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Combining driving ssmulator and physiological sensor datain a latent
variable model to incor porate the effect of stressin car-following behaviour

Evangelos Paschalidis, Charisma F. Choudhury, Stephane Hess

Choice Modelling Centre, Institute for Transport Studiesiversity of Leeds,
36-40 University Rd, Leeds LS2 9JT, UK

Abstract

Car-following models, which are used to predict the acceéerateceleration decisions of drivers
in the presence of a closely spaced lead vehicle, aiemktdomponents of traffic microsimulation
tools and useful for safety evaluation. Existing camiwlhg models primarily account for the
effects of surrounding traffic conditionsn a driver’s decision to accelerate or decelerate
However, research in human factors and safety has dé@@asthat driving decisions are also
significantly affected byndividuals’ characteristics and their emotional states likesstriatigue,
etc. This motivates us to developa-following model where we explicitly account for theests
level of the driver and quantify its impact on acceleratieceleration decision®\n extension of
the GM stimulus-response model framework is proposed imgfard, where stress is treated as
a latent (unobserved) variable, while the specificaiisa accounts for the effects of drivers’
sociodemographic characteristics. The proposed hybrid madetalibrated using data collected
with the University of Leeds Driving Simulator where particifgaare deliberately subjected to
stress in the form of aggressive surrounding vehicllesv leaders and/or time pressure while
driving in a motorway setting. Alongside commonly used variablegsiplogical measures of
stress (i.e. heart rate, blood volume pulse, skin cdadoe) are collected with a non-intrusive
wristband. These measurements are used as indicatbws latent stress level in a hybrid model
framework and the model parameters are estimated using Maxioikelihood Technique.
Estimation results indicate that car-following behavidirsignificantly influenced by stress
alongside speed, headway and deaveharacteristics. The findings can be used to improve the
fidelity of simulation tools and designing interventionsnprove safety.

Keywords skin-conductance, heart rate, blood volume pulse,sstneasurement
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1. Introduction

Car-following (CF) refers to the acceleration-deceleratiecisions of a driver with respect to the
behaviour of a closely spaced lead vehicle. CF modelsrigical components of microsimulation
tools and are also used in safety analyses (Ahmed, 1999). l@veadt decades, there has been
significant research focus on the development and impremeof car-following models (Toledo,
2007) Saifuzzaman and Zheng (2014) classifieddaefollowing models into two groups based
on the modelling perspective: 1) engineering and 2) humanrdalsésed models$n the former
type, the effects of surrounding traffic are used to mo@ehticeleration-deceleration decisions of
drivers (e.g. Toledo, 2003; Ossen. and Hoogendoorn, 2005; Choudhalry2809; Marczak et
al., 2013 to name a few). However, the adequacy of engineefimgo@els, in terms of cognitive
and behavioural representativeness, has been criticisezl/byal researchers who approached the
issue from its human perspective. For instance, Bracgsémd McDonald (2003) stressed the
limitations of CF models and suggested the need to incorporatatimotal and attitudinal factors
to explain the heterogeneity among drivers. In the sameetain, Hancock (1999) quest&ah
engineering CF models for representing car-following taskreoptimal rather than a satisficing
task and criticized the use of noise terms to explairatans across behavimi Further, van
Winsum (1999) suggesti a model framework based on psychological findings and higklig
the importance of accounting for human factors.

Based on literature findings (retrieved from Hamdar, 2012; @re#nd Kesting, 2013)
Saifuzzaman and Zheng (2014) provided a list of human &thtat have been found to influence
carfollowing behaviour including sociodemographic characteristieaction time, contextual
sensitivity, aggressiveness and risk-taking propensity, etesspeed, desired headway etc.
Researchers in psychology have also identified that maadsstress have significant impacts on
driving behaviour (Westerman and Haigney, 2000; Garrity and xer2@01; Hill and Boyle,
2007) The concept of incorporating human factors in microscdpving behaviour models has
been already reported and considered in some microsiotutaols (Rathi and Santiago, 1990;
Liu et al., 1995; Dias et al., 2013)he main attention has been focused on the integratigroups

of drivers with different characteristics and accountiar aggressive drivers. The aggressive
drivers are expected, amongst others, to apply more alatgst of acceleration-deceleration,
accept shorter gaps and have shorter desired headways (idaag0®5). Thus, in existing
applications, the “aggressive” proportion of traffic is assigned different desired values compared
to the rest. However, in many cases, the values assigtied Yariousirivers’ groups are derived
from theory, rather than observations (Bonsall e28I05). Based on these capabilities of specific
microscopic simulation tools, Soria et al. (2014) calibrateefollowing models using naturalistic
driving data. Moreoveiubasher et al. (2017) associated a Big Five Factors MoBelrebnality

as derived from traffic psychology (Herzberg, 2009), to spepdrameters of the IDM model
(Treiber et al., 2000) and developealr-following models for different patterns of personality
utilising existing software. The importancedsivers’ characteristics has been also underscored in
non-related to microscopic simulation driving behaviour modebipgroaches; Anastasopoulos
and Mannering (2016) modelled the effect of speed limit on sgesde and found several effects
of sociodemographic characteristics (e.g. gender, age, éetm).

Apart from the base model specifications, where only thenpeters values among drivers vary
there are also more sophisticated examples of camfmly models. In order to increase the
behavioural realism, Hamdar et al. (2008) and Hamdar et al. (20idested a car-following
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model, based on the prospect theory of Kahneman and Tversky’s (1979). The model considers car-
following as a sequential risk-taking process and allmwsisk-taking manoeuvres based on a
probability of being involved in a rear-end collision. Thislmbility is estimated as a function of
variables such as acceleration, spacing and relative dpestbther approach, Saifuzzaman et al.
(2015) incorporated an additional term in their modedrder to represent task difficulty (TD) as
expressed by the Task-Capability Interface (TCI) model€F, 2005). This term is specified as a
function of time headway, spacing and speed of the drivenoAd¢th the aforementioned model
specifications aim to indirectly account for humartdas, the relevant terms are still expressed as
a function of traffic related variables and do not rédesharacteristics of the drivers per se; drivers
are still assumed to behave in the same way for given traffic cmmdit The unobserved
heterogeneity in car-following behaviour has been investibacross drivers (e.g. Ossen and
Hoogendoorn, 2011; Kim et al., 2013) and within drivers (e.g. Pagtoah, 2016). However, it
has taken the form of statistical distributions antcan parameters rather than being linked to
individual characteristics. In a recent applicatican) Lint and Calvert (2018)sed the IDM model

to incorporate task demand and awareness f@aus, distraction etc.)n a rather different
approach, Hoogendoorn et al. (2010) conducted a driving simulatairegpeto investigate the
relationships between mental workload and car-followingheuit however incorporatg the
former in the model specification. Finally, Farah and Isopbulos (2014) modified the GM model
and expressed the stimulus part as a series of sociogdaphic variables incorporating the
effect of stress and/or the statemind was however beyond the scope ofrtpaper. It is worth
mentioning that the importance of accounting for the unmebdeheterogeneity has been also
highlighted in modelling approaches from other streams of drivifgweur research. For
instance, Sarwar at al. (2017b) considered unobserved heterggersgeithodel specification for
the simultaneous estimation of discrete and continuopsndient variables while Mannering et
al. (2016) also emphasised the importance of this issie ianalysis of accident data.

Driving stresshas been defined as a situation that challenges drivers’ abilities, reduces their
perceived control or threatens their mental/physicaltihe@ulian et al., 1989). It can be a
consequence of several factors including the direct dentdnbe driving task, the environmental
conditions, network characteristics, traffic condisp secondary tasks (e.g. use of navigation
system, texting), etc. (Hill and Boyle, 2007). It is wartantioning, that traffic, weather and road
conditions have been also linked to accident occurrédoeros et al., 2016), which can be an
outcome of the increased demands of the driving taskne ccasions. Moreover, time urgency
and congestion levelmve been identified as two factors influencing drivers’ stress (Hennessy and
Wiesenthal, 1999). In many studies, stress has been redasgitin self-repoddsurveys, however,
an alternative, and potentially more reliable, approach to detect drivers’ level of stress and study

its effects, is through its implications on human pblggly. While traditionally, stress levels are
detected using levels of cortisol (e.g. Mather et al. 2@@83h limits measurement of stress at a
single or few time points, recent advances in senabintdogies and affective computing have
made it possible to measure stress levels through physmalog&ponses, e.g. changes in heart
rate (HR) electrodermal activity (EDA), blood volume pulse (BVP),. &o a continuous basis
and in a non-intrusive way. There are several existingjess related to driving stress that use this
type of data (Healey and Picard, 2005; Singh and Queyam, 2018&velQ the aforementioned
studies mostly focused on detecting the stress leveéafriver rather than investigating its effects
on driving behaviour.
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This study aims to filling in the research gap in the stétd&e-art car-following models by
bridging the engineering and human-factor based approadnetitte the full ranges of variables
influencing the decisions and bring a safety-related peigpecia drivers’ stress. A novel
framework has been proposed in this regard to quantify @veelmpact of driving stress in car-
following decisions. The models are estimated using fdata the University of Leeds Driving
Simulator (UoLDS) where the participants were intentignalibjected to stressful driving
conditions caused by time pressure and surrounding trafiatitemns. Their driving actions were
recorded alongside physiological measurements of strégsiiors (electrodermal activity, heart
rate and blood volume pulse) and socio-demographic chesticgee The detailed data collected
from different scenarios are used to estimate théatlawing model parameters.

The remainder of the paper is organised as follows: Tkieseetion presents the data collection
efforts and exploratory analyses of the data. This iievwed by the model structures and
estimation results. We conclude the paper with the sugnofathe research and directions of
future research.

2. Data

2.1 Driving simulator experiment

The use of driving simulators, originally used primarily famtan-factors research, is gaining
popularity in the context of driving behaviour modelling. The dgwimulator data has been used
in development of car-following (Hoogendoorn et al., 2010),takerg (Farah et al., 2009), and

signal crossing (Danaf et al., 2015) behaviour for instariéerther, there have been driving

simulator-based studies focussing on aggression (Saraiar2®17a) and risk-taking (Lavrenz et
al., 2014; Tran et al., 2015) to evaluate the safety impacts.

The data used in this research is based on primaryalketed as part of a comprehensive driving
simulator study (Next Generation Driving Behaviour ModeNG-DBM) for investigating tle
effect of stress in different driving decisions. The ekpents were conducted using the University
of Leeds Driving Simulator (UoLDS). The UoLDS (Figure 1) is a Higdglity, dynamic simulator.
The vehicle cab is a 2005 Jaguar S-type with all driver olsnavailable and fully operational.
This includes the steering wheel and braking pedal, andithelso a fully operational dashboard.
The vehicle is positioned in a 4m diameter sphericakptimn dome. The dome provides fully
textured 3-D graphical scene with a horizontal field efwof 250 and 48 vertical. The raw data
output consists of observations of 60Hz frequency.

The full data collection process involved around 90 minutefriging in the simulator for each
individual. Participants initially had a short briefing ses regarding the simulator and its
operation followed by a practice session of approximately Yhtes to familiarise themselves
with the simulated environment and vehicle dynamics ifi@tion system). For safety reasons,
participants were accompanied by a researcher during théiceraen. Thereafter, participants
started the main driving sessions, compaxdd/o different environments, using an urban setting
and a motorway setting of approximately same duration, ed@ttha short break in between. For
the main part of the data collection, they were insedido drive and behave as they would
normally do in real life driving.
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| Figure 1 The University of Leeds Driving Simu
[source: University of Leeds, University of Leeds Driving Simulator]

lator

The current analysis focused only on the motorway setting.motorway was composed of six
main sections approximately 6km long each, connected witle shorter road segments specified
as intersections. In each of the main road segmeiffes,ent traffic scenarios were implemented,
while the role of intersections was to provide a smoottasition and also reduce potential
residual effects from previous road segments, as no gpexdnts were planned in these locations.

Before explaining more detailed the traffic scenariogach motorway segment, it is worth
mentioning that one of the main objectives of the study &lso been to examine drivers’
behaviour under time pressure. Hence, participants were @déibyesubjected to time pressure.
During their briefing session, participants were instrudbed they had to reach thelestination
within 35 minutes and they could see an emoji placed odasieboard (Figure)as an indicator

of their performance. Moreover, they were informedt tiee emoji displayed to them was
determined based on expected arrival time winek computed and constantly updated using a
sophisticated algorithm running in the background and uses vargia as current speed, speed
limit, distance to the end, an average estimated delayvilhdite caused by the events ahead etc.
as inputs. This was then used to determine which of the ¢éinne@ to show. Participants were
instructed that the green state would indicate they wang @eell, in terms of time, while the red
would mean that they were late. The intermediate anbeji eneant that they were marginally
fine in terms of time. That is, they would receiveed emoiji if they had further delay in the
remaining driving tasks. The introduction of an amber statedeaided to make the shift from
green to red emoji more convincing to the participants.

Figure 2: Time pressure emoji

In reality, the state of the time pressure emoji wags@lated toparticipants’ actual performance
but was pre-decided in order to induce time pressure in spewaiicsegments. It may be noted
that the choice of 3 different emoiji to indicate timessure, was preferred to a conventional
countdown timer since it would be easier to manipulate. dierato increase the likelihood that
participants would consider time pressure indications, Wexg instructed that a penalty would
be imposed on the monetary reward for their participatiarase they were late at the end of the
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motorway (red emoji). However, this was never the casee dimth main scenarios of the
experiment were programmed to end in the amber time pressiee

Regarding the motorway scenario itself, it has beemadyrenentioned that it was composed by
various traffic scenariosn the initial road section, no specific events were takilage and the
time pressure indicator was green. This was followed by the road section with “aggressive”
surrounding traffic. This scenario was implemented by atigwthe driving simulatocar drones
(vehicles controlled by the simulator software) to accepttsh gaps while performing a lane
change. This resulted in the occurrence of lane chasag®euvres at short headways with respect
to participants’ position. The scenario was repeated at the next main road segment as well but this
time under the presence of time pressure (amber orlretlle next scenario participants faced
traffic at slow speeds which aimed to create a sense of stangeThis scenario was time based
(as opposed to all the rest which were position based)anidpproximate duration of 5.5 minutes.
During this scenario, participants faced all possible time prestates. The last segment of the
motorway did not include any specific events apart from changbes emoji states.

It should be mentioned that the order of scenarios/timesymestates was always fixed and the
same for all participants. i acknowledged that this experimental design might hapadted
driving behaviour, especially in the last segments ofnle¢orway (e.g. owing to fatigue or
impatience). The order of scenarios was always the saihgas easier to develop the motorway
following this approach. Moreover, the emoji was alwgysen during the first part of the
motorway for purposes of realism, as the drivers wouldxpect to see an amber or red indication
at the very early stages. For the same reason, Wesesome type of time pressure at the last
motorway segments. In terms of each individual sceniarias decided to present to participants
a green to red sequence of time pressure indicators witheffar to minimise the risk of
increasing their physiological responses at the beginning epecific scenario that would
potentially influence and prevent them from returning tobéeeline levels.

Drivers’ physiological data, across the whole experiment, was collected using the Empatica E4
wristband. The device is very similar to a common smarthvand thus offers a non-intrusive
manner to obtain physiological data. The Empatica E4 aristiprovides information about heart
rate (HR), Electrodermal Activity (EDA), blood volume plBVP) and temperature (TEMP).
Each of the physiological indicators was collected \aittiifferent frequency, depending on the
attributes of the wristband. EDA and temperature have ardgadncy, blood volume pulse 64Hz
and heart rate 1Hz.

2.2. Physiological indicator extraction

As stated previously, participants used a wristband devicealatted physiological responses.
One of the main objectives of the study was the inconporaf these responses in a car-following
model framework in order to investigate the possibility ofaoting more behaviourally
representative outcomes. Following findings from existirggdiure (Picard et al., 2001; Katsis et
al., 2011), the raw signals were transformed, and a sefi@slicators were extracted. The
indicators were calculated based on 10s moving windows (Kdtals 2011; Kushki et al., 2011)
centred at each acceleration observation.

Heart rate (HR): The HR signal was transformed into z-sctoeseduce inter-individual
differences and obtain more comparable values (Picaat,é2001). The mean transformed HR

6
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values were than calculated for each window. The bas@me transformation can be described
as (%), where x is a heart rate observation, p is the heart rate mean value across the whole urban
task and o is its standard deviation.

Blood pressure (BVP)The same transformation as HR was also applied to e fignal and
from the z-scores it was calculated, for each 10s windmuriean of the first absolute difference
(FAD) as Equation 1:

N

1
FADx = 7 Z DEWED & (1)
n=1

The aforementioned BVP indicator was normalised using a rax+nansformation in order to
always obtain values between 0-1. This transformaticonsmon practice in literature (Zhai and
Barreto, 2006 Sun et al., 2010to reduce the inter-individual differences. In brief, the
transformation can be summarised as shown in Equation 2

FADyxy — FAD«y
FADX norm X X min (2)
FADX max FADX min

Electrodermal activity (EDA): The EDA observations were proaessing the Matlab package
Ledalab (Karenbach, 2005). The skin conductance responses)(3@R obtained applying
troughto-peak analysis, where the amplitude of a responsedslatdd as the difference in the
EDA values between a peak in the signal and its precedingthrBenedek and Kaernbach, 2010)
The number of responses and the sum of their z-scoezsch 10s window were then considered
as additional EDA indicators. The min-max transfororativas also applied in the sum of
amplitudes indicator. Based on findings in existing litera{®ano et al., 2014), a critical value
equal to 0.01uS was selected as the minimum critical SCR.

2.3 Sample analysis

In total, 45 participants were recruited through the UoLDSuigoent list. The only eligibility
criteria was having a valid UK driving licence. However, 3haf participants reported nausea at
the practice drive of the experiment and thus completatored from the analysis. Out of the
remaining participants that successfully completed the wstamario, that was presented to them
first, only 36 (19 male, 17 female) fully completed the motgraetting as the rest dropped out
because of sickness. Motion sickness was also invesligath a yes/no question in a post driving
survey. In total, 11 of 36 participants reported motion sickhesvever, given that they completed
the experiment and their behaviour was not found to significaliffer, in terms of speed,
acceleration etc. from those who did not report motiomsisg, it was decided to include them in
the analysis. The mean age of participants was approxyrzieyears and the corresponding
standard deviation was 11 years. Half of the participantsdsthat they were driving on a daily
basis. The average driving experience of participantsalvasst 15 years. Regarding accident
involvement, 6 participants reported involvement in maxridents while 3 reported involvement
in serious accidents. It is worth mentioning that a magoident was defined as one where at least
one person required medical treatment and/or there wasrfyrdpenage above £500. Finally, 6




participants stated that they had at least once retaitieket penalty for speeding behaviour. The
descriptive statistics of the sample are presentedliteTl.

Table 1: Descriptive statistics of the sample

Variable Intervals | Freguency % Mean Std. Dev. Min M ax
Gender Female 17 0.47 - - - -
Male 19 0.53 - - - -
Age - - - 35.06 10.99 19 57
Driving experience - - - 14.83 11.73 1 39
Everyday 18 0.5 - - - -
23 11 0.31 . . . -
Frequency of driving times/week ’
Once/ week 4 0.11 - - - -
Less often 3 0.08 - - - -

. . . No 30 0.83 - - - -
Minor accident involvement Yes 6 0.17 - - - -

. . . No 33 0.92 - - - -
Major accident involvement Yes 3 0.08 - - - -

. . No 30 0.83 - - - -
Ticket for speeding Yes 3 017 - - - -
Physiological indicators

Min Mean M ax Std. Dev.
HR mean -3.55 -0.09 4.48 0.91
BVP first absolute differenc 0.00 0.08 0.47 0.04
mean
SCR Sum Amplitude 0.00 0.09 1.00 0.15
SCR no of responses 0.00 0.81 12.00 1.42

In Table 2, we also present the descriptive statistitheokey traffic variables. For an in-depth

insight, the full data is split into three parts:

e No events zone: This segment was composed of the initialnenthst segment of the
motorway. As a result, this segment involved, in totalfomeay parts where no specific

events took place apart from time pressure in the lastesggm
e Aggressive neighbour zon€&his part was composed of the two motorway segments where

the surrounding vehicles (car drones) could show aggressia@ibeh mostly accepting
shorter gaps during their lane-change manoeuvres. Alusioase, participants faced all
possible time pressure states.

e Slow traffic zone: Tk zone included the motorway segment where traffic was

intentionally slowed to give the impression of congestiéh.emoji were shown to
participants during this segment.

It is worth mentioning that in order to ensure that only o#losiving behaviour was captured (and
also exclude free-flow), the conditions to include an olzd@&m in the analysis had been that a
participant has not attempted a lane-change for a dumattiés before the observation and also
always had a time headway shorter than 4s with the leAti@ther observations were excluded
from the data. Table 2 presents the descriptive statisfithe data included in the main analyses.

An in-depth descriptive and inferential statistics analysisthe whole driving simulator
experiment has been carried out by Paschalidis et al. (2019).




26
27
28
29

Table 2: Descriptive statistics of the motorway scenarios

Traffic variables Min M ean M ax Std. Dev.
No events
Acceleration (m/3 -10.09 -0.02 2.18 0.72
Speed (m/s) 9.04 26.95 40.98 3.86
Relative speed with lead vehicle (m/s) -26.63 -0.49 11.25 2.89
Spacing with lead vehicle (m) 5.56 49.07 145.16 24.37
Time headway with lead vehicle (s) 0.27 1.83 4.00 0.84
Aggressive drivers
Acceleration (m/3 -10.23 -0.03 2.94 0.92
Speed (m/s) 6.30 26.77 40.86 3.63
Relative speed with lead vehicle (m/s) -20.03 -0.34 17.43 2.82
Spacing with lead vehicle (m) 0.81 46.75 140.57 25.00
Time headway with lead vehicle (s) 0.11 1.75 4.00 0.88
Slow traffic
Acceleration (mA -10.04 -0.09 1.90 0.67
Speed (m/s) 7.67 14.79 35.93 4.83
Relative speed with lead vehicle (m/s) -21.76 -0.96 8.99 2.70
Spacing with lead vehicle (m) 5.79 26.16 113.90 14.51
Time headway with lead vehicle (s) 0.42 1.82 3.98 0.69

3. Model framework

We first present the basic structure of the state-@fatt car-following model followed by the
novel extension to incorporate the effect of stresshibf the models was estimated without and
with the consideration of sociodemographic variables. apfgoach resulted in four main model
specifications which can be summarised as:

e Base car-following model (no sociodemographic variablesjti@e3.1)
e Car-following model with sociodemographic variables (butatent stress variable)
(Section 3.2)

e Car-following model with latent stress variable (butsogiodemographic variables)
(Section 3.3)

e Car-following model with both sociodemographic and latemisstrvariables (Section 3.4)

3.1 Basecarfollowing model

Basic structure

The model structure is based on the stimulus-responsec&Nbllowing model (Gazis et al.,
1961). In the original GM model, acceleration choicesafmehicle are a function of its speed,
space headway and relative speed with the lead vehicle rigihmabspecification is (Equation 3):

vV, (t)P
an(Dft,= a% AVy(t-1,) 3)

where:AX, is the space headway at time t,i%the following vehicle speed\V, is the relative
speed between the following and the lead vehicleraisdhe driver specific reaction time. Finally,
a, B andy are constants.
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Based on the GM model, several extensions have been sdjgdsrman and Rothery (1965)
were the first to highlight that passenger cars have differeceleration and deceleration capacity.
In order to address this shortcoming in the GM model, Ahmed (1986§luted acceleration-
deceleration asymmetry within a stimulus-response frane(#iuation 4:

an(Olt, =s [X§(t - 1)] * F[AV, (£ - )] + £, (0) (4)

where: s[.] represents sensitivity, as a vector of angibry variables and f[.] represents the
stimulus, given as the relative speed. Algbis a normally distributed disturbance term while g
represents the car-following regime (acceleration areldeation). In the present study, the
sensitivity and stimulus parts are analysed in (Equabassd 6:

1

s[XS(t - 7,)] = of AT (OF

(5)

f[AV,(t-T,)]= AV, (t - T,)* (6)

where:AT, is the time headwawVi is the relative speed between the subject and the leadevehi
andr is the reaction time. Finally?, y¢ and\? are parameters to be estimated and g indicates the
type of regime. The GM model offers several computatiadaantages both in estimation and
application. It is a well identified/specified model and tikelihood function can be estimated
without the need for any parameter normalisatidierefore, it was considered as a suitable car-
following model for the purpose of the current paper. hv@sth highlighting that instead of
applying the original GM model specification, the sensitiypart was modified in order to
consider only time headway, as in Papadimitriou and ChoudBQdyr).

The reaction time distribution

The current model specification also allows for the ipooation of reaction time. Following
examples in literature (Ahmed, 1999), the reaction times@imed to follow a log-normal
truncated distribution (Equation 7):

( 1 In(t,) -
T R
L - 3 min < max
<P<Tn>=4¢ TR P CICDE if i<, <t -
I Or (O
k 0 otherwise

where: ¢(.) is the standard normal distribution density functi®(.) is the cumulative normal
distribution,n is the reaction time of driver p; is the mean of the distribution of q), o: is the
standard deviation and® t™" are the bounds of truncation. Truncation is requiredesiaaction
time is finite. The bounds are set deterministically wtiike mean and the standard deviation are
estimated simultaneously with the rest of the modelrpaters. The bounds of reaction time were
set between 0 and 4 seconds (Ahmed, 1999; Kusuma, 2015).

10
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Likelihood Function

In Equation 3, assuming that the disturbance terms areafigrdistributed, the probabilities of
accelertion-deceleration decisions can be expressed tn@nstandard normal density function
(Equation §:

1 <a§ (0-s[X5 (t-t,)]x{IAV, (t-rn)]> (8)

@(aﬁ(t)lrn)=c—8g<p

Oge
where: ge {acc,dec}.

Also, the assumption of th@M carfollowing model is that a driver accelerates if theatige
speed is positive and decelerates if negative. Giventhieiglistribution of acceleration decisions
is given, conditionally on reaction timeas (Equation ®

. (1-8[AV(t-Ty)])
¢ (2, (D[tn)=p (% (D) r,) 1A Vtwlp(adee (), )

where:

1 if AV, (t-1,)>0
O|AV, (t-1,)]= " n

[AVa(tr)] { 0 otherwise
In the current specification, the acceleration obd@&msa of each driver n are assumed to be
independent while the heterogeneity in driving behaviour is caghtilnrough the reaction time
distribution. Thus, the conditional joint density of theceleration sequential observations, of a
driver n, is the product of the conditional densitiethefacceleration decisions (Equation 10):

Ty
CHOENSORRENC LSS [ FENOIES (10)
t=1

The unconditional form of the distribution aboveksjgation 1):

.L.max

0(2,(1),3,(2),. 20 (TD)= | 0(a,(1),2,(2),...,2,(Ty)Ity) o(1,)dt (11)

[min

At the final step, the model is estimated by maximizing ldelikelihood function of the
acceleration observations (Equatior):12

N
Ll= Z no(an(1).2,(2).....a0 (T)] (12)
n=1

3.2. Gar-following model with sociodemographic variables

An important component of driving behaviour heterogeneity is also drivers’ sociodemographic
characteristics. As mentioned in the Introduction sactiois has been a disregarded issue in the
vast majority of existing models. An interesting appra@cimcorporate these variables has been
suggested by Farah and Koutsopoulos (2014), where sociodemogtagtaicteristics are a part
of the stimulus component. In brief, following the r@imentioned work, Equation 6 is extended
to (Equation 13

11
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f[AV, (t - T,)]= AV, (t - T,)**+P*Zn (13)

where: Z, is a vector of sociodemographic variables and B9 is the vector of the corresponding
parameters. The inclusion of these variables is egdeaot enhance the explanatory power of the
models and provide improved behavioural representation ottandollowing processThe
remaining of the model specification and estimation vedlohe same process presented in Section
3.1.

3.3 Car-following model with latent stress variable

In the current study, stress levels are not directly medshbwe instead, their effects on
physiological responses are observed. Thus, the suggeateewiork incorporates stress as a
latent variable in the car-following model. The structof¢he new model specification is based
on the hybrid choice modelling approach (see Abou-Zeid andARema, 2014 for details)

Relative speed

Heart rate
indicator

Time headway

Blood volume Wil
_ pulse indicator

Figure 3: Example of the proposed car-following framework incorporating stress

The new latent variable model (presented in Figure 3ngposed by two main parts, the structural
eqguation, which describes the latent variable specificatimithe measurement component which
is linking the latent variable to the indicators (Joresknd Sorbom, 1984). In a ctlowing
context, stress levels are expected to affect drivers’ sensitivity to the presented stimulus (relative
speed in the case of GM moyéfience, the latent variable that represents stréssagporated as

a shiftto the sensitivity through an additive term.

At the same time, the stress levels may be also irfedeby the traffic conditions. For example,

a driver may be more stressed if the driver in thetfi@moo close or too slowror this reason,
stress in turn was expressed as a function of time hegadné relative speed, following the
formulation in Equation 14. However, as shown in a lagetion, our results indicated that only
the time headway had a statistically significant effecttogss and thus, relative speed was dropped
from the specification. The overview of the suggested irgieification is depicted in Figure 3
Latent variables are shown in ovals and observed varial@eshawn in rectangles. The solid and
the broke lines represent structural and measuremetibmslaips respectively.

The overall specification of the suggested latent vagigdntfollowing model can be summarised
as(Equations 14-16):

12
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Structural equations:
Stress, (t)= EY (1) + 1, (1), N, (O=N~(0,1) (14)
as (DI, = {s[X§(D)]+ 6° Stress, ()}x £ [AV, (t-1,)] + &5 (D) (15)
Measurement equations:

Lin (=P, + G Stressy(t) +uyq(H) ugn (t) =N~(0,07) (16)

where:Stress, (t), is the latent variable representing stress whickpgsessed as a function wf,(t)

explanatory variables with a vectgrof parameters to estimate andt) is a standard normal
disturbance term. Alsd®¢ is a set of parameters capturing the effect of tleniatariable in the
acceleration-deceleration regimég, (t) is an indicator k of individual n at time ds extracted
from the raw physiological responsgs, is a constant of the”‘kindicator,é;Ik is a parameter that

captures the effect of the latent variable on thénklicator andi ,(t) is a normally distributed
disturbance term. If the mean valigesubtracted from each continuous indicator, therﬁ;krwk

does not need to be estimated.

Given the assumption of normality for the disturbarerentof each indicatora measurement
eqguation takes the form (Equation)17

L n(t) - QIk Stressn(t)> (17)

Oy

1
(P(Ik,n(t)):a ¢ (

k

where:¢(.) denotes the probability density function (pdf) of a steshaermal distribution. For
an individual n, the total likelihood of observing a specifidgrat of indicators is given as the
product of the pdf values at timasshown inEquationl18:

K

L (016, Stressy@.01,6) = | | 0(Tn(®) (18)

k=1

The car-following model in its basic specificationptaes heterogeneity across drivers through
reaction time. However, the latent variable is expectethftoence acceleration observations
within the same individual n. Thus, following Hess and M@011) the new model specification
accounts for heterogeneity both at the inter-individuedction time) and intra-individual level
(latent variable for stss). The new log-likelihood function then takes the followiogm, as
presented ifEquation 19:

13



OCoOoO~NOOUILPWNE

SN
o

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

N Tmax T
LL= IZ: In [ j (1:[ < L ¢(a, (D)L (Ik’n(t)| Clk,Stressn(t),GIk,t) (p(ﬂ)dn)) (p(r)dr] (19)

Tmin

Given the nature of a stimulus-response car-followmagel formulation (a driver reacts to the
stimulus of relative speed with a specific sensitivithe specification presented in section 3.2 is
reasonable in terms of behavioural interpretation; stress levels could affect drivers’ sensitivity to a
presented stimulus.

It may be noted that additional model specifications (ptesein Equations 20 to 22) have been
tested and compared with the proposed model specification.

as (1) = s[XE(O]x £ [AV, (t-1,)] + 6% Stress, (1) + &5 (1) (20)
aS(t) = (o8+ 0° Stress, (t))AT—(t)“/g x £ [AV, (t-1,)] + €5(1) (21)
as(t) = of ! x £ [AV, (t-1,)] + €5(t) (22)

AX, (t)yg+ 02 Stressy (t)

Each variant presented above represents different apm@ioms regarding the effects of stress
on car-following behaviour. For instance, Equation 20 assuha stress has an overall shift on
acceleration values, Equations 21 and 22 assume thatistezasts with the constant term and
the time headway respectively. It should be mentionetdthieae specifications resulted in either
worse log-likelihood values or unrealistic predictionghe sensitivity analysis (as performed in
Section 4.3) and thus were not selected as the recommendéit afi@as.

3.4 Car-following model with both sociodemographic and lad&eiss variables

The last of the model specifications presented in thecupaper focuses on the estimation of the
latent variable car-following model, while it also acctsufor the effects of sociodemographic
characteristics. The incorporation of these varialde®liowing the specification presented in
Section 3.2 while the rest of the process remains theaameSection 3.3. This approach provides
the benefit to investigate the effects of stress withiargdalowing model framework, on top of
the sociodemographic variables and thus obtain more robt=imes.

4. Estimation results

The current section presents the results of the vacafellowing model specifications. We first
estimated base models (i@rfollowing models without socio-demographic and stress latent
variables) and testl for significant differences among the various segmgsestion 4.1). Based
on these results, we retained separate models fooéHduhscenarios and developed the following
four sets of models, as presented in Sectidrh@8se can be summarised to the lzasdollowing
models without sociodemographic variables (Section 4.Brfodowing models with
sociodemographic variabldsut no latent stress variable (Section 4.3)fallowing models with
latent stress variable, but no sociodemographic variaBEsion 4.3) andar-following models
with both sociodemographic and latent stress variablesti¢8e4.4). The final equations,
including the parameter estimates for all models, areptes in Appendix A.

14



O©CoO~NOUILAWNPE

4.1 Base car-following models

Parameter estimates

As described previously, three different segments weractgtt from the motorway scenario and
investigated separately to examine for significant diffeesnncarfollowing behaviour due to
the different nature of traffic conditions. Thregoarmte models were then estimated from these
segmentsThese were: a model from the segments without spesifints {No events model), a
model from the aggressivdeivers’ zone (‘Aggressive driversmodel) and a model from the slow
traffic zone ('Slow traffic’ model). As an initial step, the various models were estimfatiémiving

the basidGM model specification presented in section 3.1. The padesrastimates are presented
in Table 3 All parameters of the car-following components haygeeted values and signs while
most of them are significant at the 95% level. For mstaall acceleration constants are positive
while the deceleration ones are negative. Moreovesstimellus parameters (relative speed) have
values smaller or close to 1, as expected, owing tontitetl acceleration/deceleration a driver
can apply (Ahmed, 1999). It should be mentioned thatMeecvents” model was also estimated
using data only from the motorway segment without time presfutealmost all parameter
estimates did not significantly differ from those presed in Table 3.

Sensitivity analysis

The sensitivity analysis of th&\ggressive drivers” model is presented in the current section as an
example of model interpretation. In particular, tHe&tfof each explanatory variable is illustrated
(Figure 4 with respect to the estimated parameters of accelerdgceleration regimes. For
purposes of consistency, the ranges of acceleration/dzti@te were kept constant across
explanatory variables. It is worth mentioning that desgie differences in the parameter
estimates, similar patterns were in general observedllfthree segments.

The observed trends are consistent with expectatiahfiratings in the existing literature. When
in acceleration regime, drivers tend to apply lower rat@sceleration as time headway increases,
since traffic conditions are more likely to be clogefree flow. On the other hand, deceleration
rate increases in absolute terms, as time headway desreaplying safety concerns from the
perspective of drivers to avoid a potential crash. Finallyapproximately linear relationship is
observed between acceleration-deceleration rates mtideespeed.

Reaction time

The estimated reaction time distributions are illusttan Figure 5. The mean reaction time is
largest for the slow traffic scenario as expected amgistent with literature findings (Tornros,
1995). The mean and the standard deviation for the redictieris smaller for aggressive driving
scenario (as drivers are more alerted).

Model comparison

In order to examine whether traffic conditions affeat-following behaviour, the three models
were compared in terms of individual parameters and dveratlel fit. The former was
investigated with the t-test of parameter equivalence whishnsmarised as (Equation 23):
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Figure 4: Sensitivity plots of the “Aggressive drivers” car-following model

wherepix andpzk are the parameter estimates of tlgkrameter of the two models ang &nd

to x are corresponding t-statistics. The null hypothesgaodmeter equivalence is rejected at 95%
level of confidence if {tx|>1.96. The three base models were compared pairwise, arebtitts

of the t-test are presented in Table 3.
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Table 3: Parameter estimates and t-test of parameter equivalétioe basear-following models

No events model

1)

Aggressive drivers
model (2)

Slow traffic model (3)

t-test of parameter equivalence

Estimate| t-ratio | Estimate | t-ratio | Estimate | t-ratio (D) and (2)] (2) and (3)] (1) and (3)
Reaction time distribution
Mt 0.297 1.58 -0.068 -0.22 0.655 14.63 1.01 -1.86 -2.31
Gt 0.725 7.40 0.746 4.30 0.350 2.73 -0.10 2.32 1.83
Car-following acceleration
Constant 0.193 8.39 0.139 7.93 0.347 6.97 1.85 -2.82 -3.94
Time headway (S) 0.400 3.76 0.063 0.49 0.275 1.77 2.03 0.67 -1.05
Relative speed (m/s) 0.707 10.15 0.818 10.84 0.674 9.73 -1.08 0.34 1.41
6o 0.447 22.03 0.634 15.78 0.337 25.72 -4.16 4.53 7.02
Car-following deceleration
Constant -0.219 -5.65 -0.174 -4.98 -0.255 -5.43 -0.86 0.59 1.38
Time headway (S) 1.192 4.05 0.857 8.31 0.486 2.73 1.07 2.05 1.80
Relative speed (m/s) 0.786 4.15 1.009 9.28 0.709 9.5 -1.02 0.38 2.29
g’ 0.770 15.64 0.985 17.25 0.694 17.06 -2.85 1.19 4.16
LL(B) -9278.67 -13622.58 -5681.67
p? 0.22 0.10 0.32
N 36 36 36
Observations 10105 11325 7236
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Figure 5 Reaction time distributions of the car-following models

With referenceto the results of the t-testsome of the parameters among the three models
significantly differ either at the 90% or 95% level, wating significant differences in car-
following behaviour (e.g. acceleration constants signifigadiffer in all examined pairs).
However, some of the variables (mean of reaction tinteteme headway) were retained in the
‘Aggressive Driver’ model in spite of being insignificant at 90% level of significance for the sake

of consistency and ease of comparison. It may bednibiz#t inclusion of these insignificant
variables may have some affect the efficiency ofstenation

Estimation results indicate that there is a signifiddifference in the reaction time distribution of
“Slow traffic” model which may show that drivers perceive stimuluedihtly in various traffic
conditions. As a final step, the models were also coesbpairwise, in terms of total fit, with the
likelihood ratio test. For each pair, the total sum of bbréstricted model) was compared with
the LL value of a model estimated using the same data $ingle set of parameters only for both
components (restricted model). The two models weredbepared using the likelihood ratio test
with degrees of freedom equal to the difference in estidhgirameters. The results of she
likelihood ratio tests showed that in all cases, the myflothesis was rejected indicating the
restricted models were significantly worse compared to thestniuted. Following the findings
also from the t-tests of individual parameter equivaderthis outcome further indicates that a
single set of parameters, for model estimation fraferént segments of the motorway, does not
capture the heterogeneity in car-following behaviour hadltfferences should be considered with
additional parameterBased on these results, the stress effects are matestiseparately for each
segment in the next section.

4.2. Car-following models with sociodemographic variables

The models presented in the previous section were extem@ddsbtconsider heterogeneity across
drivers via sociodemographic characteristics. Based ofintthegs of Farah and Koutsopoulos
(2014), these variables were incorporated as a part sfithelus term (relative speed parameter)
as detailed in Section 3.Phe parametegstimates are presentedrliable 4 It should be mentioned
that different sociodemographic variables were found to be signifin the three models and
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only the variables statistically significant at 90% levetonfidence have been retained in the
model This led to addition of gender, age, driving frequency and adcidenlvement variables
in modes§, while driving experience, speed violation history, educatgvelland employment
status were dropped as they were not statistically signifioaany of the models. In the model
specification, as accident involvement were considered otar and major reported accidents
while, with respect to driving frequency, the best fit occurredmdriving 2-3 days per week or
every day were combinexsa single category.

Table 4: Parameter estimates considering sociodemographic chastcser

No events model (1) Aggressive drivers model (2]  Slow traffic model (3)
Estimates|  t-ratio Estimates |  t-ratio Estimates | t-ratio
Reaction time distribution
i 0.322 1.68 -0.023 -0.12 0.610 11.41
Gt 0.760 6.38 0.766 7.66 0.338 2.77
Carfollowing acceleration
Constant 0.190 8.92 0.139 8.06 0.332 7.14
Time headway (s) 0.389 3.65 0.055 0.44 0.223 1.56
Relative speed (m/s) 0.942 7.18 0.815 11.1 1.449 7.64
e 0.447 23.24 0.634 15.92 0.337 25.08
Carfollowing deceleration
Constant -0.100 -3.66 -0.163 -5.86 -0.250 -5.22
Time headway (s) 1.801 6.25 0.907 0.43 0.504 333
Relative speed (m/s) 1.695 11.25 0.950 8.89 0.941 6.57
gdee 0.727 16.5 0.979 17.53 0.686 17.21
Sociodemographic characteristics
Female dummy acceleratiof -0.192 -1.79 0 NA -0.436 -2.33
Female dummy deceleratiof  0.503 2.73 0.289 2.26 0 NA
Accident involvement
dummy deceleration -1.050 -6.35 0 NA -0.152 -1.83
Age acceleration -0.008 -2.35 0 NA -0.012 -3.51
Driving frequency dummy | ;¢ 1.99 0 NA 0 NA
acceleration
Driving frequency dummy i )
deceleration 0.387 334 0 NA -0.203 -2.30
-8968.31 -13588.98 -5628.68
LL(P) - (LR test) (620.72 +Rooma 16.81) | (67.20 <savar; 6.63) (10597 - Y200 13.28)
p? 0.25 0.11 0.32
N 36 36 36
Observations 10105 11325 7236
10
11 All models were compared with the respective car-followiragets without sociodemographic
12 characteristics using the likelihood-ratio test. Incakes, the difference was significantly higher
13 fromthe critical values at the 99% level of significanteis finding shows that in all cases, model
14  fit was significantlyimproved when drivers’ characteristics were considered. As expected, the
15 smallest improvement occurred for the “Aggressive drivers” model where only the female dummy
16 inthe deceleration regime was found to be significant.elalegr, similar values were obtained for
17 the reactionitne distributions’ moments and the acceleration and deceleration constants keapt the
18 expected signs. The effects of the significant sociodeapbge characteristics (90% level of
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significance or above) on acceleration/deceleration \betna were investigated through
sensitivity analyse(appended in Appendix B).

The model where largest number of sociodemographic vasialére found to be statistically
significant was thé‘No events” model. In particular, gender, had significant effectsboth
acceleration and deceleration with male drivers applyigger acceleration and lower (absolute)
decelerations. Age had a significant impact on accederainly. More specifically, increase in
age was associated with decrease in acceleration vdlnesffects of driving frequency had
similar trends to those of gender on both acceleratidrdaeneleration regimes. Moreover, higher
driving frequency was related to higher acceleration and lodeeeleration values. Also
participants who reported accident involvement also apjdwer deceleration.

Regarding the “Aggressive drivers” model, only gender in the deceleration regime was found to
be significant. The type of effect was the same of ke events” model.

In the“Slow traffic” model, the coefficients corresponding to female drivers faetation and
to frequent drivers for acceleration were not found to besstatily significant. The statistically
significant coefficients were found to have the same sign as the “No events model” though the
difference in magnitudes resulted slightly differeentts in the sensitivity plots.

4.3 Car-following models with latent stress variable

Following the suggested methodological framework from 8edi3, a series of car-following
models incorporating stress as a latent variable wéreaged. The estimation results of the latent
variable car-following model based on Equation 15 are predem Table 5The estimates of the
other specifications (Equations 20-22) are not presented ail @t they either resulted in
inconsistent values during the sensitivity analys.g. negative values in the acceleration regime,
non-realistic deceleration rates etc.) and/or worsesttres for the car-following component
compared to the presented model.

Measurement equation component:

The parameters of the measurement components are i@ simgnitude and same trend in all
three models. There is a positive and significant eftdcthe latent variable almost on all
indicators; that is, as stress increases, the valaaadbf indicator increases too. This is in line with
the a-priori expectations. The statistical significargén general higher for the electrodermal
response indicators (Sum of SCR amplitudes and Number of f8§fvonses exceeding the
threshold) compared to the indicators correspondingRoand BVP. Finally, the effect of the
latent variable was not significant only on tH& indicator of“No events” and “Slow traffic”
models.

Structural equation component:

The parameter estimates, for all three models, andasito the base specifications. The latent
variable was expressed in all models as a functiomaf ieadway; its effect was always negative
and significant at the 90% or 95% level. The effect of thentavariable on acceleration was
positive indicating that as stress increases, drives tte accelerate more. The coefficient of the
latent stress was found to be statistically signifidarthe acceleration components of the “No
events” and “Aggressive drivers” models, which is an indirect indication that the models are
behaviourally more robust than the models without stElss.effect of stress was however not
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significant in the “Slow traffic” model. This is likely to be due to the fact that ir tt$low traffic”
segment, even if drivers desired to accelerate, theg w@nstrained by the slow speeds of the
surrounding traffic. For the sake of compatibility, theialale was retained in the model though.
It may be noted that inclusion of these insignificantaldles may have some affect the efficiency
of the estimation. Interestingly, the effect of sen deceleration was not statistically significant
in any of the models and removed from the model.

Table 5: Parameter estimates of the latent stoas$ollowing models

No events model (1] Aggressive drivers model (2| Slow traffic model (3)

Estimates| t-ratio Estimates | tratio | Estimates| t-ratio
Reaction time distribution
Mt 0.294 1.57 -0.057 -0.19 0.655 14.56
ot 0.730 7.59 0.752 4.31 0.35 2.73
Carfollowing acceleration
Constant 0.190 8.21 0.137 7.82 0.349 7.18
Time headway (s) 0.409 3.83 0.042 0.33 0.282 1.85
Relative speed (m/s) 0.731 9.99 0.829 11.25 0.695 8.35
e 0.446 22.18 0.633 15.74 0.34 25.54
Carfollowing deceleration
Constant -0.219 -5.64 -0.173 -4.97 -0.255 -5.43
Time headway (s) 1.190 4.05 0.856 8.32 0.486 2.72
Relative speed (m/s) 0.787 4.17 1.011 9.30 0.708 9.50
cdee 0.770 15.67 0.985 17.25 0.693 17.06
Effects of stress
Stress acceleration 0.018 2.01 0.023 2.35 -0.012 -0.57
Latent variable specification
Time headway (s) | -0.041 [ -2.38 | -0.036 | -1.80 | -0.046 | -4.37
Measurement equations
HR mean 0.089 1.54 0.093 2.10 0.065 1.47
OHR 0.972 15.24 0.864 15.48 0.844 15.04
BVP first absolute diferencel o016 | 6.23 0.015 413 | 0016 5.29
osve-FAD 0.044 15.17 0.042 16.44 0.042 20.11
SCR Sum Amplitude 0.168 29.6 0.164 14.63 0.159 27.46
OscrSUm 0.037 13.25 0.038 12.52 0.038 4.10
SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.54
oscrNO 0.531 5.27 0.489 4.18 0.396 3.00
LL(p) - carfollowing 927354 -13620.52 -5681.805
component
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Sensitivity analysis

This section presents the sensitivity analysis fof Meevents” and“Aggressive drivers” models
considering the effects of the stress latent varigdepposed to the sensitivity analysis presented
in section 4.1, where acceleration patterns arisesag ke curved line, either as a function of time
headway or relative speed, the incorporation of thetlat&riable introduces a third dimension to
be considered. This approach results in a “surface” of predicted values, where acceleration patterns
vary also depending on the stress levels alongsidéctvaifiables. Moreover, the values derived
from the current sensitivity analyses, depend on paramst@nates of stress weighted by the
distribution assumption of the latent variable, aslawpd in Section 3.3. Compared to the
deterministic approach of the basa-following model, the suggested latent variable specificatio
allows for a wider range of acceleration patterns agtdeb match the reality. The sensitivity
analysis of the latent variable models is presentedyuré&s 6 to 9. It may be noted that since the
parameter estimates of stress for the deceleratgpmeanere not statistically significant, only the
acceleration regime is analysed in detail.

Acceleration — Time headway Distribution of stress

l.?»-a-sa-m-o-d-el Distribution mean :
01 02 03 04 05 01 02 03

Figure 6: Time headway sensitivity analysis of tiéo events latent variable model

Regarding the derived acceleration patterns per se, Figir@& she results of tH&No events”
latent variable modelwith respect to the time headway. On the left part of tiperdi, the plot
corresponds to the Acceleration-Time headway plot presentédure 4, accounting also for the
effects of the latent variable. Moreover, the bagefallowing model is highlighted with a dashed
line. Given the model specification (latent variable isadditive disturbance to the sensitivity
term) and also the similarity in the parameter estimb&tween the base and latent car-following
models, the base model occurs as a line at the zero obkieess. The acceleration trend is in
general similar to the one presented in the sensitivitlysisaof the base model. For instance,
higher acceleration values are observed at shorterhmadways, while the values decrease as
headway increases (and traffic conditions potentially agprfr@e-flow). However, in addition,
there is also a slope variation due to the stressteffdence, for the same value of time headway,
acceleration increases as stress rises while similaes/adfi acceleration can result for other
specific combinations of time headway and strésmay be noted that given the distribution of
the latent variable (presented on the right part of Eig)rthe stress values are gathered around
zero indicating that there is higher frequency of olmgiracceleration values from this zone
compared to the tail end of the stress distribution.
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Similar impacts of stress also occur in Figure 7 wherséhesitivity plot of with respect to relative
speed and stress is presented. It is worth mentioninghfigtire has been rotated around the z-
axis for a better illustration of the results. Agdime overall pattern is similar to the one presented
in the sensitivity analysis of the base model i.e. lacaBon increases as relative speed becomes
larger while the effects of the latent variable distidrutapply in this case as wellloreover, this

plot shows that the latent variable model results higpger range of acceleration compared to
the base model (though with lower probabilities, owing tadib&ibution assumption of stress).
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13 The outcomes presented regarding‘fke events” model also extend to th&\ggressive drivers”

14 model, as congruous patterns are observed (Figure 8 and 8l #relacceleration trends are in
15 line with expectations. Moreover, Figure 8 is an addilierample that highlights the difference
16 between the base and the latent variable model, a®iivious that the latter provides a larger
17 variability in acceleration values while the former istrieted only to the average band. This seems
18

to be the case also in Figurevéhere the latent variable model also allows for acattan values
19

beyond the range of the base model providing potentially rwidterogeneity ofdrivers’
20  behaviour.
21
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Figure 8: Time headway sensitivity analysis of thggressive driverslatent variable model
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Figure 9: Relative speed sensitivity analysis of ti#ggressive driverslatent variable model

Overall, our sensitivity analyses indicates that asssineseases, there is a significant increase of
the acceleration rate, for both the “No events” and “Aggressive drivers” models. From a
behavioural point of view, drivers under higher levels ofgiiggical stress express similar
characteristics with the “aggressive” drivers used in some microsimulation tools. However, while

the current microsimulation tools assume that an aggeessiver will always have higher
acceleration values, the proposed model captures tlaednter heterogeneity in a more robust
manner. Moreover, from a road safety perspectiveindrease of stress levels points out safety
concerns regarding the performance of drivers.

4.4. Car-following models with both sociodemographic anehlastress variables

The last part of model estimation focused on the estmaif the latent variable car-following
model also considering drivers’ sociodemographic characteristics. The model specification
combined the models presented in Sections 3.2 and 3.3. Tdregtar estimates are outlined in
Table 6.

Similar to the models presented in Section 4.3, stresfowad to have a positive effect only on
the acceleration regimes of the “No events” and “Aggressive drivers” models — however, statistical
significance dropped to the 90% level in the former. Thecetif time headway on stress remained
negative and significant in all models. On top of thdswlings, the same effects of
sociodemographic characteristics were also captured iatir Mariable model with their levels
of significance remaining the same, compared to the base Thgedetailed sensitivity analyses
(generated assuming a sample average value for the smoigdgphic variables) are presented in
Appendix C. They show similar trends to those illustrateligures 6-9.

5. Conclusion

Car-following is a crucial component of driving behaviour batterms of traffic flow replication

and road safety analyses. The existing literature has Higdgdighe importance of incorporating
human factors and the mental states of the drivearirfallowing models- but to the best of our
knowledge, this had not been done in any previous study. Thisfdiperthis research gap with
a special focus on driving stress by suggesting a framewotkdwrincorporation in a modelling
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framework. The study is based on data collected from tomuay scenario developed at the
University of Leeds Driving Simulatoas part of a comprehensive driving simulator study, where
participants were deliberately subjected to stressful conditio

Table 6: Parameter estimates of the latent variable caoviadig models with sociodemographic

variables

No events model (1)] Aggressive drivers model (2] Slow traffic model (3)

Estimates| t-ratio Estimates |  t-ratio Estimates | t-ratio
Reaction time distribution
Lt 0.339 1.70 -0.018 -0.09 0.611 11.32
Gt 0.773 6.27 0.770 7.58 0.338 2.76
Carfollowing acceleration
Constant 0.188 8.69 0.137 7.90 0.333 7.23
Relative SpEEd (m/s) 0.956 7.36 0.827 11.47 1.479 7.98
c?°c 0.446 23.39 0.633 15.90 0.337 24.10
Carfollowing deceleration
Constant -0.099 -3.65 -0.163 -5.86 -0.250 -5.13
Time headway (S) 1.800 6.26 0.907 9.42 0.503 3.32
ode 0.727 | 16.49 0.979 17.54 0.686 17.24
Effects of stress
Stress acceleraton | 0.016 | 1.74 | 0.023 | 2.38 |  -0.011 | -0.47
Latent variable specification
Time headway (s) | -0.041 | -2.38 | -0.036 | -1.80 |  -0.046 | -4.37
Sociodemographic characteristics
Female dummy 0188 | -1.83 0 NA -0.407 -1.85
acceleration
Female dummy
deceleration 0.502 2.13 0.290 2.27 0 NA
Accidentinvolvement | -y 5 | g 35 0 NA :0.152 -1.82
dummy deceleration
Age acceleration -0.008 -2.38 0 NA -0.013 -3.22
5”‘"”9 frequency 0.171 1.97 0 NA 0 NA

ummy acceleration

Driving frequency -0.387 | -3.35 0 NA -0.203 -2.29
dummy deceleration
Measurement model
HR mean 0.089 1.54 0.093 2.10 0.065 1.47
GHR 0.972 15.24 0.864 15.48 0.844 15.04
BVP first absolute
difference mean 0.016 6.23 0.015 4.13 0.016 5.29
osve-FAD 0.044 15.17 0.042 16.44 0.042 20.08
SCR Sum Amplitude 0.168 29.62 0.164 14.63 0.159 27.46
GscrSUM 0.037 13.26 0.038 12.52 0.038 4.02
SCR no of responses 1.625 6.87 1.384 8.00 1.370 12.51
oscrNO 0.531 5.27 0.489 4.18 0.396 2.95
LL(p) - car-following -8964.19 -13586.81 -5629.05
component

0
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Different car-following models were estimated basedroadaptation of the traditional GM model
for three different motorway traffic scenarios. Our figh suggest that various traffic conditions
yielded different car-following behaviours emphasizing thedrte investigate the effect of stress
independently for each motorway segment. For the incoliporaf stress, a latent variable was
introduced in the model specification, capturing heterogyeaethe intra-individual level. It may
be noted that although the benefits of accounting for ssrtebd inter-intra heterogeneity have
been demonstrated in other contexts using mixed logit Keegs and Train, 2011; Hess and
Giergiczny, 2015) and hybrid choice models (e.g. Calasti.e2018), these efforts have often
only led to minor changes in results. In the present wbelpanel/dynamic nature of the indicators
seems to have contributed to a greater ability to captureiitta heterogeneity, possibly due to
more intra-individual variation in the experienced scers.

Regarding the effects of stress, a positive effec@ameleration was found which was statistically
significant in all cases other than the slow leader a@@rn(where the driver had restricted
movement). From a behavioural perspective, drivers lgher levels of stress (as manifested in
the physiological responses), express similar characteristics with the “aggressive” drivers used in
some microsimulation tools. But while in the current estdtthe-art simulation tools, an
aggressive driver is assumed to have the same level okaggréhroughout the entire simulation,
our findings indicate that there is significant within-driveitenegeneity which needs to be
accounted for in the simulation. Ignoring the within-driieterogeneity in levels of aggression
can have substantial impact on safety analyses. Ititgjlgs the effect of stress on deceleration
was not found to be statistically significant in any scenditinal remark regarding our findings,
is the positive contribution of sociodemographic charattes in the model fit. The latter were
considered as a part of the stimulus term and their gignde remained on both the base and the
latent variable model highlighting the importance of mpowating human factors in driving
behaviour models.

However, while interpreting the results, it should be awkedged that the research is based on
data from a driving simulator experiment as opposed to reahgrdue to the infeasibility of
controlling the surrounding traffic environment in the latfehough utmost attention has been
given to make the scenarios as realistic as possihé&xe is a possibility of behavioural
incongruence owing to the “experimental flavour” of the simulated driving. Thus, there is a
possibility of behavioural bias as a result of the lac&atfial risk but also Hawthorne-like effects
i.e. some participants may adapt their driving style clésewhat they believe the observer
perceives as desirable. Moreover, although participanmesasied to drive as they would normally
do, the absence of genuine possibility for physical harm apeéfmalisation due to illegal driving
may also lead to unrealistic behaviour e.g. in excessigspeor lateral manoeuvring. However,
this latter issue is not expected to significantly influetheeoutcomes of the current study as only
carfollowing observations were considered and overtaking etiawas excluded. In addition
to the aforementioned issues, stress levels might featif when comparing simulated and real
driving, and it will be interesting to combine the current daith real world data in future
researchAnother potential source of bias could be self-selectamelver, it is unlikely that it is
correlated with stress levels and thus does not affectrabults. Finally, the fixed order of
scenarios/time pressure might have caused behaviouraabidscussed in Section 2.1.

Based on the findings of the current study, there is stmpiirther research. This involves the
incorporation of stress in further aspects of driving beha{ie.g. lane-change behaviour) but also
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more elaborated model specifications, regarding the effecstress, are being considered. For
instance, stress levels are expected to have differext®tcross itividuals while drivers’ traits
and perceptions towards the driving task vary as well. Thesadabristics have been found to
significantly influence drivers’ behaviour, in the research field of road safety, and their integration

in a modelling contextauld improve models’ performance. Another interesting aspect will be to
investigate potential temporal shifts of parameter estsridiz have been highlighted in recent
safety research (Mannering 2018).

In terms of practical application of the models, thalleimge lies in inferring the presence of stress
levels in real-life driving. However, with advances in ukbigus computing technologies, it is now
becoming feasible to measure stress levels in a namsivé manner wearable wristbands and
smartphone technologies that can detect stress lex@ts pitch and intervals of voice
conversations Sharma and Gedeon, 2012Given the steep growth rate of wearables and
smartphones, as well as advent of semi-autonomous cach(ladove a wide range of sensors for
inferring the surrounding traffic conditions), it i&diy to be possible in near future to establish
sophisticated models to sense stress levels of the dridecorrelate it with potential influencing
factors. Such prediction models for stress levelsal-world conditions will be very useful in
widespread applications of the proposed model. This, couptidtrd advances in the field of
artificial emotional intelligence (Emotion Al) which hasde it possible to device interventions
to reduce stress (Hernandez et al., 2014), can make acgghifiontribution in increasing road
safety. The proper value addition of such novel techmedogequires quantification of the safety
impacts of stress. Our models can be used for such evaluatidfts subsequent willingnets-

pay.

Applications may be also extended in the field of miecrsation to better reflect driver
heterogeneity. For example, there are emerging miordation models that combine activity
models with traffic microsimulation (e.g. SimMobilitAdnan et al., 201%. In these new types
of tools, it is possible to include schedule delays in th#fidrsimulation component and our
models can contribute to more realistic representafidniving behaviour in such simulation tools
ard hence increase their accuracy.
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Appendix A

A.1 Base car-following models (no sociodemographic varijlelgsations

A.1.1 No events model

Acceleration regime

1
cf,acc _ 0.707 cfacc
a, " (t)=0.193 AT (00 AV, (t - 1,)| +e.7 (1)

9 " ()~N(0, 0.447)

00 ~NOoO ok~ WNPE

11 Deceleration regime
1
12 ade () = 0.219 37T AVt )| 780 + £ (1)

AT, (t
13 &M ()~N(0, 0.774)
14
15
16 A.1.2 Aggressive drivers model
17

18 Acceleration regime

1
1 cf,acc -0.1 A _ 0.818 + cfacc
9 a4, (t) 0.139 ATn (t)0'063 | Vn(t Tn)| €n (t)

20 £M(1)~N(0, 0.634)
22 Deceleration regime

23 al () =-0.174 AV (t - 7,)[M0%7 + & (£)

ATn(t)0'857
24 &M ()~N(0, 0.98%)
25
26
27 A.1.3 Slow traffic model
28

29  Acceleration regime

30 a::If,acc (t) —0.347 )‘0.674 Iclf,acc (t)

W \AVn(t - Ty +¢

31 &M°()~N(0, 0.33P)

33 Deceleration regime

34 a;f,dec (t) — _0‘255 n)‘0709 + SCf,aCC (t)

n

1
W \AVn(t -T

35 () ~N(0, 0.694)
36
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A.2 Car-following models with sociodemographic variablesl&tent stress variable)

A.2.1 No events model

Acceleration regime

1
a;:lf,acc (t) =0.190 )0'389 |AVn(t _ Tn)|0.942-0.19ZXFemale-0.008XAge+0.176XFrequency + grclf,acc (t)

AT, (t
e ()~N(0, 0.447)

Deceleration regime

1 .
aﬁf,dec (t) =_0.100 )1.801 |AVn(t _ Tn)|1.695+0.503XFema1e-1.050XAcc1dent-0.387XFrequency + grclf,acc (t)

AT, (t
e ()~N(0, 0.727)

A.2.2 Aggressive drivers model

Acceleration regime

2y (1) = 0.139 = [AV,(t- 1) "% + €5 (D)

1
ATn (t)0.0S
e ()~N(0, 0.634)

Deceleration regime

a::lf,dec (t) —.0.163 |AVn(t _ Tn)|0.950+0‘289XFemale + 8cf,acc (t)

n

ATH (t)0‘907
e"4e¢()~N(0, 0.979)

A.2.3 Slow traffic model

Acceleration regime

alclf,acc (t) =0.332 |AVn(t _ Tn)|1.449-0.436XFemale-0.012XAge + gcf,acc (t)

n

ATH (00.223
£ (1)~N(0, 0.33%)

Deceleration regime

a;:]f,dec (t) =_0.250 \AVn(t _ Tn)‘0.941—0.152><Accider1t—0.203XFrequency + 8;:If,acc (t)

1
ATH (00.504
£-4e¢())~N (0, 0.686)
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A.3 Car-following models with latent stress variable sogiodemographic variables)

A.3.1 No events model

Stress,,(t)=-0.041xAT, +n_(t)
n,(H~N(0, P)
Acceleration regime

ay (1) = 10.190 +0.018xStress, (1) | [AV,(t-1,)" 7" + &5 (1)

1
AT, ()04
£ (H)~N(0, 0.448)
Deceleration regime
1
cf,dec 0.787 cfiacc
: =-0219——= |A - +e,°
a4, (t) 0 9ATn(t)1'190 | Vn(t Tn)| €n (t)
£ ()~N(0, 0.77F)

A.3.2 Aggressive drivers model

Stress,,(t)=-0.036xAT, +n_(t)
1,(H~N(0, P)

Acceleration regime

a4 (1) = 10.137 +0.023xStress, (1) | [AV,(t - 1,)|"%% + & (1)

1
ATH (00.042
e ()~N(0, 0.633)

Deceleration regime

a4 (1) =-0.173 AV, (t-1,)"0M + &8 (1)

ATH (00.856
4 ()~N(0, 0.98%)
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A.4 Car-following models with both sociodemographic anchiastress variables

A.4.1 No events model

Stress,,(t)=-0.041xAT, +n_(t)

n,(O~N(0, P)

Acceleration regime
cf,acc _ 1

S ()= [o.lsg—ATn o
£ (H)~N(0, 0.448)

+0.01 6><StI‘CSSn(t)] |AVn(t_Tn)|0.956—0. 188%Female-0.008xAge+0.171 XFrequency+8::1f,acc (t)

Deceleration regime

aﬁf,dec (t) =_0.099 - |AVn(t _ Tn)|1.696+0.502XFema1e-1.050XAccident-0.387XFrequency + grclf,acc (t)

ATH (t)l.SO
e ()~N(0, 0.729)

A.4.2 Aggressive drivers model

Stress,,(t)=-0.036xAT, +n_(t)
n,(O~N(0, P)

Acceleration regime

a4 (1) = 10.137 +0.023xStress, (1) | [AV,(t - 1,)*87 + 57 (¢)

1
ATH (00.033
£ ()~N(0, 0.633)

Deceleration regime

a4 (1) =-0.163

)|0.955+0,290XFemale + glclf,acc (t)

AT, (00907 AV, (t - 1,
e4e¢()~N(0, 0.979)
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Appendix B

B.1 Base “No events” model sensitivity analysis considering sociodemographic characteristics

A

A ation-Time h y Acceleration-Relative speed

1.0
1.0

Female
Male

Female
Male

08
08
'

06
06
'

L
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Acceleration (m/s?)

Acceleration (m/s?)
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f
f
|
I
{
02

0.0
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Deceleration-Time headway Deceleration-Relative speed
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4
L
Deceleration (m/s?)
4
L

8
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N\

Female
Male

Female
Male /
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Figure B.1: Gender sensitivity analysis

&4
=}

Acceleration — Time headway Acceleration — Relative speed

Figure B.2: Age sensitivity analysis
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Figure B.3: Driving frequency sensitivity analysis
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Figure B.4: Accident involvement sensitivity analysis
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B.2 Base “Agegressive drivers” model sensitivity analysis considering sociodemographic

characteristics
Deceleration-Time headway Deceleration-Relative speed
o 4 -~ o
e &=
P
v
% 1 / -
'y

oy / =
< 2
E || E
c I c
o { o
g || 2
2 Il K]
g I 8
4 ik 7]
o | o

S 9 8

\
Female Female
Male / Male
Y ¥ 4
0 1 2 3 4 20 15 -10 5
Time headway (s) Relative speed (m/s)

A.3 Base “Slow traffic” model sensitivity analysis considering sociodemographic characteristics

Figure B.5: Gender sensitivity analysis
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Figure B.6: Gender sensitivity analysis
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Acceleration — Time headway
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FigureB.7: Age

sensitivity analysis
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Figure B.8: Driving frequency sensitivity analysis
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Figure B.9: Accident involvement sensitivity analysis
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Appendix C

characteristics

C.1 Latent variable ‘“No events” model sensitivity analysis considering sociodemographic

Acceleration — Time headway

Distribution of stress

>
o
a
3
@
5
Z
=]
El
=
3
=2
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=

[==S==S=s
Distribution mean

Figure C.1: Time headway sensitivity analysis

Acceleration — Relative speed

Distribution of stress

(/W) uones2|22¥

Basic model

B
02 04 06 08 1.0

Distribution mean

01 02 03

Figure C.2: Relative speed sensitivity analysis
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C.2 Latent variable “Aggressive drivers” model sensitivity analysis considering sociodemoqgraphic

Acceleration — Time headway

Y

il

(/w) uonesI>

Distribution of stress

T

Distribution mean

01 02 03

Figure C.3: Time headway sensitivity analysis

Acceleration — Relative speed

920V

N

(ZS/LU) uones?|

Distribution of stress

B

Distribution mean

01 02 03

Figure C.4: Relative speed sensitivity analysis

42




