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Abstract
The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been
shown to modulate multiple signalling pathways, with wide-ranging
downstream effects. TNF plays a vital role in the typical immune response
through the regulation of a number of pathways encompassing an immediate
inflammatory reaction with significant innate immune involvement as well as
cellular activation with subsequent proliferation and programmed cell death or
necrosis. As might be expected with such a broad spectrum of cellular effects
and complex signalling pathways, TNF has also been implicated in a number of
disease states, such as rheumatoid arthritis, ankylosing spondylitis, and
Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand
and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into
two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF),
and 19 ligands and 29 receptors have been identified to date. There have been
significant advances in our understanding of TNF signalling pathways in the last
decade, and this short review aims to elucidate some of the most recent
advances involving TNF signalling in health and disease.
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Introduction
Since the identification of tumour necrosis factor (TNF) in 
19751 and its isolation and characterisation in 19842, the 17 
kDa secreted form of this molecule has been established as a 
potent inflammatory cytokine with a myriad of diverse functions 
across a number of different cell types. Initially discovered as 
a serum factor which induced cell death in tumour cells1 and 
thought at that time to be a promising target as a cancer treatment, 
TNF was later realised to be a potential target for the treatment 
of inflammatory diseases, such as rheumatoid arthritis (RA)3, 
Crohn’s disease (CD)4, ankylosing spondylitis (AS)5, and pso-
riasis6. However, localised administration of TNF is used as an 
effective therapy via isolated limb perfusion in patients with 
melanoma with multiple in-transit metastases7.

TNF is produced primarily by monocytes/macrophages, but a 
number of other cell types, such as T and B lymphocytes, mast 
cells, natural killer cells, neutrophils, fibroblasts, and osteoclasts, 
can also secrete TNF8, albeit in smaller quantities.

TNF is first produced as a 26 kDa 233-amino-acid transmembrane  
protein (mTNF) that is expressed on the cell surface, where 
it either continues to reside or is actively cleaved by TNF- 
converting enzyme to produce a 17 kDa 157-amino-acid soluble 
TNF(sTNF) form; sTNF is subsequently released and becomes 
detectable in the blood plasma9. mTNF and sTNF both perform 
cellular functions mediated by either of its two receptors: TNFR1, 
expressed across all human tissues, and TNFR2, expressed  
primarily in immune cells, neurons, and endothelial cells10,11. 
mTNF functions as a ligand transmitting cell-to-cell interactions 
and, when bound to TNFR2 (its primary biological target)12, is able 
to induce a more potent response than sTNF; interestingly, mTNF 
has also been shown to function as a receptor by initiating a cell  
signalling cascade through outside-to-inside signalling13. TNFR1 
and 2, though similar in their extracellular structures at the mTNF- 
and sTNF-binding sites, have distinct intracellular structures 
which bind to a number of adaptor proteins14. TNFR1’s cytoplasmic  
tail contains a death domain (DD), thereby allowing it to recruit 
the TNFR1-associated DD (TRADD)15; TNFR2, on the other 
hand, does not have an intracellular DD and recruits the TNFR- 
associated factor (TRAF) 1 and 2 proteins instead (Figure 1)16. 
Whereas both TNFR1 and 2 signalling pathways may lead to the 
activation of nuclear factor-kappa B (NF-κB) and the induction  
of a cell survival response, TNFR1 is also capable of inducing  
a cell death response depending on prevailing physiological  
circumstances; however, the regulation of the two TNFRs is 
dependent on the cellular environment and is not fully understood  
(Figure 1)17. The past decade has seen remarkable progress in 
the elucidation of regulatory cross-talk between TNFR1 and 2 
as well as the individual but complementary functions of these 
two pleiotropic receptors18,19.

Upon binding of TNF to TNFR1, TNFR1 undergoes a confor-
mational change in its DD, whereby both TRADD and receptor- 
interacting serine/threonine protein kinase 1 (RIPK1) are recruited, 
leading to the formation of complex I and the initiation of cell 
survival via activation of the NF-κB pathway (Figure 2)20–22. 
TNF-mediated cell death is highly dependent on various cell 

death check points, which regulate the pro-survival pathway; 
when these check points are disrupted, TNF-mediated signalling 
occurs through the formation of complexes IIa, IIb, and IIc23. 
The ubiquitination status of RIPK1 is a critical determinant of 
whether a particular signalling pathway promotes cell survival,  
through complex I24, apoptosis (controlled cell death), via 
complex IIb25,26, or necrosis (uncontrolled cell death), through 
complex IIc27,28.

TNF signalling is tightly regulated by post-translational ubiq-
uitination, an essential mechanism for the regulation of many 
biological processes. Ubiquitin (Ub) chains are assembled in 
response to activation of the TNF receptors and then attached to  
target substrates to modulate protein function. The type of Ub  
chains is determined by their specific linkage type, which are assem-
bled to generate distinct intracellular signals. Deubiquitinase (DUB)  
enzymes reverse the process of ubiquitination by hydrolysing 
Ub moieties from the modified protein substrates29. Ub retains 
seven lysine sites (K6, K11, K27, K29, K33, K48, and K63) at 
the N-terminal methionine (Met-1) and the C-terminal glycine  
site. The main sites of interest are K48 and K63, as they 
are essential for the activation of the NF-κB pathway30.

The activation of complex I relies on the ubiquitination of RIPK1 
and consists of TRADD15, RIPK121, TRAF2 or 531, cellular inhibi-
tor of apoptosis protein (cIAP) 1 or 232, and linear Ub chain 
assembly complex (LUBAC) (Figure 2)33. LUBAC is composed 
of three proteins: heme-oxidised iron regulatory protein (IRP) 2 
Ub ligase 1 (HOIL-1), shank-associated RH domain-interacting  
protein (SHARPIN), and HOIL-1 interacting protein (HOIP). 
cIAP and LUBAC add K63-linked and Met1-linked polyUb 
chains, respectively, to RIPK1, stabilising the Ub structure 
and amplifying its signal33–35. This leads to the recruitment of  
transforming growth factor-beta (TGF-β)-activated kinase (TAK) 
1 complex, consisting of TAK-binding protein (TAB) 2 and 3, 
and inhibitor of κB (IκB) kinase (IKK) complex, composed of the  
NF-κB essential modulator (IKKγ, also known as NEMO), IKKα, 
and IKKβ24. The TAK1 complex phosphorylates mitogen-activated 
protein kinase (MAPK), leading to a signalling cascade whereby 
c-Jun N-terminal kinase (JNK), p38, and AP1 transcription 
factors are activated, and the IKKβ activates NF-κB. This  
ultimately leads to pro-survival signalling, where inflammation 
and the proliferation of immune cells are induced24. Following the 
activation of NF-κB, cellular FLICE-like inhibitory protein long 
(cFLIP

L
) translocates to complex IIa in order to prevent caspase-8  

activation. However, if the late NF-κB-dependent check point is 
disrupted and cFLIP

L
 levels are consequently reduced, apoptosis  

is initiated via complex IIa (composed of TRADD, FAS- 
associated DD [FADD], and pro-caspase-8) through auto- 
activation of pro-caspase-836–38. In contrast to the late check point, 
the early check point, which occurs immediately after ligand  
binding, is initiated by the ubiquitination of RIPK1 by cIAP and 
LUBAC (Figure 2)39–41.

When RIPK1 is not ubiquitinated, complex IIb is formed; in 
order for this to occur, the cylindromatosis tumour suppressor 
protein DUB (CYLD) enzyme deubiquitinates RIPK1, thereby 
allowing it to disassociate from complex I42 and form complex 
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Figure 1. Overview of tumour necrosis factor (TNF): TNF receptor 1/2 (TNFR1/2) signalling pathways. Both soluble TNF (sTNF) and 
membrane TNF (mTNF) activate TNFR1. TNFR1 contains a death domain which interacts with TNFR1-associated death domain (TRADD). 
Depending on the ubiquitination state of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), the cell undergoes apoptosis (via 
complexes IIa and IIb), necrosis (via complex IIc), or cell survival (via complex I). The formation of complexes IIa and IIb leads to the cleavage 
of pro-caspase-8 to form caspase-8 and induction of apoptosis. When complex IIc forms, the mixed lineage kinase domain-like protein 
(MLKL) is activated, inducing necroptosis. Upon the formation of complex I, cell survival is induced via the activation of nuclear factor-kappa 
B (NF-κB) and AP1 transcription factors because of RIPK1 ubiquitination. TNFR2, however, is activated primarily by mTNF and does not 
contain an intracellular death domain but interacts directly with TNFR-associated factor (TRAF) 1 and 2 to induce the formation of complex I 
with induction of homeostatic signals.

IIb, whereby TRADD is replaced by RIPK3, upon degradation  
of cIAP1 and 225,26,43. This, in turn, leads to the cleavage of  
pro-caspase-8 to caspase-8, and activation of the caspase signalling 
cascade results in apoptosis (Figure 2). To ensure that apoptosis, 
and not necrosis (unregulated cell death), is induced, which could 
lead to unwanted inflammation and damage to the surrounding 
tissues, caspase-8 or pro-caspase-8 in complex with cFLIP

L
 is 

required to cleave RIPK1 and 325,44. However, RIPK1 and 3 may, 
on occasions, remain uncleaved, leading to their aggregation and 
the formation of complex IIc, with the resultant activation of 
mixed lineage kinase domain-like protein (MLKL) and the 
induction of a regulated form of necrotic cell death, necroptosis 
(Figure 2)27,28.

TNFR2 interacts directly with TRAF1 or 2 to recruit cIAP1 or 
2 to promote cell survival signalling through the formation of  
complex I and the induction of NF-κB, MAPK, and Akt, promoting 
cell proliferation and tissue regeneration. The binding of TRAF2 
to TNFR2 is considerably weaker than TRAF2’s binding to 

TRADD45,46, indicating a regulatory role of the TNFR1 signalling  
pathway45,47. It is hoped that, through greater understanding of 
TNF signalling in health and disease, improved therapies can be 
developed to inhibit this potent cytokine in a more target-specific 
manner.

Throughout the TNF signalling pathway, there are a number of 
proteins that are essential for negative regulation of the pathway. 
A20 contains both DUB and E3 ligase domains and plays a vital 
regulatory role at multiple steps of the TNF signalling pathway, 
such as its removal of K48- and K63-linked Ub chains from 
RIP1 through its zinc finger (ZF) 4 domain48,49 and its inhibition 
of the interaction between LUBAC and IKKγ through binding to 
their linear Ub chains via A20’s ZF7 domain upon TNF  
stimulation50,51. A20, as well as the regulatory molecule TAX1BP1, 
has also been shown to inhibit the E3 ligase activities of  
TRAF2, TRAF6, and cIAP1 by interfering with E2 Ub enzymes 
Ubc13 and UbcH5c, disrupting NF-κB signalling52. In 2015, it  
was documented, in a mouse embryonic fibroblast (MEF) 
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Figure 2. Overview of the tumour necrosis factor receptor 1 (TNFR1) signalling pathway. In the binding of TNF to TNFR1, TNFR1 
recruits the TNFR1-associated death domain (TRADD), which then binds to receptor-interacting serine/threonine-protein kinase 1 (RIPK1), 
TNFR-associated factor 2 or 5 (TRAF2/5), and cellular inhibitor of apoptosis protein 1 or 2 (cIAP1/2) to form complex I. cIAP1/2 and the 
linear ubiquitin chain assembly complex (LUBAC), consisting of HOIP, HOIL, and SHARPIN, add Met1-linked and Lys63-linked polyubiquitin 
chains, respectively, to RIPK1. This stabilises RIPK1, amplifying its signal. Lys63-linked chains on RIPK1 recruit the transforming growth 
factor-beta (TGFβ)-activated kinase 1 (TAK1) complex, consisting of TGFβ-activated kinase 1 and mitogen-activated protein kinase (MAPK)-
binding protein 2 and 3 (TAB2 and 3) and TAK1. The TAK1 complex phosphorylates MAPK, Jun N-terminal kinase (JNK), and the IκB kinase 
(IKK) complex. This results in the translocation of transcription factors AP1 and nuclear factor-kappa B (NF-κB) into the nucleus, leading to the 
transcription of target genes. RIPK1 is deubiquitinated by cylindromatosis tumour suppressor protein deubiquitinase (CYLD), facilitating its 
dissociation from complex I to form complex IIb, consisting of RIPK1, RIPK3, FAS-associated death domain (FADD), caspase-8, and FLICE-
like inhibitory protein long (cFLIPL). cFLIPL regulates both the apoptosis and the necrosis pathway, preventing caspase-8 activation to avert 
apoptosis. cFLIPL acts in complex with caspase-8 to cleave RIPK1 and RIPK3 to inhibit their aggregation and the activation of mixed lineage 
kinase domain-like protein (MLKL), which would result in necrosis. HOIL-1, heme-oxidised iron regulatory protein 2 ubiquitin ligase 1; HOIP, 
HOIL-1 interacting protein.

model, that binding of A20 to linear Met1-linked polyUb chains  
protected the MEFs from CYLD-mediated degradation. This 
was shown to be dependent on A20’s ZF7 domain but was  
independent of its DUB activity and protected cells from  
TNF-induced RIPK1-dependent apoptosis (RDA)53. Another 
DUB, ovarian tumour (OTU) DUB with linear linkage specificity  
(OTULIN), acts via its specific cleavage of Met1-linked polyUb 
chains after it binds to the HOIP component of the LUBAC54. 
CYLD is another negative regulator of the TNF signalling  
pathway, removing Ub chains from several proteins such as  
TRAF2, TRAF6, IKKγ, and RIPK1 to regulate the NF-κB and  
JNK pathways55.

Cell death
The ubiquitination status of RIPK1 is a critical determinant 
of whether a cell undergoes RDA; a recent study describes a  
“detergent insoluble, highly ubiquitinated and activated RIPK1 
pool”56, termed iuRIPK1, which acts as an intermediate between  
complex I and cytosolic complex IIb formation and caspase acti-
vation. Using a systematic screen for RDA, the investigators 
found that iuRIPK1 is regulated by Parkinson’s disease-associated 
leucine-rich repeat kinase 2 (LRRK2), E3 Ub ligase, c-Cbl, and 
ALS-associated NEK1, suggesting a mechanistic link between 
RDA and neurodegenerative conditions56. It is well documented 
that, in addition to its Ub status, kinase activity of RIPK1 is  
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essential for RDA and necroptosis, both being induced by TNF57–59. 
In 2018, Meng et al. reported that C-terminal DD dimerisation  
of RIPK1, via K584, serves as an amplification mechanism to 
promote RIPK1 kinase activity and that increased expression, 
under pathological conditions, may promote its dimerisation and 
activation60. In light of these discoveries, the question arises as to 
whether detergent-insoluble lipid rafts are providing a platform for 
the assembly of cell surface signalling complexes, under certain 
pathological conditions, and thus might act as a critical determi-
nant in driving RIPK1-mediated cell death61. Recent research has 
also found that RIPK1 prevents skin inflammation, via the inhi-
bition of RIPK3-MLKL-dependent necroptosis, mediated by the 
cytoplasmic DNA sensor protein, Z-DNA-binding protein 
(ZBP1)62,63, and that deficiency of RIPK3, as well as an inactive  
form of RIPK3, reduces necroptosis and thereby the severity 
of inflammation in mouse models of tissue injury64.

Controversy hangs over the role of A20 DUB, which has been 
shown in separate studies to either protect or promote TNF-medi-
ated RDA53,65. A recently published report by Garcia-Carbonell 
et al.65 reported increased levels of A20 gene expression in 
patients with irritable bowel disease (IBD), and intestinal epithe-
lial cells have increased susceptibility to TNF-induced cell death. 
Similarly, stabilising the function of A20, in the form of homodim-
ers, facilitated ripoptosome complex (consisting of RIP1 and 
cIAP1 and 2) assembly by binding linear Ub chains via ZF7,  
protecting RIPK1 from deubiquitination, resulting in enhanced  
caspase-8 recruitment and activation65. A20 has also been shown 
to protect cells from necroptosis through the deubiquitination 
of RIPK3 in both T cells and fibroblasts66.

Alongside their functional roles as E3 Ub ligases, the cIAPs are 
critical regulators of pro-inflammatory signalling pathways67. 
The loss of IAP induces not only the formation of complex IIb 
and stimulates RDA but also caspase-8-dependent interleukin-1 
beta (IL-1β) maturation and NLRP3 inflammasome signalling in 
macrophages, in a TLR4/TRIF-dependent manner which is  
independent of TNFR168,69. Blocking caspase-8 activity, followed  
by interferon gamma (IFNγ) priming, rendered neutrophils 
sensitive to TNFR1-dependent necroptosis via the RIPK3-MLKL 
pathway, leading to NLRP3 activation70. The finding that cell 
death pathways are distinctly regulated in neutrophils, as  
compared with other myeloid cells, signifies the importance of  
cell type on immune signalling pathways in orchestrating a co- 
ordinated inflammatory response.

Cellular activation and proliferation
TNF is known to have widespread and profound effects on both 
the activation and the proliferation of different subsets of immune 
cells in several disease states. In vitro anti-TNF blockage, used 
in T-cell monocyte co-cultures of patients with the autoimmune 
disorder thrombocytopenia, produced a robust proliferation of 
the immunomodulatory regulatory T (Treg) cells71; interest-
ingly, this Treg cell expansion was dependent on TNFR2 and not 
TNFR1. Blockage of TNFR2 resulted in a robust expansion of 
Treg cells, whereas neutralisation of TNFR1 had no effect on this 
Treg cell expansion71. Therefore, TNFR2 might be considered a 
potential novel therapeutic target for immunomodulation, not 

only in thrombocytopenia but also in other unrelated immune 
disorders associated with decreased levels of Treg cells, such 
as RA, AS, systemic lupus erythematosus (SLE), IBD, and 
psoriasis72. For a recent review of anti-TNFR2 therapy, see Zou 
et al.73.

Another report showed that inhibition of TNF signalling, by a 
number of anti-TNF biological treatments, primed naïve CD4+ 
T cells towards a regulatory phenotype with high expression 
of IL-10 and reduced IFNγ production74. Patients with cardio-
vascular disease often exhibit high levels of blood TNF, which 
are positively correlated with the formation of foam cells, and 
there are further repercussions for the development of plaques and 
blood clots75. These observations were supported by both in vitro 
and in vivo experiments that confirmed that high levels of TNF 
enhanced the expression of adhesion molecules and scavenger  
receptors on blood monocytes75. TNF has an important role, 
not only in immune cells but also in the regulation of 
circadian rhythms by the central nervous system. One study reported 
that TNF stimulation of the suprachiasmatic nucleus exerted 
an important influence on the regulation of circadian rhythms, 
through the activation of TNFR1 after lipopolysaccharide (LPS) 
inoculation, mainly during the early period of the night, when 
TNFR1 showed its highest expression76. This regulation has novel 
implications for several disorders and might explain some of the 
observed disruption of circadian rhythms during disease76–78, perhaps  
due to higher expression of TNF in activated immune cells.

A20 has been shown to promote cell survival of CD4 T cells by  
initiation of autophagy via its inhibition of mammalian target  
of rapamycin (mTOR)79 as well as to restrain the development  
of Treg cells, as A20-deficient mice present with enlarged 
thymic and peripheral Treg cell compartments80. A20 has also 
been shown to exert an important defence role against bacterial 
infections, as it enhances secondary CD8+ T-cell responses but 
reduces the primary response81. SHARPIN, a component of 
LUBAC, has a number of modulating effects on T cells; for 
example, defective SHARPIN results in a significant reduction in 
the overall population of Treg cells and their ability to function  
correctly82. Furthermore, deficiency of SHARPIN leads to 
reduced numbers of CD4+ CD25+ FOXP3+ Treg cells in the blood, 
spleen, lymph nodes, and thymus83. HOIL-1, which is another 
component of LUBAC, has been reported to be cleaved by mucosa-
associated lymphoid tissue lymphoma translocation 1 (MALT1), 
leading to its becoming a potent inhibitor of LUBAC-induced 
NF-κB signalling in activated T cells84–87; other NF-κB regulatory 
proteins that are cleaved by MALT1 include A2088, RelB89, 
and CYLD90, not to mention the auto-proteolytic cleavage of 
MALT191.

A recent study focusing on innate immune cells showed the 
importance of TNF activation of these cells in cerebral tubercu-
losis, although neuron-derived TNF also plays a limited role92. 
TNF has a ubiquitous influence on different cells and tissues and 
has an important role in the tumour microenvironment. A recent 
publication reported that regulation of the immunomodulatory 
check point programmed death-ligand 1 (PD-L1) in tumour- 
associated macrophages and monocytes was strongly increased 
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by TNF in a B16 melanoma mouse model of disease93. By using 
TNFR–/– mice (strain B6.129 S-Tnfrsf1atm1Imx Tnfrsf1btm1Imx/J), the 
researchers found a significant decrease in numbers of tumour-
associated macrophages and dendritic cells expressing PD-L1 and 
an associated reduction in the size of the tumours93. In a separate  
study, TNF was reported to activate the NF-κB signalling  
pathway and upregulate PD-L1 in human prostate and colon  
cancer cells, thereby promoting immunosuppression and favouring  
the tumour microenvironment94. Immunotherapy has proven to be 
an effective option in the treatment of several cancers with high 
expression of PD-L1; thus, incorporating anti-TNF biologics 
into this therapeutic regimen may result in improved outcomes 
for certain types of cancers.

Immunometabolism
The link between metabolism and immunity first became apparent  
in the 1980s, when macrophage-conditioned media, stimulated 
with LPS, was found to increase lipoprotein lipase expression 
and promote resistance to insulin in adipocytes95,96. It was later 
observed that obese rats expressed increased levels of TNF in 
their adipose tissue and that obese humans also expressed TNF 
at higher levels in their muscle tissue97–99. In obese rats, TNF 
inhibition led to improved metabolism of glucose and improved 
insulin sensitivity100,101; however, when TNF was administered, 
the opposite effects occurred102,103.

The essential glycolytic enzyme, glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), under low glycolysis conditions has 
been linked to regulation of the inflammatory response, as it 
binds to TNF mRNA in monocytes and macrophages and post-
transcriptionally inhibits its production104,105, thus showing that the 
metabolic state of immune cells helps regulate various immune 
responses. Additionally, the product of GAPDH, nicotinamide 
adenine dinucleotide (NADH), significantly inhibited TNF 
secretion in macrophages105.

The anti-inflammatory metabolite itaconate was found to inhibit 
TNF in an LPS-stimulated mouse model as well as in human 
peripheral blood mononuclear cells; however, no effects were 
observed in human macrophages106. Immature monocyte-derived 
dendritic cells have a high expression of the extracellular succi-
nate sensor, a G-protein-coupled receptor known as GPR91, and 
these cells were shown to have enhanced production of TNF 
due to succinate when stimulated with the TLR7 ligand imiqui-
mod or the TLR3 ligand polyinosinic-polycytidylic acid (poly[I:
C])106. Macrophages have also been recognised to upregulate their 
expression of GPR91 and release succinate into the extracel-
lular milieu under inflammatory signals, which may lead to 
exacerbations of RA, as rheumatoid joints have high levels of 
succinate present107.

Cis-aconitate decarboxylase (CAD), the enzyme product of 
immune-responsive gene 1 (IRG1), catalyses the decarboxyla-
tion of cis-aconitate to produce itaconate, and this reaction is 
induced by heme oxygenase 1 (HO-1) activity. Carbon monoxide 
induction of HO-1 led to reduced TNF levels via upregulated 
IRG1 expression, demonstrating IRG1’s anti-inflammatory 
effects108. Another glycolytic enzyme, alpha-enolase (ENO1), has 

been shown to have inflammatory effects when expressed on the 
surface of monocytes and macrophages by contributing to the pro-
duction of inflammatory cytokines, such as TNF, in the synovium 
of patients with RA and also in the type II collagen model of 
arthritis109. ENO1 also plays a role in both the induction and 
the function of Treg cells via the promotion of Foxp3 splicing110.

A recent study showed that inhibition of complex II of the mito-
chondria reduces the production of TNF in macrophages111, 
and another study demonstrated the importance of mitochondrial 
citrate carrier (CIC) in TNF-triggered inflammation, whereby the 
CIC is transcriptionally upregulated under TNF stimulation via 
NF-κB and plays an essential role in regulating the downstream 
production of nitric oxide and prostaglandins112. In macrophages, 
citrate accumulation is essential for fatty acid synthesis, in a 
murine model of type 2 diabetes, which enhances inflammatory 
signalling through TNF production113,114.

Tumour necrosis factor signalling-related inflammatory 
disease
Although TNF plays an essential role in health, it also exerts a 
double-edged sword effect in several disease states. Indeed, in 
1999, mutations in the TNFRSF1A gene, encoding TNFR1, were 
found to be associated with episodic fevers and profound localised 
inflammation; consequently, TNFR1-associated periodic syn-
drome (TRAPS) was defined as one of the disease entities under 
the collective heading of autoinflammatory diseases115. The term 
“autoinflammation” was used to refer to the increasing number 
of clinical disorders characterised by episodes of seemingly 
unprovoked inflammation in the absence of high autoantibodies  
titres or antigen-specific T lymphocytes. Anti-TNF therapy 
was used for the treatment of TRAPS with some initial success;  
however, a large number of these patients eventually become  
resistant to this treatment116,117, and an increasing number of  
reports subsequently revealed the clinical benefits of anti-IL-1β  
and/or anti-IL-6 therapy in the forms of canakinumab and  
tocilizumab, respectively118–123. The current standard treatment for 
the more severe cases of TRAPS is IL-1β blockade.

Recently, the scope of autoinflammation has been broadened 
to encompass some abnormalities of deubiquitination and 
redox homeostasis under the name of ubiquitination-associated 
autoinflammatory diseases (UADs). There are a number UADs, 
but only two are known to directly affect the TNF signalling 
pathway, namely otulipenia/OTULIN-related autoinflammatory  
syndrome (ORAS) and A20 haploinsufficiency (HA20)124. The 
DUB OTULIN is an essential negative regulator of inflammation  
and prevention of autoimmunity involving the TNF pathway.  
Genetic alterations of DUBs have been associated with neu-
rodegenerative diseases and cancers125; also, two unrelated  
monogenic systemic inflammatory diseases have been associated  
with defective DUBs124. Otulipenia is caused by loss-of-function  
mutations in the linear (Met-1) OTULIN with resulting dysregu-
lation of the deubiquitination process126,127. Increased signalling  
in the canonical NF-κB pathway with overproduction of TNF,  
IL-1β, IL-6, IL-12, IL-18, and IFNγ in response to LPS  
stimulation was reported in these patients. Anti-TNF therapy  
was found to normalise markers of active inflammation, 
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including C-reactive protein (CRP) and erythrocyte sedimentation 
rate (ESR), and control disease activity in otulipenia124.

Loss-of-function mutations in the TNFAIP3 gene, which codes 
for A20, result in the UAD disorder, HA20, so named because 
of loss of function of one of the copies of the A20 gene, leading 
to early onset systemic inflammation and a disorder resembling 
Behçet’s disease128; for a recent review of HA20, see Kadowaki 
et al.129. Polymorphisms in TNFAIP3 have also been linked to 
RA, SLE, psoriasis, and CD susceptibility through genome-wide 
association studies128,130–136. A20 function has also been associated 
with a protective role in RA, as it negatively regulates NLRP3 
inflammasome activity137.

Keratinocyte-specific deletion of the LUBAC components 
HOIP or HOIL-1 results in a lethal inflammatory skin disease, 
caused by TNFR1-induced caspase-8-mediated apoptosis, that 
occurs independently of RIPK1 kinase activity138. This differen-
tial effect in cell death pathway aetiology provides clues to the 
benefits of various treatment pathways. Interestingly, patients 
with LUBAC-inactivating germline mutations, such as HOIL-1 
and HOIP mutations, also have primary immunodeficiency and 
autoinflammation139–141. Expression of TNFR1 in peripheral blood 
mononuclear cells from patients with RA has been positively cor-
related with the efficacy of therapies received142; furthermore, 

the expression of both TNFR1 and 2 is downregulated in B cells 
of patients with RA compared with healthy controls142.

Summary
The identification of TNF and the development of anti-TNF  
therapies for associated disorders were revolutionary moments in 
disease research, resulting in vast improvement in the quality of 
life for patients with these debilitating diseases. With the ever-
expanding understanding of TNF and its signalling pathways, it 
is hoped that the new research focus on combination therapies, 
and not just anti-TNF, will further improve these patients’ quality 
of life.
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