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All-Aqueous Continuous-Flow RAFT Dispersion Polymerisation for 

Efficient Preparation of Diblock Copolymer Spheres, Worms and 

VesiclesΏ 

Sam Parkinsona, Nicole S. Hondowa, John S. Conteh, Richard A. Bourneab and 

Nicholas J. Warrena* 

 

We report the scalable, all-aqueous synthesis of poly(dimethyl acrylamide)-poly(diacetone acrylamide) (PDMAm-PDAAm) 

diblock copolymer spheres, worms and vesicles by reversible addition-fragmentation chain transfer (RAFT) aqueous 

dispersion polymerisation in a low-cost continuous-flow (CF) reactor. A transient state kinetic profiling method using a 5 mL 

reactor coil indicated a considerably faster rate than the equivalent batch reaction. Higher throughput was subsequently 

demonstrated by employing a 20 mL coil reactor for the synthesis of a 135 g, 30 % w/w batch of PDMAm113 macromolecular 

chain transfer agent (macro-CTA) at 98 % conversion. This was used without further purification to polymerise DAAm in a 

CF reactor. During this polymerisation, the chains underwent polymerisation-induced self-assembly (PISA) producing block 

copolymer spheres. This reaction also proceeded faster than in batch, and the high resolution kinetics enabled clear 

observation of the rate enhancement which is characteristic of PISA systems GPC studies indicated the formation of a 

copolymer with low molar mass dispersity and complete blocking efficiency, despite the high conversion achieved during 

the precursor macro-CTA synthesis. It was subsequently demonstrated that the PDMAm113 macro-CTA could be used to 

prepare PDMAm113-PDAAmx block copolymer spheres (where x = 50, 100 and 200) with systematically increasing particle 

diameters. Finally, by reducing the PDMAm macro-CTA DP to 50 and increasing total solids to 20 % w/w , it was possible to 

prepare worms and vesicles in the tubular reactor by tailoring the residence time to achieve specific degrees of 

polymerisation of the PDAAm block. 

 

Introduction  

Continuous-flow (CF) chemistry has emerged as a key 

technology in the drive for sustainable and precise chemical 

synthesis.1, 2  It is also anticipated that the technology will 

become a key method for producing novel advanced materials.3  

Further advances involving integration of sophisticated online 

monitoring instrumentation into CF synthesis platforms will aid 

in the development of autonomous, self-learning reactors 

which are of extreme relevance given the emergence of digital 

manufacturing technologies.4-6   

Given that block copolymers are already present in a vast 

number of advanced materials,7 precise control of their 

structure over a variety of scales is of paramount importance. 

This is easily achieved in batch by using controlled radical 

polymerisation technologies such as atom transfer radical 

polymerisation (ATRP),8 nitroxide mediated polymerisation 

(NMP)9 and reversible addition-fragmentation chain transfer 

(RAFT)  polymerisation.10, 11 

Combining these technologies with continuous flow has been 

well reported,12, 13 and was pioneered by Shen and Zhu, who 

employed CF reactors for synthesis of well-defined polymers 

and block copolymers via ATRP.14, 15 Further developments in 

this area brings about the potential to develop a new 

generation of complex polymer architectures while the multi-

scale nature of CF means that growing demand for the materials 

can easily be met due to the reduced process research and 

development required for scale up.  

The use of CF reactors for solution RAFT polymerisation 

followed some time later, but again the reactors proved to be 

capable of the scalable polymerisation of a wide variety of 

ŵŽŶŽŵĞƌƐ ĂĐŚŝĞǀŝŶŐ ůŽǁ ŵŽůĂƌ ŵĂƐƐ ĚŝƐƉĞƌƐŝƚŝĞƐ ;ĐͿ͘ 16, 17 The 

improved heat transfer and the ability to conduct the reaction 

at temperatures above the solvent boiling point has also 

enabled acceleration of the process. 18 CF platforms have more 

recently been combined with new generation RAFT 

technologies such as photo-induced RAFT 19-21 and oxygen 

tolerant PET-RAFT,22 while novel reactor configurations such as 

looped flow reactors23 and the ability to telescope processes 

has also enabled the preparation multi block copolymers by 

sequential polymerisation.24 Using a similar concept, post-

polymerisation chemistry such as the removal of the RAFT end-

group post synthesis and the use of thiol-ĞŶĞ ͚ĐůŝĐŬ͛ ĐŚĞŵŝƐƚƌǇ 
to functionalise polymers is easily achieved25-27 and modules 

which enable processes such as degassing, precipitation, 

dialysis and UV detection27 can also be integrated into 

platforms.28 The precision control has also enabled the 

synthesis of more complex architectures such as forced 

gradient29 polymers, the ability to control the polymer  MW 

distribution30-32 and the easily tuneable synthesis of highly 

branched polymers.33 

Heterogeneous RAFT polymerisation technologies have been 

widely reported over the last 15 years or so and are popular 

since they allow rational production of a variety of block 

copolymer nanoparticles via polymerisation-induced self-

assembly (PISA).34-36 Furthermore, the precise nature enables 

control not just over the morphology, but the specific 

dimensions of the resulting nanoparticles.37, 38 



  

 

This precision could provide additional complementary control 

over polymer nanoparticles within CF systems. Of the relatively 

few reports where PISA is conducted in tubular reactors, 

surfactant-free RAFT emulsion polymerisation of methyl 

methacrylate (MMA),39 and RAFT dispersion polymerisation of 

MMA using a poly(poly(ethylene glycol)methyl ether 

methacrylate in a water/ethanol solvent mixture have both 

produced well defined spherical particles.40 There is one recent 

report of non-spherical morphologies prepared via visible light-

mediated PISA in a tubular reactor using a poly(ethylene glycol) 

macro-CTA.41 In this work, where only the diblock synthesis was 

conducted in flow, all three morphologies were produced, but 

there was a notable loss in polymerisation control when 

preparing a pure phase of vesicles. Despite precedent for rapid 

generation of kinetic models using transient kinetic studies,42-45 

the aforementioned studies use steady state kinetic profiling, 

which, while effective, is both time consuming and uses large 

volumes of material.  

 Herein, we construct a low-cost CF reactor which we 

evaluate for the RAFT aqueous solution polymerisation of 

dimethylacrylamide (DMAm), and the RAFT aqueous dispersion 

polymerisation of diacetone acrylamide (DAAm) to produce 

PDMAm-PDAAm block copolymer nano-objects (see Figure 1a 

and b). Furthermore, we also apply a transient kinetic profiling 

technique, and assess whether it is a reasonable alternative to 

steady state methods. 

  Batch experiments have previously shown that this 

copolymer can form nano-objects with predictable 

morphologies dependent on the degree of polymerisation of 

the PDAAm block. 46, 47 It therefore provides an extremely 

convenient proof of concept formulation to evaluate our flow 

reactor for multi-scale synthesis of block copolymer nano-

objects where both macro-CTA and diblock copolymers are 

synthesised via CF.  

Experimental 

Materials 

4,4'-Azobis(4-cyanovaleric acid) (ACVA, 99%), Dimethyl 

acrylamide (DMAm, 99%), deuterated methanol (CD3OD, 

99.8%) and deuterium oxide (D2O, 99.9%) were purchased from 

Sigma Aldrich (UK). 3-((((1-

carboxyethyl)thio)carbonothioyl)thio) propanoic acid (CTTP, 

90%) was purchased from Boron Molecular (Raleigh, USA). 

Diacetone acrylamide (DAAm, 99%) was purchased from Alfa 

Aesar (UK).  

1H NMR spectra were acquired using a Bruker 500 MHz 

spectrometer. Samples were dissolved in D2O or CD3OD. All 

ĐŚĞŵŝĐĂů ƐŚŝĨƚƐ ĂƌĞ ƌĞƉŽƌƚĞĚ ŝŶ ƉƉŵ ;ɷͿ͘ TŚĞ ĂǀĞƌĂŐĞ ŶƵŵďĞƌ ŽĨ 
scans accumulated per spectrum was typically 32.  

Dynamic light scattering measurements were conducted at 

25°C using a Malvern Zetasizer Nano series instrument. Light 

scattering was detected at 173° and hydrodynamic diameters 

were determined using the Stokes-Einstein equation, which 

assumes spherical, non-interacting particles.  

 

Figure 1. Reaction schemes for the continuous-flow synthesis of (a) Poly (dimethyl acrylamide) [PDMAm] macro-CTA (b) Poly 

(dimethyl acrylamide) ʹpoly(diacetone acrylamide) [PDMAm-PDAAm] diblock copolymer. (c) Photograph of the continuous-flow 

configuration (d) Photograph of the dismantled custom built flow-reactor.



   

Gel permeation chromatography measurements were 

conducted using an Agilent 1260 Infinity system fitted with two 

5 µm Mixed-C columns plus a guard column, a refractive index 

(RI) detector and an UV/Vis detector operating at 309nm. DMF 

containing 1.0 % w/v lithium bromide (LiBr) was used as eluent. 

The pump flow rate was set to 1.0 mL min-1 and the 

temperature of the column oven and RI detector were set to 60 

°C. A series of ten near-monodisperse poly(methyl 

methacrylate) standards (Mp ranging from 800 to 2,200,000 g 

mol-1) were employed as calibration standards in conjunction 

with the RI detector for determining molecular weights and 

molar mass dispersities (ĐͿ͘ 

Transmission electron microscopy (TEM) was conducted at 200 

kV using a Tecnai F20 FEGTEM. TEM samples were prepared at 

0.1 % w/w and stained with a 1 % w/w uranyl acetate solution. 

High Resolution Transient Flow Kinetic Studies  

A typical protocol for the high resolution transient kinetic 

profiling experiment was as follows: For PDMAmx synthesis, 

DMAm (5 g, 100 eq), CCTP (0.12 g, 1 eq), ACVA (0.01g, 0.1 eq) 

were added to a round bottom flask and dissolved in H2O (12 

ml) to give a 30 % w/w reaction solution. The flask was, sealed, 

sparged with nitrogen for 20 minutes. A portion of this reaction 

solution was then taken up into a 20mL syringe and fitted to a 

New Era NE-300 syringe pump. The solution was passed through 

a 5ml, tubular stainless-steel reactor at a flow rate 10 ml min-1 

for 90 seconds, the flow rate was then reduced to 0.08 ml min-

1 giving a retention time of 60 minutes. Kinetic samples were 

collected, in vials, from the reactor outlet changing vials every 

144 seconds to give 25 kinetic samples. These samples were 

then analysed by 1H NMR and DMF GPC. This protocol was the 

same for the kinetic experiments conducted on PDMAm113-

PDAAmX diblock copolymer syntheses. 

Steady State Kinetic Studies 

A typical protocol for a batch kinetic study was as follows: For 

PDMAmx synthesis, DMAm monomer (20 g, 100 eq), CCTP (0.5 

g, 1 eq), ACVA (0.05 g, 0.1 eq) were weighed into to a round 

bottom flask and dissolved in H2O (48 mL) to give a 30 % w/w 

reaction solution. The flask was, sealed, and sparged with 

nitrogen for 30 minutes. A portion of this reaction solution was 

then taken up into a 20 mL syringe and fitted to a New Era NE-

300 syringe pump. The solution was then pumped through the 

5 mL coil at the appropriate flow rate (either 0.5, 0.25, 0.167, 

0.125, 0.1 mL min-1). For each flow rate the reactor was allowed 

to reach steady state by passing through 3 reactor volumes (15 

mL) worth of reaction solution. Three samples were then 

collected from the outlet of the reactor and analysed by 1H NMR 

spectroscopy to determine monomer conversion. 

 

 

Residence Time Distribution Determination 

The flow reactor was modified by placing a Rheodyne six-port 

switching valve (fitted with a 100 µL sample loop) between the 

pump and the reactor. Deionised water was pumped through 

the reactor at a flow rate of 1 mL min-1 while the switching valve 

ǁĂƐ ƐĞƚ ƚŽ ƚŚĞ ͚ůŽĂĚ͛ ƉŽƐŝƚŝŽŶ͘  UŶĚĞƌ ƚŚĞƐĞ ĐŽŶĚŝƚŝŽŶƐ͕ ƚŚĞ ůŽŽƉ 
was filled with 100 µL of tracer via the loading port (30% % w/w 

DMAm monomer solution or PDMAm113 polymer solution). The 

switching valve was then moved to the inject position which 

allowed the tracer solution to enter the reactor noting the exact 

injection time. The elution of the tracer was monitored using a 

Knauer K2301 RI detector placed at the reactor outlet. 

Batch Kinetics of PDMAmx mCTA 

DMAm monomer (2g, 100eq), CCTP (0.051g, 1 eq), ACVA 

(0.005g, 0.1 eq) were added to a round bottom flask and 

dissolved in H2O (4.8ml) to give a 30 % w/w reaction solution. A 

stirrer bar was added and then the flask was sealed and sparged 

with nitrogen for 20 minutes. The sealed flask was then 

immersed in an oil bath at 70°C and left for 60 minutes. Samples 

were taken every 5 minutes using a nitrogen purged syringe and 

analysed by 1H NMR and GPC. 

Batch Synthesis of PDMAmx mCTA 

DMAm monomer (20 g, 100 eq), CTTP (0.51 g, 1 eq), ACVA (0.05 

g, 0.1 eq) were added to a round bottom flask and dissolved in 

H2O (48 mL) to give a 30 % w/w reaction solution. A stirrer bar 

was added and then the flask was sealed and sparged with 

nitrogen for 20 minutes. The sealed flask was then immersed in 

an oil bath at 70°C and left for 50 minutes. Afterwards the flask 

was removed from the oil bath and quenched by exposure to 

oxygen. Samples were taken for 1H NMR and GPC analysis which 

indicated 93 % monomer conversion, Mn  = 10,700 and Ð =1.09. 

No further purification was performed and the macro-CTA 

solution was used as is for further chain extension experiments.  

High Throughput Flow Synthesis of PDMAm113 mCTA 

DMAm monomer (40 g, 100 eq), CTTP (1.02 g, 1 eq), ACVA (0.11 

g, 0.1 eq) were added to a round bottom flask and dissolved in 

H2O (96 mL) to give a 30 % w/w reaction solution. The flask was 

sealed and sparged with nitrogen for 20 minutes. A Jasco PU-

980 HPLC pump inlet tube was then inserted into the sealed 

flask and the solution was pumped through a 20 mL stainless-

steel tubular reactor which had been equilibrated to 70°C with 

a retention time of 50 minutes (flow rate = 0.4 mL min-1). The 

polymer was collected in multiple vials at the reactor outlet. 

After combining these samples, 1H NMR and GPC analysis was 

conducted which indicated > 98% monomer conversion, Mn  = 

10,300 and  Đ = 1.10 . No further purification was performed 

and the macro-CTA solution was used as is for further chain 

extension experiments.  

Batch kinetics of PDMAm113-PDAAmX copolymer  

A typical protocol for the synthesis of PDMAm113-PDAAmX was 

as follows: DAAm monomer (0.5 g, 50 eq), PDMAm mCTA (0.6 

g, 1 eq) and ACVA (0.0016 g, 0.1 eq) were added to a round 

bottom flask and dissolved in H2O (9.9 mL) to give a 10 % w/w 



  

 

reaction solution. A stirrer bar was added and then the flask was 

sealed and sparged with nitrogen for 20 minutes. The sealed 

flask was then immersed in an oil bath at 70°C and left for 90 

minutes. Samples were taken every 10 minutes using a nitrogen 

purged syringe for 1H NMR and GPC analysis. 

Continuous-Flow Synthesis of PDMAm-PDAAmX copolymers 

A typical protocol for the synthesis of PDMAm-PDAAmX was as 

follows: For a target composition of PDMAm113-PDAAm50, 

DAAm monomer (1 g, 50 eq), PDMAm mCTA (0.6 g, 1 eq) and 

ACVA (0.0016 g, 0.1 eq) were added to a round bottom flask and 

dissolved in H2O (14.4 mL) to give a 10 % w/w reaction solution. 

The HPLC pump inlet tube was then inserted into the sealed 

flask and the solution was pumped through a 5 mL stainless-

steel tubular reactor at 70°C with a retention time of 50 minutes 

(flow rate = 0.1 mL min-1). The polymer was collected in multiple 

vials at the reactor outlet. Samples were taken from each vial 

for 1H NMR and GPC analysis to determine when the reactor had 

reached steady state.  

Results and Discussion  

Our CF platform comprised either a syringe pump or an HPLC 

pump connected to a stainless steel tubular reactor (5 mL or 20 

mL) coil wrapped around a custom-built aluminium heating 

block (Figure 1c and d). The total cost of these parts was an 

order of magnitude cheaper than common commercial flow-

reactor systems. This platform was first employed to conduct a 

kinetic study for the synthesis of the PDMAm macro-CTA using 

the 5 mL reactor coil. Kinetic profiling for RAFT polymerisation 

in flow reactors is normally achieved through steady-state 

sampling, where the reactor is set to a specific residence time, 

allowed to reach steady state (which can be multiple residence 

times) and a sample is then collected. This process is repeated 

for multiple residence times to generate a kinetic plot, requiring 

large volumes of material and is much more time-consuming 

than a typical batch kinetic study. An alternative approach is to 

conduct transient state kinetic sampling.  During this process, 

samples are continuously collected from the reactor but each 

sample has a different residence time due to specifically 

controlling pump rates. Under ideal conditions, each sample can 

be considered to be an individual batch reactor. Various 

methods for transient kinetic sampling have been reported in 

the literature for polymer and small-molecule synthesis.42-45 

Based on these literature methods, we developed our own 

procedure for transient kinetic sampling (Figure 2). The reactor 

was initially primed using an initial flow-rate of 10 mL min-1  

 

 

Figure 2. Schematic of high resolution kinetic profiling 

technique used for monitoring a variety of RAFT 

polymerisations (A) The pump flow rate is set to 10 mL min-1 and 

pumping is started, (B) The reactor is then primed with reaction 

solution (C) Once the reactor is filled with solution the flow rate 

is reduced to give our desired residence time (0.08 mL min-1) (D) 

Samples are then collected at set intervals from the reactor 

outlet. Plot indicates material residence time, flow rate and 

conversion as a function of the experimental time. 

until the system reached steady state. This was determined to 

be approximately 1.5 minutes, beyond which a constant UV 

response was recorded at the reactor outlet (3 reactor volumes; 

see Figure S1).  The flow rate was then immediately reduced to 

0.08 mL min-1 and samples were collected from the reactor 

outlet at regular intervals. These were then characterised by 1H 

NMR and DMF GPC to determine monomer conversion, 

molecular weight and molar mass dispersity (Đ).  These data 

were compared to an equivalent reaction conducted in batch 

on a 7 g scale. Although regular kinetic sampling is feasible 

during rapid batch polymerisation48, 49, it is more laborious given 

the need to purge/degas syringes. The monomer conversion 

was calculated by comparing the integrals from the DMAm vinyl 

signals between 5.5 ppm and 7.0 ppm to those which result 

from the overlapping polymer/monomer signals between 2.7 

and 3.3 ppm. The data indicated that that > 97 % monomer 

conversion was achieved during the CF process, which was 

notably faster than in batch, where only 90 % conversion 

achieved over the same time period (Figure 3a).  This increased 

rate is more apparent in the steeper gradient observed for CF in 

the semi-logarithmic rate plots (Figure 3b). Importantly the 

plots both indicate first-order kinetics (Figure 3b). 



   

 

Figure 3. (a) Conversion vs. Time, (b) Semi-logarithmic rate and (c) Mn vs conversion plots for the RAFT aqueous solution 

polymerisation of dimethyl acrylamide (DMAm) in batch and flow (d) GPC Chromatograms recorded for macro-CTAs synthesised 

on small scale  (batch and flow) and large scale reactor systems (flow only). All reactions were conducted at 70 °C with total solids 

concentration of 30 % w/w and [DMAm]:[CTA]:[ACVA] = 100:1:0.1.

We also performed steady state flow kinetics at 5 different flow 

rates. In each case three samples were taken, after 3, 4 and 5 

reactor volumes. All samples for a given residence time were 

judged to have approximately the same conversion, confirming 

steady state (see Figure S2).  The average values for each 

residence time were superimposable onto the transient data 

(Figure 3a and b), thus validating our transient kinetic method. 

The increased rate has been noted previously for other 

polymerisations in flow18 and has been attributed to the 

increased heat transfer under flow conditions. We hypothesise 

that this phenomenon is amplified during RAFT, which relies on 

radical decomposition early in the reaction. If this is the case, an 

increased radical flux would result in a faster polymerisation 

rate assuming effects of mass transfer in the 2.1 mm O.D. tubing 

are negligible. 28 One method of achieving efficient heat transfer 

in batch is to use microwave irradiation, something which has 

previously shown to produce comparable kinetics.18 The 

present work aims to demonstrate the multi-scale capability of 

our flow reactor, and hence conducting microwave experiments 

was beyond the scope.  

To monitor the molecular weight evolution, kinetic samples 

were also analysed by gel permeation chromatography (GPC). 

For both reactions, a linear increase in molecular weight in line 

with monomer conversion was observed (Figures 3c). Overall, 

Mn values recorded for the flow polymerisation were subtly 

lower than the batch equivalent, which can be attributed to the 

discrepancy in molar mass dispersity (Đ; Figure S3), which is 

equal to Mw/Mn. Nevertheless, the data confirm that CF 

reactors are able to maintain the pseudo-living behaviour of 

RAFT polymerisation and produce near equivalent polymers to 

a batch method for this formulation.  

To demonstrate the ability to easily increase product output 

without significant increase in reactor footprint, we 

subsequently prepared a relatively large batch of PDMAm 

macro-CTA. For this, the output was increased by using a 20 mL 

coil and an HPLC pump set at a flow rate of 0.4 mL min-1, thus 

providing a residence time of 50 minutes. Approximately 135 g 

of 30 % w/w polymer solution was obtained and 1H NMR 

analysis indicated 98 % monomer conversion for this macro-CTA 

(see spectrum in Figure S4). This conversion is in good 

agreement with that expected based on the kinetic profile 

obtained in the smaller flow reactor (Figure 3a).



   

 

Figure 4. a) Semi-logarithmic rate plots, (b) Mn vs. Conversion for the RAFT aqueous dispersion polymerisation of Diacetone 

acrylamide using a PDMAm113 macro-CTA. (c) Chromatograms obtained for each of the kinetic samples extracted from the reaction 

conducted using the continuous-flow reactor. For all reactions, total solids concentration of 10 % w/w and 

[Monomer]:[mCTA]:[ACVA] = 50:1:0. 

GPC studies on both batch and flow syntheses of the polymers 

confirmed comparable molecular weight distributions (see 

chromatograms in Figure 3d). For the flow synthesis, a number 

average molecular weight (Mn) of 10,300 was obtained along 

ǁŝƚŚ Ă ƌĞůĂƚŝǀĞůǇ ŶĂƌƌŽǁ ŵŽůĂƌ ŵĂƐƐ ĚŝƐƉĞƌƐŝƚǇ ;Đ = 1.10). All 

these parameters corroborated reasonably well with those 

obtained in an equivalent batch synthesis (Mn = 10,700; Đ = 

1.09) but the flow synthesis again produced a polymer with a 

subtly broader molecular weight distribution. It has previously 

been reported that polymers synthesised in flow have narrower 

molar mass dispersity due to improved heat transfer minimising 

the effects of any exotherm.50 Here, the differences in dispersity 

are minimal, suggesting this is not an issue in either the batch 

or flow. If anything, subtly broader molecular weight 

distributions should be expected in non-ideal flow reactors due 

to the residence time distribution observed due to either axial 

dispersion or laminar flow.51  These RTDs could also be affected 

by liquid properties such as viscosity, but in our case, this is not 

apparent when comparing RTDs for monomer and polymer 

solutions in the 5 mL reactor (30 % w/w solutions; Figure S5a). 

However, RTD determination on comparing the 5 mL and 20 mL 

reactors indicated that the 20 mL coil operated closer to plug 

flow than the 5 mL coil. This is likely due to any flow 

interruption, such as dead-zones at connecting joints having 

more of an influence in the shorter 5 mL reactor. The dispersity 

observed for the longer batch is indeed lower (Đ = 1.10 for 20 

mL coil vs. Đ = 1.13 for 5 mL coil), but it is not clear whether this 

is small decrease is significant.  Nevertheless, the well-defined 

nature of the macro-CTA produced in each reactor was deemed 

sufficient, with respect to RAFT polymerisation criteria (high 

conversion, first order kinetics, linear evolution in Mn with 

conversion, and Đ < 1.3) for the preparation of block 

copolymers without further purification.  

To evaluate whether it was possible to produce block 

copolymer nanoparticles using the continuous-flow platform, 

we repeated the well characterised RAFT aqueous dispersion 

polymerisation of diacetone acrylamide (DAAm). 46, 47 In the 

present study, we targeted a PDMAm macro-CTA DP of 100 

since it should only form spherical particles at 20 % w/w (actual 

DP of 113 was calculated after end-group analysis).46 We 

anticipated this would minimise potential complications caused 

by reactor fouling/blockages which are more likely when 

targeting higher-order morphologies which would change the 

rheology of the reaction medium. 

By once again utilising the convenient sampling method, 

detailed kinetic studies could also be carried out for this RAFT 

dispersion polymerisation reaction. As with the solution 

polymerisation, the overall rate of reaction was faster in flow 

than in batch, with high conversions (>90 %) obtained after 40 

minutes compared to 60 minutes (Figure S6). Once again, we 

attribute this to the increased heat transfer in tubular flow 

reactors during the early stages of the reaction. The kinetic 

profile (Figure 4a) was also characteristic of RAFT aqueous 

dispersion polymerisation, with a rate enhancement  at 

approximately 40 % conversion.35 This enhancement is due to 

the self-assembly of the growing amphiphilic polymer chains 

into spherical particles; once these particles form monomer in 

solution migrates into the core of the particles generating a high 

local concentration of monomer which results in an increased 

rate of polymerisation. The ability to take samples over 

relatively short timescales resulted in much better resolution of 

this feature in the flow experiment. This again demonstrates 

that the technique is potentially powerful for future 

mechanistic studies. This could potentially enable improved 

accuracy during automated rate determination experiments. As 

was the case with the solution polymerisation, a linear increase 

in Mn with conversion (Figure 4b and c) and low molar mass 

dispersities were observed throughout the kinetic experiments 

(Figure S8). 

 



   

 

Figure 5. (a) GPC chromatograms and (b) DLS size distributions obtained for the chain extension of PDMA113 with DAAm conducted 

using the continuous-flow reactor. (c) and (d) show TEM images obtained for PDMAm113-PDAAm100  and PDMAm113-PDAAm200 

diblock copolymer spheres. For all reactions, total solids concentration of 10 % w/w and [CTA]:[Initiator] = 1:0.1. 

 

Using the kinetic data acquired, a series of well-defined 

PDMAm113-PDAAmX copolymers were synthesised employing 

the syringe pump and a 5 mL reactor coil with a residence time 

of 50 min. The resulting diblock copolymer dispersions were 

characterised using 1H NMR, GPC and DLS (Table 1). NMR 

studies indicated near complete conversion was achieved in all 

cases while GPC confirmed systematic increase in molar mass in 

line with target DP of the PDAAm block. Furthermore, the molar 

mass distribution for each sample was mono-modal, while 

dispersities were all below 1.17 (Figure 5a). DLS indicated 

particles sizes of 32, 46 and 55 nm for PDAAm DPs of 50, 100 

and 200 respectively. All samples had mono-modal particle size 

distributions (Figure 5b) with DLS reporting a PDI of 0.07 for DPs 

100 and 200. A slightly broader PDI of 0.13 was reported for a 

PDAAm DP of 50, which is likely to do with the increased 

plasticisation of the micelle core due to the ingress of water. 

This DP is only slightly higher than that required for micellar 

nucleation during the synthesis (approx. DP 30) and therefore 

these particles are likely to comprise more loosely bound 

diblock copolymer chains.  Transmission electron microscopy 

(TEM) studies confirmed the spherical morphology for DP 100 

and 200 (Figure 5c and d), but no clear image was obtained for 

the DP of 50 (see supporting information Figure S9). This may 

be an artefact caused by the loosely bound nature of the block 

copolymer chains within the micelles. 

 



   

 

Figure 6. (a) GPC chromatograms and (b) DLS size distributions obtained for the chain extension of PDMAm50 with DAAm conducted 

using the continuous-flow reactor. TEM images obtained for (c) PDMAm50-PDAAm62 worms and spheres and (d) PDMAm50-

PDAAm148 vesicles and spheres. For both reactions, total solids concentration of 20 % w/w and [CTA]:[Initiator] = 1:0.1. 

 

One of the attractive features of PISA is the ability to produce 

higher order block copolymer nano-objects. To investigate 

whether this was possible using our CF platform it was 

necessary to reduce the degree of polymerisation of the 

PDMAm macro-CTA and raise the total solids to 20 % w/w. 

According to the phase diagram reported by Byard et al., 

PDMAŵ DPƐ ч ϱϴ ĐĂŶ ƉƌŽĚƵĐĞ ĚŝďůŽĐŬ ĐŽƉŽůǇŵĞƌ ǁŽƌŵƐ Žƌ 
vesicles.46 Hence, we prepared a PDMAmx macro-CTA with a DP 

of 50 and used it to mediate the CF RAFT dispersion 

polymerisation of DAAm at 20 % w/w. Two diblock copolymers 

were synthesised by employing two different residence times, 

for the same reaction solution which attained 31 % and 74 % 

conversion, equating to PDMAm50-PDAAm62 and PDMAm50-

PDAAm148 respectively. A systematic increase in Mn with 

conversion from 20,900 to 32,600 g mol-1 was confirmed by GPC 

(see Figure 6a). This technique also confirmed low molar mass 

dispersities with low levels of macro-CTA contamination. We 

anticipate this macro-CTA contamination is in part due to some 

macro-CTA chains which have not yet initiated polymer chains 

ĐŽŵďŝŶĞĚ ǁŝƚŚ ůŽǁ ůĞǀĞůƐ ŽĨ ͚ĚĞĂĚ͛ ĐŚĂŝŶƐ, which can occur due 

to high conversion in macro-CTA syntheses. Nevertheless, these 

should not affect the self-assembly process. Broad and 

multimodal DLS distributions for the samples (Figure 6b) 

suggested the presence of non-spherical morphologies, and 

closer visual inspection indicated that some larger aggregates 

were present which may also account for the features 

corresponding to larger species in the multi-modal DLS traces. 

Nevertheless, TEM images obtained for the two samples (Figure 

6c and d) indicated that the PDMAm50-PDAAm62 comprised a 

majority phase of block copolymer worms while the PDMAm50-

PDAAm148 copolymer formed a majority phase of vesicles. A 

minor population of spherical particles was observed in both 

samples, but it should be noted that it has previously been 

reported that pure phases are difficult to obtain with this 

copolymer formulation.46 It is also possible that excess 

monomer and the less well understood fluid mechanics add 

additional complications. 



   

 

 

 

 

 

 

 

 

 

Table 1. Details of the diblock copolymers prepared via continuous-flow RAFT aqueous dispersion polymerisation using a 

PDMAm113 macro-CTA. Syntheses with PDMAm113 macro-CTA were conducted at 10 % w/w solids, 70 °C and [CTA]:[ACVA] = 1:0.1. 

Syntheses with PDMAm50 macro-CTA were conducted at 20 % w/w solids, 70 °C and [M]:[CTA]:[ACVA] = 200:1:0.1. Monomer 

conversion was determined by 1H NMR spectroscopy in CD3OD, Mn and Đ were determined by DMF GPC vs. a series of near 

monodisperse poly (methyl methacrylate) standards, and all size measurements were determined by DLS. Sphere, worm and 

vesicle morphologies indicated by S, W and V respectively and judged by DLS and TEM. Composition calculated based on monomer 

conversion obtained from 1H NMR spectroscopy. 

Conclusions 

This study has demonstrated for the first time, it is possible to 

conduct an all-aqueous synthesis of block copolymer spheres, 

worms and vesicles where both the macro-CTA and diblock 

copolymer are synthesised in continuous-flow reactors. 

Furthermore, a convenient method of conducting high-

resolution transient kinetic studies gives close agreement with 

steady-state methods with the benefit of shorter timescales and 

reduced material consumption. Accelerated reaction rates in 

the flow reactors were observed, attributed to differing heat 

transfer rates early in the reaction: better heat transfer in flow 

increases radical flux which results in an overall faster 

polymerisation. The kinetic data was used to select conditions 

for scaling up the reaction using a modified reactor upgraded 

with HPLC pumps and a 20 mL reactor coil. This enabled a 

considerable increase in product output. This large batch of 

macro-CTA was successfully used to synthesise a series of 

PDMAm113-PDAAmx diblock copolymers via CF RAFT dispersion 

polymerisation. Accelerated kinetics were again observed (vs. 

batch), high conversions, low molar mass dispersities and near 

complete blocking efficiencies were achieved. The resulting 

polymers underwent PISA to form spherical nanoparticles as 

judged by DLS and TEM. Finally, a shorter PDMAm50 macro-CTA 

was successfully used at 20 % w/w to prepare both worms and 

vesicles by tailoring the residence time to achieve specific 

degrees of polymerisation of the PDAAm block. We believe the 

observations within this work have considerable implications 

with respect to process intensification and automation in the 

context of block copolymer synthesis. 
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