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vulnerability to disruption due to natural disasters under budgetary constraints
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Abstract

In recent years, climate change emerged as a dominant concern to many parts of the world

bringing in huge economic losses disturbing normal business/life. In particular cities are

suffering from floods affecting land based transportation systems in a significant manner more

frequently than ever. Many local authorities facing funding cuts are suffering from limited

budgets and they are put under even higher pressure when looking for resources to recover the

damaged networks. The agencies involved with post-disaster reconstruction too struggle to

prioritise the network links to recover. This paper addresses the problem of road

maintenance/development with the aim of improving resilience of the network by formulating

the problem as a mathematical model that minimises the vulnerability to disruption due to

natural incidents under budgetary constraints. This paper extends the critical link analysis from

a single link being disrupted to multiple links, and for the first time proposes an objective

function involving a measure of vulnerability to minimise. Metaheuristic Simulated Annealing

method is used to reach near global optimal solution for a real-life network with large demand.

A segment of the City of York in England has been used to illustrate the principles involved.

Numerical experiments indicate that Simulated Annealing based optimisation method

outperforms the �volume-priority� heuristic approach, returning higher value for money spent.

The proposed approach spreads the benefits across wider population by including more number

of links in the priority list while reducing the vulnerability to disruption.

Key words: resilience; vulnerability; bi-level optimisation; Simulated Annealing; traffic

assignment.

1. Introduction

Climate change has evoked a major concern for the society in terms of the capacity of cities to

resist and handle natural disasters (Godschalk, 2003). These events cause colossal losses to the

man-made and natural environment. It impacts national economy and affects the social fabric

itself. For instance, a study published in 2015 stated that between 2003 and 2013 natural

disasters caused more than $1.5 trillion damage and affected around 2 billion people (FAO,

2015). The same study shows that hydrological events had the largest percentage of

occurrences during the research period. Natural disasters are, in many cases, unpredictable.

However, sometimes their consequences can be mitigated, especially when the danger is

known, e.g. communities settled over floodplains, seismic fault zones or hurricane prone

shorelines. In these examples, appropriate hazard mitigation and prevention programmes

together with well-informed policies would help to reduce the impact of catastrophes.

Despite the term �resilient city� being an open concept, its essence describes cities with a high

capacity to absorb catastrophic situations. Tulsa and Berkeley are examples of what can be
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called a �resilient city� (Godschalk, 2003). Tulsa, after suffering a sequence of earthquakes,

developed effective tax policies and funding strategies to prevent and surpass the impact of

possible catastrophes. Berkeley, on the other hand, after facing consecutive tornadoes and

severe thunderstorms raised a public debate that led to effective drainage plans and the

relocation of about 875 buildings settled in floodplains. The concept of resilience in ecology

emerges from two paradigms: the first one refers to the capacity of the ecosystem to return to

its initial status after a disturbance (equilibrium) and the second paradigm approaches resilience

from the side of adaptation to the new conditions, rather than returning to an initial situation

(non-equilibrium) (Pickett, et al., 2004). Nonetheless, regarding urban planning, the non-

equilibrium paradigm seems to be more appropriate since it is dynamic and evolutionary

(Pickett, et al., 2004).

Unlike air and water-borne transportation systems, land transportation is heavily reliant on

extensive land-based infrastructure such as roadways and railways. Infrastructure requires to

be properly planned and maintained to deliver high-quality services. This service function can

be affected by undesired events such as flooding, landslides or earthquakes deteriorating the

roadway capacity and eventually causing a complete loss of connectivity. This then raises the

question � while it is difficult to predict the occurrence of an event, could the city authorities

have prevented the resulting disruption by preparing a maintenance plan taking account of

vulnerable road links?

The problem introduced so far reflects the context of resilience to climate change, but the

underlying problem also relates to budgetary allocation. Local authorities in the face of funding

cuts struggle with limited budgets allocated to transport sector but the climate change impact

is ever increasing thus making the job of prioritising the efforts even more challenging. More

generally local authorities allocate their resources to projects on a heuristic basis. For example,

Metropolitan Washington Council of Governments� (MWCOG) web-page CLRP (2016) on

project selection process says �Project development can be an unpredictable process. Projects

sometimes get put on a fast track when elected officials or a group of citizens take a special

interest in them. Some projects move forward when they are selected as preferred alternatives

in studies�� indicating the heuristic nature of the process involved. There is also a possibility

that the authorities concerned prioritise the resource allocation to the roads in the order of their

usage i.e. typically allocating money to links carrying higher volumes of traffic. While this

method sounds logical, it will be worthwhile investigating the underlying efficiencies and the

implications in the context of vulnerability to disruption.

Bringing together the objective of improving resilience of a road network and the tentative

nature of budgetary allocation involved for its maintenance/development, it is worth asking the

question - can we develop a plan to ensure an optimal combination of road links and specify

the extent to which they need to be developed to deliver the best possible resilience outcome?

Indeed, this is the question frequently faced by agencies involved in post-disaster

reconstruction planning (FEMA 2009 - Planning for disaster recovery and reconstruction - see

page 60) and needs an answer in enabling them to prepare plans to survive future natural

disasters in the medium to long term horizon period. Typically, post-disaster operations may

also involve restoring the network for rescuing in the immediate horizon but this paper is rather
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focused on the medium to long term horizon which requires identifying/prioritising critical

network links and preparing a plan for their maintenance/development to survive the future

disasters with minimum loss to life/ property.

Thus, this research addresses the problem of road maintenance and development from the

perspective of vulnerability to disruption. When undesired or disruptive events occur, their

impact may reach out different sections of the network at different levels. Initially, several

researchers e.g. Balijepalli & Oppong (2014), El-Rashidy & Grant-Muller (2014), Jenelius et

al (2006), Scott et al (2006) among others developed methods to identify critical network links

prone to incidents on the basis of a single link being disrupted at time. More recently efforts

for identifying multiple critical links are on e.g. Bagloee et al (2017), Wang et al (2016).

This paper extends the analysis of critical links from a single link being disrupted to many links

getting affected simultaneously and develops a mathematical model to identify a combination

of the road links to improve the resilience. Relative to the literature, this paper for the first time

attempts to directly minimise a measure of vulnerability rather than minimising the total travel

time. The paper specifies the vulnerability minimisation problem as a Bi-Level Programming

Problem (BLPP) and solves a real-life network problem with a large demand using a

metaheuristic optimisation approach to reach near global optimal solution. The measure of

vulnerability is a derivative of the Network Vulnerability Index (NVI), a method used to

identify link�s criticality (Balijepalli & Oppong 2014). NVI differs from other vulnerability

measures in the literature by including serviceability variable which accounts for relative loss

of capacity. The measure redefined as Worse-Case-Vulnerability (WCV) would help

policymakers to assess a range of scenarios of disruption to make more informed decisions. It

will also help the agencies involved in post-disaster reconstruction to prioritise the recovery of

network links to benefit wider communities.

Subsequent to defining the term WCV, a mathematical model will be proposed to identify the

set of links to be enhanced in order to minimise the value of WCV for improving the resilience

of a city. The upper level of the BLPP in the paper aims to minimise theWCV for link capacity

changes discretised into a finite number of discrete levels as in a discrete Network Design

Problem (NDP) while the lower level accomplishes the Wardrop�s User Equilibrium (also

known as driver´s selfish behaviour, Wardrop 1952) as in a traffic assignment problem. Later

in the paper, metaheuristic Simulated Annealing for optimisation combined with the Method

of Successive Averages for traffic assignment will be adapted to evaluate the performance of

theWCV-Problem. Then in order to evaluate the computational cost of this solution, the model

will be assessed over a real-life network with different parameters.

This paper is divided into five sections including this one. The second section introduces the

context of vulnerability and builds a mathematical background to the problem by reviewing

relevant literature. The third section specifies the methodology in detail and sets out a

metaheuristic procedure to solve theWCV problem. The fourth section illustrates the principles

involved with the help of a real-life network with suitable numerical examples. Section five

concludes the research.
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2. Review of literature

This section will review basic concepts of network vulnerability, robustness and criticality;

which will be employed to develop the WCV measure. As a provision for the model, in this

section we briefly introduce the bi-level optimisation method too.

Vulnerability and criticality of road networks

In the studies of transport networks, the concepts of vulnerability, robustness, serviceability,

and criticality are interrelated. The term vulnerability has various definitions (See Table 2.1),

however in this document the definition suggested by Berdica (2002) will be used, who also

defined the notions of robustness and serviceability. Then, it can be stated that vulnerability is

the counterpart of robustness, i.e. a network highly vulnerable has a low level of robustness

and vice versa (Balijepalli & Oppong, 2014).

Serviceability is the possibility of using a link during a given period and is defined as the

fraction of available capacity to the standard capacity, which indicates not only whether a link

can be used, but also the extent to which it can be used (Balijepalli & Oppong, 2014). For

example, during flooding, some streets may become totally impassable (zero serviceability)

while other roads allow partial usage (some serviceability, but not the maximum). The

connection between the concepts discussed above is the following: during disruptive events, a

less vulnerable (more robust) network will provide links with greater serviceability and vice

versa. Notice that vulnerability and robustness refer to network´s performance and

serviceability to link´s performance.

Table 2.1 Definitions of vulnerability, robustness, serviceability and criticality
Characteristic Definition Reference

Vulnerability �Susceptibility for rare, big risks�. Laurentius (1994)
�Sensitivity to threats and hazards�. Holmgren (2004)

�The susceptibility to incidents that can result in
considerable reductions in road network serviceability�.

Berdica (2002)

Robustness �Ability to cope with disturbing incidents�. Berdica (2002)
Serviceability Possibility to use a link during a given period. Berdica (2002)
Criticality An affected link with great consequences. Balijepalli & Oppong (2014)

A critical link is termed as a street or road whose damage affects the performance of the

network greatly (Balijepalli & Oppong, 2014). Hence, the criticality of a link is defined by the

level of impact provoked to the network when the link reduces its serviceability. For example,

Balijepalli & Oppong assessed criticality of ten flood prone links of York´s urban road network

by means of five indicators (See Table 2.2). They calculated each indicator with all links being

available, then, computed each of the indicators eliminating the disruption-prone links one at a

time. As the result, ranking of criticality was created for every indicator, depending on the

proportional variation provoked by removing one of the ten flood prone links.
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Table 2.2 Five indicators used to estimate criticality of links
Indicator Reference

Change in generalised cost measure Taylor et al., (2006)
Network efficiency measure Nagurney and Qiang (2007)
The importance measure Jenelius et al., (2006)
Network Robustness Index Scott et al., (2006)
Network Vulnerability Index Balijepalli & Oppong (2014)

Network Vulnerability Index (NVI)

In the above mentioned study of link´s criticality, the Network Vulnerability Index (NVI), was

introduced as a means to evaluate the impact of entire or partial degradation of the streets

(links). The index is calculated as follows:

NVI = ൬xୟ୭
rୟ୭൰ tୟ୭ୟא െ ൬xୟ

rୟ൰ tୟୟא (2.1)

where ݔ ǡ ݐ and ݎ are traffic flow, travel time and serviceability of the link ܽ, when the
network is working with its full capacity being available. Furthermore, ǡݔ ݐ and ݎ represent
traffic flows, travel time and serviceability of the link ܽ when the available capacity of the linkܽ has been reduced. A is the set that contains all the links in a network. Serviceability of linkݎ needs explaining further to make the key notion of vulnerability even more clearer.
Serviceability of a link a is defined as the fraction of total available capacity to standard

capacity. Total available capacity of a link is prone to be affected by an incident leading to a

drop in capacity. The standard capacity of a link is the maximum flow rate per hour and is

dependent on the hierarchy of roads e.g. rural roads, motorways, urban roads etc as defined in

DfT�s Transport Analysis Guidance (DfT 2014). Thus the value of r, i.e. the serviceability of

a link reduces when an incident adversely affects capacity of the link. The above definition of

serviceability means that whilst multi-lane higher order road links are key to maintaining the

network functionality, single-lane lower order road links are equally critical in contributing to

the network connectivity which could play a significant role in reducing the disruption due to

incidents. By definition, the second element in equation (2.1) is expected to be larger than the

first; consequently, NVI takes negative values. If the reduction of available capacity over a link

is evaluated and the resulting NVI tends to zero, it should be interpreted as the link hardly being

critical. On the contrary, links� disturbances that make NVI move towards negative infinite are

the most critical roads (Table 2.3). Thus, it can be noted that regardless of the heirarchy, length,

width, flow or V/C ratio of a link, its degradation will impact the NVI to some extent.

Table 2.3 Interpretation of NVI to evaluate criticality of links
Link(s)
more

critical.
െλ NVI  0

Link(s)
less

critical.

Hitherto it was commented about identifying isolated link failures, nonetheless, the case of

simultaneous interruptions has also been studied in the recent past (see for example Bagloee et

al 2017, Bell et al 2017 and Wang et al 2016). While Bell et al (2017) proposed a demand-

independent capacity weighted spectral partitioning approach, both Bagloee et al (2017) and



6

Wang et al (2016) proposed a method involving optimising total travel time. It was revealed

that when multiple links reduce their serviceability at the same time, the power value of the

travel time function and travel demand play a significant role in defining criticality of links

(Wang, et al., 2016). Two remarkable observations made by Wang et al. (2016) are:

 in the case of simultaneous link disruptions, the set of critical links does not equal to

the combination of the most critical links identified during isolated disruptions; and

 the set of critical links not necessarily belong to the same area and thus the critical links

may not be even connected.

For the simultaneous link failure case, Wang, et al. (2016) applied a piece-wise linearization

of the NDP. Bagloee et al (2017) started off from identifying candidate critical links with

highest traffic flow and then solved a series of discrete NDP�s by using a system optimal

relaxation method involving Bender�s Decomposition. In this paper, we formulate a bi-level

optimisation problem involving minimising the measure of vulnerability, a variant of NVI

described earlier which accounts for the relative loss of capacity of roads with due

consideration for all hierarchies of roads within the network.

Bi-level optimisation

Bi-level optimisation belongs to the class of hierarchical mathematical problems and is applied

when there exist two goals, objectives conflicting between each other. Then, one of the goals

is expressed as a constraint of the main problem. The mathematical formulation which aims to

optimise this constraint is termed �lower-level� problem. Accordingly, the mathematical

formulation to optimise the remaining goal is called �master� or �upper-level� problem.

The toll-setting problem is an example of BLPPs, a general formulation of it is presented above,

see equations (2.2) to (2.5).݉݅݊୶אଡ଼,୷ F(x, y) (2.2)

S. t. G(x, y)  0 (2.3)݉݅݊୷ f(x, y) (2.4)

S. t. g(x, y)  0 (2.5)

Variables are classified in two groups upper-level ݔ) א Թ) and lower-level ݕ) א Թ). Then,ݔ)ܨǡ (ݕ and ǡݔ)݂ (ݕ are the upper and lower objective functions, both with domain Թ ൈԹ
and co-domain Թ. While the upper and lower constraint vectors are defined by ǡݔ)ܩ ǣ(ݕ Թ ×Թ հ Թଵ and ǡݔ)݃ ǣ(ݕ Թ ൈ Թ հ Թଶ, respectively. It is important to mention that upper-
level constraints include variables from both levels.

Bi-level problems and more generally multi-level problems have a close relation to the

economic problem of Stackelberg, which involves agents at distinct levels: leaders and

followers (Colson, et al., 2007). First applications of this category of optimisation problems

were utilised for military, industrial and marketing purposes; see (Bracken & McGill, 1973;
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1974; 1978). Other examples of bi-level problems are revenue management, congestion

management, origin-destination matrix estimation, management of hazardous materials, NDP,

Principal-agent Problem and the Stackelberg-Nash game (Colson, et al., 2007). In this paper,

we formulate the WCV problem as a bi-level optimisation and describe a solution procedure

using Simulated Annealing method as described in the next section.

3. Methodology

In this section, terms such as Vulnerability Value and Worse-Case-Vulnerability (WCV) are

introduced. These ideas are derived from the Network Vulnerability Index described earlier.

Later in the section, a mathematical problem to minimise theWCV is presented; it is formulated

as a BLPP. Then, the Simulated Annealing is proposed as a solution approach for the upper-

level problem and for the lower-level problem the Method of Successive Averages is used. The

section ends with a description of the test network which is a segment of York´s urban road

network.

Network context and link status

Definition of network context
The symbol ԅ describes the �context� of the network, this concept is used to identify the

situation of every link in the network. Let´s consider an �idealistic context� defined as ԅ ൌ I,
which supposes that every link works at its standard capacity. Then, another scenario can be

the �realistic context�, say, defined by ԅ ൌ �. In the realistic context some of the streets face
partial capacity reduction, say, due to lack of periodic maintenance or minor surface damages.

Other contexts could be the �pessimistic� and the �enhanced�, the first one assumes that some

of the streets are working with largely reduced capacities; say, due to flooding, giant holes or

landslides. The final context would be �enhanced�, this option considers the situation what-if

some street capacities were increased. Summarizing, different contexts of the network mean

different levels of available capacity for their links. Table 3.1 presents an overview of the

aforementioned contexts.

Table 3.1 Network context and it�s interpretation
Context Label (ԅ) Description

Idealistic I All links work at their standard capacity.

Realistic R
Some links face partial reduction of available capacity due to lack of periodic maintenance or minor damages.
However, no street suffers from total disconnection.

Enhanced E
This context considers that some streets can increase their current standard capacity and that those links work
at that higher capacity.

Pessimistic P
This context considers that some of the links are suffering from large reduction of available capacity, e.g.
flooding, landslide, giant holes, etc.

Link status definition and generation

The context of the network is denoted by߸ and it is defined by the status of the links that build
the network. Then, let ݏ be the status of link ܽ א ,ܣ where ܣ is the set of links. For this
research, there have been defined four statuses to stand for whether a link is disrupted,

degraded, intact and upgraded. The available capacity is what defines a status, viz., disrupted

links have available capacity between 0% and 50% of the standard capacity, degraded links

between 50% and 100% and upgraded links up to an arbitrary value of 120% (See Table 3.2).
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Standard capacities, in the UK, are given by the DfT (1999) in their Design Manual of Road

and Bridges and available capacities must be obtained by observing real-world traffic

variations.

The �upgraded� status (=4ݏ) is introduced to allow the model to assess the appropriateness of
enhancing standard capacities of some links, where it is possible, without affecting the

objective of improving the resilience of the network. Therefore, it does not make any sense for

a link to take status 4 as input for the model. Because, it would signify the link as upgraded

previously and its enhanced capacity is its new standard capacity.

Table 3.2 Status and available capacity܉ܛ Label Available capacity Comments

1 Disrupted 0<AC<0.5SC Available capacity is less than 50% of the standard capacity.
2 Degraded 0.5*SC <= AC < SC Available capacity is larger than or equal to 50% of the standard capacity.
3 Intact =SC Available capacity depends on road type.
4 Upgraded SC < כܥܵ <=1.2* SC Available capacity can be increased up to 20% of the standard capacity.

SC=Standard Capacity; AC=Available Capacity; Increased=כܥܵ Standard Capacity.
Note: Zero available capacity is excluded as it can be modelled by removing the link from the network

Lower and upper link status

Assuming the capacities and thus statuses of all links within each of the contexts defined in

Table 3.1 are known, then, ࣦ and ࣯ are the lower and upper status with which link ܽ could
be associated with. For e.g., if link ܽ is known to face a large reduction of capacity in the
�pessimistic context�, then its lower status would be equal to 1. But, if the link ܽ does not suffer
from capacity reduction in any of the contexts, then, its lower status would be 3. Thus, the set

that defines all possible statuses for any link ܽ א ,ܣ is given by ሼݔȁݔ  ࣦǢ ݔ  ࣯Ǣ ݔ א Գା}.
Complementarily, the �enhanced context� assumes that some links can increase their standard

capacity, then, the upper status of these links would be 4. The upper status for the links that

cannot increase their standard capacity would be 3.

Table 3.3 shows possible combinations of lower and upper status that links can have. Note, that

combination 2-3 might be the most common; which is the case of links whose lower status is

associated with a minor reduction in capacity and its upper status is related to the standard

capacity. Also, combinations such as 1-1, 1-2, 2-2 have not been included as it is assumed that

any improvement work undertaken will bring back the status of a link to at least intact, without

losing the generality of the method.

Table 3.3 Combination of upper and lower statusࣦܽ ࣯ܽ Prone to larger reduction
of capacity (AC<50%)

Prone to minor reduction of
available capacity
(50%<=AC<100%).

Able to work at
standard capacity
(=100%).

Have favourable conditions to
increase its standard capacity
(SC*>SC)

1 4 Yes Yes Yes Yes
1 3 Yes Yes Yes No
2 4 No Yes Yes Yes
2 3 No Yes Yes No
3 4 No No Yes Yes

Note: Other combinations were supressed due to lack of realism, for example ख=1 andट=2, which denotes a disruption-prone link
that never works at its standard capacity.

SC=Standard Capacity; AC=Available Capacity; Increased=כܥܵ Standard Capacity.
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Now that the notions of network context and link status have been introduced, their correlation

can be defined. Table 3.4 maps the link status over the four contexts presented in Table 3.1.

Table 3.4 Network context defined by the status of links
Context Label Definition

Idealistic I ݏ = 3; ܽ א ܣ
Realistic R ݏ = 2 ש ݏ = 3; ܽ א ܣ
Enhanced E ݏ = ࣯; ܽ א ܣ
Pessimistic P s = ࣦ; ܽ א ܣ

Available capacity

Available capacity is directly related to a link´s status, in the way that for each status there

exists a unique and independent available capacity. Then, the variable to denote link�s available

capacity is given by ǡ௦ೌݕ א ঀ; where ঀ is a matrix of size |ܣ| × 4 and ǡ௦ടೌݕ א Թ||ൈସ.
Additionally, it is relevant to mention that two links with the same status not necessarily have

the same available capacity. That is to say, as per the standard capacity which depends on the

type of road, the available capacity on each status is specific and independent for every single

link. For example, two links in status 2 might have different available capacities, it depends

on the type of road and level of damage. Despite the values of ঀ must be obtained by

observation of the real-world situation, for the model proposed in this paper, the elements of ঀ
will be generated randomly using MS Excel® as shown in Table 3.5.

Table 3.5 Random generation of available capacity for each status to be used in the study܉ܛ Available Capacity Comments MS Excel Formula

1 כ0.001 < ܉ܛ,܉ܡ < 0.5 כ Sܥ Available capacity is less than 50% of the
standard capacity

=(RAND()*0.5)* Standard capacity

2 0.5 כ SC  ܉ܛ,܉ܡ < SC
Available capacity is greater than or equal

to 50% of the standard capacity
=(1-RAND()*0.5)* Standard capacity

3 = SC Available capacity depends on road type = Standard capacity

4 SC < ܉ܛ,܉ܡ  1.2 כ ܥܵ Available capacity can be increased up to
20% of the standard capacity

=(1+RAND()*0.2)* Standard capacity

SC=Standard Capacity
*For purposes of modelling travel behaviour, it was assumed that no link can have 0 available capacity, it would constitute the

removal of the links from the network. However, a low enough value of available capacity will deter drivers from using the link.

Network Vulnerability Measure (NVM)

In section 2 where the methods employed to identify road network criticality were discussed,

we also described the Network Vulnerability Index (NVI), which differs from the Network

Robustness Index (NRI). In particular, NVI introduces the variable serviceability which allows

quantifying criticality based not only on volumes of traffic and travel time but also on the

magnitude of capacity loss. This makes the vulnerability metric a highly useful one as it

responds to the change in capacity of any type of road within the road network duly accounting

for the share of contribution made by lower order links within the network.

NVI serves to generate a ranking of links� criticality, by fully or partially reducing the capacity

of a single road (Balijepalli & Oppong, 2014). However, proofs point that when multiple

failures occur simultaneously, the set of most critical links may include some of the links that

were not critical through single failure evaluation (Wang, et al., 2016). In this research the

concept of NVI will be used to arrive at a set of links which minimises the vulnerability due to
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disruption using a network-wide measure. The measure, henceforth referred as Network

Vulnerability Measure (NVM), aims to offer an insight to the road network´s state. For

example, in an idealistic context wherein all the streets are working at 100% of their capacity

the NVM will be lower than if one or more links reduce their capacities.

When a link fails, NVI is calculated with the equation (2.1), which contains two parts, before

and after disruption values. Variables ݔ , ݎ and ݐ are obtained by dropping link ܽ or partially
reducing its available capacity.

ܫܸܰ =൬ݔݎ൰ אݐ െ�൬ݔݎ ൰ אݐ
Note that if the first part is eliminated from the equation (as shown below), the formula can

still be used to refer to a link´s criticality. This simplified version of NVI conserves its

interpretation; ܫܸܰ values tending to negative infinite mean higher vulnerability and the

opposite for values approaching zero. However, in no case the indicator should take value of

zero, it would mean that no flows have been assigned to the network ݔ) = 0; ܽ א ܫܸܰ.(ܣ ൌ െ൬ݔݎ ൰ כ אݐ
Using the previous simplification, it was defined the so-called vulnerability value, denoted

with, ரܸ෪. ԅ denotes the context wherein each link has a certain available capacity. Then, the
vulnerability value is formulated as follows.

ధܸ෪ =൬ݔధݎధ൰ כ אధݐ (3.1)

Additionally, the negative sign was eliminated, thus the interpretation changes. Values of ரܸ෪
tending to positive infinite represent higher vulnerability and the opposite for values tending to

zero.

Since serviceability ரݎ is calculated as the proportion of the available capacity to the standard
capacity (Balijepalli & Oppong, 2014), then (3.1) can be rewritten as (3.2). ܻ being the
standard capacity of link ܽ and ரݕ the available capacity of link ܽ within the context ԅ.

ధܸ෪ =൮ ధܻݕధ൬ݔ ൰൲ כ אధݐ (3.2)

Thus far, we have described the concept of ரܸ෪ whose values are related to the network�s size,

trip demand and travel time function. That is to say, a small network with low level of

congestion would produce a smaller value of ரܸ෪ than a larger highly congested network.

Complementarily, to standardize the analysis of vulnerability, the Network Vulnerability

Measure (NVM) is introduced, which compares vulnerability values of two different contexts.

The measure is represented with ȯர, and is given by the following:
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ధߓ =
Vధ෪
V෪ (3.3)

ܸ෪ is the vulnerability value of the base scenario and it is arguable how to calculate it. It could

be the outcome of using a road network working at standard capacities. But it is also valid to

use the available capacity of the network at the time of performing the study, which may differ

from the standard capacity. However, in this research ܸ෪, will be calculated using standard
capacities.

Worse-Case-Vulnerability (WCV)

Worse-Case-Vulnerability is the Network Vulnerability Measure of the worse scenario, i.e.

when all links take their least possible status. Then, to understand further sections the reader is

suggested to question themselves on the following:

Consider the possibility of investing in one or more links, in order to raise its lower status to a

higher level. Then,

 which link or links should raise their lower status, in order to minimise WCV?

 to what status should it (or they) be raised to?

 what would be the investment needed to raise the lower status from one level to

another?

Costs of upgrading Lower Status

Enhancement costs in continuous NDP (or CNDP, hereafter) are defined by linear functions,

i.e. a monetary unit of cost for each capacity unit covered. However, it has been suggested that

this linear approach is not accurate since costs depend directly on the complexity of the

intervention. Karlaftis et. al. (2007) employs a �nonlinear cost� approach to optimise fund

allocation for recovering the transport network after natural disasters.

As inputs for the WCV problem (proposed in further sections), three types of road works were

defined: Periodic works or Maintenance, Special works or Constructions and Development or

Improvement. The type of intervention depends on the actual lower status ࣦ and its desired
lower status, denoted as ࣦᇱ (See Table 3.6).
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Table 3.6 Work required to upgrade the lower status of a link and description of each type of

intervention
From
Originalख܉ To

Optimisedखכ܉ Type of
requirements

Description

1 2

Special works /
Construction

These are activities whose need cannot be estimated with any certainty in advance. The
activities include emergency works to repair landslides and washouts that result in the road
being cut or made impassable. Winter maintenance works of snow removal or salting are
also included under this heading. A contingency allowance is normally included within the
recurrent budget to fund these works, although separate special contingency funds may also
be provided.

1 3

1 4

2 3
Periodic works /
Maintenance

These include activities undertaken at intervals of several years to preserve the structural
integrity of the road, or to enable the road to carry increased axle loadings. The category
normally excludes those works that change the geometry of a road by widening or
realignment. Works can be grouped into the work types of preventive, resurfacing, overlay
and pavement reconstruction. Examples are resealing and overlay works, which are carried
out in response to measured deterioration in road conditions. Periodic works are expected
at regular, but relatively long, intervals. As such, they can be budgeted for on a regular basis
and can be included in the recurrent budget. However, many countries consider these
activities as discrete projects and fund them from the capital budget.

2 4 Development /
Improvement

These are construction works that are identified as part of the national development planning
activity. As such, they are funded from the capital budget. Examples are the construction of
by-passes, or the paving of unpaved roads in villages.3 4

Source: The World Back Group (2016)

Before explaining how the cost is calculated, the difference between �capacity reduction� and

�road damage� should be understood. Whilst, road damage refers to the physical harm

expressed in distance units, capacity reduction refers to traffic flows in which units can be

vehicle per hour or Passenger Car Units. Note that an equal length of road damage for two

independent links may have different rates of capacity reduction, i.e. the length of the damage

and the traffic capacity are independent from each other.

The parity �road damage � capacity reduction� has to be the outcome of in situ expert highway

engineer�s evaluation. Nonetheless, in this study, it is generated randomly using the criteria

presented in Table 3.7, viz., when a link takes status 1, it is assumed to have between 25% and

100% of its extent damaged; when a link takes status 2, the percentage of length damaged is

assumed less than 25%. Then, when a link is at status 3, i.e. it is intact, the damage is 0%.

Finally, for those links with the possibility to increase their standard capacities, when they take

status 4 it is assumed that intervention will be carried in less than 20% of its extent.

Table 3.7 Criteria to generate the extent of road damage, depending on lower and upper status

Status options Percentage of link�s length damaged
Percentage of link�s length to be
improvedख܉ ट܉ At Status 1 At Status 2 At Status 3 At Status 4

1 4 25% -
100%

0.001% - 25% 0% 0% - 20%

1 3 25% -
100%

0.001% - 25% 0% *

2 4 * 0.001% - 25% 0% 0% - 20%
2 3 * 0.001% - 25% 0% *
3 4 * * 0% 0% - 20%

*No applicable, the link cannot be in this status.

The parity Status-Damage presented in this table is exclusively to generate parameters of this study, further
researches should include real cases.

The costs of upgrading the lower status (ࣦ) of a link are dependent on the extent of the link
length to be intervened, the type of work required and the type of road. Table 3.8 presents some
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figures that can be used to generate enhancement costs. In this study it was assumed, as a

relaxation, that all the streets are single two lanes (S2). Then, the variable ࣦܥ ೌǡࣦ ᇲೌ א ԧ denotes
the cost of elevating the lower status of the link ܽ, from�ࣦ to ࣦᇱ . ԧ is a matrix of size |ܣ| × 4
and the following inequality holds ࣦ  ࣦᇱ  ࣯.

Table 3.8 Range of maintenance and construction costs

(Financial figures obtained from different sources, presented in £ million/Km)
Type of Work Type of road. Cost range (£m/Km)

Periodic works / Maintenance1 All 0.004 2 4 � 0.152 3 4

Special works / Construction 5

S2 0.9 � 1.7
WS2 1.3 � 2.3
D2AP 1.8 � 3.4
D3AP 2.6 � 4.8
D2M 2.5 � 4.5
D3M 3.2 � 6.0
D4M 4.0 � 7.4

Development / Improvement2 All 0.1 � 1.4
1Source: The World Bank Group (2000).
2Lower limit for resealing.
3Upper limit for structural overlays.
4Converted according to 1 USD 0.775 GBP.
5Source: DfT (1997).

Worse-Case-Vulnerability Problem (WCV-P)

Worse-Case-Vulnerability Problem is formulated to identify the optimal set of links in which

lower status should be elevated in order to reduce vulnerability in a pessimistic context. As

mentioned in the previous sections NVM differs from other measures by including into analysis

the magnitude of capacity losses. That is to say, importance will be given not only to higher

order links carrying large volumes of traffic but also to the links with large losses of capacity

notwithstanding whether they are of higher or lower in order. The model is formulated as a bi-

level mathematical problem, having a budget limit and the traffic assignment problem as

another constraint.

This section introduces the mathematical formulation of the WCV-P. Parameters, variables,

objective functions and constraints are also explained.

Parametersܣ: Set of links.ܰ: Set of nodes.ܰை: Set of Origin and Destination nodes, ܰை ؿ :ܦܱ.ܰ Set of O-D pairs, defined by ǣܦܱ ሼ(݅ǡ ݆)Ǣ ǡ݅ ݆ א ܰை}ܦ(ǡ): Demand of trips from ݅ to ݆, ሺ݅ǡ ݆ሻ א :ࣦ.ܦܱ Initial lower status of link ܽ א ;ܣ ࣦ א ࣦ.࣯: Upper status of link ܽ א ;ܣ ࣯ א ࣦܥ.࣯ ᇲೌ
: Cost of elevating the lower status of link ܽ to ࣦᇱ :ܤ. Available budget.ݍො: Standard capacity of link ܽ.
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ܳǡࣦ ᇲೌ : Matrix of available capacities, where ܽ א .ܣ Reads as �available capacity of link a when
its lower status change to ࣦᇱ �. Note that with ࣦᇱ = 3, then ܳǡଷ ൌ :ܴ.ොݍ Set of routes.ܴሺǡሻ: Set of routes that connect the O-D pair (݅ǡ ݆ሻ א .ܦܱ ܴǡ ؿ ܴ.ܸ෪: Vulnerability value of base scenario, i.e. ݏ = 3 and ݎ = 1; ܽ א .ܣ Then, ܸ෪ =σ ሺݔ) כ אݐ :ߙ. Free flow travel time expressed as a parameter of the travel time function.ߚ: Second parameter of the travel time function.

Indicesܽ: Index to denote and arc, element of ܣ
(݅ǡ ݆): O-D pair, element of ; ǡ݅ ݆ א ܰை.ݎ: Route ݎ א ܴሺǡሻ ؿ ܴ.ࣦᇱ : Lower level status of link ܽ during the critical scenario. The following holds ࣦ  ࣦᇱ ࣯ and ࣦᇱ א Գା.

Variables߬ሺݒǡ :(ݍ Travel time function and its parameters.෨ܸ : Vulnerability value of critical scenario, i.e. ݏ ൌ ࣦ; ܽ א :݂ሺǡሻ.ܣ Traffic flow on route ݎ א ܴሺǡሻ for each ሺ݅ǡ ݆ሻ א :ݍ.ܦܱ Available capacity of link ܽ.
Decision variables

Master problem:ݔǡࣦ ᇲೌ : Binary variable that takes 1 if lower status of link ܽ changes to ࣦᇱ ; 0 otherwise.
Second level problem:ݒ: Traffic flow on link :ǡሺǡሻߜ.ܽ Takes 1 if route ݎ that connects O-D pair ሺ݅ǡ ݆ሻ uses link ܽ.

Objective Functions

Master problem:ȯ: WCV will be used as the objective function of the problem of the master problem.

Second level problem:
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Ȯ: Individual travel time of the objective function of the second level problem.

Worse-Case-Vulnerability Problem formulation

The following bi-level problem is formulated to minimise WCV, which is denoted with ȯ (See
section 3.2). Among the constraints is the driver´s behaviour or traffic assignment problem.

This last constraint constitutes the second-level problem, which objective function is to

minimise individual travel time, whilst following the Wardrop�s First Principle.

The model is the following:

݊݅ܯ ቈߓ = ෨ܸܸ෪ (3.4)

s.t. ෨ܸ =൮ ො൰൲ݍݍ൬ݒ כ ߬א (3.5)

ݍ =  ࣦ,ݔ ᇲೌ כ ܳ,ࣦ ᇲೌࣦ ᇲೌ (ೌ࣯,ೌࣦ)א ܽ א ܣ (3.6)

 ࣦ,ݔ ᇲೌࣦ ᇲೌ (ೌ࣯,ೌࣦ)א = 1 (3.7)

  ࣦܥ ᇲೌ ࣦכ ᇲೌ א(ೌ࣯,ೌࣦ)א ࣦ,ݔ ᇲೌ  ܤ (3.8)

(ݒ) א ݊݅݉݃ݎܽ ߒ =න ߬(߱, )݀߱௩ᇲೌݍ
א ൩ (3.9)

s.t.  ݂(,)אோ(,ೕ) = (,)ܦ ,݅) ݆) א ܦܱ (3.10)

݂(,)  0 ,݅) ݆) א ݎܦܱ א ܴ (3.11)

ᇱݒ =  ݂(,) כ ,(,)ߜ
(,)אைא ܽ א ܣ (3.12)

The objective function of the master problem is presented in equation (3.4). The constraints are

expressed in the equations (3.5) until (3.9). The vulnerability value is calculated in (3.5), viz.,

the vulnerability after elevating the lower level of the links that minimise WCV. In (3.6) the

model calculates the available capacity of link ܽ and (3.7) forces every link to have only one
lower status. One important constraint is (3.8), which confirms that enhancement costs do not

exceed the budget. Finally, (3.9) guarantees the accomplishment of the User Equilibrium. This
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constraint in itself, is the objective function of the second-level problem, for which constraints

are stated from (3.10) to (3.12). The traffic flow is conserved by (3.10), and (3.11) ensures

non-negativity of flow. (3.12) imposes the definitional constraints linking the path flows to the

link flows. The travel time in (3.9) is calculated using the standard Bureau of Public Roads

(1964) style function, ߬(ݒᇱ ǡ (ݍ ൌ ߙ ͳ  ߚ ቀ௩ᇲೌೌቁఏ൨.
Simulated annealing based solution procedure

Simulated Annealing (SA) method was developed under the idea that there exists a useful

connection between statistical mechanics and combinatorial optimisation (Kirkpatrick, et al.,

1983). The following notions introduced by Liu (2001) ease the comprehension of the method.

 Initialization: Set the initial feasible status of the system and the initial �temperature�.

The initial temperature can be defined by trial and error.

 Markov Length (ML): is the number of random displacements performed during each

temperature.

 Cooling schedule: is the reduction rate of temperature, e.g. it has been applied 20%

reduction for the first 12 reductions and 50% afterward (Xu, et al., 2009).

 Step Size: the extent of displacements, i.e. how many and how big are the modifications

during each random generation.

 Neighbouring solutions: are the set of feasible solutions. They can be generated

departing from the previous feasible solution.

 Stopping Criteria: this value indicates the final temperature was achieved and the

process must stop.

The system is represented through a road network, whose elements are described in the sections

3.3.1 until 3.3.4. The objective function is represented by the WCV, described explicitly in the

section 3.2.1.

Initialization

The initialization is none other than the departing point from where SA begins to seek for better

solutions. As the initial solution, it will be based on a Larger-traffic-More-importance

approach, which seems to be a very logical strategy. This approach identifies the links with the

larger volume of traffic during an idealistic context, i.e. with all the links working at standard

capacity. Then a pessimistic context is assumed, i.e. all links work at their lower status. It may

be noted that this may be too pessimistic as the chance of so many links simultaneously getting

affected may not be high. However, it would serve as a good benchmark to compare alternative

strategies. Subsequently, the lower status is upgraded beginning with the links with larger

traffic under the idealistic context, up until the budget allows it. The WCV measure is

calculated according to the new lower levels of the links. The algorithm of this approach is

presented in Box 1.
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Box 1: Pseudocode for initialising the simulation

Perform MSA under the base scenario (idealistic context; ࣦᇱ = 3) and

calculate the vulnerability value ܸ෪.
Make a ranking of links with larger volumes of traffic.

Perform MSA under critical scenario (pessimistic context; ࣦᇱ ൌ ࣦ).
Begin increasing the lower status of links with larger volumes of traffic

to its upper status (ࣦᇱ ൌ ࣯) and repeat the operation until the budget
allows it. The new set of lower status will be denoted by ࣦଵ .
Perform traffic assignment with the set of upgraded lower statuses (ࣦଵ)
and calculate the vulnerability value ෨ܸ .
Calculate the WCV, ȯଵ = ෩బ෪.

Then, ȯଵ which is produced under the new set of lower status will stand for the initial solution
of the Simulated Annealing. This solution will be hence referred as Strategy One (S1).

The generator of displacements / neighbourhood solutions

During each iteration of the SA one neighbourhood solution is generated as follows in Box 2.

Box 2: Pseudocode for generating displacements and neighbourhood solutions

Generate the subset ሚܣ ؿ ,ܣ which contains links whose lower status can be
upgraded. ሚܣ also excludes links that cannot be upgraded because the

remaining budget is not enough to upgrade them

Select a random link ݈ ൌ .[ሚܣሾݐ݈ܴܿ݁݁ܵ݉݀݊ܽ
Select a random status ܵ of ݈, excluding its current lower status.ܵ ൌ ሼࣦǡ]ݐ݈ܴܿ݁݁ܵ݉݀݊ܽ ǥ ǡ࣯ሽ̳ሼࣦᇱ}].
Assign the new lower status to link ݈, ࣦᇱ ൌ ܵ.

Initial, final temperatures, cooling scheme, Markov Length

There is no standard method to set initial and final temperatures, besides, in the literature is

commonly noted that those values should be obtained by trial and error. The random walk

product of the generation of neighbourhood solution is strongly connected with the values

assumed as temperatures, e.g. a very high initial �temperature� allows the algorithm to accept

bad solutions with a high probability. On the other hand, very low initial �temperatures� does

not allow the model to explore different feasible regions. Consequently, the values of

temperatures will be presented individually for each one of the instances to be evaluated in the

further sections.

The cooling scheme refers to the velocity at which the temperature decreases. Some studies use

fixed rates of refrigeration and others use variable rates that quicken the refrigeration as the

temperature approaches the lower temperature. This last method will be employed in this

research. For the first seven iterations, the temperature decreases by 20% and thereafter by

50%.
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Markov Length is the number of neighbourhood solutions generated at each temperature. Then,

having Markov Length very long will increase the computation time; in fact, it can worsen the

solution in first stages and therefore it needs more �temperature� stages in order to find a good

solution. Regarding computational time, the size of Markov Length is even more important for

nested iterative solutions as the one proposed in this study. Thus, after a few preliminary tests,

it was found that 20 iterations per stage of temperature produce good results with an acceptable

computational time.

Considering the cooling scheme mentioned above some tests were performed to define

appropriate temperatures and it was found that initial temperature of 0.005 and the final

temperature of 0.0001 throw results deemed to be good for the research. The only case where

these values did not seem to improve WCV was for the network with 50% of the available

budget. So in this unique case, an initial temperature of 0.001 and a final temperature of 0.0005

were used. For each pair of temperatures, the cooling scheme generates 14 and 13 stages,

respectively, which when multiplied with the Markov Length result in 280 and 260 iterations.

Pseudocode

In addition to the notation provided in sections 3.3.1 until 3.3.4, the following list is required

for the upcoming algorithm.ȯ: Minimum WCV in the last iteration of SA.ȯ௦: Absolute minimum WCV.ࣦ: Set of lower statuses that produces ȯ.ࣦ௦: Set of lower statuses that produces ȯ௦.
Box 3 shows the main steps involved in minimising the WCV.

Box 3: Pseudocode for Simulated Annealing procedure

Initialization.

Perform Strategy One and obtain the new set of lower statuses, ࣦଵ.
Perform MSA using capacities according to ࣦଵ.

Calculate initial value of objective function, ȯଵ.
Make ȯ ൌ ȯ௦ ൌ ȯଵ and ࣦ ൌ ࣦ௦ ൌ ࣦଵ
Set ܶ ൌ ܶ, ܶ௪� andܮܯ.

While ܶ  � ܶ௪�repeat�
For ݊ = 1 until ݊ ൌ ,ܮܯ repeat�

Generate a neighbourhood solution, ࣦᇱ.
Perform MSA using capacities according to ࣦᇱ.
Calculate new value of objective function, ȯᇱ.
Make οȯ ൌ ȯᇱ െ ȯ
If ቀοȯ  Ͳ�����������e��[0,1]  eο಄ ቁ

If yes: Make ȯ=ȯᇱ and ࣦ ൌ ࣦᇱ.
If no: Do nothing.

End If.

If (ȯ �ȯ௦)



19

If yes: Make ȯ௦ ൌ ȯ and ࣦ௦ ൌ ࣦ
If no: Do nothing.

End If.

End For.

If (ܶ  � ܶ௪� כ ͲǤͺ)
If yes: Make ܶ ൌ ܶ כ ͲǤͺ
If no: Make ܶ ൌ ܶ כ ͲǤͷ

End If

EndWhile

Show ȯ , ȯ௦, �ࣦ, ࣦ௦.
This exponent in ܶ � ܶ௪� כ ͲǤͺ in Box 3 above defines that in the first 7 iterations the
temperature will reduce by 20% and thereafter by 50%. Despite the SA not guaranteeing the

optimal, for problems with a large number of decision variables, it approaches a very good

solution with lesser computational load. Complementarily, the Method of Successive Averages

is a technique to model driver�s behaviour which has been proved to converge to user

equilibrium. One of the advantages of using MSA is its simplicity, nonetheless, one drawback

is its slow convergence to the equilibrium solution. However, utilizing a loose convergence in

MSA aids in reducing the computational burden.

Remarks on the methodology

Worse Case Vulnerability Problem as defined in the paper has been set up as a Discrete

Network Design Problem (DNDP) as the objective is to identify a set of links whose

improvement from their lower status to a possible upper status would reduce the vulnerability

measure. DNDP�s are common in NDP literature (see for example, Xu et al 2017, Wang et al

2013 among many others) wherein a set of new links to construct, or binary capacity

improvement decisions are explored. On the other hand, Continuous Network Design Problems

(CNDP) are developed to determine optimal value of some variable such as toll, capacity (see

Farahani et al 2013 for a comprehensive review of NDP�s). In this research we chose to set up

the WCV-P as a DNDP as discretising the capacity change into a finite number of discrete

levels vastly reduces the computational burden especially when solving the problem for a real-

life network with large demand. The following paragraphs explain further the reasons for

choosing the particular objective function used and the metaheuristic solution method applied.

Comments on the objective function

Minimising directly an objective function involving a measure of vulnerability is new to the

field of vulnerability analysis. Thus far the literature reviewed attempted to minimise total

travel time in a bid to assess a degraded network within the normative system optimal state.

Whilst the system optimal objective of minimising total travel time is known to be a good

benchmark to compare network states, the literature recognises that minimising total travel

time makes some drivers travel longer to achieve efficiency (Boyce & Xiong 2004, Jahn et al

2005). In this research our aim is to minimise the vulnerability to disruption to keep up the

connectivity levels which is completely different to the objective of improving efficiency. The

objective function of WCV-P is aptly designed to include all types of roads to keep up the
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connectivity levels, be they higher order major roads carrying large volume of traffic or a lower

order single lane roads in the neighbourhood connecting homes with activities.

Comments on the solution procedure

Metaheuristic SA procedure has been used for solving the optimisation involved as SA is found

to be the most commonly used method alongside of Genetic Algorithm (GA) as noted by

Farahani et al (2013). Furthermore, SA has been found to outperform GA when the demand is

large (see Xu, et al 2009 for further details). SA is also attractive in achieving near global

optimal solution even without the need for having the gradient information from the flow

response (Friesz et al 1993, Meng and Yang 2002). SA is a stochastic method which avoids

getting stuck with a local optimum by accepting solutions not only that decrease the value of

objective function but also the worse solution which satisfies the acceptance criterion with a

probability. During the minimisation process, the probability of accepting worse solution

gradually tends to zero with an appropriate cooling schedule. For this reason, SA method does

not get stuck with the local optimum and the final accepted solution reaches near global

optimum.

4. Numerical examples

Experimental network

The model proposed above will be evaluated using a section of the York´s urban road network.

The following notions will help understanding the experiments.

 Base Scenario: situation when all links work at their standard capacity.

 Critical Scenario: pessimistic context when each link is at its lower status.

 Strategy Do-Nothing (DN): this strategy assumes that no action is taken to improve the

WCV of the critical scenario.

 Strategy One (S1): this strategy assumes that some improvements are developed

prioritizing the links with larger volumes of traffic.

 Strategy Simulated Annealing (SA): this approach is the result of modelling the WCV-

P using SA.

 Total Funding Requirement (TFR): it is the amount of money needed to guarantee that

during the critical scenario the status of all links is no lower than their upper-status, i.e.

Lower-status = Upper-status.

 Available Budget: it is a proportion of the TFR expressed as percentage.

All the programming required for this study was developed usingWolfram Language including

the Method of Successive Averages and Simulated Annealing. Additionally, the Wolfram

Languagewas used to generate graphics. Complementarily, all the parameters and information

on the network was stored in MS Excel which was taken as input by the program.
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Description of York´s urban road network

This example is used to evaluate performance of theWCV-P and SA over a network of realistic

size. The segment of York´s road network to be used is located to the south-west from the city

centre, see Figure 4.1.

The data related to this network was initially coded in SATURN traffic assignment software

(Van Vliet & Hall, 2004). Amongst the data extracted from the underlying SATURN model of

York include - node coordinates, link length/capacity, freeflow/capacity times and travel time

function parameters. The travel time function used in this study is the one proposed by the

Bureau of Public Roads (1964). Figure 4.2 below shows the network using the function P1X

of SATURN on the left and the network coded usingWolfram Language on the right.

The network consists of:

 251 links, each of them represent a street.

 108 dummy links: these arcs are not considered in the process of traffic assignment, as

they are used exclusively to represent the connection between the centroid nodes and

the network.

 40 O-D nodes: these nodes connect with junction nodes through dummy links.

 110 junction nodes: These can be signalized junctions, priority junctions or round

abouts.

 An O-D matrix containing 5800 trips for the segmented portion of York which has 40

zones.

Figure 4.1 Area of interest of York´s urban road network. Source:digimap.edina.ac.uk
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Numerical results, findings

This section firstly describes the results of traffic assignment performed for the do-nothing

scenario. The initial values of WCV and travel time for the DN strategy are obtained by

performing traffic assignment under the critical scenario. Subsequently this section describes

the results for the two main test scenarios viz., S1 and SA with an available budget of 50% of

TFR. Finally this section extends the analysis by describing the results at an aggregated level

after performing a series of optimisations with 10%, 20%, 30% and 40% of the TFR. SA is

performed fifteen times (random walks) with five different budgets (10%-50%), thus a total of

75 instances were simulated. The best and worst solutions for each of the fifteen instances of

SA within an available budget will be defined as SA-best and SA-worst. For this network, TFR

is £8.54 million if all links are improved from their lower status ࣦ to upper status ࣯ܽ� א Ǥܣ

Figure 4.2 Segment of York´ s urban road network represented in SATURN (left) and Wolfram (right)
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Do-Nothing Strategy

The total travel time, convergence, vulnerability values and WCV for the base scenario and

for the DN strategy of the critical scenario (Figure 4.3) are given in Table 4.1.

Table 4.1 Summary of Base scenario and Do-Nothing strategy
Base Do-Nothing

Total Travel Time, Sec 1.362035784*10^6 3.693286923*10^9
Convergence 0.01563951479 0.003214267431
Vulnerability Value (Vధ෪ ) 1.362035784*10^6 5.990034654*10^11
Worse-Case-Vulnerability (ధߓ) - 439785.4096

Figure 4.3 Layout of link status under pessimistic critical scenario
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WCV under S1 and SA with available budget limited to 50% of TFR

With 50% of the funds required, the S1 generated a WCV of 0.989, which corresponds to a

travel time of 1.348 × 10 seconds. These outcomes are achieved with an investment of
99.99% of the available budget. Note that WCV value is lower than 1, it means this solution

outperforms even the base scenario which is a perfectly feasible outcome to an NDP. It is not

incoherent considering that, with such a constrained fund available, the solution involves a

critical scenario wherein some links indeed transcend the initial standard capacities. Thus, the

new critical scenario would have a lower travel time than the base scenario. It can be witnessed

by comparing Table 4.2 and Table 4.1.

Table 4.2 Results of 15 instances of SA with available budget 50%
Instance

No

Min WCV Iteration No Investment(£m) %

Invested

Travel Time(Sec)

S1 0.988988416 - 4.268648956 99.99 1.347889302*10^6
1 0.984022013 - - - -
2 0.983690829 - - - -
3 0.982225527 - - - -
4 0.986068964 - - - -
5 0.980692162 - - - -
6 0.981942546 - - - -
7 0.985258912 - - - -
8 0.987065777 - - - -
9 0.983870333 - - - -
10 0.983401138 - - - -
11 0.984526846 - - - -
12 0.981402363 - - - -
13 0.98685229 - - - -
14 0.980287926 76(Best) 4.246602674 99.48 1.348136415*10^6
15 0.988390919 75(Worst) 4.237007342 99.26 1.348060203*10^6

Note: Total funding requirement: £8.54 million. Then, the available budget is: £ 4.27 million.

The set of instances of SA was generated using a high temperature of 0.001 and low

temperature of 0.0005. The Markov Length was 20. With these parameters, the SA�s best and

worst solutions were found in instances 14 and 15 respectively. SA-best solution requires an

investment of £4.247 million and SA-worst £4.237 million. Finally, the total travel time is not

considerably different from S1, for either of the best/worst solutions of SA.

Figure 4.4 shows the random walk of the WCV along all the iterations. For the case of SA-

best, the first forty solutions accepted worse WCV compared to S1. However, after iteration

20 there exist a clear decreasing tendency. Complementarily, the random walk of the

investment and total travel time is presented in Figure 4.5.
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Figure 4.4 Worst Case Vulnerability with an available budget of 50% of TFR

Figure 4.5 Investment (top) and total travel time (bottom) profiles with an available budget of 50% of

TFR
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With this level of available budget, the S1 suggests that eight links have to remain in status 1

during the critical scenario (Figure 4.6). The number of links that would be left in status 2

reduces from 168 with the DN strategy to 59 with S1 strategy. For status 3 S1 suggests 110

links, 51 more than the DN approach. In the case of links with the possibility for an increase

of capacity, S1 suggest 74.

On the other hand, SA suggests the following distribution of statuses for the critical scenario:

 7 links to remain in status 1, it is one less than S1.

 36 links remain in status 2.

 The number of links that takes status 3 is 137.

 71 links are recommended to increase their available capacity further than the actual

standard capacity (status 4).

The number of links by their status during a critical scenario thus significantly differs from S1

to SA. This variation may also involve a totally different set of links; it is evidenced in the

Figure 4.7.

Figure 4.6 Number of links by Lower Status: Do-nothing(left), Strategy 1 (Middle) and Simulated

Annealing (right)
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Figure 4.7 Network representation of two different sets of Lower Status: Strategy 1

(Top) and Simulated Annealing (Bottom).
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WCV under S1 and SA with a range of available budgets

The previous section described the results of S1 and SA with a budget availability of 50% of

TFR. This section describes the results of WCV for a range of budget availabilities viz., 10%,

20%, 30% and 40%. Table 4.3 compares the differences in values of WCV, investment and

total travel time between SA and S1 strategies for varying budget availabilities. Among all the

instances, the larger reduction of WCV was 30.9%, related to the SA-worst with a budget of

30% of the TFR. Despite this solution to require less investment than S1, the difference is very

small, only 0.062%. Additionally, a drawback is the increment of total travel time, 1.27% more

than S1. Nonetheless, the travel time is less than the DN strategy (not shown in Table).

Finally, the worst solution was found in the series SA-best with available budget of 40% of

TFR. This solution was not able to improveWCV, then, it assumed S1 as its minimum solution.

In summary, SA-based strategy almost always improved the WCV compared to S1. SA

solutions almost always used up less amount of the available budget and produced similar

travel time as that of S1.

Table 4.3 Outputs of Simulated Annealing compared against strategy S1
Target Budget Approach (A) (B) (C) (D)

10% SA Best -0.000021% 88.143 -0.011% -0.0006%
10% SA Worst -0.000146% 1598.884 -0.187% -0.0025%
20% SA Best -0.000119% 2085.624 -0.122% -0.0003%
20% SA Worst -0.000003% 1675.11 -0.098% 0.0003%
30% SA Best -0.422286% 12628.945 -0.493% 0.3364%
30% SA Worst -30.962% 1588.039 -0.062% 1.2796%
40% SA Best 0.000000% 0 0.000% 0.0000%
40% SA Worst -10.939380% 2501.854 -0.073% -0.694%
50% SA Best -0.879736% 22046.282 -0.516% 0.0183%
50% SA Worst -0.060415% 31641.614 -0.741% 0.0127%

(A) Difference of WCV SA-S1 (%).

(B) Difference of Investment SA- S1 (£).
(C) Difference of Investment SA- S1 (%).

(D)Difference of Total travel time SA- S1(%).

The computational time required to arrive at the final solution has an average of slightly over

700 seconds. For the first two sets of instances, specifically for available budgets of 10% and

20% of the TFR, the algorithm required around 400 seconds (See Table 4.4). Then, when the

available budget is 30% of TFR the algorithm employs a mean of 1109.8 seconds. Furthermore,

for available budgets of 40% and 50% of TFR, the computational time seems to have a

declining tendency (See Figure 4.8).

http://www.mwcog.org/clrp/process/process.asp
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Table 4.4 Average computational time and Simulated Annealing parameters by available budget
Number of Temperature Stages: 14 and 13*
Markov Length: 50
MSA Number of Iterations: 30 (or į<2%) 
Budget Sample Size Mean (Sec) St. Dev

10% 15 400.990625 18.80512618
20% 15 397.465625 24.74593996
30% 15 1109.875 106.3788296
40% 15 979.359375 109.8143583
50% 15 620.8770833 60.53504863
All 75 701.7135417 305.1442873

CPU: Intel® Core™ i7-6500U CPU@2.5GHz 2.60GHz
RAM: 8.00GB

*Only for 50%

5. Concluding remarks

The Worse-Case-Vulnerability was introduced as a measure to compare vulnerability to

disruption under different scenarios that an urban road network can undergo. To compute the

WCV it requires the knowledge of set of links that will be affected by incidents and an

estimation of their capacity losses. Then, a decision maker can contrast the variation of WCV

when the network is working at full capacity against another situation that involves loss of

available capacity. The WCV is calculated as the division of the so-called vulnerability value

Figure 4.8 Computation requirements of 75 instances of S (Each colour in the graph denotes the

percentage of available budget used).
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of the event of interest by the vulnerability value of the base scenario. In this study, the base

scenario assumes network operating at full capacity. Therefore, the following holds:

 ܸܥܹ ൌ ͳ if the critical scenario is equal to the base scenario, viz., vulnerability value
of the critical scenario equals the vulnerability value of the base scenario.

 ܸܥܹ  ͳ when the critical scenario represents a network suffering capacity

reductions. By definition, WCV should be bigger than 1.

 ܸܥܹ ൏ ͳ only in the case of testing enhancement projects that end up with a critical
scenario more suitable than the base scenario. Note this situation should only be

possible in theoretical situations.

Worse-Case-Vulnerability Problem (WCV-P) was formulated as a mathematical model to

minimise WCV. The decision variables of the problem are the status of the links during the

critical scenario. Additionally, the model considers that the enhancement costs are limited by

budget. Thus, the model requires to have estimation of the capacity losses during the critical

scenario as well as the costs for developing the solutions that will avoid future reductions of

capacity.

A solution for theWCV-P was generated using the metaheuristic Simulated Annealing coupled

with a user equilibrium based traffic assignment solved by theMethod of Successive Averages.

This solution was tested using a network representing a segment of the urban road network of

the City of York in UK.

Policy implications

There are three main implications to the policy aiming at improving the resilience of a road

network:

 Agencies involved in post disaster reconstruction planning as well as the local

authorities facing potential threat of disruption due to incidents can develop a plan to

minimise the disruption to normal life/business by solving the WCV-P. While

developing the plan they can consider the constraint on budget availability too and

develop robust solutions involving identifying a set of road links with an extent of

capacity to which they need to be maintained/developed.

 In almost all cases, outcomes of Simulated Annealing reduced WCV using a smaller

percentage of available funds compared to �volume-priority� heuristic approach,

indicating higher returns per £ spent.

 Simulated Annealing allowed more streets for improvement in its list of priority roads

than the �volume-priority� approach, which signifies that more neighborhoods and thus

larger population to benefit from the authority�s planning efforts thus distributing the

benefits equitably across different parts of the city.

Simulated Annealing is an algorithm easy to implement and quick to run. It does not require

specialist software though a few notions of programming are helpful. The algorithm can be

implemented on a personal computer and the average time required to arrive at a solution, with
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a network of 251 links and 110 junctions, is 11.6 minutes. Thus, computing resources required

are not too onerous to arrive at an efficient solution to improve the resilience of a network.

In this study, hypothetical capacities were generated for each status of links. It was done as a

means to obtain sufficient data to assess the performance of the network. However, the model

is formulated to receive data from observation of real variation in capacities during critical

scenarios.

Finally, the demand was assumed to be fixed as the model considers peak hour during when

the demand is inelastic. However, for off-peak applications with discretionary trips, it would

be pertinent to consider elastic demand by introducing an objective function that combines

WCV and consumer�s surplus.
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