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A theory of single-shot error correction for adversarial noise

Earl T. Campbell
Department of Physics & Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom.

Single-shot error correction is a technique for correcting physical errors using only a single round
of noisy check measurements, such that any residual noise affects a small number of qubits. We
propose a general theory of single-shot error correction and establish a sufficient condition called
good soundness of the code’s measurement checks. Good code soundness in topological (or LDPC)
codes is shown to entail a macroscopic energy barrier for the associated Hamiltonian. Consequently,
2D topological codes with local checks can not have good soundness. In tension with this, we
also show that for any code a specific choice of measurement checks does exist that provides good
soundness. In other words, every code can perform single-shot error correction but the required
checks may be nonlocal and act on many qubits. If we desire codes with both good soundness and
simple measurement checks (the LDPC property) then careful constructions are needed. Finally,
we use a double application of the homological product to construct quantum LDPC codes with
single-shot error correcting capabilities. Our double homological product codes exploit redundancy
in measurements checks through a process we call metachecking.

In the simplest model of quantum error correction,
noise affecting qubits is corrected under the assumption
that measurements are performed perfectly. In reality,
measurement results will be unreliable. The standard
tactic for combating measurement noise is to repeat the
measurements and build a timeline of measurement data.
Error correction software can then attempt to infer the
most likely explanation of the observed measurement re-
sults. The number of measurement rounds required will
typically grow with the code size. Recently, single-shot
error correction was proposed by Bombin as a radically
different solution to measurement noise [1]. In single-shot
error correction, no repeated measurements are needed.
Benefits include faster error correction and an inherent
resilience to temporally correlated noise [2]. However,
few codes are known to support single-shot error correc-
tion. This idea was proposed in the setting of topologi-
cal codes in three or four spatial dimensions, such as the
three dimensional gauge colour code [3] and four dimen-
sional toric code [4]. Very recently, it has been reported
that quantum expander codes also allow for single-shot
error correction [5]. Quantum data-syndrome codes are
also closely related to single-shot codes [6, 7]. The devel-
opment and implementation of decoding algorithms for
single-shot error correction is also limited with only a few
examples [8, 9]. So far progress has been focused on spe-
cific examples and one of our goals here is to lay down
a common framework within which single-shot error cor-
rection can be understood and analysed.

In the idealised setting of perfect measurements, er-
ror correction will return the system back into the code-
space, either with or without a logical error. A quantum
code is parametrised by its distance d where perfect mea-
surements can always detect noise on fewer than d qubits.
Consequently, noise on any (d− 1)/2 qubits can be suc-
cessfully corrected, even if the damaged qubits are chosen
by an adversary who is attempting to corrupt the quan-
tum information. Here we consider adversarial noise in
the single-shot setting. We allow for physical qubit errors
and measurement errors to appear in any pattern but af-

fecting a limited number of qubits and measurements.
Given corrupt measurement data, error correction may
not even return the system to the code-space, but will
leave some residual qubit error. Single-shot error correc-
tion aims to control the size of this residual error. Cen-
tral to achieving this is the notion of soundness [10, 11].
Loosely, a code has good soundness if small measure-
ment syndromes can be produced by small qubit errors.
Good soundness is closely related to local testability of
codes [10, 11] and energy barriers in self-correcting quan-
tum memories [12–14]. It is clear that the 4D toric codes
have good soundness properties. We shall also show that
good soundness entails the existence of a macroscopic
energy barrier [12, 15] and consequently 2D topological
codes cannot possess good soundness properties. How-
ever, we also show that given any quantum code we can
adapt the check measurements to ensure good soundness,
though in the process any topological and or low-density
parity check (LDPC) properties will be lost. This leads
to the surprising insight that any quantum error correc-
tion code can perform single-shot error correction, pro-
vided we are content with error correction measurements
involving a large number of qubits. The interesting chal-
lenge is then to find codes that combine good soundness
with LDPC properties.

The second part of this work provides techniques for
constructing quantum codes with good single-shot cor-
recting capabilities. Our approach is to use a double
application of the homological, or hypergraph, product.
The hypergraph product was first used by Tillich and
Zémor [16] to show that any two classical codes can be
combined to make a new quantum code. Unlike the stan-
dard CSS construction, no special relationship between
the two codes is required by the hypergraph product. If
the original classical codes are good LDPC codes (con-
stant rate and linear distance) then the hypergraph prod-
uct produces a quantum LDPC code with a good rate
(the number of logical qubits k scaling as a constant frac-
tion of the number of physical qubits n) and distance scal-
ing as Θ(

√
n); becoming the first quantum LDPC code to
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achieve such parameters. Subsequently, Leverrier, Tillich
and Zémor proposed quantum expander codes that re-
sult from the hypergraph product of two expander graph
codes, which are a specific family of good LDPC codes.
The expansion properties of these codes enabled them
to devise an efficient decoder correcting adversarial er-
rors affecting upto O(

√
n) qubits. Later it was shown

that the decoder could correct O(n) random errors with
high probability [17] and support single-shot error cor-
rection [5]. Furthermore, maximum likelihood decoding
has been investigated for quantum expander codes pro-
viding both analytical lower bounds [18] and numerical
estimates [19].

Our approach here has overlap in the formal techniques
but is more widely applicable since it does not depend on
the strong assumption that the initial classical code is an
expander graph code. The hypergraph product is closely
related to the homological product used in the study of
algebraic topology. Bravyi and Hastings [20] used the
homological product to construct codes with a linear dis-
tance and good rate; though they were not strictly low-
density parity check codes. Audoux and Couvreur stud-
ied repeated application of the homological product [21].

We will use two applications of the homological prod-
uct to design single-shot codes from any classical code.
Two applications of the homological product generates a
structure that in homology theory would be described as
length 4. Sometimes this length-4 algebraic structure can
be embedded within a geometrically local 4-dimensional
manifold and the resulting quantum code would be a 4-
dimensional topological code. Given a family of LDPC
classical codes, our construction gives a family of LDPC
quantum codes with good soundness, successfully com-
bining these two desirable properties. However, our ap-
proach is inherently algebraic, providing many codes with
no natural spatial topology, unless the original classical
codes are topological. From the perspective of practical
implementations, a topological code of modest dimen-
sion may seem preferable. However, topological codes are
constrained by trade-off bounds on the achievable code
parameters [22, 23] and so non-topological codes can be
much more efficient.

We begin by reviewing the key concepts (Sec. I) be-
fore giving a more technical statement of the main results
(Sec. II). We prove sufficient conditions for single-shot er-
ror correction in Sec. III. We discuss the relationship be-
tween soundness and energy barriers in Sec. IV. We show
how measurement checks can be redefined for any code
to provide good soundness in Sec. V. We give a general
overview of how homology theory can be used to describe
quantum codes in Sec. VI. This establishes the technical
groundwork for Sec. VII where we give code constructions
that meet our criteria using a double application of the
homological product. We conclude with a discussion of
the remaining open problems and the limitations of con-
sidering adversarial noise rather than stochastic noise.

I. KEY CONCEPTS

The preliminary material covered in this section draws
from the work of Bombin [1, 2] and was influenced by
Brueckmann’s thesis [24], though our presentation is less
topological and has some new ideas.

A. Stabiliser codes

An n qubit error correcting code storing k logical
qubits can be represented by a projector Π onto the
codespace. Stabiliser codes are an important class where
Π can be described in terms of the code stabiliser S. That
is, S is an abelian subgroup of the Pauli group such that
for all S ∈ S we have SΠ = ΠS = Π. To perform error
correction we measure some set of checks M ⊂ S that
generate S under multiplication. We require that M suf-
fices to the generate the whole stabiliser of the codespace
but we allow for the possibly of M being overcomplete.
We define the weight wt(·) of a Pauli operator P as the
number of qubits on which P acts nontrivially (the iden-
tity is the only trivial Pauli). Given a family of check
sets Mn with index n, which we will call a check family,
we find there is a corresponding code family Πn. For a
given code family, there may be many different choices
of check family, so many statements are more precisely
defined with respect to check families. For instance, we
have a notion of low-density party check (LDPC) and we
say a check family is LDPC if there exists a constant C
such that for every n

1. For all S ∈ Mn we have wt(S) ≤ C;

2. For every physical qubit in the code, there are no
more than C checks in Mn that act non-trivially
on that qubit.

It is crucial that the constant C is the same for every
member of the family. One practical consequence is that
for codes with an LDPC check family, the complexity
of measuring checks does not increase with the code size.
Crudely, one can say a code family is LDPC if there exists
at least one corresponding LDPC check family. Note that
topological code families are always LDPC.
Also important is the code distance dQ. We use the

subscript Q to distinguish this from the single-shot dis-
tance (denoted dss) that we define later. The distance
dQ is simply the minimum wt(P ) over all P such that
PΠ = ΠP but P /∈ S. It is useful to also define the
min-weight wtmin of a Pauli operator, which is

wtmin(P ) := {wt(PS) : S ∈ S}. (1)

To summarise, an [[n, k, dQ]] code has parameters n
(number of physical qubits), k (number of logical qubits)
and dQ (qubit code distance).
The measurement syndrome is the result of measuring

M = (M1,M2, . . . ,Mm). Given a physical Pauli error E
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we can denote σ(E) as the syndrome due to E assuming
perfect measurements. We use the convention that σ(E)
is a binary column vector with elements

[σ(E)]i =

{

1 if EMi = −MiE

0 if EMi =MiE
(2)

We will be interested in the weight of the syndrome and
always use | . . . | to denote the Hamming weight of binary
vectors. The Hamming weight is the number of nonzero
elements.

B. Single-shot error correction

A decoder is an algorithm that takes a measurement
syndrome s ∈ Zm2 and outputs a recovery Pauli opera-
tor Erec. We model measurement errors as introducing
an additional syndrome vector u so that we physically
observe syndrome s = σ(E) + u where E is the physi-
cal error. Good decoder design would ensure that given
s the recovery is such that residual error ErecE has low
min-weight. We propose the following definition

Definition 1 (Single-shot error correction) Let p
and q be integers and f : Z → R be some function with
f(0) = 0. We say a check set is (p, q, f) single-shot if
there exists a decoder such that for all u and E such that

1. |u| < p ; and

2. f(2|u|) + wt(E) < q

the decoder takes syndrome s = σ(E)+u and outputs re-
covery operation Erec such that wtmin(Erec ·E) ≤ f(2|u|).

This captures all instances of single-shot error correction
known to the author. We are interested in good cases
where p and q are large and f is in some sense small.
A very bad case is when p = 1 so that no measurement
errors (|u| < 1) can be tolerated. A more rigorous notion
of good single-shot properties requires us to consider not
just a single instance but an infinite check-family.

Definition 2 (Good single-shot families) Consider
an infinite check family Mn of n-qubit codes. We say
the family is a good single-shot family if each Mn is
(p, q, f) single-shot where

1. p and q grow with n such that p, q ≥ anb for some
positive constants a, b. That is, p, q ∈ Ω(nb) with
b > 0;

2. and f(x) is some polynomial that is monotonically
increasing with x and independent of n.

We need p and q to grow so that we can tolerate more er-
rors as the code size grows. We want f to be independent
of n so that the residual errors remain contained.
Single-shot error correction is defined for a single round

but it is informative to see what the consequences are

for N rounds of error correction. We use a label τ ∈
{1, . . . , N} for the round number. On round τ , we de-
note uτ for the measurement errors and Eτ for the new
physical errors. We must combine Eτ with the residual
error from the previous round Rτ−1 to obtain the total
error EτRτ−1. For the τ

th round to satisfy the conditions
in Def. 1 we need that |uτ | < p and

f(2|uτ |) + wt(EτRτ−1) < q. (3)

Assuming similar conditions were satisfied on the previ-
ous round, we may upper bound wt(Rτ−1) using Def. 1
and have

f(2|uτ |) + f(2|uτ−1|) + wt(Eτ ) < q. (4)

Therefore, provided the measurement errors and new
physical errors are small for every round, the residual
error will be kept under control over many rounds and
not grow in size.
The above definition of single-shot error correction is

difficult to analyse since it contains the clause “if there
exists a decoder” and there are many possible decoders.
Therefore, we also consider a complementary concept
called soundness which will be shown to entail single-shot
error correction. Roughly, this extra property is that for
low weight syndromes there exists a low weight physical
error producing the syndrome. More formally,

Definition 3 (Soundness) Let t be an integer and f :
Z → R be some function called the soundness function
with f(0) = 0. Given some set of Pauli checks M, we say
it is (t, f)-sound if for all Pauli errors E with |σ(E)| =
x < t, it follows that there exists an E⋆ with σ(E⋆) =
σ(E) such that wt(E⋆) ≤ f(x).

The phrase soundness comes from the literature on lo-
cally testable codes [10, 11]. In particular, the above
definition is similar to Def 14 of Ref. [10] though this
earlier work did not allow for the |σ(E)| < t clause.
Again, good soundness would mean “small” f . More

rigorously, we define the following notion of goodness

Definition 4 (Good soundness) Consider an infinite
check family Mn. We say the family has good soundness
if each Mn is (t, f)-sound where:

1. t grows with n such that t ≥ anb for some positive
constants a, b. That is, t ∈ Ω(nb) with b > 0;

2. and f(x) is some polynomial that is monotonically
increasing with x and independent of n.

The intuition behind f being a polynomial is that we are
formalising an algebraic version of an area or volume law
that is encountered in topological codes. For instance, in
the classical 2D Ising model we know that the area within
a boundary follows a quadratic scaling (you may wish to
look ahead to Fig. 2b3). Ultimately, f will govern the
size of residual errors after performing single-shot error
correction, so we do not want it to grow with the number
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of qubits. In contrast, t captures the scale at which this
boundary law breaks down and so it must grow with the
code size to enable single-shot error correction of larger
errors as the code grows.
It is clear that not all check families have good sound-

ness. For 2D toric codes with the standard choice of
checks, an error violating only 2 checks can be of arbi-
trarily large size.

C. Energy barriers

Energy barriers play an important role in the design of
passive quantum memories [13, 14]. While passive quan-
tum memories are a distinct topic from active single-shot
error correction, the two topics are intertwined. Earlier
work [10] has commented on the relationship between
soundness and energy barriers, though they used a more
restrictive notion of soundness. For a stabiliser code with
checks M we define a Hamiltonian

H = −
∑

S∈M

S. (5)

We are interested in walks of quantum states W =
{ψ0, ψ1, ψ2, . . . , ψL} that fulfil

1. groundstates: ψ0 and ψL are groundstates of H;

2. orthogonality: ψ0 and ψL are orthogonal;

3. local errors: for every j ∈ [1, L] there exists a single-
qubit Pauli Pj such that |ψj〉 = Pj |ψj−1〉.

For every such walk we associate an energy penalty

ep(W ) = maxψj∈W 〈ψj |H|ψj〉 − Egs, (6)

where Egs is the ground state energy. The energy barrier
of check set M and associated Hamiltonian is then the
minimum ep(W ) over all walks W satisfying the above
conditions. Less formally, the energy barrier is the min-
imum energy required to go from one ground state to
another.
Every quantum code will have some size energy bar-

rier. We are really interested in the scaling with code size.
Given an infinite check familyMn of n-qubit codes, if the
energy barrier scales as Ω(nc) for some positive constant
c, then we say the family has a macroscopic energy bar-
rier.

D. Measurement redundancy and single-shot

distance

We have allowed for some redundancy so that checks
Mmay be overcomplete. This is pivotal for us to capture
the single-shot properties of the 4D toric codes since they
are only known to exhibit good soundness when an over-
complete set of checks are used. We quantify the amount

of redundancy in a measurement scheme as the ratio be-
tween the number of measurements performed and the
minimum number required to generate the stabiliser of
the code and use υ to denote this ratio. Good soundness
can always be achieved by allowing υ to grow with n by
simply repeating the same measurements. Rather, the
most interesting cases are check families where υ is no
more than a small constant factor. There may also be
interesting intermediate cases where υ grows but slowly
(e.g. sublinearly), though a constant factor is more de-
sirable and is what we prove later in our constructions.
Since topological codes can use redundancy to achieve
good soundness, it is reasonable to ask whether redun-
dancy is necessary for good soundness? We will see later
that redundancy is not always essential for good sound-
ness (see Thm. 3 and Sec. V). However, it seems that
redundancy does play an important role when one at-
tempts to marry good soundness with LDPC properties.
Check redundancy provides consistency conditions

that one can inspect for evidence of measurement errors.
These are checks on checks and we call them metachecks.
They do not represent a physical measurement but clas-
sical postprocessing on the measurement outcomes. It is
essentially a classical error correcting code that can be
represented by a parity check matrix H. Given a binary
string s representing the outcome of syndrome measure-
ments, we say Hs is the metacheck syndrome, where Hs
is evaluated modulo 2. If there are no measurement er-
rors then s = σ(E) where E is the physical error. Re-
call that we model measurement errors as introducing
an additional error u so that s = σ(E) + u. Since the
metachecks are intended to look for measurement errors,
we require that Hσ(E) = 0 for all E. It follows that the
metasyndrome Hs = H(σ(E) + u) = Hu depends only
on the measurement error u. There will always exist a
maximal set of metachecks Hmax such that Hmaxs = 0 if
and only if there exists an error E such that s = σ(E).
However, we are flexible and allow for H to contain fewer
checks than Hmax, so that not all check redundancies
are metachecked. While it might seem odd to not use
the maximum information present, this occurs naturally
in some local decoders for topological codes where lo-
cal metachecks are used but non-local metachecks are
ignored by the decoder (see for instance the discussion
on “energy-barrier limited decoding” in Ref. [9]). Given
a non-maximal set of meta-checks, there are syndromes s
that pass all metachecks (Hs = 0) and yet there is no er-
ror E satisfying s = σ(E). This motivates the following
definition.

Definition 5 (Single-shot distance) For a code with
checks M and metacheck matrix H we define the single-
shot distance as

dss = min{|s| : Hs = 0, s /∈ im(σ)}. (7)

We use the convention that dss = ∞ if for all s there
exists some E such that s = σ(E).

Here, im(σ) is the image of map σ, which is the set of s
such that s = σ(E) for some E. A equivalent definition
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is that dss is the minimal weight s such that Hs = 0 but
Hmaxs 6= 0. The single-shot distance relates to how many
measurement errors can be tolerated before a failure oc-
curs that we call a metacheck failure. In a metacheck fail-
ure, the syndrome has no explanation in terms of qubit
errors.
We remark that for any M we can always choose

H = Hmax and then dss is infinite. However, sometimes
a finite single-shot distance may be preferred to ensure
that the metacheck decoding process can be implemented
using a local decoder [9]. For a code with metachecks we
extend the notation [[n, k, dQ]] to [[n, k, dQ, dss]].

II. SUMMARY OF RESULTS

Here we prove the following:

Theorem 1 (Single-shot success) Consider a quan-
tum error correcting code with parameters [[n, k, dQ, dss]]
and check set that is (t, f)-sound. It is also (p, q, f)
single-shot where

p =
1

2
min[dss, t] (8)

q = dQ/2. (9)

For the above bounds to be useful, the code must have
a soundness function f that is fairly gentle (e.g. some
polynomial). The proof is mostly linear algebra and is
given in Sec. III.
Our second result is an observation on the connection

between soundness and energy barriers.

Theorem 2 Any LDPC check family with good sound-
ness and code distance dQ growing as Ω(nc) for some
constant 0 < c will also have a macroscopic energy bar-
rier.

This is proved in Sec. IV. We remark that Aharonov and
Eldar made a similar observation [10] though using a
much stronger notion of soundness. Since Bravyi and
Terhal proved that no 2D topological code can have a
macroscopic energy barrier [25], it follows immediately
that

Corollary 1 Any 2D topological check family with code
distance dQ growing as Ω(nc) for some constant 0 < c
will not have good soundness.

We thank Michael Beverland for pointing out that this
corollary follows directly from Thm. 2 and the Bravyi
and Terhal result.
Next, we show that

Theorem 3 For any n-qubit quantum error correcting
code we can find a set of checks generating the code sta-
biliser (without any redundancy) such that these checks
are (∞, f(x) = x)-sound.

The proof is elementary and given in Sec. V. While this is
a simple result, it carries important implications for our
understanding of soundness. It shows that any code fam-
ily can be bestowed with good soundness by appropriate
choice of checks, but in the process the LDPC property
may be lost. Therefore, the interesting question is for
which code families we can find checks that are simulta-
neously LDPC and of good soundness.
Our last main result is a recipe for quantum codes with

the required properties. We show that

Theorem 4 (Construction of single-shot codes)
Given a classical error correcting code with parameters
[n, k, d] we can construct a quantum error correcting
code with parameters [[nQ, k

4, dQ ≥ d, dss = ∞]] where

nQ = n4 + 4n2(n− k)2 + (n− k)4. (10)

Furthermore, the resulting checks are (d, f)-sound and
also (d2 ,

d
2 , f) single-shot, with f(x) = x3/4 or better. The

check redundancy is bounded υ < 2. Given a classical
LDPC check family, this construction gives a quantum
LDPC check family. Given a classical check family where
d ∈ Ω(na) we have a good single shot family.

We remark that the distance bound dQ ≥ d and sound-
ness properties are loosely bounded. Indeed, very re-
cently Zeng and Pryadko [31] considered the same code
family and showed that d = d2.
Before giving the proof of Thm. 4, we establish how the

mathematics of homology theory and chain complexes
can be used to define quantum codes with metachecks.
As such, we provide a pedagogical interlude in Sec. VI
that introduces this correspondence. The proof is then
given in Sec. VII and uses the homological product on
chain complexes. Where possible we have converted ab-
stract homological proofs into linear algebra. The con-
structions of Thm. 4 will emerge as a simple, special case
of the techniques explored in Sec. VII, and we will see
that codes with finite single-shot distance are also possi-
ble. An important metric is the encoding rate, the num-
ber of logical qubits per physical qubit kQ/nQ. The ex-
pressions for the inverse rate are neater to write

nQ
kQ

=
n4 + 4n2(n− k)2 + (n− k)4

k4
(11)

= 6
(n

k

)4

− 12
(n

k

)3

+ 10
(n

k

)2

− 4
(n

k

)

+ 1.

From this, it is clear that for any family of classical codes
with constant rate n/k ≤ A, will yield a family of quan-
tum codes with constant rate nQ/kQ ≤ AQ ∼ O(A4).

III. CONDITIONS FOR SUCCESSFUL

SINGLE-SHOT ERROR CORRECTION

This section proves that soundness leads to single shot
error correction as stated in Thm. 1. Our analysis will
use a minimum weight decoder defined as follows:
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Definition 6 (MW single-shot error decoding)
Given measurement outcomes s = σ(E) + u, a minimum
weight decoder performs the following 2 steps

1. Syndrome decode: find srec with minimal |srec| such
that s+srec passes all metachecks (so H(s+srec) =
0);

2. Qubit decode: find Erec with minimal wt(Erec) such
that σ(Erec) = s+ srec;

We call R = E · Erec the residual error.

This is the most common notion of weight minimisation
and for instance was suggested by Bombin [1]. Other
decoders may correct more errors or may be more efficient
to implement. However, the minimum weight decoder is
especially useful in the following analysis.
Note that it is not possible to always find solutions to

the above problem. For instance, one may find a minimis-
ing srec but then there is no Erec satisfying the second
condition. We call such an event a metacheck failure, but
we do have the following guarantee

Lemma 1 (Meta-check success) We can find a so-
lution to MW single-shot decoding provided that |u| <
dss/2.

The proof is essentially the same as standard proofs for
correcting adversarial qubit errors. Metacheck failures
correspond to cases where there exists a minimal weight
srec where H(s+ srec) = 0 but there is no physical Pauli
error E such that σ(E) = s + srec. Note that whenever
we use “+” between two binary vectors it should be read
as addition modulo 2. First, we note that H(s+ srec) =
H(σ(E) + u + srec) and using Hσ(E) = 0 we get that
srec must satisfy H(u+ srec) = 0. Since, srec = u would
satisfy this requirement and srec is minimum weight, we
infer that |srec| ≤ |u|. Using the triangle inequality we
get |srec+u| ≤ 2|u| < dss. By the definition of single-shot
distance, it follows that there exists a physical error E′

such that σ(E′) = srec+ u. Using the syndrome relation
σ(E · E′) = σ(E) + σ(E′) we obtain

σ(E · E′) = s+ u+ srec + u = s+ srec. (12)

Therefore, there is always a physical error (e.g. Erec =
E · E′) consistent with the repaired syndrome s + srec
and the lemma is proved.
The above proof shows that the code can tolerate up

to dss/2− 1 adversarial measurement errors and provide
a solution to single-shot decoding. However, the story is
not finished since even if a metacheck failure does not oc-
cur, a conventional logical failure might yet occur. There-
fore, next we address the question of how we can ensure
the residual error R = Erec · E has bounded size. From
σ(Erec) = s+ srec we deduce σ(R) = u+ srec and so

|σ(R)| ≤ 2|u| < dss (13)

This prompts the question, given a small syndrome (con-
sistent with metachecks) does there even exists a small

weight physical error generating this syndrome! Indeed,
this is not always the case; unless the code has nice sound-
ness properties. Using our notion of soundness we can
prove the following

Lemma 2 (An upper bound on residual error)
Consider a quantum error correcting code with pa-
rameters [[n, k, dQ, dss]] that is (t, f)-sound. Given
measurement error u and physical error E. If

1. |u| < dss/2 : the measurement error is small
enough to ensure no metacheck failures;

2. |u| < t/2 : the measurement error is small enough
to use soundness properties;

3. f(2|u|) + wt(E) < dQ/2 : the combined errors are
sufficiently small;

It follows that a solution to MW single-shot decoding will
yield a residual error R = E · Erec with wtmin(R) ≤
f(2|u|).

We know from above (Eq. 13) that the residual error R
satisfies |σ(R)| ≤ 2|u| < dss. By using the definition of
(t, f)-soundness, we know that provided 2|u| < t there
exists an R⋆ such that σ(R) = σ(R⋆) and wt(R⋆) ≤
f(2|u|). It remains to show that S = RR⋆ is a stabiliser of
the code as this would entail that wtmin(R) ≤ wt(R⋆) ≤
f(2|u|). Clearly, σ(RR⋆) = σ(S) = 0 so S is either a
stabiliser or a nontrivial logical operator. It can only be
a nontrivial logical operator if dQ ≤ wt(RR⋆). The rest
of the proof shows that we instead have wt(RR⋆) < dQ
and so S is a stabiliser. We start with

R ·R⋆ = E · Erec ·R⋆, (14)

and

wt(R ·R⋆) = wt(E · Erec ·R⋆). (15)

Using the triangle inequality

wt(R ·R⋆) ≤ wt(Erec) + wt(E ·R⋆). (16)

Since, Erec is a minimum weight solution, we can assume
that wt(Erec) ≤ wt(E ·R⋆), and hence

wt(R ·R⋆) ≤ 2wt(E ·R⋆) ≤ 2wt(E) + 2wt(R⋆). (17)

Using again that wt(R⋆) ≤ f(2|u|) we obtain

wt(R ·R⋆) ≤ 2(f(2|u|) + wt(E)). (18)

We are interested in when the LHS is upper bounded by
dQ, which follows from the RHS being upper bounded by
dQ, which is precisely the third condition of the lemma.
Therefore, wt(R ·R⋆) < dQ and consequently R = S ·R⋆.
This proves the lemma, and Thm. 1 follows by simply
rephrasing the lemma into the language of Def. 1.
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IV. SOUNDNESS AND ENERGY BARRIERS

Here we discuss the relationship between the concept
of code soundness and energy barriers in physical sys-
tems, resulting in a proof of Thm. 2. The reader ought
to ensure familiarity with the introductory material in
subsections I B and IC. Aharonov and Eldar remarked
in Ref. [10] that codes with good soundness lead to large
energy barriers, though they were interested in a strictly
stronger definition of soundness.
A key lemma is the following

Lemma 3 Consider a [[n, k, dQ]] quantum code with
checks M that is (t, f)-sound and where all qubits are
involved in no more than C checks. It follows that the
energy barrier is at least f−1(w) where w = min[(t −
1)/C, (dQ − 1)/2] and f−1 is the inverse of the sound-
ness function.

For any walk of states {ψ0, ψ1, ψ2, . . . ψL} we have a
sequence of Pauli operators {1l, E1, E2, . . . EL}, so that

|ψj〉 = Ej |ψ0〉 and EjE
†
j−1 = EjEj−1 = Pj is a one

qubit Pauli error (the local error condition). For every
Ej in the sequence we consider the reduced weight

wtred(E) := minV {wt(EV ) : V ∈ P, σ(V ) = 0}, (19)

where the minimisation is over all Pauli V with trivial
syndrome. Note that reduced weight is slightly differ-
ence from min-weight since the minimisation is over a
bigger group than the code stabiliser. Herein we use Vj
to denote Pauli operators that achieve the above minimi-
sation. Since σ(Vj) = 0 every Vj is either a stabiliser or a
nontrivial logical operator. By the groundstates and or-
thogonality property, it follows that V0 = 1l and VL = EL.
So the sequence starts with a stabiliser and ends with a
nontrivial logical operator. Therefore, there must exist
a j⋆ such that Vj⋆ is a stabiliser and Vj⋆+1 is a nontriv-
ial logical operator. Therefore, Vj⋆Vj⋆+1 must also be a
nontrivial logical operator and so

dQ ≤ wt(Vj⋆Vj⋆+1). (20)

Furthermore, we have

wt(Vj⋆Vj⋆+1) =wt(Vj⋆Vj⋆+1Ej⋆E
†
j⋆Ej⋆+1E

†
j⋆+1)

=wt(Vj⋆Ej⋆Vj⋆+1Ej⋆+1Ej⋆Ej⋆+1), (21)

and using the triangle inequality twice we have

wt(Vj⋆Vj⋆+1) ≤wt(Vj⋆Ej⋆) + wt(Vj⋆+1Ej⋆+1)

+ wt(Ej⋆Ej⋆+1)

=wtred(Ej⋆) + wtred(Ej⋆+1) + 1. (22)

We have used wtred(Ej) = wt(VjEj) on the first two
terms and the local errors condition on the last term.
Combining this with Eq. (20), leads to

dQ ≤ 2max[wtred(Ej⋆),wtred(Ej⋆+1)] + 1, (23)

and so

dQ − 1

2
≤ max[wtred(Ej⋆),wtred(Ej⋆+1)]. (24)

Consider the sequence of reduced weights
{wtred(E0),wtred(E1), . . . ,wtred(En)}. The sequence
starts and ends with zero and at some point must
reach (dQ − 1)/2 or higher. Furthermore, the local
error condition entails that |wtred(Ej+1) − wtred(Ej)|
is either 0 or 1 and so the sequence of reduced weights
must include every integer from 0 to (dQ − 1)/2.
Therefore, we can set w equal to min[t/C, (dQ − 1)/2]
and there must exist an Ej with wtred(Ej) = w.
Next, we consider the syndrome σ(Ej) and note that
σ(Ej) = σ(EjVj) where wt(EjVj) = wtred(Ej). The
LDPC condition of the code ensures that for any E
we have |σ(E)| ≤ Cwt(E). Therefore, for the Ej
with wtred(Ej) = w we have |σ(Ej)| ≤ Cw. Since
w ≤ (t − 1)/C we have |σ(Ej)| ≤ t − 1 < t and the
soundness property can be deployed to conclude that
f−1(w) ≤ |σ(Ej)|. Since this holds for every possible
walk, f−1(w) gives a lower on the energy barrier and we
have proved Lem. 3.
From Lem. 3 we can quickly obtain a proof of Thm. 2.

We consider an infinite family of [[n, k, dQ]] codes with
an LDPC check family M with good soundness. That
is, the codes are (tn, f)-sound such that: the soundness
function f ∈ O(xa) is independent of n; and tn grows
as Ω(nb) for some constants a and b. We further assume
that the code distance dQ grows as Ω(nc) for some con-
stant c. Since dQ ∈ Ω(nc) and t ∈ Ω(nb), we can choose

w = min[t/C, (dQ− 1)/2] ∈ Ω(nmin[c,b]) in Lem. 3. It fol-

lows that the energy barrier scales as Ω(nmin[c,b]/a) since
f ∈ O(xa) and so f−1 ∈ Ω(x1/a). Therefore this check
family has a macroscopic energy barrier. Notice that
soundness is not the only ingredient in the proof, the
LDPC condition is also crucial. It is unclear whether a
similar result can be shown without the LDPC condition.

We remark that the converse statement would be that
any LDPC check family with a macroscopic energy bar-
rier has good soundness. We have neither proof nor coun-
terexample and so the status of this converse statement
remains open.

Bravyi and Terhal proved that no 2D topological sta-
biliser codes have a macroscopic energy barrier [25].
Therefore, such codes cannot have good soundness as we
stated in corollary 1. This is nearly a statement that
single-shot error correction is impossible in 2D topolog-
ical stabiliser codes and we believe this to be the case.
Though one must be cautious as we have shown good
soundness to be a sufficient condition for single-shot er-
ror correction but not a necessary one. Clearly, if a code
does not have good soundness then minimum weight de-
coding (in the sense of Def. 6) can lead to large weight
residual error. However, if one deviates from the mini-
mum weight decoding strategy then the picture becomes
less clear. For instance, one strategy might be that when
the minimum weight solution is high weight, we do not at-
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tempt to return the system to the codespace but instead
apply a partial recovery. For instance, if we observe two
far apart checks with “-1” outcomes in the 2D toric code,
then we could apply a partial recovery that reduces the
distance between these checks. Indeed, there are cellular
automata decoders for the 2D toric code that behave just
like this [9, 26–28]. These fail to qualify as single-shot de-
coders in the usual sense as they rely on the syndrome
history (partially stored in a cellular automata). But
they highlight that single-shot error correction might be
possible using an imaginative decoder approach based on
partial recoveries.

V. GOOD SOUNDNESS FOR ALL CODES

It is common to conflate a quantum error correction
code with a set of checks M that generate the stabiliser.
But there are many choices of checks for any given code.
Crucially, the soundness properties depend on the set of
checks. Here we prove Thm. 3, which roughly states that
for any code we can find a check set with good soundness
properties. The proof follows from the following lemma.

Lemma 4 Given an [[n, k, dQ]] quantum error correction
code with stabiliser S there exists a minimal set of gener-
ators M = {M1,M2, . . . ,Mn−k} and associated Pauli er-
rors E = {E1, E2, . . . , En−k} such that: (1) [Mi, Ej ] 6= 0
if and only if i = j; and (2) every Ej acts non-trivially
on only a single qubit and so wt(Ej) = 1.

We first consider the consequence of this lemma. Given
such a set of checks, it follows that if s is a syndrome
unit vector (so |s| = 1) with a 1 entry in the jth location,
then s = σ(Ej) (recall Eq. (2)). More generally, s can
be written as a sum of |s| unit vectors and therefore s =
σ(E) where

E =
∏

j:sj=1

Ej . (25)

Since wt(Ej) = 1 we have wt(E) ≤ |s| (with more work
one can prove equality). Therefore, the checks are (t, f)-
sound with t = ∞ and f(x) = x since: the argument
holds for any weight syndrome, and so the value of t
is unbounded; and the weight of the physical error is
no more than the weight of the syndrome, so we have
f(x) = x.
The proof of Lem. 4 is essentially a step in the proof

Lem. 2 of Ref. [29]. In Ref. [29], it is shown that upto to
qubit labelling and local Clifford unitaries, the generators
Mj can be brought into a diagonalised form inspired by
the graph state formalism. In this form, Mj acts on the
jth qubit with Pauli X. On all others qubits with labels
1 through to n− k, the operator Mj acts as either Pauli
Z or the identity. Therefore, Pauli Z acting on qubit
j anticommutes with generator Mj and commutes with
all other generators. Accounting for local Cliffords and
original qubit labelling, the required Ej may act on a

different qubit and may be different from Pauli Z, but it
will be a single qubit Pauli. This completes the proof.
The soundness properties proven above are extremely

strong. This leads to the counter-intuitive result that
single-shot error correction is possible for any code and
without any check redundancy. The price to pay is that
one must use a certain set of checks such as the diago-
nalised form above. As such, if the checks are initially
low weight (e.g. part of an LDPC check family) then this
property may be lost as the diagonalisation process leads
to high weight checks. Indeed, we can prove the following
strong limitation on diagonalisation methods.

Claim 1 Consider a family of codes with checks in the
diagonalised form used in the proof of Lem. 4. Assume
also the diagonalised check family is LDPC, such that in
every code no qubit is acted on by more than C checks.
It follows that the distance is bounded dQ ≤ C +1 for all
codes in the family.

We prove this by constructing an explicit error F
that is not in the code stabiliser but σ(F ) = 0 and
wt(F ) ≤ C + 1. First, we let P be some single qubit
Pauli (wt(P ) = 1) acting on a qubit with label exceed-
ing n − k. By the LDPC property |σ(P )| ≤ C. Fur-
thermore, following previous arguments there exists an
E acting on the first n−k qubits such that σ(E) = σ(P )
and wt(E) ≤ |σ(P )|. Combined wt(E) ≤ |σ(P )| and
|σ(P )| ≤ C entail wt(E) ≤ C. Setting F = EP , we have
that

σ(F ) = σ(E) + σ(P ) = 2σ(E) = 0 (26)

and

wt(F ) ≤ wt(E) + wt(P ) ≤ C + 1. (27)

Lastly, we need to show that F is not an element of the
stabiliser. First we note that F 6= 1l since E and P act
on disjoint sets of qubits. Next, let us assume to the
contrary that F is a non-trivial element of the stabiliser.
Then there is some non-empty set J ⊆ {1, . . . , n − k}
such that

F =
∏

j∈J

Mj . (28)

Following the argument in the proof of Lem. 4, let us
assume that each Mj acts with Pauli X on the jth qubit.
But all Mk 6=j act on the jth qubit with either Pauli Z
or the identity. Therefore, for every j ∈ J we have that
F acts on the jth qubit with either X or Y . Since J is
non-empty there is at least one qubit with index between
1 and n− k such that F acts as either X or Y . However,
F = EP where E acts on the first n − k qubits with
either Z or 1l. Since P acts on one of the last k qubits,
we see that F can not be a stabiliser and must instead
be a non-trivial logical operator.

The LDPC property is highly desirable and so too is
growing code distance. Therefore, we need an alternative
route to good soundness.
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VI. TANNER GRAPHS, CHAIN COMPLEXES

AND HOMOLOGY THEORY

From here on we specialise to codes with checks M
that can be partitioned into checks in the Z and X Pauli
basis. For such codes, we describe quantum codes in
a graphical language that extends on the classical use
of Tanner graphs. We will explain the correspondence
between the graphical representation and a linear algebra
description in terms of concepts from algebraic topology.
Several example graphs are given in Fig. 1. In every

case, the graph breaks up into D + 1-partitions and we
will refer to D as the length of the graph. Each partition
comes with a set of vertices Cj . We use a binary matrix
δj to describe the adjacency between vertices in Cj and
Cj+1. Specifically, matrix δj has a “1” in entry (a, b) if
and only if the bth vertex in Cj is connected to the ath

vertex in Cj+1. Therefore, δ0 is the well-known parity
check matrix of a classical code. Furthermore, δ0 is the
parity check matrix for bit-flip (X) errors in a quantum
code. Using superscript T for transpose, the matrix δT−1

is the parity check matrix for phase-flip (Z) errors in a
quantum code.
We conflate thinking of Cj as a set of vertices and also

as a binary vector space Z
nj

2 where nj denotes the number
of vertices in Cj . A unit vector û has only a single entry
with value 1 and identifies single vertex in Cj . Therefore,
given a pair of unit vectors û ∈ Cj and v̂ ∈ Cj+1, we
have v̂T δj û = 1 if and only if the corresponding vertices
are connected. Therefore, given a unit vector û ∈ C1

identifying a measurement (or check) for bit-flip errors,
the vector δT0 û identifies the (qu)bits involved in that
check. We use the notation

X[u] := ⊗jXuj

j , (29)

Z[v] := ⊗jZvjj , (30)

where u and v are binary vectors. The graph should
be read as not just defining a code but also the mea-
surement scheme. So for every unit vector û in C1, the
graphical formalism stipulates that we measure the oper-
ator Z[δT0 û]. So in our earlier notation Z[δT0 û] would be
a member of M and is a stabiliser of the code. Since the
stabiliser is a group, we have that Z[δT0 u] is a stabiliser for
any vector u ∈ C1. Similarly, X[δ−1v] is a stabiliser of the
code for every v ∈ C−1. Operators X[δ−1v] and Z[δ

T
0 u]

will commute if and only if (δT0 u)
T δ−1v = uT δ0δ−1v = 0

where all such equations should be read using addition
modulo 2. Since we need all such operators to commute,
we require that δ0δ−1 = 0. Conversely, if X[e] with
e ∈ C0 is an error, the vector δ0e is the Z-measurement
syndrome assuming ideal measurements.
In homology theory, this whole structure is called a

chain complex and the operators δj are called bound-
ary maps provided the relation δj+1δj = 0 holds for all
j. Therefore, given a homological chain complex the
commutation relations are automatically satisfied since
δ0δ−1 = 0. Remarkably, requiring δj+1δj = 0 not only

gives us the required commutation relations but also en-
sures that the metachecks are suitably defined. We will
show this formally. Consider a physical error X[e]. It
will generate Z-syndrome δ0e assuming no measurement
errors. Since there are no measurement errors, the meta-
syndrome x = δ1δ0e ought to be the all zero vector, which
is ensured if δ1δ0 = 0.
Let us connect this back to the notation used in the

first part of this paper. The check set is

M = (Z[δT0 û1], . . . , Z[δ
T
0 ûn1

], X[δ−1v̂1], . . . , X[δ−1v̂n
−1
])

(31)
where ûj and v̂j are unit vectors with the unit in the
jth location. Any Pauli error can be expressed as E =
X[e]Z[f ] for some vectors e and f . The syndrome of this
Pauli is then the combination of the Z and X syndromes,
so that

σ(X[e]Z[f ]) =

(

δ0e
δT−1f

)

. (32)

Furthermore, the whole metasyndrome matrix has block
matrix form

H =

(

δ1 0
0 δT−2

)

. (33)

From this we see that the condition required earlier (that
Hσ(E) = 0 for all Pauli E) follows from the fundamental
property of chain complexes, specifically δ1δ0 = 0 and
δT−2δ

T
−1 = 0.

Next, we study some parameters of chain complexes.
We use nj to denote the number of vertices in Cj , and
equivalently the dimension of the associated vector space
Z
nj

2 . The matrix δj will have nj columns and nj+1 rows.
An important parameter is the jth Betti number, which
we denote kj . For our purposes, it suffices to define

kj := nullity(δj)− rank(δj−1). (34)

Here, nullity is the dimension of the kernel, denoted
ker(δj), which is the space of vectors u such that δju = 0.
The rank is the number of linearly independent rows in
a matrix. Alternatively, the rank is equal to the di-
mension of the image, denoted im(δj−1), which is the
space of vectors v such that there exists a u satisfying
v = δj−1u. Those familiar with homology theory may
prefer to think of kj as the dimension of the jth ho-
mology group Hj = ker(δj)/im(δj−1). This counts the
number of different homology classes at a particular level
of the chain complex. Let c be an element of Cj . If
c ∈ ker(δj) then we say c is a cycle. However, for any
c ∈ im(δj−1) it immediately follows from δjδj−1 = 0 that
also c ∈ ker(δj) and such a cycle is said to be a trivial
cycle. On the other hand, if c ∈ ker(δj) but c /∈ im(δj−1)
then c is a non-trivial cycle. If any non-trivial cycles ex-
ist then kj > 0, and the value of kj counts the number
of different non-trivial cycles (factoring out homological
equivalence). Note that for kj with the lowest value of j
in the chain complex, the matrix δj−1 is not defined and
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on bit-flips

bit-flip checks

bits / qubits

phase-flip checks

metacheck

on phase-flips

δ1

FIG. 1: A graphical representation of some example classical and quantum error correcting codes, including scheme for parity
check measurements and metachecks. (a) the 4 bit classical repetition code; (b) the 4 bit classical repetition code with an
additional check and corresponding metachecks; (c) the 4 bit classical repetition code with repeated checks and corresponding
metachecks; (d) the 7-qubit Steane code; (e) the 7-qubit Steane code with additional checks and corresponding metachecks.
The symbol δj is a matrix describing the connectivity between vertices in set Cj and Cj+1. It can also be considered as a linear
map known as the boundary map in homology theory.

so Eq. (34) should be read with δj−1 substituted by the
zero matrix. Similarly, for the largest possible j value we
must take δj as the zero matrix.
One can similarly look at the cohomologies

kTj := nullity(δTj−1)− rank(δTj ). (35)

Poincaré duality entails that kTj = kj and for complete-
ness we give a simple proof in App. A using only linear
algebra. For quantum codes, k0 is important as it gives
the number of logical qubits encoded by the code. It is
useful for us to also to consider kj for other values of j.
For instance, in a code with metachecks, k1 is the num-
ber of classes of syndromes x such that they pass all the
metachecks (δ1x = 0) but there does not exist an expla-
nation in terms of qubit errors (∄e such that x = δ0e).
In the context of error correction, we are interested not

just in the number of non-trivial cycles, but also their
minimum distance. As such, we define

dj := min{|c| : c ∈ ker(δj), c /∈ im(δj−1)}, (36)

dTj := min{|c| : c ∈ ker(δTj ), c /∈ im(δTj+1)},

where |c| := ∑

j cj is the Hamming weight. We use the
convention that dj = ∞ whenever kj = 0 and similarly
dTj = ∞ whenever kTj+1=0. We know of no simple rela-

tionship between dj and d
T
j . This is enough for us to de-

fine the usual parameters of the corresponding [[n, k, dQ]]
quantum code as n = n0, k = k0 and dQ = min[d0, d

T
−1].

However, we also introduce a new parameter that we call
the single-shot distance as follows.

Definition 7 (Single-shot distance) Given a length-
4 chain complex we define the single-shot distance as
dss := min[d1, d

T
−2] where d1 and dT−2 are special cases

of Eq. (36).

The single-shot distance relates to how many measure-
ment errors can be tolerated before a failure occurs that
we call a metacheck failure. In a metacheck failure, the
syndrome has no explanation in terms of qubit errors.
See Fig. 2b4 for an example of metacheck failure in the
2D Ising model with periodic boundary conditions.
Let us review different ways we can use this formalism.

Consider a length-1 chain complex C0 →δ0 C1. We can
consider the vertices in the zeroth level as bits and the
first level as parity checks. Thus a length-1 chain complex
can be regarded as a classical code. Consider a length-2
chain complex C−1 →δ

−1
C0 →δ0 C1. This could repre-

sent either a quantum code (without any metachecks) or
alternatively a classical code equipped with metachecks.
In the classical case, our convention is to increment all
the indices by one to have C0 →δ0 C1 →δ1 C2. We
choose this convention such that C0 always labels the
physical bits or qubits. In Fig. 2a1 and Fig. 2b1 we show
two graphs representing length-2 chain complexes. The
graphs are identical except in Fig. 2a1 it represents a
quantum code and in Fig. 2b1 it represents a classical
code with metachecks.
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2D Toric code 2D Ising model

point-like syndromes

string-like errors

string-like syndromes
forming trivial cycles

area-like errors

(a1)

(a2)

(b1)

(b3)

string-like measurement error

(b2) point-like metasyndrome

string-like syndrome 
forming a nontrivial cycle

(b4)
metacheck failure

?

?

?
?

?

?

?

?

?

FIG. 2: In (a) we illustrate the 2D toric code. Part (a1) describes the toric code using the vertex labelling from Fig. 1 with grey
curved lines highlighting the periodic boundary conditions of the torus. Part (a2) shows the relationship between error and
syndromes. Notice that a weight 2 syndrome (two endpoints) could require an arbitrarily long string to produce the syndrome.
Therefore, the code does not have good soundness. In (b) we illustrate the 2D Ising model as a classical error correction
code. Part (b1) again uses the vertex labelling from Fig. 1. Notice that (b1) represents the same graph as (a1) but with the
different types of vertex changing role. Part (b2) shows a measurement error that is detected by metachecks. Part (b3) shows a
measurement syndrome that passes all metachecks (i.e. it would be the corrected syndrome of (b2)). The red region shows an
error pattern that generates the syndrome. Notice that the size of the physical error scales at most quadratically with the size
of the syndrome. Therefore, the code does have good soundness. Part (b4) show a metacheck failure. There is a syndrome that
spans the code and forms a non-trivial cycle. Due to periodic boundary conditions there is no error region with this syndrome
as its boundary.

Given a length-4 chain complex, the additional layers
of homology describe metachecks on the X and Z checks.
Note that the additional layers of the chain complex have
no direct effect on the code parameters.
We could also consider length-3 chain complexes with

metachecks on either X and Z checks. It is also plausible
that a length-3 chain complex could support single-shot
error correction of both error types by using a form of
gauge fixing such as proposed in 3D colour codes [1].
However, we will not explore this here.
We also need to translate the notion of soundness into

the language of chain complexes

Definition 8 (Soundness of maps) Let t be an inte-
ger and f : Z → R be some function called the soundness
function. Given a linear map δ, we say it is (t, f)-sound

if for all r such that |δr| < t, it follows that:

x = |δr| =⇒ min{|r′| : δr′ = δr} ≤ f(x). (37)

Furthermore, we say a quantum error correcting code is
(t, f)-sound if the above holds for both δ0 and δT−1. For a
classical error correcting code this is required for just δ0.

This is less general than the earlier Def. 3 since the above
only applies to CCS codes whereas our earlier definition
was valid for any stabiliser code. However, it should be
clear that any CCS code satisfying Def. 8 will also sat-
isfy Def. 3. We saw earlier that 2D topological codes
cannot have good soundness and we illustrate this in
Fig. 2a. Whereas, for the 4D toric code, with an appro-
priate choice of checks, geometric arguments show that
low weight syndromes can always be generated by small
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weight errors. To visualise this, it is easier to instead
think of the 2D Ising model as a classical error correct-
ing code. In such a code, syndrome cycles have a weight
equal to their perimeter and the error generating the syn-
drome has weight equal to the area (see Fig. 2b3). The
area of a 2D region can be no more than x2/8 of the
perimeter length x and so the Ising model has a quadratic
soundness function. Therefore, it can be helpful to think
of soundness as describing the geometric area law rela-
tionship between syndromes and errors, albeit in purely
algebraic terms.
Check redundancy provides consistency conditions

that one can inspect for evidence of measurement errors.
These checks on checks are illustrated in Fig. 1 using
diamonds. We call these metachecks. They do not rep-
resent a physical measurement but classical postprocess-
ing on the measurement outcomes. That is, for a given
metacheck node we calculate the parity of all the checks
it is connected to. If this parity is odd, a measurement
error must have occurred on one of the adjacent nodes.
Recall that we quantify the amount of redundancy in a
measurement scheme as the ratio between the number of
measurements performed (which equals n1 + n−1) and
the minimum number required to generate the stabiliser
of the code (which equals n0 − k0). We use υ to denote
this ratio, so that

υ =
n1 + n−1

n0 − k0
, (38)

with υ = 1 indicating no redundancy. In Fig. 1 we give
examples of codes with such redundancy (Fig. 1b, Fig. 1c
and Fig. 1c). We are interested in check families where
υ is no more than a small constant factor.

VII. CONSTRUCTING SINGLE-SHOT CODES

Here we show how the homological product can be used
to construct new codes supporting single-shot error cor-
rection. This will culminate in a proof of Thm. 4 though
the techniques allow for a broader range of constructions,
including codes where the single-shot distance is finite.

A. A single application constructions

As a warm-up, we begin by considering a single appli-
cation of the homological product. Our approach is to
take a length-1 chain complex (e.g. a conventional classi-
cal code) and use the homological, or hypergraph, prod-
uct to build a length-2 chain complex with the desired
properties. In general, one could take two different input
classical codes and combine them together using these
techniques, but for simplicity we take both input codes
to be the same. Furthermore, there are a few different
notions of the homological product. For instance, Bravyi
and Hastings use a simplified variant that they call the
single sector homological product, whereas we will use a

more standard textbook variant that Bravyi and Hast-
ings would call a multi sector homological product [20].
Furthermore, there is some freedom in the notation and
we use a convention such that the homological product
in this section is manifestly equivalent to the hypergraph
product of Tillich and Zemor [16].
Given a chain complex C0 →δ0 C1 we can define a new

chain complex C̃−1 →δ̃
−1
C̃0 →δ̃0

C̃1 of the form

C0⊗C1 →δ̃
−1

(C0⊗C0)⊕ (C1⊗C1) →δ̃0
C1⊗C0. (39)

The notation ⊗ represents the tensor product. For ex-
ample, if a ∈ C0 and b ∈ C1 then a ⊗ b ∈ C0 ⊗ C1, and
the space C0 ⊗ C1 further contains any linear combina-
tions of such vectors. The symbol ⊕ represents a direct
product. For instance, vectors in (C0 ⊗ C0)⊕ (C1 ⊗ C1)
can be written as w = u ⊕ v where u ∈ (C0 ⊗ C0) and
v ∈ (C1 ⊗ C1). All vectors should be read as column
vectors and so the direct product of vectors can also be
read as stacking these vectors

u⊕ v =

(

u
v

)

. (40)

We will use the weight identities |u ⊗ v| = |u| · |v| and
|u⊕v| = |u|+ |v|. The boundary map δ̃−1 is defined such
that for product vectors a⊗ b ∈ C0 ⊗ C1, we have

δ̃−1(a⊗ b) = (a⊗ (δT0 b))⊕ ((δ0a)⊗ b), (41)

and it extends linearly to non-product vectors. This is
often more concisely denoted as δ̃−1 = (1l⊗δT0 )⊕(δ0⊗1l).

The boundary map δ̃0 is defined such that for product
vectors a⊗ b ∈ C0 ⊗ C0 and c⊗ d ∈ C1 ⊗ C1, we have

δ̃0((a⊗ b)⊕ (c⊗ d)) = ((δ0a)⊗ b) + (c⊗ (δT0 d)), (42)

and again extending linearly to non-product vectors.
Both the new boundary maps can also be represented
in block matrix form

δ̃−1 =

(

1l⊗ δT0
δ0 ⊗ 1l

)

, (43)

δ̃0 =
(

δ0 ⊗ 1l 1l⊗ δT0
)

.

From here it is easy to verify that they satisfy the re-
quirement that δ̃0δ̃−1 = 2(δ0 ⊗ δT0 ) = 0, where we have
used that all mathematics is being performed modulo 2.
These matrices fully characterise the new chain complex
and from them we can find graphs of the sort shown in
Fig. 1. We give a graphical overview in Fig. 3.
Now we discuss the parameters of this new structure,

with some of these results obtained in Ref. [16]. Simple
dimension counting tells us that the new chain complex
has

ñ−1 = n0n1, (44)

ñ0 = n20 + n2
1,

ñ1 = n0n1.
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C̃0

C̃−1

C̃1 C1 ⊗ C0

C0 ⊗ C1

C0 ⊗ C0 C1 ⊗ C1

δ0 ⊗ 1l

δ0 ⊗ 1l

1l⊗ δT0

1l⊗ δT0

 good soundness

 good soundness
δ̃−1

δ̃0

C̃0

C̃1

C1 ⊗ C0

C0 ⊗ C1

C0 ⊗ C0 C1 ⊗ C1

δ0 ⊗ 1l

δ0 ⊗ 1l

1l⊗ δT0

1l⊗ δT0

δ̃1

δ̃0

C̃2

a) quantum code b) classical code with metachecks

FIG. 3: An overview of a single application of the homological product to generate a length-2 chain complex from a length-1
chain complex (that can be viewed as a classical code). In (a) we label the chain-complex under the assumption that it defines
a quantum code, and where the subscripts are consistent with the main text. In (a) we label the chain-complex under the

assumption that it defines a classical code. In order that C̃0 denotes the bits, we have increments all the new subscripts by
1. Throughout we use rectangles to show a collection of bit/qubit vertices; we use ovals to show a collection of checks; and
diamonds to show a collect of metachecks.

The dimension of the homological classes is more in-
volved, but a well known result from homology theory
(the Künneth formula [20, 30]) tells us that

k̃−1 = k0k1, (45)

k̃0 = k20 + k21,

k̃1 = k1k0.

The distance of the code is trickier yet again to prove
and is not a standard quantity in homology theory. Nev-
ertheless, one can show that

d̃−1 = d0d
T
0 , (46)

d̃T0 = d0d
T
0 , (47)

d̃0 ≥ min(d0, d
T
0 ), (48)

d̃T−1 ≥ min(d0, d
T
0 ). (49)

We provide proofs in App. C for Eq. (46) and Eq. (47).
The results of Eq. (48) and Eq. (49) were shown by Tillich
and Zemor [16] but we give an independent proof in the
homological formalism in App. C.
Here we instead focus on the following lemma

Lemma 5 (First soundness lemma) Let C0 →δ0 C1

be a chain complex. Applying the above homological prod-
uct we obtain a new chain complex where the map δ̃T0 is

(t, f)-sound and δ̃−1 is (t, f)-sound with f(x) = x2/4 and
t = min(d0, d

T
0 ).

We make no assumptions about the soundness properties
of the original chain complex but find this emerges due
to the nature of the homological product. However, if
one knows that the original chain complex is sound, one
could prove a stronger soundness result (with f growing
slower than x2/4) for the new chain complex. We prove
this lemma in App. D and next discuss its implications.
Using the above homological product, we can con-

struct a quantum code with parameters [[ñ0, k̃0, dQ]]

where dQ = min[d̃T0 , d̃0]. These codes will not necessarily
support single-shot error correction because the sound-
ness property in Lem. 5 is not the property required by
Thm. 1, which requires that δ̃0 and δ̃

T
−1 have good sound-

ness properties.

Why prove Lem. 5 if it is does not directly provide
quantum codes with single-shot capabilities? First, in
the next section we will make a second application of the
homological product and Lem. 5 will be used, and so it is
a stepping stone result. Second, Lem. 5 is highly instruc-
tive as it gives a way to construct classical codes that
exhibit single-shot error correction. Let us explore this
second point further. A classical code with metachecks
needs three layers of structure (recall Fig. 1) and our con-
vention is that the subscript 0 in C0 always denotes the
bits or qubits. So for a classical code with metachecks,
we want a chain complex of the form C̃0 →δ̃0

C̃1 →δ̃1
C̃2.

We can use the chain complex generated by the homo-
logical product by simply increasing all the subscripts by
1. With these incremented subscripts, Lem. 5 tells us
that δ̃0 is (dT0 , f)-sound with f(x) = x2/4. It is easy to
get lost in subscripts, so we emphasize that the impor-
tant feature is that soundness runs in the direction from
bits/qubits to checks. This is illustrated in Fig. 3 where
it clearly runs the correct way for the classical code but
not the quantum code. For instance, the 2D toric code
and 2D Ising code can both be obtained by applying the
homological product to a classical repetition code, but
only the 2D Ising code exhibits good soundness (recall
Fig. 2).

Next, we comment on the redundancy of the new quan-
tum code.

Claim 2 (Updated redundancy) Let C0 →δ0 C1 be a
chain complex associated with an [[n, k, d]] classical code
with check redundancy υ = n1/(n0 − k0). Applying the
above homological product we obtain a new chain complex
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and associated quantum code with check redundancy

υ̃ = υ
n

υ(n− k) + k
< 2υ. (50)

Notice that if υ = 1 then υ̃ = 1.

To prove this, we begin with the definition of redundancy
and apply Eqs. (44) and Eqs. (45)

υ̃ =
ñ1 + ñ−1

ñ0 − k̃0
(51)

=
2n0n1

n2
0 + n2

1 − k20 − k21
(52)

=
2n0n1

(n0 − k0)(n0 + k0) + (n1 − k1)(n1 + k1)
. (53)

Using that for a length-1 chain complex n1−k1 = n0−k0
and the definition of υ, we find

υ̃ =
2n0n1

(n0 − k0)(n0 + k0 + n1 + k1)
(54)

= 2υ
n0

n0 + k0 + n1 + k1
.

Since the fraction is clearly less than 1, we have that
υ̃ < 2υ. Furthermore, using n1−k1 = n0−k0 to eliminate
k1 and υ = n1/(n0 − k0) to eliminate n1, we obtain

υ̃ = υ
n0

υ(n0 − k0) + k0
, (55)

and the identification n = n0 and k = k0 gives the final
expression for υ̃.
We conclude this section by considering a simple appli-

cation of the above homological product. Given a classi-
cal [n, k, d] code, we can associate many different length-1
chain complexes, depending on whether there is redun-
dancy in the check operators. However, for any code
there always exists a minimal chain complex where there
is no redundancy (υ = 1). For such a minimal chain
complex, we have n1 = n− k, k1 = 0 and dT0 = ∞. This
is useful as it allows us to make statements that depend
only on well known code properties.

Corollary 2 (Quantum code constructions)
Consider a classical [n, k, d] code. Applying the above
homological product to the minimal chain complex of
this code, we obtain a [[2n(n − k) + k2, k2, d]] quantum
code with no check redundancy.

B. A second application of the homological product

For a quantum error correcting code with metachecks
we need a length-4 chain complex, which can be con-
structed by applying the homological product to a length-
2 chain complex. We use breve ornaments over symbols
in this section to identify matrices, variables and vec-
tor spaces associated with the length-4 chain complex,
as follows

C̆−2 →δ̆
−2
C̆−1 →δ̆

−1
C̆0 →δ̆0

C̆1 →δ̆1
C̆2. (56)

The homological product between a pair of 2-dimensional
chain complexes will generate a length-4 chain complex
according to the general rule that

C̆m =
⊕

i−j=m

C̃i ⊗ C̃j . (57)

The boundary maps are illustrated in Fig. 4 and can be
written as block matrices as follows

δ̆−2 =

(

1l⊗ δ̃T0
δ̃−1 ⊗ 1l

)

, (58)

δ̆−1 =





1l⊗ δ̃T−1 0

δ̃−1 ⊗ 1l 1l⊗ δ̃T0
0 δ̃0 ⊗ 1l



 , (59)

δ̆0 =

(

δ̃−1 ⊗ 1l 1l⊗ δ̃T−1 0

0 δ̃0 ⊗ 1l 1l⊗ δ̃T0

)

, (60)

δ̆1 =
(

δ̃0 ⊗ 1l 1l⊗ δ̃T−1

)

. (61)

One can verify that δ̆j+1δ̆j = 0 for all j follows from the

same condition on the δ̃ matrices. As before, one obtains
the relations

n̆m =
∑

i−j=m

ñiñj , (62)

k̆m =
∑

i−j=m

k̃ik̃j ,

where the first is simple dimension counting and the sec-
ond line follows from the Künneth formula.
The distances are lower bounded as follows

d̆0, d̆
T
−1 ≥ min[d̃−1,max[d̃0, d̃

T
−1], d̃

T
0 ], (63)

d̆1, d̆
T
−2 ≥ min[d̃0, d̃

T
−1],

which we prove in App. E. Note that the distance will
often be significantly larger than these lower bounds. Our
main technical goal is to prove the following soundness
result.

Lemma 6 (Second soundness lemma) Let

C̃−1 →δ̃
−1

C̃0 →δ̃0
C̃1 be a chain complex such

that δ̃T0 is (t, f)-sound and δ̃−1 is (t, f)-sound with
f(x) = x2/4. Applying the above homological product
we obtain a new length-4 chain complex (as in Eq. 56)

where the map δ̆0 is (t, g)-sound and δ̆T−1 is (t, g)-sound
with soundness function g(x) = x3/4.

We show the direction of the resulting soundness in Fig. 4
and this should be contrasted with the direction of the
soundness arrows in Fig. 3. We will only prove the results

for δ̆0 with the proof for δ̆T−1 being essentially identical.
Let us first discuss how the problem can be divided

into three subproblems. Let s ∈ im(δ̆0) so there must

exist at least one r ∈ C̆0 such that δ̆0r = s. We divide r
into components

r =





ra
rb
rc



 , (64)
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FIG. 4: An overview of the second application of the homological product to generate a length-4 chain complex from a two
dimensional chain complex (that can be viewed as a quantum code).

and consider two distinct images

sL = (δ̃−1 ⊗ 1l)ra + (1l⊗ δ̃T−1)rb, (65)

sR = (1l⊗ δ̃T0 )rc + (δ̃0 ⊗ 1l)rb, (66)

where

s = δ̆0r =

(

sL
sR

)

. (67)

One always has the weight relations |r| = |ra|+ |rb|+ |rc|
and |s| = |sL|+ |sR|.
For a syndrome that passes all metachecks we have

that

δ̆1s = (δ̃0 ⊗ 1l)sL + (1l⊗ δ̃T−1)sR = 0, (68)

which entails that

m := (δ̃0 ⊗ 1l)sL = (1l⊗ δ̃T−1)sR, (69)

where we have defined this new quantity to be m. Given
a physical error pattern r that generates the syndrome
(as in Eqs. (65)-(66)) the metachecks are always passed
and one finds that

m = (δ̃0 ⊗ δ̃T−1)rb. (70)

It is interesting that this depends only on the rb com-
ponent of r. We can first try to find low weight rb that
solves Eq. (70). This leads to the following partial solu-
tion to the problem

Lemma 7 (Partial soundness result) Let C̃−1 →δ̃
−1

C̃0 →δ̃0
C̃1 be a chain complex. Applying the above ho-

mological product we obtain a new length-4 chain com-
plex (as in Eq. 56) with the following property. For any

s ∈ im(δ̆0) there exists an rb with the following properties

1. correctness: (δ̃0 ⊗ δ̃T−1)rb = m = (δ̃0 ⊗ 1l)sL = (1l⊗
δ̃T−1)sR;

2. low weight: |rb| ≤ |sL| · |sR|;

3. small sL remainder: sL− (1l⊗ δ̃T−1)rb =
∑

i αi⊗ âi
where âi are unit vectors and αi ∈ ker δ0. There
are at most |sL| nonzero αi and these are bounded
in size |αi| ≤ |sL| ;

4. small sR remainder: sR − (δ̃0 ⊗ 1l)rb =
∑

i b̂i ⊗ βi
where b̂i are unit vectors and βi ∈ ker δT−1. There
are at most |sR| nonzero βi and these are bounded
in size |βi| ≤ |sR|.

The proof has a similar flavour to the earlier soundness
result and is deferred until App. F. Notice that the lemma
does not require any soundness of the initial chain com-
plex. Next, we want to find low-weight ra and rc such
that they provide the remaining elements of the syn-
drome as follows

(δ̃−1 ⊗ 1l)ra = sL − (1l⊗ δ̃T−1)rb, (71)

(1l⊗ δ̃T0 )rc = sR − (δ̃0 ⊗ 1l)rb. (72)

Fortunately, Lem. 7 ensures that these remainder syn-
dromes are “small” in the defined sense. We may next
use the following observation

Claim 3 (Inheritance of soundness) If δ̃−1 is (t, f)-

sound then δ̃−1 ⊗ 1l is also sound in the following strong

sense. Let q ∈ im(δ̃−1 ⊗ 1l) with decomposition q =
∑

i αi ⊗ âi such that |αi| < t then there exists an ra
such that (δ̃−1 ⊗ 1l)ra = q and |ra| ≤

∑

i f(|αi|). A sim-
ilar result holds when we interchange the order of tensor
products and consider δ̃T0 .
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The proof is fairly straightforward. Since |αi| < t for all

i and by assumption δ̃−1 is (t, f)-sound, there must exist

γi such that δ̃−1γi = αi and |γi| ≤ f(|αi|). By linearity,

there exists ra =
∑

i γi ⊗ âi such that (δ̃−1 ⊗ 1l)ra = q
and |ra| ≤

∑

i |γi| ≤
∑

i f(|αi|).
Next, we put these pieces together. Combining Lem. 7

and Claim. 3 together with the assumption that |s| < t
one immediately obtains that there exist ra and rc solving
Eq. (71) with weights upper bounded by

|ra| ≤ |sL|f(|sL|) (73)

|rc| ≤ |sR|f(|sR|) (74)

Therefore, we have the total weight

|r| ≤ |sL|f(|sL|) + |sL| · |sR|+ |sR|f(|sR|). (75)

We take f(x) = x2/4 as stated in Thm. 6, which leads to

|r| ≤ 1

4
|sL|3 + |sL| · |sR|+

1

4
|sR|3 (76)

≤ 1

4
(|sL|+ |sR|)3 (77)

=
1

4
|s|3. (78)

Therefore, we have proven (t, g)-sound of δ̆0 with g(x) =
x3/4. This completes the proof that Thm. 6 follows from
Lem. 7.
Next, we comment on the check redundancy of these

codes

Claim 4 (Updated redundancy part 2) Consider a
length-2 chain complex and associated quantum code with
check redundancy υ̃. Applying the above homological
product we obtain a length-4 chain complex and new
quantum code with check redundancy ῠ < 2υ̃.

To prove this we recall the definition of redundancy and
then use Eqs. (62) to obtain

ῠ =
n̆1 + n̆−1

n̆0 − k̆0
(79)

=
2ñ0(ñ1 + ñ−1)

(ñ2
−1 + ñ2

0 + ñ2
1)− (k̃2−1 + k̃20 + k̃21)

. (80)

Since ñj ≥ k̃j for all j, the denominator is greater than

ñ2
0−k̃20, which itself can be factorised as (ñ0−k̃0)(ñ0+k̃0)

and so

ῠ ≤ 2ñ0(ñ1 + ñ−1)

(ñ0 − k̃0)(ñ0 + k̃0)
, (81)

= 2

(

ñ1 + ñ−1

ñ0 − k̃0

)(

ñ0

ñ0 + k̃0

)

, (82)

= 2υ̃

(

ñ0

ñ0 + k̃0

)

, (83)

Last, we use the loose bound that the fraction is less than
1 to conclude that ῠ ≤ 2υ̃ as claimed.

C. Combining homological products

Here we combine the results of the preceding two sub-
sections. Parameters carrying a breve are first expressed
in term of parameters carrying a tilde, and then the tilde
parameters are replaced with unornamented parameters.

n̆0 = ñ21 + ñ2
0 + ñ2

−1 = (n2
0 + n2

1)
2 + 2n20n

2
1, (84)

n̆1 = n̆−1 = ñ0(ñ1 + ñ−1) = 2(n2
0 + n2

1)n0n1,

k̆0 = k̃21 + k̃20 + k̃2−1 = (k20 + k21)
2 + 2k20k

2
1,

k̆1 = k̆−1 = k̃0(k̃1 + k̃−1) = 2(k20 + k21)k0k1,

d̆0 = d̆T−1 ≥ min[d0, d
T
0 ],

d̆1 = d̆T−1 ≥ min[d0, d
T
0 ].

Furthermore, by combining Claim. 2 and Claim. 4 we
obtain an upper bound on the check redundancy

ῠ < 2υ̃ = 2υ
n

υ(n− k) + k
, (85)

where υ is the check redundancy of the [n, k, d] classical
code associated with the initial length-1 chain complex.
The simplest case is when we use a minimal chain com-

plex representing the initial [n, k, d] classical code. Then
υ = 1, k1 = 0 and n1 = n − k and the above equations
simplify to

n̆0 = n4 + 4n2(n− k)2 + (n− k)4, (86)

n̆1 = n̆−1 = 2n(n− k)(n2 + (n− k)2),

k̆0 = k4,

k̆1 = k̆−1 = 0

ῠ < 2.

d̆0 = d̆T−1 ≥ d,

We also know that d̆1 = d̆T−2 = ∞ as a consequence

of k̆1 = k̆−1 = 0. We make the following identifica-

tions: n̆0 gives the number of physical qubits nQ; k̆0 is

the number of logical qubits kQ; d̆0 and d̆T−1 give the

qubit error distance dQ; and d̆1 and d̆T−2 give the single-
shot distance dss. This proves Thm. 4. We remark that
in the final stages of this research, Zeng and Pryadko
posted a preprint [31] that shows that the distance is
much better than suggested by our bounds, in particular

d̆0 = d̆T−1 = d2.
In Table I we provide some concrete examples. These

are the smallest examples since they use very small ini-
tial classical codes. Though the resulting quantum code
is much larger. The first three examples correspond to 4D
toric codes with cubic tilling either with closed bound-
ary conditions (examples 1 and 2) or periodic boundary
conditions (example 3). The last example corresponds to
no previous codes that we know of. We have deliberately
chosen codes that have low check weight as these will
be the most experimentally feasible. Our constructions
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Input classical code Double homological product code

parameters max. check redundancy parameters max. check mean check redundancy
δ n k d weight υ nQ kQ dQ dss weight weight ῠ

(

1 1 0

0 1 1

)

3 1 3 2 1 241 1 9 ∞ 6 4.87179 1.3







1 1 0 0

0 1 1 0

0 0 1 1






4 1 4 2 1 913 1 16 ∞ 6 5.18 1.31579







1 1 0

0 1 1

1 0 1






3 1 3 2 1.5 486 6 9 3 6 6 1.33884











1 1 0 0 0 0

0 1 1 0 1 0

0 0 1 1 0 0

0 0 0 0 1 1











6 2 4 3 1 3856 16 16 ∞ 8 5.48077 1.3

TABLE I: Some example small classical codes used to generate a quantum code with good soundness through a double
application of the homological product. Many of the parameters come directly from equations in the main text. The mean
check weight and redundancy are calculated exactly by constructing the explicit parity check matrices. Our table uses the
improved distance dQ results of Zeng and Pryadko [31].

could potentially be slightly improved using a generali-
sation of the hypergraph improvements analogous to use
of rotated toric lattices [32].

VIII. DISCUSSION & CONCLUSIONS

This is a paper of two halves. The first half was concep-
tual and gave a presentation of single-shot error correc-
tion. We found an intimate connection between single-
shot error correction and a property called good sound-
ness. We saw that good soundness in LDPC codes en-
tails a macroscopic energy barrier, which further confirms
a relationship between passive quantum memories and
single-shot error correction. However, our results leave
open whether there exist any codes with a macroscopic
energy barrier that lack good soundness. Michael Bever-
land suggested in discussion that it would be interesting
to look at whether Haah’s cubic code [33, 34] has good
soundness. The Haah cubic code is notable because it
does have a macroscopic energy barrier but is not a good
passive quantum memory at all scales due to entropic
effects. Also curious is the role of metachecks and redun-
dancy. We saw that good soundness can be achieved by
any code without any check redundancy, but the proof
used a diagonalised form of the stabiliser generators that
typically destroys any LDPC properties.

The second half of this paper was more technical and
focused on specific code constructions capable of provid-
ing both good soundness and LDPC properties. It has
long been known that homology theory provides a natural
mathematical framework for CCS codes, but we saw that
homology theory is especially useful when metachecks
(checks on measurements) are added to the picture. It
is well known that for topological codes the energy bar-

rier and single-shot error correction are intimately re-
lated to the dimensionality of the code. We abstract
away the topological structure and instead work with
algebraic homological structure. While these codes no
longer have a dimensionality in the geometric sense, we
saw that using the homological product can imbue codes
with a sort of effective dimensionality. More precisely,
a double application of the homological product resulted
in single-shot properties similar to 4-dimensional topo-
logical codes. Many readers will feel more comfortable
with topological codes because of the conceptual and vi-
sual crutches they provide. However, topological codes
are significantly limited in terms of the code parame-
ters they can achieve due to trade-off bounds [22, 23].
So by freeing ourselves from the constraints of topolog-
ical codes and pursuing their more abstract cousins, we
can seemingly benefit from many of the advantages of
high-dimensional topological codes (e.g. single-shot er-
ror correction) but with improved code parameters. This
prompts the question what other topological code proper-
ties might hold for homological product codes. We know
that 3D and 4D topological codes can support transver-
sal non-Clifford gates [35–41], which suggests that a sim-
ilar property might hold for suitably defined homological
product codes.

Our code constructions married good soundness and
LDPC properties, through the use of check redundancy
and associated metachecks. But do any codes exist with-
out check redundancy that are useful for single-shot error
correction? A related question is whether our sound-
ness properties are necessary conditions for single-shot
error correction as well as being sufficient conditions.
While finishing this research, work on quantum expander
codes [5] has shown that they can perform single-shot er-
ror correction without any check redundancy. Initially,
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we speculated (in an early preprint) that the quantum
error codes will have good soundness, but Leverrier has
shown (in private correspondence) that they do not have
this property! Therefore, there is more work to be done
on this topic to find a code property more permissive
than soundness that encompasses all of our codes and
also the quantum expander codes.
The main limitation of this work is that we restrict our

attention to adversarial noise. Stochastic noise models
instead distribute errors according to some probability
distribution and assign a non-zero probability to every
error configuration. If the probability of a high weight
error is low, then we can still leverage proofs from the ad-
versarial noise setting. However, in an independent noise
model where each qubit is affected with probability p, a
code with n qubits will typically suffer around pn errors.
For all known quantum LDPC code families, the distance
scales sublinearly, and so there is some scale at which the
code is likely to suffer an error considerable larger than
the code distance. Nevertheless, one is often able to prove
the existence of an error correcting threshold. The cru-
cial point is that even though some errors of weight pn
might not be correctable, these represent a small fraction
of all weight pn errors and so happen with small proba-
bility. At this point, proof techniques diverge. We can
prove that this works for concatenated codes, topological
codes and low-density parity check codes [42]. As such,
while there is a single theoretical framework for adver-

sarial noise, there is no single theory for stochastic noise
in all settings. The situation is likely the same in the set-
ting of single-shot error correction. The pioneering work
of Bombin demonstrated that three dimensional colour
codes can perform single-shot error correction against a
stochastic noise model [1], and so in this sense our results
are strictly weaker. On the other hand, our approach is
strictly more general as it applies to a broad range of
codes, including many new code constructions such as
those presented here. It is then natural to wonder what
are sufficient and necessary conditions for single-shot er-
ror correction to work against stochastic noise? It is rea-
sonable to conjecture that any concatenated or LDPC
codes that meets our criteria for adversarial noise will
also perform single-shot error correction against stochas-
tic noise.
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Appendix A: A simple proof of relation between

Betti numbers

We give a simple proof that kj = kTj as defined in
Eq. (34) and Eq. (35). The proof uses simple linear al-
gebra rather than sophisticated homological techniques
that are needed in more exotic settings. We use the rank-
nullity theorem that for any matrix A,

rank(A) + nullity(A) = n, (A1)

where n is the number of columns in A. This entails that

rank(δj) + nullity(δj) = nj , (A2)

rank(δTj−1) + nullity(δTj−1) = nj . (A3)

Taking the definition of kTj (recall Eq. (35)) and using

Eq. (A3) to eliminate the dependence on nullity(δTj−1),
we obtain

kTj = nj − rank(δTj−1)− rank(δTj ). (A4)

Using that for any matrix rank(A) = rank(AT ), we de-
duce

kTj = nj − rank(δj−1)− rank(δj). (A5)

Using Eq. (A2) to eliminate rank(δj), we get

kTj = nj − rank(δj−1)− [nj − nullity(δj)] (A6)

= nullity(δj)− rank(δj−1),

which is precisely the definition of kj given in Eq. (34).
This completes this simple but educational proof.

Appendix B: Further notation

1. Vector reshaping

Throughout the appendices we often reshape vectors
into matrices. If we have a vector v belonging to some
tensor product space A⊗B, then we can reshape v into a
matrix V . We always use lower-case symbols for vectors
and upper-case for the resulting matrix after reshaping.

Let {âi} and {b̂j} be unit basis vectors for A and B,
respectively. Then any vector v can be decomposed in
this basis as

v =
∑

i,j

Vi,j âi ⊗ b̂j , (B1)

where the coefficients Vi,j are elements of the matrix rep-
resentation. That is, Vi,j is the entry in the ith row and
jth column of matrix V . Furthermore, given matrices
M : A→ A and N : B → B we will rewrite equations as
follows

(M ⊗N)v →MVNT , (B2)

which is easily verified.

2. Matrix support

We further introduce the notion of column and row
support. Given any matrix X we let colsupp(X) denote
the set of columns in X with at least one nonzero entry.
Given any matrix X we let rowsupp(X) denote the set
of rows in X with at least one nonzero entry. We shall
often use | . . . | to denote the number of rows or columns
within some support. That is, |colsupp(X)| is the number
of columns in X with at least one nonzero entry. For
example, if

X =







1 0 0 1 1 0

0 1 0 1 1 0

0 0 0 1 1 0






, (B3)

then colsupp(X) = {1, 2, 4, 5} and rowsupp(X) =
{1, 2, 3}. Furthermore, |colsupp(X)| = 4 and
|rowsupp(X)| = 3.

Appendix C: Distance bounds: part one

Here we give proofs of distances associated with length-
2 chain complexes constructed using the homological
product (see Eqs. (46)-(49)).

1. First bound

We begin by showing that d̃−1 ≥ d0d
T
0 . The quantity

d̃−1 is the weight of the smallest nonzero vector r ∈ C0⊗

http://arxiv.org/abs/1810.01519
http://arxiv.org/abs/1801.04255


20

C1 such that δ̃−1r = 0. We use that r ∈ C0 ⊗ C1 can
be reshaped into a matrix R; see B 1 for discussion of
reshaping. The condition δ̃−1r entails that every column
of R must be in ker(δ0) and every row of R must be in
ker(δT0 ). Assuming, R is nonzero, there must be at least
one non-zero column. Since this column has weight at
least d0, it follows that there are at least d0 non-zero rows.
Each of these rows has weight at least dT0 . Therefore, the
total weight is at least d0d

T
0 as required. Next, we show

d̃−1 ≤ d0d
T
0 . We assume, d0 6= ∞ and dT0 6= ∞ otherwise

the inequality is trivially true. Let α be a minimal weight
non-zero vector in the kernel of δ0, so |α| = d0. Similarly
let β ∈ ker(δT0 ) with |β| = dT0 . Then α⊗β ∈ C0⊗C1 has

|α⊗β| = d0d
T
0 and is easily verified to satisfy δ̃−1(α⊗β) =

0. The proof of d̃T0 = d0d
T
0 follows by symmetry.

2. Second bound

Next we show that d̃0 ≥ min[d0, d
T
0 ]. Recall, this is

the weight of the smallest vector r such that δ̃0r = 0 and
r /∈ im(δ̃−1). All r can be decomposed as

r =

(

ra
rb

)

, (C1)

where δ̃0r = 0 entails that (δ0 ⊗ 1l)ra = (1l ⊗ δT0 )rb.
Assuming r is a non-trivial cycle, it follows that there
must exist a cocycle w = (wa, wb) such that wT r = 1.
Therefore, wTa ra + wTb rb = 1 and either wTa ra = 1 or
wTb rb = 1. We proceed assuming wTa ra = 1 and further
note that the cocycle can always be assumed to have the
form w = (e⊗ f)⊕ 0. This is a good place to remind the
reader that ⊕ is the direct product and when applied to
columns vectors means that we stack the columns. Since
w ought to be a cocycle it must satisfy δ̃T−1w = 0 which

entails that δ0f = 0. The relation wT r = 1 then be-
comes (eT ⊗ fT )ra = 1. We can reshape some vectors
into matrices, and these equations become

(eT ⊗ fT )ra = 1 =⇒ eTRaf = 1 (C2)

(δ0 ⊗ 1l)ra = (1l⊗ δT0 )rb =⇒ δ0Ra = Rbδ0 (C3)

We consider the vector Raf . From δ0Ra = Rbδ0 we infer
that δ0(Raf) = Rbδ0f . Using also that δ0f = 0 we
have a proof that δ0(Raf) = 0 and so Raf ∈ ker(δ0).
However, Raf 6= 0 otherwise it would be impossible to
satisfy eTRaf = 1. It follows that d0 ≤ |Raf |. Since
Raf is formed from linear combinations of columns from
Ra, we have |Raf | ≤ |Ra| and hence d0 ≤ |Ra|. It follows
that d0 ≤ |r| in this case. For the wTb rb = 1 case, a similar
argument follows but giving a lower bound of dT0 ≤ |r|.
Therefore, the actual lower bound on |r| is the minimum
of these two cases.

Appendix D: Soundness proof: part one

Here we prove Lem. 5 for δ̃T0 , with the δ̃−1 proof follow-
ing a similar fashion. Recalling the definition of sound-
ness, we consider s ∈ C̃0 such that s ∈ im(δ̃T0 ) and |s| <
t = min(dT0 , d0). Therefore, both |s| < dT0 and |s| < d0
hold. There must exist at least one r ∈ C̃1 = C1 ⊗ C0

such that s = δ̃T0 r. This will not be the only possible
solution, but let us begin by exploring the relationship
between |s| and |r|.
The vector s has two components s = sL ⊕ sR and

breaking s = δ̃T0 r into components, we have

sL = (δT0 ⊗ 1l)r, (D1)

sR = (1l⊗ δ0)r.

Next, we reshape r, sL and sR into matrices (see B 1 for
discussion of reshaping) so that

sL = (δT0 ⊗ 1l)r =⇒ SL = δT0 R, (D2)

sR = (1l⊗ δ0)r =⇒ SR = RδT0 .

In terms of support (recall notation of App. B 2) the
above equations entail that

colsupp(SL) ⊆ colsupp(R), (D3)

rowsupp(SR) ⊆ rowsupp(R).

In general, this means that

|colsupp(SL)| ≤ |colsupp(R)|, (D4)

|rowsupp(SR)| ≤ |rowsupp(R)|. (D5)

Using |X| to denote the number of 1s contained in a
binary matrix X, we remark that |colsupp(X)| ≤ |X|
and |rowsupp(X)| ≤ |X| for any X, and so

|SL| ≥ |colsupp(SL)|, (D6)

|SR| ≥ |rowsupp(SR)|.

Combined with |s| = |SL|+ |SR| we find

|s| ≥ |colsupp(SL)|+ |rowsupp(SR)|. (D7)

Squaring both sides and using (a+ b)2/4 ≥ ab for integer
a and b, we obtain

|s|2/4 ≥ |colsupp(SL)| · |rowsupp(SR)|. (D8)

We would like to substitute in Eqs. (D4)-(D5) but the
inequality signs do not align correctly. We would be able
to proceed if Eqs. (D4)-(D5) held with strict equality, but
this is not always the case.
To proceed we use that the above R is not the only

possible solution. Given an initial R we can transform
to obtain a new R so that Eqs. (D2) are preserved, but
so that also Eq. (D4) and Eq. (D5) become equalities.
In particular, given a pair of vectors a ∈ ker δT0 and b ∈
ker δ0 we can perform R → R + abT and Eqs. (D2) will
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R =





0 B 0
A C 0
0 0 0





trivial rows

nontrivial rows in kerδ0

rows for which δ0b = 0

nontrivial 

columns in          kerδT0 trivial columns     

columns for which      δT0 a = 0

FIG. 5: The form of R after the repeated R→ R+abT process has terminated. We have taken the liberty of permuting columns
and rows, such that: any column of R in ker(δ0) will intersect block A; any row (transposed) of R in ker(δT0 ) will intersect
block B. Since the aforementioned R → R + abT process has terminated, there are no more column and row pairs such that
they are in the relevant kernel and they intersect. Therefore, the upper-left block must be all-zero as shown otherwise there
would still exist such an intersecting pair and the R→ R+ abT process ought to continue. Note further that the process must
terminate after a finite number of rounds since the column and row supports are strictly decreasing with each transform of R.
Since the middle block of columns are those that do not vanish under δT0 , we have that |SL| ≥ |δ

T
0 R| is equal to the number of

columns in the middle block of columns. Similarly, |SR| is lower bounded by the number of rows in the middle block of rows.

be preserved. We assume for now that neither Eq. (D4)
nor Eq. (D5) are strict equalities, and so we may take
both a and bT to be column and row vectors from R. It
follows that the new R+abT has column and row support
strictly contained within that of R, and the support may
even reduce in size. Notice that adding abT will add a
to every column in R on which bT is supported. So if
the support of a and bT intersect in R, we can strictly
decrease the number of columns and the number of rows
in R. By intersect in R we mean that if b is the ith row
of R and a is the jth column of R, then Ri,j = 1. Let us
consider an example,

R =















0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

1 1 1 1 0















, (D9)

so that colsupp(R) = {1, 2, 3, 4} and rowsupp(R) =
{1, 2, 3, 4, 5}. Let a = (1, 1, 1, 1, 1)T be the fourth col-
umn vector and b = (1, 1, 1, 1, 0) be the last row vector.
They intersect since R5,4 = 1 and we emphasis this by
highlighting the intersecting element in bold and red. We
find that

R′ = R+ abT =















1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0















. (D10)

Notice that colsupp(R) = {1, 2, 3} and rowsupp(R) =
{1, 2, 3, 4}, so that the supports have strictly decreased.
Also note that the intersection property was crucial. If
we had instead considered

R =















0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

1 1 1 0 0















, (D11)

with non-intersecting a = (1, 1, 1, 1, 0)T and b =
(1, 1, 1, 0, 0) then we would find

R′ = R+ abT =















1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 0 0















. (D12)

The column and row support is completely unchanged.
The key point is that when a and bT intersect in R, we
will add a to a set of columns including the column equal
to a. Since we do this modulo 2, at least one column is
removed. Similarly, at least one row will be removed.

Repeating this R → R + abT process must terminate
when there are no remaining column/row pairs that in-
tersect and are elements of the relevant kernels. After
termination the matrix R was a special form best illus-
trated using a block matrix equation shown in Fig. 5 with
further comment in the figure caption. Having trans-
formed into this special form, we next use additional
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assumptions under which A and B blocks vanish and
so Eq. (D4) and Eq. (D5) become strict equalities. As-
sume A is nonzero so there exists a column vector c in-
tersecting block A. Since c ∈ ker(δT0 ) and c 6= 0 we have
|c| ≥ dT0 . Furthermore, since column vector c intersects
block A we conclude that the middle block of rows in R
must contains at least |c| nonzero rows and consequently,
|rowsupp(SR)| ≥ |c| (see Fig. 5 and caption for more in-
tuition) and consequently |rowsupp(SR)| ≥ dT0 . Next, we
use our assumption that |s| < dT0 that was asserted at the
very start of this proof, which we combine with Eq. (D7)
to conclude that

dT0 > |colsupp(SL)|+ |rowsupp(SR)|, (D13)

and so dT0 > |rowsupp(SR)|. Having proved both
|rowsupp(SR)| ≥ dT0 and dT0 > |rowsupp(SR)|. We have
a contradiction that is only resolved if such a column
vector c does not actually exist and therefore A = 0.
Using a nonzero row vector in ker(δ0), a similar argu-

ment entails that |colsupp(SL)| ≥ d0, which contradicts
|s| < d0, and so we conclude B = 0 also. Therefore, we
see that the above transformation must yield a form with
where Eqs. (D4)-(D5) hold with strict equality. This can
be combined with Eq. (D8) to conclude that

|s|2/4 ≥ |colsupp(R)| · |rowsupp(R)|. (D14)

Furthermore, if R is supported on a submatrix of size
|colsupp(R)| by |rowsupp(R)| then the size of this sub-
matrix gives an upper bound on |R| = |r| so that

|colsupp(R)| · |rowsupp(R)| ≥ |r|. (D15)

Combining Eq. (D14) and Eq. (D15) produces the desired
bound |s|2/4 ≥ |r|.

Appendix E: Distance bounds: part two

Here we prove Eqs. (63).

1. First bound

We begin with

d̆0 ≥ min[d̃−1,max[d̃0, d̃
T
−1], d̃

T
0 ] (E1)

and remark that the proof for d̆T−1 will follow a similar

fashion. Recall that d̆0 is the weight of the smallest vector

r such that δ̆0r = 0 and r /∈ im(δ̆−1). All r can be
decomposed as

r =







ra
rb
rc






, (E2)

where δ̆0r = 0 requires that

(1l⊗ δ̃T−1)rb = (δ̃−1 ⊗ 1l)ra, (E3)

(δ̃0 ⊗ 1l)rb = (1l⊗ δ̃T0 )rc.

Taking the components of r and reshaping into a matri-
ces, the vector equations transform into matrix equations
as follows

(δ̃0 ⊗ 1l)rb = (1l⊗ δ̃T0 )rc =⇒ δ̃0Rb = Rcδ̃0, (E4)

(1l⊗ δ̃T−1)rb = (δ̃−1 ⊗ 1l)ra0 =⇒ Rbδ̃−1 = δ̃−1Ra. (E5)

Assuming r is a non-trivial cycle, it follows that there
must exist a nontrivial cocycle w = wa ⊕ wb ⊕ wc such
that wT r = 1. Furthermore, the cocycle can be assumed
to be of the form w = (ea ⊗ fa) ⊕ (eb ⊗ fb) ⊕ (ec ⊗ fc)
since the span of such vectors encompasses all nontrivial
cocycles.
Therefore, wTa ra + wTb rb + wTc rc = 1 and at least one

of these terms must equal 1 and there are four cases to
consider

1. wTa ra = 1 and wTb rb = wTc rc = 0, in which case we
may assume w = (ea ⊗ fa)⊕ 0⊕ 0;

2. wTc rc = 1 and wTa ra = wTb rb = 0, in which case we
may assume w = 0⊕ 0⊕ (ec ⊗ fc);

3. wTb rb = 1 and wTa ra = wTc rc = 0, in which case we
may assume w = 0⊕ (eb ⊗ fb)⊕ 0;

4. wTa ra = wTb rb = wTc rc = 1; in which case we can
find a new w satisfying one of the above 3 cases.

We again remind the reader that all vectors are col-
umn vectors. Furthermore, ⊕ is the direct product and
when applied to columns vectors means that we stack the
columns.
We first consider case 1. For w = (ea ⊗ fa) ⊕ 0 ⊕ 0

to be a cocycle requires that δ̃−1fa = 0. Furthermore,
the condition wT r = (eTa ⊗ fTa )ra = 1 in reshaped form
becomes eTaRafa = 1. We consider the vector Rafa, and
find

δ̃−1Rafa = Rbδ̃−1fa = 0, (E6)

where we have used Eq. (E5) and δ̃−1fa = 0. In other

words, Rafa ∈ ker(δ̃−1). However, Rafa is non-zero oth-
erwise it would be impossible to satisfy eTaRafa = 1.

It follows that d̃−1 ≤ |Rafa|. Since Rafa is formed
from linear combinations of columns from Ra, we have
|Rafa| ≤ |Ra| and hence d̃−1 ≤ |Ra|. It follows that

d̃−1 ≤ |r| in case 1.
Next, we consider case 2. The proof method is es-

sentially the same but we repeat for completeness. For
w = 0⊕0⊕(ec⊗fc) to be a cocycle requires that δ̃

T
0 ec = 0.

Furthermore, the condition wT r = (eTc ⊗ fTc )rc = 1 in
reshaped form becomes eTc Rcfc = 1. We consider the
vector RTc ec, and find

δ̃T0 R
T
c ec = (Rcδ̃0)

T ec = (δ̃0Rb)
T ec = RTb δ̃

T
0 ec = 0, (E7)
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where we have used Eq. (E4) and δ̃T0 ec = 0. In other

words, RTc ec ∈ ker(δ̃T0 ). However, RTc ec is non-zero oth-
erwise it would be impossible to satisfy eTc Rcfc = 1. It

follows that d̃T0 ≤ |RTc ec|. Since RTc ec is formed from lin-
ear combinations of rows from Rc, we have |RTc ec| ≤ |Rc|
and hence d̃T0 ≤ |Rc|. It follows that d̃T0 ≤ |r| in case 2.

Next, we consider case 3 then w = 0 ⊕ (eb ⊗ fb) ⊕
0. Furthermore, the condition wT r = (eTb ⊗ fTb )rb = 1
in reshaped form becomes eTb Rbfb = 1. The proof is
slightly different from the above two cases. The cocycle
conditions now tells us that both δ̃T−1eb = 0 and δ̃0fb = 0.
We have

δ̃0Rbfb = Rcδ̃0fb = 0, (E8)

δ̃T−1R
T
b eb = (Rbδ̃−1)

T eb = (δ̃−1Ra)
T eb = RTa δ̃

T
−1eb = 0,

(E9)

where we have used δ̃0fb = 0 and δ̃T−1eb = 0 as asserted

earlier. Furthermore, Rbfb /∈ im(δ̃−1) since otherwise

Rbfb = δ̃−1u for some u and then eTb Rbfb = eTb δ̃−1u =

(δ̃T−1eb)
Tu. However, since δ̃T−1eb = 0 this would entail

eTb Rbfb = 0 which is a contradiction and so we must have

Rbfb /∈ im(δ̃−1). Similarly, one has that RTb eb /∈ im(δ̃T0 )

otherwise RTb eb = δ̃−1v for some v which would again
lead to the contradiction eTb Rbfb = 0 when combined

with the fact that δ̃0fb = 0. Combining Rbfb ∈ ker(δ̃0)

and Rbfb /∈ im(δ̃−1) entails that Rbfb is a nontrivial cycle

and so d̃0 ≤ |Rbfb|. Since Rbfb is formed from linear com-
binations of columns from Rb, we have |Rbfb| ≤ |Rb| and
hence d̃0 ≤ |Rb|. Similarly, combining RTb eb ∈ ker(δ̃T−1)

and RTb eb /∈ im(δ̃T0 ) leads to d̃T−1 ≤ |Rb|. This suffices to

prove that in case 3 we have |r| ≥ max[d̃0, d̃
T
−1].

Since any one of the three cases may hold, we must
take the minimum over the three cases. This yields the

distance lower bound on d̆0.

2. Second bound

Here we prove

d̆1 ≥ min[d̃0, d̃
T
−1], (E10)

and remark that the proof for d̆T−2 will follow a similar

fashion. Let s = sa ⊕ sb ∈ C̆1 be a minimal distance
nontrivial cycle for δ̆1. From δ̆1s = 0 we may infer

(δ̃0 ⊗ 1l)sa = (1l⊗ δ̃T−1)sb. (E11)

Since s is a nontrivial cycle, there must exist a nontrivial
cocycle w = wa ⊕ wb such that wT s = 1. There are two
possible cases

1. wTa sa = 1 and wTb sb = 0, in which case we may
assume w = (ea ⊗ fa)⊕ 0;

2. wTb sb = 1 and wTa sa = 0, in which case we may
assume w = 0⊕ (eb ⊗ fb);

C̃0 ⊗ C̃0

C̃0 ⊗ C̃−1 C̃1 ⊗ C̃0

C̃1 ⊗ C̃−1

δ̃0
⊗1l

δ̃0
⊗1l

1l⊗
δ̃ T
−1

1l⊗
δ̃ T
−1

RbRb

SL = δ̃−1Ra +Rbδ̃−1 SR = δ̃0Rb +Rcδ̃0

M = δ̃0Rbδ̃-1

FIG. 6: Top: the relevant subgraph of Fig. 4 reproduced here
for convenient reference. Bottom: the relations between dif-
ferent reshaped matrices as given in Eqs. (F2), (F3) and (F4).
Here we draw the readers attention to how these two figures
are connected. For instance rb is an element of vector space
C̃0 ⊗ C̃0, which is then reshaped into Rb.

For case 1, since w is a cocycle δ̆T1 w = 0 and so both

δ̃T−1ea = 0 and δ̃−1fa = 0. However, ea /∈ im(δ̃0) other-
wise w would be a trivial cocycle. As in other proofs, we
now reshape into matrix equations

wT s = 1 =⇒ eTa Safa = 1 (E12)

(δ̃0 ⊗ 1l)sa = (1l⊗ δ̃T−1)sb =⇒ δ̃0Sa = Sbδ̃−1. (E13)

Therefore,

δ̃0(Safa) = Sbδ̃−1fa = 0 (E14)

where we have used Eq. (E13) and δ̃−1fa = 0. In other

words, Safa ∈ ker(δ̃0). However, Safa /∈ im(δ̃−1) other-

wise there would exist a u such that Safa = δ̃−1u and

then eTa Safa = eTa δ̃−1u = 0 by virtue of δ̃T−1ea = 0. This
is in contradiction with Eq. (E12) and so Safa is a non-

trivial cycle of δ̃0 and must satisfy d̃0 ≤ |Safs|. It follows
that d̃0 ≤ |Sa| ≤ |s|.
For case 2, a similar proof entails that d̃T−1 ≤ |Sb| ≤ |s|.

Since either case may hold the distance is given by the
minimum of these two quantities.

Appendix F: Partial soundness

Here we prove Lem. 7, which is a major technical com-
ponent of Thm. 7. We are working towards a low-weight
solution of

m = (δ̃0 ⊗ δ̃T−1)rb. (F1)
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Input: A set of matrices Rb, SL, SR, δ̃0 and δ̃−1, with relationships
defined in main text.
Output: A new transformed R′

b such that δ̃0R
′

bδ̃−1 = δ̃0Rbδ̃−1 and
furthermore R′

b satisfies a set of constraints on its column and row support.

1. While rowsupp(Rbδ̃−1)− rowsupp(SL) is nonempty

(a) i← SAMPLE[rowsupp(Rbδ̃−1)− rowsupp(SL)];

(b) vT ← the ith row of Rb;

(c) rT ← the ith row of Rbδ̃−1;

(d) j ← SAMPLE[colsupp(rT )];

(e) c← the jth column of Rbδ̃−1;

(f) c′ ← the jth column of SL;

(g) w ← c+ c′;

(h) Rb ← Rb + wvT ;

2. While colsupp(Rbδ̃−1)− colsupp(SL) is nonempty

(a) j ← SAMPLE[colsupp(Rbδ̃−1)− colsupp(SL)];

(b) c← the jth column of Rbδ̃−1;

(c) k ← SAMPLE[rowsupp(Rb) ∩ rowsupp(c)]

(d) vT ← the kth row of Rb;

(e) Rb ← Rb + cvT ;

3. While rowsupp(Rb)− rowsupp(Rbδ̃−1) is nonempty

(a) j ← SAMPLE[rowsupp(Rb)− rowsupp(Rbδ̃−1)];

(b) jth row of Rb ← (0, 0, . . . , 0)

4. While colsupp(δ̃0Rb)− colsupp(SR) is nonempty

(a) i← SAMPLE[colsupp(δ̃0Rb)− colsupp(SR)];

(b) v ← the ith column of Rb;

(c) r ← the ith column of δ̃0Rb;

(d) j ← SAMPLE[rowsupp(r)];

(e) c← the jth row of δ̃0Rb;

(f) c′ ← the jth row of SR;

(g) wT ← c+ c′;

(h) Rb ← Rb + vwT ;

5. While rowsupp(δ̃0Rb)− rowsupp(SR) is nonempty

(a) j ← SAMPLE[rowsupp(δ̃0Rb)− rowsupp(SR)];

(b) vT ← the jth row of δ̃0Rb;

(c) k ← SAMPLE[colsupp(Rb) ∩ colsupp(vT )]

(d) c← the kth column of Rb;

(e) Rb ← Rb + cvT ;

6. While colsupp(Rb)− colsupp(δ̃0Rb) is nonempty

(a) j ← SAMPLE[colsupp(Rb)− colsupp(δ̃0Rb)];

(b) jth column of Rb ← (0, 0, . . . , 0)T

Return: Rb.

FIG. 7: A partial decoder. Certain choices are arbitrary and so we use SAMPLE[. . .] to mean randomly sample (or use any
other criteria) to select one element from a set. For an example of step 1 see transform 1 of toy example 3 in Fig. 10. For an
example of step 2 see transform 1 of toy example 1 in Fig. 8. For an example of step 3 see transform 2 of toy example 1 in
Fig. 8. For an example of step 5 see transform 1 of toy example 2 in Fig 9. See the supplementary material for a Mathematica
implementation of this partial decoder.
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So far we only know that there must be at least one rb
satisfying this equation. We proceed by looking for other
rb consistent with Eq. (F1) that have a low weight and
other additional properties. At this point it is convenient
to reshape our vectors into matrices (recall App. B 1) and
the previous equations become

SL = δ̃−1Ra +Rbδ̃−1, (F2)

SR = δ̃0Rb +Rcδ̃0, (F3)

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1. (F4)

As a visual aid to understanding these equations we pro-
vide Fig. 6.
Notice that if Rb has any columns in the kernel of δ̃0,

these can be removed without changing M . Similarly,
if Rb has any rows in the kernel of δ̃T−1, these can be
removed without changing M . So we see there are trans-
forms that preserve M but remove elements from Rb.
Our proof is essentially a decoder for Rb. This is a

partial decoder as it requires an initial guess for Rb and
does not solve for Ra and Rc. We describe the decoder
in pseudocode in Fig. 7 and give toy examples of it’s
implementation in Figs. 8, 9 and 10. The rest of this
section will discuss the possible transforms of Rb and
then an analysis of the partial decoder.
Support inclusions.- Simple matrix algebra (recall

notation from App. B 2) leads to the inclusions

rowsupp(Rbδ̃−1) ⊆ rowsupp(Rb), (F5)

colsupp(δ̃0Rb) ⊆ colsupp(Rb), (F6)

colsupp(M) ⊆ colsupp(SL), (F7)

rowsupp(M) ⊆ rowsupp(SR). (F8)

If we inspect our toy examples (Figs. 8, 9 and 10) we see
that these are indeed satisfied before any transformations
are performed.
The goal of the partial decoder is to perform a series of

transforms such that M is preserved and the final output
Rb satisfies the following:

rowsupp(Rbδ̃−1) ⊆ rowsupp(SL), (F9)

colsupp(Rbδ̃−1) ⊆ colsupp(SL), (F10)

rowsupp(Rbδ̃−1) = rowsupp(Rb), (F11)

colsupp(δ̃0Rb) ⊆ colsupp(SR), (F12)

rowsupp(δ̃0Rb) ⊆ rowsupp(SR), (F13)

colsupp(δ̃0Rb) = colsupp(Rb), (F14)

The partial decoder goes through 6 while loops with each
loop aiming to enforce one of these conditions. In each
case, the idea is that if the condition is violated this en-
ables us to perform some M preserving transformation
that removes columns or rows from Rb.

Overview of Rb transforms.- Next, we give a very
general account of how we may transform Rb while pre-
servingM . Given a column vector c such that δ̃0c = 0, we

may add c to any of the columns in Rb and M will not
change. Furthermore, if rowsupp(Rb) and rowsupp(c)
have any elements in common, then we can perform a
transformation that removes one row from Rb. Also note
that if c is itself a column vector of Rb then it is trivially
the case that they share row support in common. This
is similar to the intersecting argument encountered in
the proof in App. D. Let us again illustrate by example.
Suppose

Rb =











1 1 1 0

1 0 1 0

0 0 0 0

0 1 1 1











and c =











1

1

1

0











, (F15)

so that rowsupp(Rb) = {1, 2, 4} and rowsupp(c) =
{1, 2, 3}. We see that both supports share 1 and 2 in
common and so either row could be removed. For exam-
ple, to remove row 1 we add c to columns 1, 2 and 3,
yielding

Rb =











0 0 0 0

0 1 0 0

1 1 1 0

0 1 1 1











, (F16)

where row 1 is now trivial. Note that while row 1 has
been removed, rowsupp(Rb) now includes row 3, so the
total number of supported rows has not decreased. Note
the colsupp(Rb) has not gained any new elements.
Let us now consider another example

Rb =











1 1 1 0

1 0 1 0

0 1 1 1

0 0 0 0











and c =











1

1

1

0











, (F17)

which is similar to the earlier example except now
rowsupp(Rb) is equal to rowsupp(c). Consequently, when
we use c to remove row 1 we obtain

Rb =











0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0











, (F18)

so row 1 has been removed but also the total number of
rows has decreased. Note again that colsupp(Rb) has not
gained any new elements.
More generally, we have that

Claim 5 (Row removal) Let c be a column vector such

that δ̃0c = 0 and let vT be the jth row vector of Rb where
j ∈ rowsupp(Rb)∩rowsupp(c). Then the transform Rb →
R′
b = Rb + cvT satisfies the following

1. the transform will preserve M ;
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2. the new R′
b will have row support in rowsupp(Rb)∪

rowsupp(c) − {j}. If one further has that
rowsupp(c) is contained within rowsupp(Rb) then
the number of rows has strictly decreased.

3. the new R′
b will have column support within the

original colsupp(Rb).

Similarly,

Claim 6 (Column removal) Let vT be a row vector

such that vT δ̃−1 = 0 and let c be the jth column vec-
tor of Rb where j ∈ colsupp(Rb) ∩ colsupp(v). Then the
transform Rb → R′

b = Rb + cvT satisfies the following

1. the transform will preserve M ;

2. the new R′
b will have column support in

colsupp(Rb) ∪ colsupp(vT ) − {j}. If one fur-
ther has that colsupp(vT ) is contained within
colsupp(Rb) then the number of columns has
strictly decreased.

3. the new R′
b will have row support within the original

rowsupp(Rb).

We now proceed to use these ideas in the following way.
While loop 1.- This iteratively reduces the number

of elements in rowsupp(Rbδ̃−1) ∪ rowsupp(SL) until we

have rowsupp(Rbδ̃−1) ⊆ rowsupp(SL). Whenever this
inclusion is false, there exists at least one column, say
c, of Rbδ̃−1 such that rowsupp(c) is not a subset of
rowsupp(SL). Furthermore, if c is the jth column of

Rbδ̃−1 let c′ be the jth column of SL. We must have
that c′ 6= c otherwise rowsupp(c) would be a subset

of rowsupp(SL). Since δ̃0Rbδ̃−1 = δ̃0SL we must have
that these matrices are equal on the jth column and so
δ̃0c = δ̃0c

′. Therefore, the vector w = c′ − c satisfies the
following properties:

1. w 6= 0 which follows from c 6= c′;

2. w ∈ ker(δ̃0) which follows from δ̃0c = δ̃0c
′;

3. rowsupp(w) ⊆ rowsupp(Rbδ̃−1) ∪ rowsupp(SL)
which follows from rowsupp(w) ⊆ rowsupp(c) ∪
rowsupp(c′).

4. rowsupp(w) ∩ rowsupp(Rb) is non-empty, be-
cause c (and hence w) has row support outside
rowsupp(SL).

Therefore, we can (by virtue of claim 5) use column vec-
tor w to remove a row from Rb. The row removal process
is possible for any row in rowsupp(Rb) ∩ rowsupp(w).
However, we want the final row support to be within
rowsupp(SL) and so from the set of possible rows we
choose one outside the set rowsupp(SL). In practice,
the partial decoder pseudocode make this row selection
the first task. Therefore, the set (rowsupp(Rbδ̃−1) ∪
rowsupp(SL)) − rowsupp(SL) strictly decreases in size.
Note also that colsupp(Rb) will not increase (by clause

2 of claim 5). For an example, see transform 1 of toy
example 3 in Fig. 10.

While loop 2.- This iteratively reduces the number of
rows in Rb until we have colsupp(Rbδ̃−1) ⊆ colsupp(SL).

First note that if Rbδ̃−1 has any nonzero columns outside

colsupp(SL), the column must be in the kernel of δ̃0. To
prove this, note that if the offending column was outside
ker(δ̃0) then colsupp(δ̃0Rbδ̃−1) would be strictly larger

than colsupp(δ̃0SL) which contradicts δ̃0Rbδ̃−1 = δ̃0SL.

Since the column is in ker(δ̃0) and within colsupp(Rbδ̃−1),
its presence allows us (by virtue of claim 5) to remove a
row from Rb. It is crucial that after each iteration of
the loop, the column support of Rb strictly decreases
(by clause 2 of claim 5), which entails that the while
loop must terminate after a finite number of iterations.
It is important to comment on what we do not show
here; we do not show that each iteration strictly re-
moves columns from colsupp(Rbδ̃−1) until it is contained
in colsupp(SL). Rather the number of rows in Rb are
strictly decreased and this process cannot continue with-
out end, so the while loop termination criteria must be
satisfied within a finite number of rounds. To be precise,
the while loop must terminate, since either (1) after a
finite number of loops we obtain some nonzero Rb such
that colsupp(Rbδ̃−1) ⊆ colsupp(SL); or (2) after a finite
number of iterations all rows will be removed from Rb, so
that Rb = 0, and then colsupp(Rbδ̃−1) = colsupp(0) = ∅
is trivially true. Again colsupp(Rb) will not increase. For
an example, see transform 1 of toy example 1 in Fig. 8.

While loop 3.- This iteratively reduces the number of
rows in Rb until rowsupp(Rbδ̃−1) = rowsupp(Rb). This
is a fairly straightforward step, since the offending rows
must be in the kernel of δ̃T−1 they can just be simply
removed. Removing rows from Rb leads to rows being
removed from Rbδ̃−1 and the condition established in the

previous while loop (that colsupp(Rbδ̃−1)) will remain
true. For an example, see transform 2 of toy example 1
in Fig. 8.

While loop 4.- This is similar to while loop 1, ex-
cept with roles of rows and columns switched and ap-
plied to different matrices. Here we reduce the number
of elements in colsupp(δ̃0Rb)∪colsupp(SR) until we have

colsupp(δ̃0Rb) ⊆ colsupp(SR), making use of claim 6.
Since the process does not introduce any new elements
into rowsupp(Rb), the previously established conditions
will continue to hold true.

While loop 5.- This is similar to while loop 2, except
with roles of rows and columns switched and applied to
different matrices and making use of claim 6. For an
example of step 5 see transform 1 of toy example 2 in
Fig. 9.

While loop 6.- This is similar to while loop 3, except
with roles of rows and columns switched and applied to
different matrices.

Analysis.- The above process will terminate because
the column and row support of Rb is being gradually
reduced. By repeating the above transformations until
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the process terminates, we ensure that Rbδ̃−1 has row and
column support strictly within that of SL. Therefore,
the combination SL − Rbδ̃−1 also has row and column
support strictly within that of SL. We can infer that
SL−Rbδ̃−1 =

∑

i αi⊗âi where αi are the column vectors.
Since SL has at most |SL| columns, there can be at most
|SL| nonzero αi. Since SL has at most |SL| rows, each
αi has weight at most |SL|. This proves the small |SL|
remainder property of our lemma (see property 3). The
small |SR| remainder property holds by a similar fashion

(see property 4). Furthermore, combining Eq. (F9) and
Eq. (F11), we conclude that the final Rb has fewer rows
than SL and so no more than |SL| rows. Similarly, we
deduce that the final Rb has fewer columns than SR and
so no more than |SR| rows. Since the nonzero values
of Rb are contained within a submatrix of size |SL| by
|SR|, we know |Rb| ≤ |SL| · |SR|. This proves property 2
of the lemma. It should be clear that property 1 holds
because the value of M was initially correct and has been
preserved through all transformations.
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0 0 1 1
1 0 1 0
1 0 1 0
0 0 1 1
0 0 0 0
1 0 1 0
0 0 0 0





























1 1 0 0 0 0 1
1 1 1 1 1 1 0
0 0 1 0 0 0 1
1 1 1 0 0 0 0

















0 0 0 0
0 0 1 1
1 0 0 1
1 0 0 1

















0 0 1 1 0 0 1
1 1 1 1 1 1 0
0 0 1 0 0 0 1
1 1 0 1 1 1 0





























0 0 1 1 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 1 0
0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 1 0 1 0 1 0









































0 1 1 1
1 1 1 0
1 1 1 0
0 1 1 1
0 0 0 0
1 0 1 0
0 0 0 0





















Rb =

SL =

= SR
δ̃0Rb =

= Rbδ̃−1

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1

fails to satisfy

colsupp(Rbδ̃−1) ⊆ colsupp(SL)

note this row of

is in

so we fail to satisfy 

Rb

ker(δ̃T−1)

Using boundary maps
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1 1 0 0 0 0 1
1 1 1 1 1 1 0
0 1 1 1 0 1 1
1 0 1 1 0 1 0

















0 0 0 0
0 0 1 1
1 0 0 1
1 0 0 1





























0 0 0 0 0 0 0
1 0 1 1 0 1 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 0 0









































0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
0 0 0 0
1 0 1 0
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δ̃0Rb =

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1
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0 0 1 1
1 0 1 0
1 0 1 0
0 0 1 1
0 0 0 0
1 0 1 0
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0 0 1 1 0 0 1
1 1 1 1 1 1 0
0 0 1 0 0 0 1
1 1 0 1 1 1 0









= SR

  1. Use second column of               to remove

       first row from

 2.  Remove last row from

   

Rb

Rbδ̃−1

Rb

rowsupp(Rb) ⊆ rowsupp(Rbδ̃−1)

B
E

F
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R
E
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R
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O
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δ̃0 =









1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 1 1 0 1









, δ̃−1 =





















1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1





















  Transform list

FIG. 8: Toy example 1 showing the form of an initial Rb matrix before any transformations have been performed. The matrix
δ̃0 was not generated by the homological product but otherwise all features are correct. An actual homological product example
would be too large to be instructive and furthermore the partial soundness proof does not use any such properties. The goal
is to transform Rb such that M is unchanged, but after the transform Rb, Rbδ̃−1 and δ̃0Rb are only supported within the
highlighted boxes. The highlighted boxes are themselves derived from the column and row support of SL and SR that are fixed.
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Rb =

SL =

= SR
δ̃0Rb =

= Rbδ̃−1

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1
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δ̃0Rb =

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1

= Rbδ̃−1

SL =

= SR

  

   1. Use first row of              ro remove

       second column from

   

Rb

B
E

F
O

R
E

 

T
R

A
N

S
F

O
R

M
 

rowsupp(δ̃0Rb) ⊆ rowsupp(SR)
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0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

















0 0 0 0 0 0 0
1 1 1 1 0 0 0
0 0 1 1 0 0 0
1 1 1 1 1 1 0





























0 1 1 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0









































1 1 1 0
1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1









































1 0 1 0
1 0 1 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 1 0 1





























0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0

















0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

















0 0 0 0 0 0 0
1 1 1 1 0 0 0
0 0 1 1 0 0 0
1 1 1 1 1 1 0





























1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 1 1 0 0 0









































1 1 1 0
1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1





















Transform list

Using boundary maps

δ̃0 =









1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 1 1 0 1









, δ̃−1 =





















1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1





















FIG. 9: Toy example 2 showing the form of an initial Rb matrix before any transformations have been performed. All δ
boundary maps are the same as in toy example 1 shown in Fig. 8.
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Rb =

SL =

= SR
δ̃0Rb =

= Rbδ̃−1

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1
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Rb =

δ̃0Rb =

M = δ̃0SL = SRδ̃−1 = δ̃0Rbδ̃−1

= Rbδ̃−1

SL =

= SR

  

   1. Let      be the third column of

       Let       be the third column of 

       Define                        and use to remove

       the fifth row of 
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Transform list

Using boundary maps





















0 1 0 1
1 1 0 1
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
1 0 1 1





























1 0 1 0 1 0 1
1 0 1 0 0 0 1
1 0 1 1 0 0 1
0 0 0 1 1 0 0

















0 0 0 0
1 0 0 0
1 1 1 0
1 1 1 0

















1 1 1 1 0 0 0
1 0 1 0 0 0 1
1 0 1 1 0 0 1
1 1 1 0 1 0 0





























1 0 0 0 1 0 1
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 1 1 0 0 0









































1 0 1 0
1 1 0 1
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1
0 0 1 1









































0 1 0 1
1 1 0 1
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
1 0 1 1





























1 0 1 0 1 0 1
1 0 1 0 1 0 1
1 0 1 1 0 0 1
0 0 0 1 1 0 0

















0 0 0 0
1 0 0 0
1 1 1 0
1 1 1 0

















1 1 1 1 0 0 0
1 0 1 0 0 0 1
1 0 1 1 0 0 1
1 1 1 0 1 0 0





























1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0









































1 1 0 1
1 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1





















δ̃0 =









1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 1 1 0 1









, δ̃−1 =





















0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0





















These rows violate 

rowsupp(Rbδ̃−1) ⊆ rowsupp(SL)

c Rbδ̃−1

c SL

w = c+ c
Rb

FIG. 10: Toy example 3. Note that in this example we use a different boundary map δ̃−1 just for the sake of variety.
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