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ABSTRACT

Deep neural networks have recently demonstrated the

traffic prediction capability with the time series data obtained

by sensors mounted on road segments. However, capturing

spatio-temporal features of the traffic data often requires a

significant number of parameters to train, increasing compu-

tational burden. In this work we demonstrate that embedding

topological information of the road network improves the

process of learning traffic features. We use a graph of a ve-

hicular road network with recurrent neural networks (RNNs)

to infer the interaction between adjacent road segments as

well as the temporal dynamics. The topology of the road

network is converted into a spatio-temporal graph to form a

structural RNN (SRNN). The proposed approach is validated

over traffic speed data from the road network of the city of

Santander in Spain. The experiment shows that the graph-

based method outperforms the state-of-the-art methods based

on spatio-temporal images, requiring much fewer parameters

to train.

Index Terms— Traffic prediction, recurrent neural net-

work, structural recurrent neural network, spatio-temporal

graph

1. INTRODUCTION

Large traffic networks experience a large volume of data and

require predictions of the future traffic states based on current

and historical traffic data. The traffic data are usually obtained

by magnetic induction loop detectors mounted on road seg-

ments. These data include traffic speed and flow, where the

term traffic flow is used interchangeably with the terms traf-

fic volume and traffic counts. Machine learning approaches

have recently been applied to traffic prediction tasks due to

the massive volume of traffic data that has become available.

The sequence of traffic data on each road segment is essen-

tially a time series. However, each time series pertaining to

each road segment has a spatial relationship with each other.

Capturing the spatio-temporal patterns of the vehicular traffic
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is an important task and is part of the control of traffic net-

works.

Preliminary results on traffic forecasting with convolu-

tional neural networks (CNNs) have been reported [1, 2].

They have been demonstrated to be effective in understand-

ing spatial features. Successive convolutional layers followed

by max pooling operations increase the field of view of high-

level layers and allow them to capture high-order features

of the input data. Recurrent neural networks (RNNs) have

also been incorporated, considering the traffic prediction as

a time series forecasting. Different gating mechanisms like

long short-term memories (LSTMs) [2, 3] and gated recurrent

unit (GRU) [4] have been tested with various architecture. In-

stead of dealing with spatial features and temporal features

separately, a novel approach has been proposed in [5] where

the traffic data are converted into spatio-temporal images that

are fed into a CNN. The deep neural network captures the

spatio-temporal characteristics by learning the images. Re-

cently, a capsule network (CapsNet) architecture proposed in

[6] has been demonstrated to outperform the state-of-the-art

in complex road networks. The dynamic routing algorithm

of the CapsNet replaces the max pooling operation of the

CNN, resulting in more accurate predictions but more pa-

rameters to train. Gaussian process (GP) [7] approach is

another data-driven approach considered as a kernel-based

learning algorithm. GPs have been repeatedly demonstrated

to be powerful in exploring the implicit relationship between

data to predict the value for an unseen point. Although com-

parative studies [8, 9] have shown that GPs are effective in

short-term traffic prediction, they still suffer from cubic time

complexity in the size of training data.

Inspired by ideas from [10, 11], this paper develops a

structural RNN (SRNN) for traffic speed prediction, by incor-

porating the topological information into the sequence learn-

ing capability of RNNs. Considering each road segments as a

node, the spatio-temporal relationship is represented by spa-

tial edges and temporal edges. All the nodes and edges are

associated with RNNs that are jointly trained. A computa-

tionally efficient SRNN is implemented in this paper and the

performance is evaluated with real data.

The remaining of the paper is organized as follows. Sec-

tion 2 describes the traffic speed prediction problem of in-



(a) Spatio-temporal graph

(b) Unrolled over time

Fig. 1: An example spatio-temporal graph. (a) Nodes repre-

sent road segments and the nodes are linked by spatial edges

ES and temporal edges ET . (b) The spatio-temporal graph is

unrolled over time using the temporal edges ET . The edges

are labelled with corresponding feature vectors.

terest. Section 3 validates the performance of the proposed

approach. Finally, Section 4 concludes the paper.

2. TRAFFIC SPEED PREDICTION

2.1. Problem Formulation

In this study, we address the problem of short-term traffic

speed prediction based on historical traffic speed data and

a road network graph. Suppose we deal with N road seg-

ments where the loop detectors are installed. Let xt
v represent

the traffic speed on road segment v at time step t. Given a

sequence of traffic speed data {xt
v} for road segments v =

1, 2, ..., N at time steps t = T − l + 1, ..., T , we predict the

future traffic speed xT+1
v on each road segment where T de-

notes the current time step and l denotes the length of data

sequence under consideration.

2.2. Spatio-Temporal Graph Representation

We use a spatio-temporal graph representation G = (V, ES , ET )
as in [10, 11]. Let G denote the spatio-temporal graph. V , ES ,

and ET denote the set of nodes, the set of spatial edges, and

the set of temporal edges, respectively.

Fig. 2: Architecture of the SRNN in perspective of node v
drawn with the unrolled spatio-temporal graph.

In this study, the nodes in the graph correspond to road

segments of interest. Thus, |V| = N . The spatial edges rep-

resent the dynamics of traffic interaction between two adja-

cent road segments, and the temporal edges represent the dy-

namics of the temporal evolution of the traffic speed in road

segments. Fig. 1(a) shows an example spatio-temporal graph.

Nodes u, v, w ∈ V represent road segments. The connec-

tion between the road segments is represented by spatial edges

ES . Note that our approach differs from [11] in that the spa-

tial edges are established if the two road segments are con-

nected, whereas [11] employs an attention model on a fully-

connected graph. In addition, we use two spatial edges in

opposite direction to link neighbouring nodes. We attempt to

take into account the directionality of the interaction between

road segments. A temporal edge originated from node v is

pointing node v. The spatial graph (V, ES) is unrolled over

time using temporal edges ET to form G as depicted in Fig.

1(b) where the edges are labelled with corresponding feature

vectors.

The feature of node v ∈ V at time step t is xt
v , denoting

the traffic speed on the road segment. The feature vector of

spatial edge (u, v) ∈ ES at time step t is x
t
uv = [xt

u, x
t
v],

which is obtained by concatenating the features of nodes u
and v as a row vector. Two spatial edges linking two nodes u
and v in opposite direction have different feature vectors, e.g.,

x
t
uv = [xt

u, x
t
v] and x

t
vu = [xt

v, x
t
u]. The feature vector of

temporal edge (v, v) ∈ ET at time step t is xt
vv = [xt−1

v , xt
v],

which is obtained by concatenating the features of node v at

the previous time step and the current time step.

2.3. Model Architecture

In our architecture of the SRNN, the sets of nodes V , spatial

edges ES , and temporal edges ET are associated with RNNs

denoted as nodeRNN RV , spatial edgeRNN RES
, and tem-

poral edgeRNN RET
, respectively. The SRNN is derived



from the factor graph representation [10]. Our architecture

is the simplest case where the nodes, spatial edges, and tem-

poral edges are sharing the same factors, respectively. This

means we assume the dynamics of spatio-temporal interac-

tions is semantically same for all road segments, which keeps

the overall parametrization compact and makes the architec-

ture scalable with varying number of road segments. Readers

interested in the factor graph representation can refer to [12].

Fig. 2 visualises the overall architecture. For each node

v, a sequence of node features {xt
v}

T
t=T−l+1

is fed into the

architecture. Every time each node feature enters, the SRNN

is supposed to predict the node label ytv , which corresponds to

the traffic speed at the next time step xt+1
v . The input into the

edgeRNNs is the edge feature x
t
e of edge e ∈ ES ∪ ET where

the edge is incident to node v in the spatio-temporal graph.

The node feature xt
v is concatenated with the outputs of the

edgeRNNs to be fed into the nodeRNN.

We use LSTMs for the RNNs. The hidden state of the

nodeRNN has a dimension of 128, and that of the edgeRNNs

has a dimension of 256. We employ embedding layers in the

network that convert the input into an 128-dimensional vector

with a rectified linear unit (ReLU) activation function to give

nonlinearity.

3. PERFORMANCE VALIDATION

3.1. Dataset

We use a traffic speed dataset from the case studies of the

SETA EU project [13]. Traffic speed measurements had been

taken every 15 minutes in the central Santander city of Spain

for the year of 2016. Each sparsely missing measurement is

masked with an average of speed data recorded at the same

time in the other days. We use data of the first 9 months as a

training set and the remaining data of the last 3 months as an

evaluation set.

We compare the performance of the proposed SRNN with

the CapsNet architecture in [6] that outperforms the state-of-

the-art with the dataset. These methods performed the follow-

ing two speed prediction tasks:

• Task 1: prediction based on 10-time-step data (l = 10)

• Task 2: prediction based on 15-time-step data (l = 15)

for two different sets of road segments as depicted in Fig.

3. 50 road segments of interest, where the speed sensors are

installed, are marked in red (N = 50).

3.2. Implementation Details

As one can see from Fig. 3, the road segments of interest

are located sparsely. For constructing the spatial graph in the

proposed architecture, we consider road segments adjacent to

v if they have the shortest distance to segment v. Here, the

distance means the number of links traversed from a node to

(a)

(b)

Fig. 3: Two sets of road segments used in the experiment.

Each set contains 50 road segments marked in red.

another. Our model has been developed based on the Pytorch

implementation of [11].

The proposed architecture and the CapsNet in [6] are

given their best settings. Our network is trained with a batch

size of 8, a starting learning rate of 0.001, and an exponential

decay rate of 0.99. The CapsNet is trained with a batch size of

10, a starting learning rate of 0.0005, and an exponential de-

cay rate of 0.9999. Both networks employ the mean squared

error (MSE) as a loss function and the Adam optimizer [14].

The traffic speed data, measured in [km/h], are scaled into

the range [0, 1] before fed into the networks.

3.3. Performance Metrics

Statistical performance metrics are required to validate the

overall performance of the networks. The mean relative er-



Table 1: Speed prediction performance (unit: km/h).

CapsNet SRNN

MAE RMSE MAE RMSE

Task 1 5.720 9.133 5.632 8.906

Task 2 5.741 9.172 5.588 8.975

ror (MRE) is one of the most common metrics to quantify the

accuracy of different prediction models in general. However,

the error of a larger value of speed might result in a smaller

MRE and vice versa, providing inconsistent results as wit-

nessed in [6]. Thus, we employ mean absolute error (MAE)

and root mean squared error (RMSE) as more intuitive met-

rics for assessing the speed prediction performance. These

performance metrics are defined as:

MAE =

∑

v∈V,t∈T
|ytv − ŷtv|

I
(1)

RMSE =

√

∑

v∈V,t∈T
(ytv − ŷtv)

2

I
(2)

where ŷtv and ytv denote the speed prediction on road seg-

ment v at time step t and its true value, respectively. Here,

T denotes the set of time steps in the evaluation set, and

I = |V| × |T | represents the number of the speed data in

the evaluation set.

3.4. Results

Table 1 shows the resultant performance of the neural net-

works on the two tasks. The best performance out of 20

epochs is obtained for each method. The result indicates the

SRNN performs slightly better by 2.3% in RMSE, showing

mere performance difference between methods and between

tasks. The distinguishable difference resides in the number of

trainable parameters which is translated into computational

burden. The number of trainable parameters of the CapsNet

varies from 5.1 × 107 (Task 1) to 7.6 × 107 (Task 2). Mean-

while, the number of trainable parameters of the SRNN is

1.1 × 106, which is independent of the sequence length l. In

fact, the size of the trainable parameter set of the SRNN is

affected only by the size of the RNNs. The image-based ap-

proaches [5, 6] would face a significant increase in the com-

putation time as the sequence length l and the number of road

segments N increase. On the other hand, the SRNN is scal-

able to varying l and N , and can learn the spatio-temporal

traffic characteristic with much fewer parameters given the

topological information.

4. CONCLUSION

This paper presents a SRNN architecture that combines the

road network map with the traffic speed data to make predic-

tions of future traffic speed. The proposed architecture cap-

tures the spatio-temporal relationship of the traffic data with

much fewer parameters compared with the image-based state-

of-the-art methods.

Existing methods generally provide predictions on road

segments where the traffic history is available. Our future

work will focus on predictions in road networks with sparse

data.
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