

sider. First, what do the stationary solutions look like, for which parameter values γ and D

are they unimodal versus bimodal, and how do these results compare with the 1-V UCNA

model [22]?

Next, to study the equivalent of the L∞ versus y0 results referred to above, we must

choose an initial condition p(x, f, 0). The obvious choice for the x-dependence is exp[−(x−

x0)
2/10−3], analogous to the initial condition in [22]. The ‘correct’, i.e. most interesting,

choice for the f -dependence is less obvious, and we will in fact consider two different choices

below, motivated in part by the structure of the stationary solutions.

Another interesting aspect of the 2-V model are the two different versions of L(t), either

the full Eq. (2) or the reduced Eq. (1). Since Eq. (1) treats f as an effectively hidden,

unobservable variable, comparing the results between (1) and (2) could elucidate some of

the consequences of using incomplete data (i.e. only x) due to the inability of measuring

certain variables. Of particular interest is then the attractor structure inferred from either

or both versions of L∞ as a function of the initial position x0, again for two different choices

for the initial f -dependence.

The numerical solution of Eq. (16) is implemented by finite-differencing in x and f ,

and second-order Runge-Kutta timestepping, modified to treat the diffusive term D ∂2

∂f2p

implicitly. Because diffusion acts only in the f variable, it is possible to treat this term

implicitly while still preserving a tridiagonal structure to the timestepping equations. Grids

as fine as ∆x = 6 ·10−3 and ∆f = 8 ·10−3 were used, and timesteps as small as ∆t = 4 ·10−5.

These quantities were all varied to ensure properly resolved solutions.

Care must also be taken to ensure that the computational domain x ∈ [−xmax, xmax],

f ∈ [−fmax, fmax], with p = 0 enforced on the boundaries, is sufficiently large to be a good
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approximation to an infinite range for both x and f . Taking xmax = 3 was sufficient for

the values of x0 ∈ [0, 1.8] that we will consider. For fmax values up to 14 were required, for

reasons that will become clear once we see the structure of the stationary solutions.

A useful test to check whether xmax and fmax were taken to be sufficiently large is simply

to see how well the total probability
∫∫

p dxdf remains constant (=1). If a solution is

properly resolved, and the computational domain is sufficiently large, the total probability

is correctly conserved to within 10−5 or better.

Another useful check on both the resolutions and the box size comes from

integrating Eq. (16) in x. Recalling p̃(f, t) =
∫

p(x, f, t) dx, the integral of (16)

yields
∂

∂t
p̃ =

∂

∂f
(γfp̃) +D

∂2p̃

∂f 2
. (20)

And unlike the 2-dimensional (16), this has the exact analytic solution (7), being

just a 1-dimensional Ornstein-Uhlenbeck process. It is then straightforward to

convert a numerically computed p(x, f, t) to its corresponding p̃(f, t), and verify

that it agrees with the analytic expression, with agreement to within 10−5 for all

cases.

Finally, note that the stationary solution of Eq. (20) is readily shown to be Eq. (10).

In particular, we note that this is always unimodal in f , for all γ and D. The stationary

solutions can only be bimodal if we consider either the full p(x, f), or else the previously

introduced P (x) =
∫

p(x, f) df , as we will see in the following section.

IV. STATIONARY SOLUTIONS

Figure 1 shows the numerically computed stationary solutions for three combinations of

γ and D. For any given γ and D the final state is unique, and does not depend on the chosen

initial condition (provided only that it is properly normalised to have total probability equal

to one). The top row shows contours of the full 2-dimensional p(x, f); the bottom row shows

the integrated P (x). The bottom row also shows the equivalent 1-V UCNA solution [22] for

comparison.

For γ = 1, D = 0.2, the solution is strongly unimodal, as seen in either p(x, f) or P (x).

For γ = 0.6, D = 0.6, p(x, f) is very slightly bimodal, and P (x) has also just developed two

peaks. In contrast the equivalent P (x) in the UCNA model is already more strongly bimodal.
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Finally, for γ = 0.2, D = 1, both p(x, f) and P (x) are strongly bimodal. Therefore, for the

same parameter values of D and γ, 2-V model shows a weaker tendency for a bimodal PDF

compared with 1-V model. This is thought to be due to the fact that p̃(f) is always unimodal,

and the coupling between f and x through Eq. (15) tends to facilitate the formation of a

unimodal PDF in 2-V model. It is interesting to see that the difference between 1-V

and 2-V model becomes smaller as x increases, as noted in Section III. In Figure

2, we quantify the transition from unimodal to bimodal solutions as γ is decreased and/or

D is increased, by mapping out the boundary in the {γ,D} plane where it occurs.

FIG. 1: The top row shows contours of p(x, f); the bottom row shows P (x) in blue, and

the equivalent 1-V UCNA solution in red. The dotted red lines in the top row show the

curves f = g(x), around which the solutions must distribute themselves. Panels (a1,2) are

for γ = 1, D = 0.2, (b1,2) are for γ = 0.6, D = 0.6, and (c1,2) are for γ = 0.2, D = 1. The

corresponding contour intervals in the top row are 0.2, 0.06, and 0.05, respectively. Finally,

note how the box sizes increase in going from (a1) to (c1); the actual computational

domains were even larger, to ensure that p was sufficiently small near the boundaries.

Another interesting feature to note in Figure 1 is how the solutions are aligned along the

curve f = g(x) = x+x3. To understand this, we can refer to the original Langevin equation

(3), according to which ∂tx = 0 implies f = g(x). Alternatively, from the Fokker-Planck

equation (16), the stationary solutions must satisfy

0 =
∂

∂x
[(g(x)− f)p] +

∂

∂f
[γfp] +D

∂2

∂f 2
p. (21)
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Strongly unimodal

Strongly bimodal

FIG. 2: The dashed blue line shows the numerically computed boundary between regions

where P (x) is unimodal versus bimodal. The solid red line shows the analytic equivalent in

the 1-V UCNA model [22]. The green diamonds correspond to the three solutions shown in

Figure 1.

Integrating with respect to f , and using p → 0 as f → ±∞, this yields

d

dx

∫

(g(x)− f)p df = 0. (22)

That is, this integral does not depend on x. For x → ±∞ it must be 0 though, since p → 0

(and far more rapidly than g(x) diverges). The final result is therefore that the stationary

solutions must satisfy
∫

(g(x)− f)p df = 0. (23)

Together with the fact that p is strictly positive, this means that p must be symmetrically

distributed about the curve f = g(x), so that regions where f > g(x) can cancel regions

where f < g(x). Eq. (23) also provides another opportunity to test the numerics:

all solutions did indeed evolve so that the maximum over x of |
∫

(g(x) − f)p df |

decreased in time, and were run sufficiently long for this quantity to be less than

10−4.

V. TIME-DEPENDENT SOLUTIONS

As noted above, for time-dependent solutions a natural x-dependence of an initial con-

dition is exp[−(x − x0)
2/10−3], but the f -dependence is less obvious. Based on the results
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(20) and (10), one reasonable possibility would be exp[−γ(f − f0)
2/2D], with f0 = 〈f(0)〉

still to be decided. According to (9) the width of this Gaussian would remain unchanged,

and the peak would simply move toward its equilibrium position f = 0 as f0e
−γt (see Eq.

(8)). That is, if we chose f0 = 0, p̃ would not change at all, but would already be in its

final form (10). On the other hand, according to the results of Figure 1, and also Eq. (23),

if x0 6= 0, then perhaps f0 should be non-zero as well, and indeed f0 = g(x0) could be a

suitable choice. Another quite similar option is

f0 = g(x0)

[

1−
γ

g′(x0) + γ

]

, (24)

where g′(x0) =
dg

dx

∣

∣

x=x0

. From the original Langevin equations (3) and (18), this choice yields

∂t〈x〉 = ∂t〈y〉 at t = 0, and thereby offers perhaps the most direct comparison between the

2-V model here and the previous 1-V model. We therefore chose our initial conditions to be

p(x, f, 0) ∝ exp

[

−
(x− x0)

2

10−3
−

γ(f − f0)
2

2D

]

, (25)

with f0 either zero, or given by (24).

A. PDF evolution

Figures 3 and 4 show examples of how the solutions evolve when starting from the two

choices of initial conditions f0 = 0 and f0 6= 0, with x0 = 1.2 in both cases. Since γ = 0.5

and D = 0.5 are the same for both figures, they evolve to the same final equilibrium, similar

to those in Figure 1. Panels (a-e) show contour plots of p(x, f, t) at times t = 0, 0.15, 0.3, 1.5

and 3, respectively, with contour intervals 0.5, 0.5, 0.3, 0.05 and 0.05. Panel (f) in Figures 3

and 4 shows in red the position of the average (〈x〉, 〈f〉), and in blue the position of the peak,

where the triangles correspond to the times in panels (a-e). For both f0 = 0 and f0 6= 0,

we observe that the average moves to (0, 0), whereas the peak moves to x = 0.57, f = 0.70,

that is, to the positive x, f peak of the final bimodal equilibrium p(x, f). Interestingly, when

f0 = 0, the x coordinate of the peak in Figure 3(f) undergoes a non-monotonic evolution,

initially decreasing until it overshoots the peak position x∗ = 0.57 and then increasing to

x∗. The overshooting of x∗ seems to be a result of the coupling between x and f , which tries

to push the x peak toward x = 0 for f0 = 0. In comparison, the evolution of the x peak in

Figure 4(f) is monotonic. A more convoluted evolution of the peak in Figure 3(f) suggests
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that an initial PDF with f0 = 0 is more strongly out of equilibrium, with a larger distance to

the final stationary PDF; this will be confirmed by calculating the total information length

L∞ in Section IV.B. Interestingly, the choice f0 = 0 however reaches the final equilibrium

much quicker. This is probably because it already starts out with p̃ in its final form (10),

whereas the choice f0 6= 0 must adjust not only in x but also in f , which necessarily involves

the γ−1 correlation time scale of f .

FIG. 3: The time-evolution of the solution with γ = 0.5, D = 0.5, x0 = 1.2, and f0 = 0.

Panels (a-e) show contour plots of p(x, f, t) at times t = 0, 0.15, 0.3, 1.5 and 3,

respectively, with contour intervals 0.5, 0.5, 0.3, 0.05 and 0.05. Panel (f) shows in red the

position of the average (〈x〉, 〈f〉), and in blue the position of the peak. Note how the

average moves to (0, 0), whereas the peak moves to one of the peaks of the final bimodal

equilibrium. The triangles correspond to the times in panels (a-e).

Figure 5 shows the f -integrated P (x) profiles corresponding to Figures 3 and 4. Both start

with the narrow peak at x0 = 1.2 and evolve toward the final profile that is just barely in the

bimodal regime, as it should be according to the regime diagram in Figure 2. Comparing

the f0 = 0 profiles on the left with the f0 6= 0 profiles on the right, we notice also how the

initial peak moves inward much more rapidly for f0 = 0 than for f0 6= 0. According to the

Langevin equation (3), the initial movement of the peak will satisfy ∂t〈x〉 = −g(x0) + f0, so

any positive f0 will slow down the initial inward movement. Recall also that the particular

choice of f0 given by (24) was chosen precisely so that the initial inward speed matches that

of the 1-V UCNA model.
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FIG. 4: The time-evolution of the solution with γ = 0.5, D = 0.5, x0 = 1.2, and f0 given

by (25). Panels (a-e) show contour plots of p(x, f, t) at times t = 0, 0.5, 1, 5 and 10,

respectively, with contour intervals 0.5, 0.4, 0.2, 0.08 and 0.07. Panel (f) shows in red the

position of the average (〈x〉, 〈f〉), and in blue the position of the peak. Note how the

average moves to (0, 0), whereas the peak moves to one of the peaks of the final bimodal

equilibrium. The triangles correspond to the times in panels (a-e).

FIG. 5: The left/right panels show P (x) for the solutions in Figures 3 and 4, respectively.

The initial condition is the narrow peak at x = 1.2, which relaxes to the final equilibrium

profile shown as the dashed curve. The intermediate profiles are at times 0.15, 0.3, 1.5 and

3 on the left, and 0.5, 1, 5 and 10 on the right, corresponding to panels (b− e) in Figures 3

and 4, respectively.
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B. Attractor structure

We now investigate attractor structure associated with unimodal and bimodal PDFs by

mapping out how the total information length L∞ depends on the initial position x0, and

how the two different forms of L compare with one another, and with the previous 1-V

UCNA results. Figure 6 shows these results, for x0 ∈ [0, 1.8], and the same three {γ,D}

combinations as in Figure 1.

The top row shows the Eq. (1) version of L, with P (x, t) as its input. That is, f is here

treated as an unobservable variable. If we compare the two initial conditions f0 = 0 in

blue and f0 6= 0 in red, it is quite interesting that f0 = 0 consistently has greater L∞, even

though this is the initial condition that already starts out with p̃ in its final form, whereas

f0 6= 0 must adjust in f as well as in x. Recalling that L∞ cares about intermediate states

that a system passes through in reaching the final stationary PDF, this confirms that the

initial PDF with f = 0 is more strongly out of equilibrium, as noted in Section IV.A. The

fact that f0 = 0 has greater L∞ while it reaches the equilibrium quicker highlights that L∞

is a fundamentally different physical quantify from the equilibration time. Furthermore, it

is interesting to note how the dashed green lines, showing UCNA results, agree rather well

with the f0 6= 0 results. Choosing f0 such that the initial speeds of the peaks match up

seems to make UCNA a better approximation, everywhere except the small x0 cases in panel

c1 (the strongly bimodal case). A weaker tendency for a bimodal structure in L∞ versus x0,

with the minimum L∞ at x0 = 0, in the 2-V model seems to be due to a unimodal PDF of

f which affects the evolution of x through Eq. (3).

The bottom row in Figure 6 shows the Eq. (2) version of L, with p(x, f, t) as its input.

Here therefore both x and f are treated as observable variables. We again find that L∞

is greater for f0 = 0 than for f0 6= 0. Comparing the two rows, we also see that the ‘two-

observables’ version of L is significantly greater than the ‘one-observable’ version. This is

an interesting reflection of the fact that being unable to observe variation of the PDF in

a hidden variable decreases the information (and information change) and thus leads to a

smaller information length. This illustrates once again the natural, intuitive interpretation

of information length as a measure of change in PDFs.
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FIG. 6: The top row shows L∞ as a function of x0, computed according to the

‘one-observable’ form (1). Blue is f0 = 0, red is f0 given by (24), and dashed green is

UCNA as in [22]. The bottom row shows L∞ as a function of x0, computed according to

the ‘two-observable’ form (2). Panels (a1,2) are for γ = 1, D = 0.2, (b1,2) are for

γ = 0.6, D = 0.6, and (c1,2) are for γ = 0.2, D = 1, just as in Figure 1.

VI. CONCLUSION

We investigated time-evolution of PDFs in a toy model of self-organised shear flows

by considering a cubic process driven by a finite-correlated noise f . The formation of shear

flows with a non-zero mean gradient was induced by a finite memory time γ−1 of a stochastic

forcing, signified by the emergence of a bimodal PDF of x with the two peaks representing

a non-zero mean shear gradient. We focused on the relaxation problem of a self-organised

shear flow where the time evolution of mean shear gradient x0 > x∗ (x0 < x∗) models the

relaxation of an initial super-critical (sub-critial) gradient x0 to the critical value x∗. We

presented a thorough study of PDFs and information length for different values of the time

γ−1 and amplitude D of the stochastic forcing as well as for two different initial conditions.

For stationary PDFs, we identified the parameter space for unimodal and bimodal PDFs

and compared results with those obtained under the Uniform Coloured Noise Approximation

(UCNA) in [22], finding that the UCNA tends to make a stationary PDF of x more bimodal

for given parameter values γ−1 andD. From time-dependent PDFs, we mapped out attractor

structure by computing total information length L∞ = L(t → ∞) against the location x0 of
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a narrow initial PDF of x by using the ‘one-observable’ version P (x, t) =
∫

p(x, f, t) df and

the ‘two-observable’ version p(x, f, t). In either case, L∞ seemed to care about the attractor

structure of f in addition to that of x and thus tends to be more unimodal compared with

the UCNA results in [22]. This reflects the fact that L∞ depends on the history of a PDF

evolution which depends on the coupling between x and f . The ‘two-observables’ version

of L was shown to be significantly greater than the ‘one-observable’ version, implying the

increase in information change with the increase in the number of (observable) variables.

These results underscore the natural, intuitive interpretation of information length as a

measure of change in PDFs. Finally, we show how to fine tune an initial joint PDF of

x and f for a better agreement with the UCNA results. While the focus of this paper

was on the relaxation of a given initial PDF, a fuller description of a self-organised shear

flow would require the modelling of a continuous build-up and collapse of shear gradient in

time. It remains to address such a dynamical problem in future, e.g. by making γ and/or

D time-dependent.
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